CHAPTER **14**

AN INTRODUCTION TO R PROGRAMMING

J. Jayasankar, T. V. Ambrose and R. Manjeesh

Fishery Resources Assessment Division ICAR-Central Marine Fisheries Research Institute

Introduction

R language is the GNU arm of S language, which has taken the computational world by storm in the last decade. Starting as a compendium of statistical tools, this language has grown up into a canopy lording over a research analysis environment thereby subsuming many hitherto complicated manoeuvres onto the realms of syntactical simplicity. As this an exponentially expanding field of development with ever exploding information downpour, it would be a near impossible task to frame it onto a short simple foundational discourse. However in the subsequent sections we would try to view the potential and the extent of practicality we would unravel the hidden features of the software through a GUI envelop also apart from the regular console and syntax based one. To get its power more understandable we would visualize its forays into the field of analytics using medium scale examples from marine fisheries data.

- R is "GNU S" A language and environment for data manipulation, calculation and graphical display.
 - R is similar to the award-winning S system, which was developed at Bell Laboratories by John Chambers *et al.*,
 - a suite of operators for calculations on arrays, in particular matrices,
 - a large, coherent, integrated collection of intermediate tools for interactive data analysis,
 - graphical facilities for data analysis and display either directly at the computer or on hardcopy
 - a well developed programming language which includes conditionals, loops, user defined recursive functions and input and output facilities.
- The core of R is an interpreted computer language.
 - It allows branching and looping as well as modular programming using functions.
 - Most of the user-visible functions in R are written in R, calling upon a smaller set of internal primitives.

It is possible for the user to interface to procedures written in C, C++ or FORTRAN languages for efficiency, and also to write additional primitives.

R, S and S-plus- a brief time line

- S: an interactive environment for data analysis developed at Bell Laboratories since 1976
 - 1988 S2: RA Becker, JM Chambers, A Wilks
 - 1992 S3: JM Chambers, TJ Hastie
 - 1998 S4: JM Chambers
- Exclusively licensed by *AT&T/Lucent* to *Insightful Corporation*, Seattle WA. Product name: "S-plus".
- Implementation languages C, Fortran.
- See: http://cm.bell-labs.com/cm/ms/departments/sia/S/history.html
- R: initially written by Ross Ihaka and Robert Gentleman at Dep. of Statistics of University of Auckland, New Zealand during 1990s.
- Since 1997: international "R-core" team of ca. 15 people with access to common CVS archive.

What R does and does not

- o data handling and storage: numeric, textualo matrix algebrao
- o hash tables and regular expressions
- o high-level data analytic and statistical functions
- o classes (Object Oriented "OO")
- o graphics
- o programming language: loops, branching, subroutines

- o is not a database, but connects to DBMSs
- o has no graphical user interfaces, but connects to Java, TclTko
- language interpreter can be very slow, but allows to call own C/C++ code
- o no spreadsheet view of data, but connects to Excel/MsOffice
- o no professional / commercial support

R and statistics

o Packaging: a crucial infrastructure to efficiently produce, load and keep consistent

software libraries from (many) different sources / authors, which are updated at a best possible refresh rate

- o Statistics: most packages deal with statistics and data analysis and there are many conduit and value addition libraries which augment the statistical inference
- o State of the art: many statistical researchers provide their methods as R packages

Statistical Analysis

Data Analysis and Presentation happen to be the core strength of R software environment and the ease with which this is performed makes the environment as the ultimate winner. Faster computational routines and amenability of access and modification to interim steps and results makes the programming environment a winner.

- The R distribution contains functionality for large number of statistical procedures.
 - linear and generalized linear models
 - nonlinear regression models
 - time series analysis
 - classical parametric and nonparametric tests
 - clustering
 - smoothing
- R also has a large set of functions which provide a flexible graphical environment for creating various kinds of data presentations.

References For R

- The basic reference is The New S Language: A Programming Environment for Data Analysis and Graphics by Richard A. Becker, John M. Chambers and Allan R. Wilks (the "Blue Book").
- The new features of the 1991 release of S (S version 3) are covered in Statistical Models in S edited by John M. Chambers and Trevor J. Hastie (the "White Book").
- Classical and modern statistical techniques have been implemented.
 - Some of these are built into the base R environment.
 - Many are supplied as packages. There are about 8 packages supplied

with R (called "standard" packages) and many more are available through the cran family of Internet sites (via http://cran.r-project.org).

- All the R functions have been documented in the form of help pages in an "output independent" form which can be used to create versions for HTML, LATEX, text *etc*.
- The document "An Introduction to R" provides a more user-friendly starting point.
- An "R Language Definition" manual
- More specialized manuals on data import/export and extending R.

R installations

Getting Started

To install R on your MAC or PC the starting point has to be http://www.r-project.org/.

Depending on the choice of operating system the installer/ zip file with checksum may be downloaded and verified.

An effort to download R for Windows would have the following sequence of interactions with the portal, whose snapshots are given below:

R	
Setup - R for Windows 2.15.1	
Select Destination Location Where should R for Windows 2.15.1 be installed?	R
Setup will install R for Windows 2.15.1 into	the following folder. dfferent folder, dick Browse.
Cliftogram Files (R. P. 2. 15. 1)	Browse
At least 1.2 MB of free disk space is required.	
	Setup - R for Windows 2.15.1 Select Destination Location Where should R for Windows 2.15.1 be installed? Setup will instal R for Windows 2.15.1 into To continue, click Next. If you would like to select an Select Destination Fleet(2)/202.15.1 At least 1.2 MB of free disk space is required.

Its always a good idea to download all the files.

Select Components Which components should be installed?	R
Select the components you want to install; clear the components yo install. Click Next when you are ready to continue.	au do not want to
User installation	•
✓ Core Files ✓ 32-bit Files ✓ 64-bit Files	61.9 MB 12.5 MB 14.4 MB
	j Setup - R for Windows 2.15.1
	Startup options Do you want to customize the startup options?
Current selection requires at least 89.8 MB of disk space.	Please specify yes or no, then click Next. Please specify yes or no, then click Next. Yes (customized startup) No (accept defaults)

MDI is when the windows will be contained within one large window.

Display Mode Do you prefer the MDI or SDI interface?	R	
Please specify MDI or SDI, then click Next.		
MDI (one big window)		
SDI (separate windows)		
	Sature - R for Windows 2151	0 0 -
	13 Serah - K IOL MILLIONS 2.13.1	
	Help Style Which form of help display do you prefer?	
	Please specify plain text or HTML help, then click Next.	
	Plain text	
< Back	Next >	

This is similar to how Excel is setup. SDI is a single document interface where every item will get its own window. This is similar to how SPSS is set up where it has separate data editor, viewer, and syntax windows. Once you choose which your prefer, click next.

Choosing either html or plain text and clicking is the next step.

The installation may take awhile

To install packages on Windows, clicking on packages and install packages will be the next step.

	CRAN mirror
Gui (64-bid) (64 View Mic Package: Windows Help R Console version 2.15.1 pyright (5) 200 IBN 3-900051-07. atform: x86_64 Is free software and comes with ABSOLUTELY NO WARANT) us are veloces to redistribute it under certain conditi	Argentins (La Plata) Argentins (Canberra) Australis (Canberra) Australis (Melbourne) Austria Belgium Brazil (PR) Brazil (SP 1) Brazil (SP 1) Brazil (SP 2) Canada (BC) Canada (BC) Canada (CC 1) Canada (QC 2) Chile China (Beijing 2) China (Beijing 2) China (Beijing 3) China (Beijing 3) Colombia (Cali) Denmark Ecuador France (Lyon 1) France (Lyon 2) Germany (Boettingen) Greece Hungary

Scrolling down to country nearest and choosing a "mirror" that is close is the next step.

Scrolling down list until the requisite package is the next step, keeping in mind that R lists things in alphabetical order and by uppercase than lowercase. Once a package is clicked to load, R will install not only the package but all of the packages needed to run the package, including the dependencies.

To actually use the package, one has to go back to the package tab and click on load package.

Using Help Command

?solve translates on to giving details of help information about "solve" function whilst help.search or ?? allows searching for help in various ways.


```
R Console
                                                                       trying URL 'http://lib.stat.cmu.edu/R/CRAN/bin/windows/contrib/2.15/gee 4.13-18$
Content type 'application/zip' length 61074 bytes (59 Kb)
opened URL
downloaded 59 Kb
trying URL 'http://lib.stat.cmu.edu/R/CRAN/bin/windows/contrib/2.15/ape 3.0-5.z$
Content type 'application/zip' length 1305669 bytes (1.2 Mb)
opened URL
downloaded 1.2 Mb
trying URL 'http://lib.stat.cmu.edu/R/CRAN/bin/windows/contrib/2.15/phyclust 0.$
Content type 'application/zip' length 1365822 bytes (1.3 Mb)
opened URL
downloaded 1.3 Mb
package 'gee' successfully unpacked and MD5 sums checked
package 'ape' successfully unpacked and MD5 sums checked
package 'phyclust' successfully unpacked and MD5 sums checked
The downloaded packages are in
       C:\Users\Danielle McElhiney\AppData\Local\Temp\RtmpsbZDEO\downloaded pa$
> help(mean)
starting httpd help server ... done
> |
                                   111
```

R Commander – A graphical interaction "skin" for R

R provides a powerful and comprehensive system for analysing data and when used in conjunction with the R-commander (a graphical user interface, commonly known as Rcmdr) it also provides one that is easy and intuitive to use. Basically, R provides the engine that carries out the analyses and Rcmdr provides a convenient way for users to input commands. The Rcmdr program enables analysts to access a selection of commonly-used R commands using a simple interface that should be familiar to most computer users. It also serves the important role of helping users to implement R commands and develop their knowledge and expertise in using the command line — an important skill for those wishing to exploit the full power of the program.(*http://www.rcommander.com/*)

a) Loading R Commander

Packages -> Install Packages -> Cran Mirror Selection -> Rcmdr

b) Opening R Commander

Open R -> Packages -> Load Packages -> Rcmdr

c) Loading Data

Data->Load data

			R Dat	ta Editor					
File Edit	Data Statistics Graphs Model	s Distributions Tools Held		var1	var2	var3	var4	var5	var6
File Edit R. Data Script W load ("(head b: librar; {showDi } {shor } {shor } {shor } {shor } {shor } {shor } {shor	Data Statistics Graphs Model New data set Load data set Merge data sets Import data Data in packages Active data set Manage variables in active da vData (binge.comp, placeme vData (binge.name, placeme vData (binge.final, placeme	<pre>s Distributions Tools Help .comp }{ binge.na ige.Rdata") } uta set } 00', font=get +200', font=g ent='-20+200', font=g ent='-20+200', font=g ent='-20+200', font=g</pre>	1 2 3 4 4 5 5 6 6 7 7 8 8 9 9 10 11 11 12 12 13 13 14 15 5 16 7 7 7 7 7 7 7 8 8 9 9 9 10 10 11 11 11 12 12 13 13 10 10 10 10 10 10 10 10 10 10 10 10 10	vari	Var2	Var3		Var3	Var6

d) Active Data selection

Data ->Active data set -> Select active data set

e) Menu driven File edit options

Script will save it as an R file .R and Output will save it as a text file. .txt

7% R Commander	76 R Commander
File Edit Data Statistics Graphs Models Distributions Tools	File Edit Data Statistics Graphs Models Distri
Change working directory Open script file Save script Save script as Save output Save output as Save R workspace Save R workspace as Exit	Cut Copy Scr Paste Delete Find Select all Undo Redo Clear window

f) Summary of the data

Statistics -> Summaries

Numerical Summeries – can also provide mean, standard deviation, skewness, kurtosis *etc.*

74 R Commander						
File Edit Data Statistics Graphs Mode	Is Distributions Too	ls Help				
Data set: Script Window load (*C:/Use (summary (bir (summary (c)) (summary (c) (summary (c)) (summary (c) (summary (c) (summary (c)))	Active data set Numerical sum Frequency dist Count missing Table of statisti Correlation mat Correlation test Shapiro-Wilk te	maries bin ibutions observations cs rix st of normality	ge.final) ZEdit d	ata set 🖳 View da	ata set) Model: [Σ <no active="" model3<="" th=""></no>
Output Window	ente/P/binge Pda					Submit
<pre>> load("C:/Users/Shannon/Docume > summary(binge.orig)</pre>	ppa Min. 10.700 lst Qu.2.920 Median 13.485 Mean 13.328 Max. 14.400 bda4 0 Min. 12.0 0 lst Qu.3.0 0 Median 13.5 6 Mean 13.6 0 Median 13.5 6 Mean 13.6 0 Median 13.5	awdu Min. :-5.200 1st Qu.: 7.325 Median : 6.650 Mean : 6.610 Sard Qu.:11.200 Max. :15.100 1st Qu.:2.00 Median :2.00 Median :2.30 Max. :5.00	pre Min. : 8.00 let Qu.:15.00 Median :17.88 Srd Qu.:20.00 Max. :41.00	aap Min. :1.0 1st Qu.11.0 Median :1.5 3rd Qu.2.0 Max. :2.0	bdal Min. :1.000 1st Qu.3.000 Median :3.794 Median :3.794 Max. :5.000 NA*s :1	

g) Mean, Standard Deviation, Skewness, Kurtosis

74 R Commander	R Data cat hinne Erit data cat View data cat Model chin action models
File Edit Data Statistics Graphs Models Distributions Tools Help	Contraction and a set and a se
Variables (pick one or more) iap iand iap iand iap iand iap iap	Scipt Window library(abind, pos=4) library(el071, pos=4) numSummary(binge(.c"sap", "awdu", "bda1", "bda2")], statistics=c("mean", "sd", "quantiles"), quantiles=c(0,.25,.5,.75,1))
Kurtosis Type 2 @ Type 3 0 Quantiles I7 quantiles: 0, 25, 5, 75, 1 Summarize by groups OK Cancel Reset Help	<pre>Samm1 > library(abind, pos=4) > library(abind, pos=4) > library(abind, pos=4) > numSummary(binge[,c("aap", "awdu", "bda1", "bda2")], statistics=c("mean", + "sd", "quantiles"), quantiles"(025, .5, .75, 1)) mean sd 0k 25k 50k 75k 100 n aap 1.456522 0.5036102 1.0 1.0 1.0 2.0 2.0 46 awdu 8.532620 0.5036102 1.0 1.0 1.0 2.0 2.0 46 bda1 3.739130 0.8009656 1.0 3.0 4.0 5.0 46 bda2 2.086957 0.9147213 -1.0 2.0 2.0 3.0 5.0 46</pre>

h) Contingency Tables

7% R Commander	
The Day Decision County Marchel National Tech Hale	7% Enter Two-Way Table
File colt uata statistics oraphs Models Distributions Tools Help	Number of Dawn
R1 Data set: Summaries , w data set Model: <no active="" model=""></no>	
Contingency tables V Two-way table	Number of Columns: 2
Script Window Means Multi-way table	Enter counts:
"sd", "gua Pronotions Fater and analyze two-way table	^ <u>1 2</u>
# Table for Variance Variance Variance and the state of t	
tapply(binge Vamances 'Ld), mean, na.rm=TRUE)	2
Flable for Nonparametric tests	Compute Percentages
t Table for Dimensional analysis () (), mean, marmarkoz)	Row percentages
ranniu/hing Fit models	E Column percentages
# Table for bda2:	Percentages of total
tapply(bingeSbda2, list(id=bingeSid), mean, na.rm=TRUE)	No percentages
	+ Hypothesis Tests
(Chi-square test of independence 🔽
Outrat Window	Submit Components of chi-square statistic
	Print expected frequencies
<pre>> tapply(binge\$bda1, list(id=binge\$id), mean, na.rm=TRUE)</pre>	A Fisher's exact test
id	
A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A	A18 A19 A20 OK Cancel Reset Help
3 3 3 3 3 3 5 4 5 3 5 4 4 4 4 4	3 4 4
A21 A22 A23 A24 A25 B02 B05 B06 B07 B08 B09 B10 B11 B12 B13 B14 B15 B	817 818 819

i) Correlations in R Commander

Correlation analysis can be done with R as follows.

Correlation is a bivariate analysis that measures the strengths of association between two variables and the direction of the relationship. In terms of the strength of relationship, the value of the correlation coefficient varies between +1 and -1. When the value of the correlation coefficient lies around \pm 1, then it is said to be a perfect degree of association between the two variables. As the correlation coefficient value goes towards 0, the relationship between the two variables will be weaker. the direction of the relationship is simply the + (indicating a positive relationship between the variables) or - (indicating a negative relationship between the variables) sign of the correlation. Usually, in statistics, we measure four types of correlations: Pearson Correlation, Kendall rank correlation, Spearman correlation, and the Point-Biserial correlation. The software below allows you to very easily conduct a correlation.

🗰 R Commander	
File Edit Data Statistics Graphs Models Distributions Tools Help	2 7 Correlation Matrix
Script Window Script Window Active data set 12 Script Window Means Frequency distributions 12 Table # Proportions Count missing observations 18 remover (1.7. Variances Variances Correlation matrix 12 Data set #20 Norparametric tests Count missing observations 18 Pagetode 1.2 Dimensional analysis Correlation matrix 10 Bussmary (Par Fit models Straiper Writ test of normality V	Variables (pick two or more)
Control Window Submitt	<u>▼</u>
	Type of Correlations
Pesiduals: Nin 10 Redian 30 Nax -0.97333 0.02433 0.02444 0.02877 0.03088	Pearson product-moment ()
Coefficients: Estimate Std. Error t value Pr(> t)	Spearman rank-order
(Intercept) 0.9776577 0.0380882 25.668 <2e-16 ***	Partial O
	Painvise p-values
Periodusi Etaboard effort 0.1653 on 73 degrees on Ireedom Multiple Fragmared: 0.0020130, Adjusted Requared: 0.01366 F-statistic: 0.01707 on 1 and 73 DF, p-value: 0.0964	OK Cancel Reset @ Help
Messages	
(22) ERROR: You must select a response variable. (23) ERROR: Response and explanatory variables must be different.	Coefficients:

j) Independent T-Test

The independent t-test, also referred to as an independent-samples t-test, independent measures t-test or unpaired t-test, is used to determine whether the mean of a dependent variable (e.g., weight, anxiety level, salary, reaction time, *etc.*) is the same in two unrelated, independent groups (e.g., males vs females, employed vs unemployed, under 21 year olds vs those 21 years and older, *etc.*). Specifically, you use an independent t-test to determine whether the mean difference between two groups is statistically significantly different to zero.

tapply(binge.final\$awdu, binge.final\$fac.gen, var, na.rm=TRUE)

Script Window X 76 Independent Samples t-Test load ("C:/Users/Shannon/Documents/R/binge.Rdata") t.test(avdu-fac.cen, alternative='two.sided', conf.level=.95. t.test(awou-rac.gen, atternative='two.stode', conf.level=.y5, var.equal=FALSE, data=binge.final) tapply(binge.final\$eawdu, binge.final\$fac.gen, var, na.rm=TRUE) leveneTest(binge.final\$eawdu, binge.final\$fac.gen, center=median) Response Variable (pick one) Groups (pick one) 880 ... awdu gender Submit Output Window 003 . load("C:/Users/Shannon/Documents/R/binge.Rdata") Difference: <No groups selected> t.test(awdu-fac.gen, alternative='two.sided', conf.level=.95, var.equal=FALSE, data=binge.final) Alternative Hypothesis Confidence Level Assume equal variances? Welch Two Sample t-test Two-sided 95 Yes 0 data: awdu by fac.gen t = -1.1991, df = 33.405, p-value = 0.2389 alternative hypothesis: true difference in means is not equal to 0 0 Difference < 0 (No 95 percent confidence interval: -2.9636463 0.7650749 Difference > 0 (sample estimates: mean in group 0 mean in group 1 8.360714 9.460000 2 Help V OK Cancel Reset

Statistics->Independent T Test

k) **One Way ANOVA**

ANOVA(Analysis of Variance) is a statistical technique that assesses potential differences in a scale-level dependent variable by a nominal-level variable having 2 or more categories. For example, an ANOVA can examine potential differences in IQ scores by Country (US vs. Canada vs. Italy vs. Spain). The ANOVA, developed by Ronald Fisher in 1918, extends the t and the z test which have the problem of only allowing the nominal level variable to have just two categories. This test is also called the Fisher analysis of variance. ANOVAs are used in three ways: one –way Anova, two-way ANOVA, and N-way Multivariate ANOVA.

One-Way ANOVA

A one-way ANOVA refers to the number of independent variables—not the number of categories in each variables. A one-way ANOVA has just one independent variable. For example, difference in IQ can be assessed by Country, and County can have 2, 20, or more different Countries in that variable.

The software below allows you to easily conduct an ANOVA.

Statistics->One Way ANOVA

🎋 One-Way Analysi	is of Variance		Script Window var.equal=FRLSE, data=binge.final) tapply(binge.final\$awdu, binge.final\$fac.gen, var, na.rm=TRUE)
Enter name for model: AnovalModel.1 Groups (pick one) Response Variable (pick one)		Response Variable (pick one)	<pre>leveneTest(binge.finalSavdu, binge.finalSfac.gen, center=median) library(miltocop, pos=4) library(abind, pos=4) AnovaNodel.1 <- aov(avdu = fac.gen, data=binge.final) summary(AnovaNodel.1) numSummary(binge.finalSavdu , groups=binge.finalSfac.gen, statistics=c("mean", "sd"))</pre>
fac.gen id	Å 	aap A awdu E gender V gpa V	<pre> Output Window Signif. codes: 0 '**** 0.001 '*** 0.01 '** 0.05 '.* 0.1 ' ' 1 Slubmat Signif. codes: 0 '**** 0.001 '*** 0.05 '.* 0.1 ' ' 1 library(multcomp, pos=4) library(shind, pos=4) AnovaNodel.1 <- aov(avdu = fac.den, data=binde.final) </pre>
Pairwise compari	sons of means 🔽	Reset	<pre>> summary(AnovaModel.1) Df Sum Sq Nean Sq F value Pr(>F) fac.gen 1 14.1 14.088 1.584 0.214 Residuals 46 409.3 8.899 2 observations deleted due to missingness > numSummary(binge.finalSavdu, groups=binge.finalSfac.gen, + statistics=("mean", "ed")) mean ad datain dataNA 0.3360714 2.58805 28 2 1.9.460000 3.467807 20 0</pre>

I) Factor Analysis

Factor analysis is a technique that is used to reduce a large number of variables into fewer numbers of factors. This technique extracts maximum common variance from all variables and puts them into a common score. As an index of all variables, we can use this score for further analysis. Factor analysis is part of general linear model(GLM) and this method also assumes several assumptions: there is linear relationship, there is no multicollinearity, it includes relevant variables into analysis, and there is true correlation between variables and factors. Several methods are available, but principal component analysis is used most commonly.

Types of factoring:

There are different types of methods used to extract the factor from the data set:

- 1. **Principal component analysis**: This is the most common method used by researchers. PCA starts extracting the maximum variance and puts them into the first factor. After that, it removes that variance explained by the first factors and then starts extracting maximum variance for the second factor. This process goes to the last factor.
- 2. **Common factor analysis:** The second most preferred method by researchers, it extracts the common variance and puts them into factors. This method does not include the unique variance of all variables. This method is used in SEM.
- 3. **Image factoring:** This method is based on correlation matrix. OLS Regression method is used to predict the factor in image factoring.

- 4. **Maximum likelihood method:** This method also works on correlation metrix but it uses maximum likelihood method to factor.
- 5. **Other methods of factor analysis:** Alfa factoring outweighs least squares. Weight square is another regression based method which is used for factoring.

74 R Commander	Pri fasta laska
File Edit Data Statistics Graphs Models Distributions Tools Help	72 rector energiss
Data set: Script Window Means data (Ricol., y Variances	Variables (pick three or more) amp cycles Jen
Dimensional analysis Scale reliability Fit models Principal-components analysis Confirmatory factor analysis Cluster analysis	load Subset expression <all cases="" valid=""> Factor Rotation Factor Scores</all>
Output Window	None None Varimax Bartlett's method
> data() > data(Nool, package="car")	Promax () Regression method ()

Result are shown as follows

Script Window	_
<pre>.FA <- factanal(~aap+awdu+bdal, factors=1, rotation="varimax", scores="none", data=binge.orig) .FA</pre>	Î
remove(.FA)	11
<pre>library(sem, pos=4)</pre>	
	- 11
- (*
- T2 /- fartanal/-samiauduabdal_ fartovami, votations#varimay#	
scores="none", data=binge.orig)	
< .FX	
actanal(x = ~aap + awdu + bdal, factors = 1, data = binge.orig, scores = "none", rotation = "varimax")	
aap avdu bdal	
.849 0.324 0.596	
Addings:	
ap 0.388	
wdu 0.822	
da1 0.636	
Factori	
S loadings 1,231	
veneration Var 0 410	
Information Lat Arith	
he degrees of freedom for the model is 0 and the fit was 0	
remove(.7A)	
library(sem, tos=4)	

J) Graphs

Gparhs->Scatter plot

x-variable (pick one)	y-variable (pick one)
aap	^ aap
awdu	E awdu E
bda2	- bda2
Options	Plotting Parameters
Identify points	Plotting characters <auto></auto>
Jitter x-variable	Point size 1.0
Litter wariable	
	Axis text size 1.0
E Log x-axis	
Log y-axis	Axis-labels text size 1.0
Marginal boxplots	
I Least-squares line	
Smooth line	
Show spread	
Span for smooth	50
x-axis label	y-axis label
<auto></auto>	<auto></auto>
€ [> <
Subset expression	
<all cases="" valid=""></all>	
	,
Plot by groups	

Gparhs->Box plot

74 Scatterplot	
x-variable (pick one) y-variable (pick one) aap aadu wodu aadu wodu bda1 bda1 bda2	
Options Plotting Parameters Desting objections Plotting Parameters	ž -
I identify points Pricting characters (sates) I Jitter xvariable Point size I Jitter yvariable I I Log x-axis Axis text size	₽ -
Log y-axis Axis-labels text size 1.0 D Marginal boxplots Least-squares line	n 00
IF Smooth line IF Show spread	δ0
Span for smooth 50 x-axis label y-axis label	φ -
Subset expression <ali case="" valid=""> <ii case="" valid=""> Piot by groups</ii></ali>	
Cancel Seset ? Help	

R Basics

R is object base

Types of objects (scalar, vector, matrices and arrays Assignment of objects)

Building a data frame

Operation Symbols

Symbol	Meaning
+	Addition
-	Subtraction
*	Multiplication
/	Division
%%	Modulo (estimates remainder in a division)
Λ	Exponential

R as a Calculator

1550+2000 ## [1] 3550 or various calculations in the same row 2+3; 5*9; 6-6 ## [1] 5 ## [1] 45 ## [1] 0

As Mathematics

1+1 ## [1] 2 2+2*7 ## [1] 16 (2+2)*7 ## [1] 28

As Variables

x<-2 x ## [1] 2

y<-3 y ## [1] 3 5->z (x*y)+z ## [1] 11 Numbers in R: NAN and NA

NAN (not a number) NA (missing value) -Basic handling of missing values

Missing values are noise to statistical estimations. We are going to learn a basic command for handling missing values.

x < -c(1, 2, 3, 4, 5, 6, NA)

mean(x)

[1] NA

```
mean(x,na.rm=TRUE)
```

[1] 3.5

Objects in R

Objects in R obtain values by assignment.

This is achieved by the gets arrow, <-, and not the equal sign, =.

Objects can be of different kinds.

Built in Functions

R has many built in functions that compute different statistical procedures.

Functions in R are followed by (). Inside the parenthesis we write the object (vector, matrix, array, dataframe) to which we want to apply the function.

Create a sequence of numbers from 32 to 44.

print(**seq**(32,44))

[1] 32 33 34 35 36 37 38 39 40 41 42 43 44

Find mean of numbers from 25 to 82.

print(mean(25:82))

[1] 53.5

Find sum of numbers frm 41 to 68.

print(**sum**(41:68))

[1] 1526

Vectors

Vectors are variables with one or more values of the same type.

A variable with a single value is known as scalar. In R a scalar is a vector of length 1. There are at least three ways to create vectors in R: (a) sequence, (b) concatenation function, and (c) scan function.

Create two vectors of different lengths.

```
vector1 <- c(5,9,3)
vector2 <- c(10,11,12,13,14,15)
vector1
## [1] 5 9 3
vector2
## [1] 10 11 12 13 14 15</pre>
```

Arrays

Arrays are numeric objects with dimension attributes. The difference between a matrix and an array is that arrays have more than two dimensions.

Take the above vectors as input to the array.

```
result <- array(c(vector1,vector2),dim = c(3,3,2))
```

print(result)

## , , 1							
##							
##		[,1]	[,2]	[,3]			
##	[1,]	5	10	13			
##	[2,]	9	11	14			
##	[3,]	3	12	15			
##							

##,	, 2			
##				
##		[,1]	[,2]	[,3]
##	[1,]	5	10	13
##	[2,]	9	11	14
##	[3,]	3	12	15

Matrices

A matrix is a two dimensional array. The command colnames

Elements are arranged sequentially by row.

M <- **matrix**(c(3:14), nrow = 4, byrow = TRUE)

print(M)

##		[,1]	[,2]	[,3]
##	[1,]	3	4	5
##	[2,]	6	7	8
##	[3,]	9	10	11
##	[4,]	12	13	14

String Characters

In R, string variables are defined by double quotation marks.

```
letters<-c("a","b","c")
letters
## [1] "a" "b" "c"
```

Subscripts and Indices

Select only one or some of the elements in a vector, a matrix or an array. We can do this by using subscripts in square brackets [].

In matrices or dataframes the first subscript refers to the row and the second to the column.

Dataframe

Researchers work mostly with dataframes. With previous knowledge you can built dataframes in R. Also, import dataframes into R.


```
# Create the data frame.
emp.data <- data.frame (
emp id = c (1:5),
emp name = c("Rick","Dan","Michelle","Ryan","Gary"),
salary = c(623.3,515.2,611.0,729.0,843.25),
start_date = as.Date(c("2012-01-01", "2013-09-23", "2014-11-15", "2014-05-11",
"2015-03-27")),
stringsAsFactors = FALSE
)
# Print the data frame.
print(emp.data)
## emp_id
                           salary
                                    start date
              emp name
## 1
       1
              Rick
                            623.30 2012-01-01
## 2
       2
                            515.20 2013-09-23
              Dan
## 3
       3
              Michelle
                           611.00 2014-11-15
## 4
       4
                            729.00 2014-05-11
              Rvan
## 5
       5
              Gary
                            843.25 2015-03-27
```

A journey wading through the amazing summarizing and analytical capabilities of R- a case study

Let the presumed data pertain to landings and standardized effort of a maritime state estimated by ICAR-CMFRI during the interregnum 1997 to 2013

calling file in R

klm<-read.csv("C:/Users/cmfri/Desktop/cpue_spcode_kldata.csv",header=TRUE)

To know header portion of the data set

head(klm)

##	year	month	species	raised	nomeff	stdcpue
## 1	1997	1	40	20595.35	122.0811	3.634042
## 2	1997	2	40	24201.10	114.3719	4.532246
## 3	1997	3	40	23497.64	255.0315	3.926130

## 4	1997	4	40	50176.75	154.7663	6.762821
## 5	1997	5	40	137626.24	314.6413	13.805531
## 6	1997	6	40	38149.38	649.1328	16.071358

To check the last few rows of the dataset

tail (klm)

##	year	month	species	raised	nomeff	stdcpue
## 245815	2013	7	4580	0	0.000000	0.000000
## 245816	2013	8	4580	1674	2.059835	1.667304
## 245817	2013	9	4580	0	0.000000	0.000000
## 245818	2013	10	4580	0	0.000000	0.000000
## 245819	2013	11	4580	0	0.000000	0.000000
## 245820	2013	12	4580	0	0.000000	0.000000

to know the observations in the data

length(klm)

[1] 6

to know the structure of the dataframe

str(klm)

'data.frame': 245820 obs. of 6 variables:

\$ month : int 12345678910 ...

\$ species: int 40 40 40 40 40 40 40 40 40 40 ...

\$ raised : num 20595 24201 23498 50177 137626 ...

\$ nomeff : num 122 114 255 155 315 ...

\$ stdcpue: num 3.63 4.53 3.93 6.76 13.81 ...

Descriptive statistics analysis

summary(klm)

year month species raised
Min. :1997 Min. : 1.00 Min. : 0 Min. : 0
1st Qu.:2001 1st Qu.: 3.75 1st Qu.: 867 1st Qu.: 0
Median :2005 Median : 6.50 Median :1513 Median : 0


```
## Mean :2005 Mean :6.50 Mean :2201 Mean : 42699
## 3rd Qu.:2009 3rd Qu.: 9.25 3rd Qu.:4016 3rd Qu.:
                                                  0
## Max. :2013 Max. :12.00 Max. :9999 Max. :71536031
##
                           NA's :30
##
     nomeff
                 stdcpue
## Min. : 0.0 Min. : 0.000
## 1st Ou.:
            0.0 1st Ou.: 0.000
## Median : 0.0 Median : 0.000
## Mean · 154.2 Mean · 7.112
## 3rd Ou.: 0.0 3rd Ou.: 0.000
## Max. :119100.1 Max. :5600.000
##
```

If further enhanced list of summary statistics information about the data like third and fourth order moments, then the describe function of psych or summary function would come in handy.

library(psych)

```
describe(klm[,3:6])
```

vars sd median trimmed mad min n mean ## species 1 245820 2201.15 1951.83 1513 1941.16 1257.24 0 ## raised 2 245790 42699.02 719150.48 0 62.52 0.00 0 ## nomeff 3 245820 154.25 1543.66 0 0.16 0.00 0 ## stdcpue 4 245820 7.11 52.38 0 0.11 0.00 0 ## max range skew kurtosis se ## species 9999.0 9999.0 1.40 1.91 3.94 ## raised 71536030.7 71536030.7 44.70 2681.18 1450.57 ## nomeff 119100.1 119100.1 22.83 770.70 3.11 5600.0 5600.0 21.65 971.06 0.11 ## stdcpue

If one wants to study monthly catch grouped information so that an idea about issues like which month (used as a group) would have etched up maximum landings/ catch, then simple literally rooted commands like describeBy (psych) or aggregate would come in handy.


```
library(psych)
describeBy(klm$raised,klm$month)
##
## Descriptive statistics by group
## group: 1
## vars n mean sd median trimmed mad min max range
## X1 1 20485 41379.48 784622.6 0 146.65 0 0 51193526 51193526
## skew kurtosis se
## X1 46.55 2497.42 5482.05
## _____
## group: 2
## vars n mean sd median trimmed mad min max range
## X1 1 20485 32904.06 535506.3 0 113.45 0 0 45468199 45468199
## skew kurtosis se
## X1 49.62 3259.68 3741.51
## ____
## group: 3
## vars n mean sd median trimmed mad min max range
## X1 1 20485 39087.37 569052.1 0 162.51 0 0 31762665 31762665
## skew kurtosis se
## X1 38.4 1796.15 3975.89
## _____
## group: 4
## vars n mean sd median trimmed mad min max range
## X1 1 20471 33795.18 477389 0 64.13 0 0 31931384 31931384
## skew kurtosis se
## X1 42.59 2353.01 3336.59
## _____
```


group: 5 ## vars n mean sd median trimmed mad min max range ## X1 1 20485 37566.67 469275.5 0 96.2 0 0 30492626 30492626 ## skew kurtosis se ## X1 33.18 1478.99 3278.76 ## _____ ## group: 6 ## vars n mean sd median trimmed mad min max range ## X1 1 20485 34552.2 655525.6 0 30.67 0 0 65432961 65432961 ## skew kurtosis se ## X1 61.23 5239.89 4580.07 ## _____ ## group: 7 ## vars n mean sd median trimmed mad min max range ## X1 1 20485 32621.2 643003.1 0 0 0 49428947 49428947 ## skew kurtosis se ## X1 42.19 2362.03 4492.57 ## ____ ## group: 8 ## vars n mean sd median trimmed mad min max range ## X1 1 20484 57397.86 713381.8 0 31.03 0 0 38795185 38795185 ## skew kurtosis se ## X1 26.21 920.16 4984.42 ## _____ ## group: 9 ## vars n mean sd median trimmed mad min max range ## X1 1 20485 55833.65 901880.9 0 34.3 0 0 71536031 71536031 ## skew kurtosis se ## X1 41.11 2415.63 6301.32 ## _____

group: 10 mean sd median trimmed mad min max range ## vars n ## X1 1 20484 57071.88 915432.9 0 89.05 0 0 55973676 55973676 ## skew kurtosis se ## X1 34.05 1453.38 6396.16 ## _____ ## group: 11 mean sd median trimmed mad min max range ## vars n ## X1 1 20485 51210.52 915220 0 133.56 0 0 49127745 49127745 ## skew kurtosis se ## X1 36.33 1488.92 6394.51 ## _____ ## group: 12 ## vars n mean sd median trimmed mad min max range ## X1 1 20471 38960.92 830555.4 0 134.37 0 0 66844967 66844967 ## skew kurtosis se ## X1 56 3639.25 5804.96 Selecting subsets of data: #to know the whole species entries t<-klm\$species length(t) ## [1] 245820 # to know the june species entries d<-klm\$species[klm\$month=="6"] **length**(d) ## [1] 20485 to exclude some data #exclude june catch and know the entries e<-klm\$species[klm\$month!="6"]

length(e)

[1] 225335 correlation of the data # correlation between catch and effort for the whole period attach(klm) **cor.test**(raised,nomeff,method="pearson") ## ## Pearson's product-moment correlation ## ## data: raised and nomeff ## t = 434.94, df = 245790, p-value < 2.2e-16 ## alternative hypothesis: true correlation is not equal to 0 ## 95 percent confidence interval: ## 0.6572472 0.6617152 ## sample estimates: ## cor ## 0.659487 ##multiple correlation ##Here we select the oilsardine catch. The oilsardine species code as 362 ##we pick all the years monthly oil sardine sp362<-klm[(klm\$species=="362"),] cordat<-sp362[,4:6] cor(cordat) raised nomeff stdcpue raised 1.0000000 0.45713639 0.61135090 nomeff 0.4571364 1.00000000 0.06860281 stdcpue 0.6113509 0.06860281 1.0000000 **Linear regression & ANOVA**

fit <- Im(raised~ year + month + nomeff, data=sp362)

show results


```
summary(fit)
##
## Call:
## lm(formula = raised ~ year + month + nomeff, data = sp362)
##
## Residuals:
##
      Min
              10 Median 30
                                      Max
## -24406856 -5945766 -838374 4725596 40857882
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -2.148e+09 2.787e+08 -7.706 5.93e-13 ***
## year
            1.072e+06 1.389e+05 7.716 5.59e-13 ***
            7.997e+05 1.969e+05 4.062 6.97e-05 ***
## month
## nomeff 3.997e+02 4.493e+01 8.897 3.44e-16 ***
## ----
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9689000 on 200 degrees of freedom
## Multiple R-squared: 0.4275, Adjusted R-squared: 0.4189
## F-statistic: 49.78 on 3 and 200 DF, p-value: < 2.2e-16
# model coefficients
coefficients(fit)
## (Intercept)
                   year
                             month
                                       nomeff
## -2.147604e+09 1.072090e+06 7.997178e+05 3.997276e+02
# CIs for model parameters
confint(fit, level=0.95)
##
              2.5 %
                        97.5 %
## (Intercept) -2.697162e+09 -1.598046e+09
```

year 7.980987e+05 1.346082e+06

month 4.115344e+05 1.187901e+06

nomeff 3.111348e+02 4.883205e+02

predicted values

fitted(fit)

##	10609	10610	10611	10612	10613	10614
##	-3789651.96	-75345.54	15111313.36	13412874.31	17168949.26	120681.70
##	10615	10616	10617	10618	10619	10620
##	11475956.42	2176177.37	4491241.24	20281254.70	10248865.43	6278101.08
##	10621	10622	10623	10624	10625	10626
##	1848628.97	-945019.58	10648970.16	18599757.89	1915100.95	4945529.10
##	10627	10628	10629	10630	10631	10632
##	1844457.32	4524979.63	8480021.57	27270345.64	26410785.24	7449598.25
##	10633	10634	10635	10636	10637	10638
##	8195286.59	18056830.84	12504031.29	4797286.88	690139.61	7333241.94
##	10639	10640	10641	10642	10643	10644
##	9086615.20	12777192.22	16114211.77	21825496.12	23957847.88	30125417.82
##	10645	10646	10647	10648	10649	10650
##	16794955.21	8159428.15	18423291.70	38539644.49	22526843.37	15428828.71
##	10651	10652	10653	10654	10655	10656
##	19942372.43	8463199.11	16820433.97	16852255.88	19772511.73	16832240.83
##	10657	10658	10659	10660	10661	10662
##	6812947.52	2187489.33	3280344.12	24388104.43	18000977.41	15107404.98
##	10663	10664	10665	10666	10667	10668
##	11071325.90	8804492.99	11659447.99	15882452.30	13614255.15	14360781.30
##	10669	10670	10671	10672	10673	10674
##	4963345.25	3874425.71	8638896.83	15820079.63	9947652.94	10608928.30
##	10675	10676	10677	10678	10679	10680
##	11831223.68	10715678.08	18370843.69	18033007.59	24787443.71	20792659.27
##	10681	10682	10683	10684	10685	10686
##	10734553.89 26747332.20	14786524.50 27817053.16	23586068.72 27904369.27	15174415.81	14696669.45	21641645.35.88

residuals

residuals(fit)

##	10609	10610	10611	10612	10613
##	5952459.84	12255563.09	-3371411.14	-4445741.27	-8889076.47
##	10614	10615	10616	10617	10618
##	986134.71	-5748266.48	-336390.21	2807133.26	1645172.74
##	10619	10620	10621	10622	10623
##	-3629105.70	-4577842.81	3072907.21	3243308.73	-5672890.07
##	10624	10625	10626	10627	10628
##	-15696727.40	289232.12	2042122.32	1117366.99	2926082.40
##	10629	10630	10631	10632	10633
##	5230228.43	-20382271.56	-5264124.44	-5075967.51	1491577.71
##	10634	10635	10636	10637	10638
##	-9837151.49	-6712232.19	-764792.30	-437886.38	2231690.27
##	10639	10640	10641	10642	10643
##	-1443831.23	-2440345.04	14926587.99	-6794617.92	2635516.43
##	10644	10645	10646	10647	10648
##	-17311907.92	-5709093.26	4952910.28	-6048902.56	-6642668.40
##	10649	10650	10651	10652	10653
##	-9406029.73	11491464.13	29486574.30	2963737.40	3482526.36
##	10654	10655	10656	10657	10658
##	764926.90	5721591.58	-8014761.85	-334238.52	5160023.79
##	10659	10660	10661	10662	10663
##	3802703.26	-10108379.25	-2107670.27	-3238790.51	6520269.00
##	10664	10665	10666	10667	10668
##	6117951.47	3707721.08	4118584.97	744008.66	-2535146.08
##	10669	10670	10671	10672	10673
##	5587891.61	247621.47	-2882708.00	800991.54	-911955.00

anova table

anova(fit)

Analysis of Variance Table

##

Response: raised


```
## Df Sum SqMean Sq F valuePr(>F)
```

```
## year 1 4.6080e+15 4.6080e+15 49.083 3.663e-11 ***
```

month 1 1.9813e+15 1.9813e+15 21.104 7.689e-06 ***

nomeff 17.4316e+157.4316e+1579.1593.445e-16***

Residuals 200 1.8776e+16 9.3882e+13

```
## ____
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

covariance matrix for model parameters

vcov(fit)

##		(Intercept)	year	month	nomeff
##	(Intercept)	7.767104e+16	-3.872335e+13	28849322448.9	-1.085409e+09
##	year	-3.872335e+13	1.930661e+10	-132736938.4	5.147853e+05
##	month	2.884932e+10	-1.327369e+08	38753042588.4	-5.204691e+05
##	nomeff	-1.085409e+09	5.147853e+05	-520469.1	2.018502e+03

regression diagnostics

influence(fit)

\$hat

##	10609	10610	10611	10612	10613	10614
##	0.042348953	0.032174152	0.030947216	0.024014063	0.027363125	0.031587019
##	10615	10616	10617	10618	10619	10620
##	0.018101845	0.031744185	0.029944584	0.028749417	0.028915850	0.042004060
##	10621	10622	10623	10624	10625	10626
##	0.036951680	0.032836278	0.020628210	0.029105061	0.025090117	0.020127986
##	10627	10628	10629	10630	10631	10632
##	0.028928511	0.025311220	0.021317185	0.041136744	0.038894083	0.038442958
##	10633	10634	10635	10636	10637	10638
##	0.024751425	0.032951924	0.018613317	0.018864207	0.027982400	0.015391058
##	10639	10640	10641	10642	10643	10644
##	0.014401572	0.013346093	0.015061997	0.022355644	0.027879390	0.046154691
##	10645	10646	10647	10648	10649	10650
##	0.031627027	0.018558780	0.023833019	0.112821017	0.025427226	0.010871644
##	10651	10652	10653	10654	10655	10656

##	0.014936315	0.016434	4376 0.	01273054	7 0.015	5052097	0.0189936	575 0.0	22811653
##	10657	10	0658	1065	9	10660	106	661	10662
##	0.021590355	0.025598	8024 0.	02189145	4 0.030	0677847	0.0123030	026 0.0	08431467
##	10663	10	0664	1066	5	10666	106	667	10668
##	0.010270283	0.015733	1396 0.	01420021	1 0.013	3621161	0.0197585	522 0.0	24082289
##	10669	10	0670	1067	1	10672	106	573	10674
## \$	Scoefficients								
##		(Intercept)		year		month		nomeff
##	10609	2.217	7824e+07	-1.0959	925e+04	-1.32	5088e+04	-3.1	48198546
##	10610	4.411	L931e+07	-2.183	848e+04	-2.22	8032e+04	-4.4	98752468
##	10611	-1.067	7489e+07	5.318	300e+03	5.37	9473e+03	-1.4	36946526
##	10612	-1.430	0707e+07	7.125	744e+03	5.00	5198e+03	-1.24	44058740
##	10613	-2.792	2623e+07	1.39389	98e+046	.64	4383e+03	-3.8	98604484
##	10614	3.637	7567e+06	-1.803	856e+03	-6.792	2737e+01	-0.5	48821439
##	10615	-1.912	2700e+07	9.531	031e+03	-1.16	8978e+03	-0.1	36134257
##	10616	-1.236	6679e+06	6.1424	401e+02	-2.61	1444e+02	0.1	82574103
##	10617	1.017	7484e+07	-5.0602	185e+03	3.31	1361e+03	-1.3	00911103
##	10618	5.221	L933e+06	-2.616	049e+03	2.28	5340e+03	0.5	94874799
##	10619	-1.269	9309e+07	6.3323	354e+03	-7.14	6199e+03	0.8	85644012
##	10620	-1.689	9093e+07	8.416	379e+03	-1.142	2621e+04	2.3	85068449
##	10621	9.988	3869e+06	-4.931	698e+03	-6.84	5283e+03	-1.4	49495213
##	10622	1.048	3887e+07	-5.1829	988e+03	-5.814	4728e+03	-1.5	23215775
##	10623	-1.631	L084e+07	8.103	095e+03	8.51	9957e+03	-0.6	99865368
##	10624	-4.218	3674e+07	2.105	372e+04	1.87	1018e+04	-8.0	82331986
##	10625	9.242	2638e+05	-4.5793	190e+02	-1.48	9350e+02	-0.1	32336511
##	10626	6.358	3893e+06	-3.1559	937e+03	-2.504	4379e+02	-0.6	91128004
##	10627	3.641	L035e+06	-1.805	648e+03	3.98	9493e+02	-0.6	29386219
##	10628	9.337	7116e+06	-4.637	748e+03	2.20	1757e+03	-1.3	55018464
## \$	sigma								
##	10609	10610	10611	10612	10613	10614	10615	10616	10617
##	9704033	9673382	9710573	9708368	9692571	9713348	9704899	9713577	9711506
##	10618	10619	10620	10621	10622	10623	10624	10625	10626

##	9712887	9710099	9707947	9711071	9710794	9705104	9647742	9713585	9712507
"" ##	10627	10678	10629	10630	10631	10632	10633	10634	10635
##	9713275	9711335	9706375	9600885	9706147	9706674	9713017	9687689	9701725
##	10636	10637	10638	10639	10640	10641	10642	10643	10644
##	9713453	9713556	9712299	9713060	9712046	9654918	9701385	9711759	9631991
##	10645	10646	10647	10648	10649	10650	10651	10652	10653
##	9704897	9707140	9703907	9700734	9690097	9679013	9482552	9711297	9710429
##	10654	10655	10656	10657	10658	10659	10660	10661	10662
##	9713454	9704972	9696589	9713578	9706537	9709783	9686303	9712444	9710871
##	10663	10664	10665	10666	10667	10668	10669	10670	10671
##	9702490	9703766	9710000	9709158	9713461	9711904	9705335	9713591	9711428
##	10672	10673	10674	10675	10676	106771	0678	10679	10680
##	9713440	9713390	9713495	9706020	9709067	9620081	9679152	9556146	9705788
##	10681	10682	10683	10684	10685	10686	10687	10688	10689
##	9703041	9712489	9696177	9713305	9713033	9713274	9711229	9713210	9707532
##	10690	10691	10692	10693	10694	10695	10696	10697	10698
##	9484558	9670016	9694154	9710393	9710677	9712970	9696964	9665645	9703363
##	10699	10700	10701	10702	10703	10704	10705	10706	10707
##	9699470	9711903	9695548	9685330	9698839	9696413	9712539	9713605	9645521
##	10708	10709	10710	10711	10712	10713	10714	10715	10716
##	9692194	9657695	9711752	9708527	9712793	9693026	9705844	9708928	9616936
##	10717	10718	10719	10720	10721	10722	10723	10724	10725
##	9700975	9709924	9687368	9702069	9706975	9713608	9712002	9705092	9711736
##									
## \$	Swt.res								
##	10609	10	0610	10611		10612	106	13	
##	5952459.84	1225556	53.09 -	-3371411.14	-4445	5741.27	-8889076.	47	
##	10614	10	0615	10616	5	10617	106	18	
##	986134.71	-574826	6.48	-336390.21	. 2807	133.26	1645172.	74	
##	10619	10	0620	10621	-	10622	106	23	
##	-3629105.70	-457784	2.81	3072907.21	. 3243	308.73	-5672890.	07	
##	10624	10	0625	10626	5	10627	106	28	

##	-15696727.40	289232.12	2042122.32	1117366.99	2926082.40
##	10629	10630	10631	10632	10633
##	5230228.43	-20382271.56	-5264124.44	-5075967.51	1491577.71
##	10634	10635	10636	10637	10638
##	-9837151.49	-6712232.19	-764792.30	-437886.38	2231690.27
##	10639	10640	10641	10642	10643
##	-1443831.23	-2440345.04	14926587.99	-6794617.92	2635516.43
##	10644	10645	10646	10647	10648
##	-17311907.92	-5709093.26	4952910.28	-6048902.56	-6642668.40

Plots in R

```
##scatter plot
```

sp3621<-sp362[**c**(1:2,4)]

attach(sp3621)

The following objects are masked from klm:

##

month, raised, year

plot(year,raised,main="sardine catch[1997-2013]",xlab="year",ylab="catch(kg))

##Histogram

hist(raised,main="Histogram for oilsardine catch[1997-2013]",

lab="catch",

col="green",

breaks=5)

##Bar plot

barplot(raised, main="sardine catch Distribution",

xlab="Number of years")

Boxplot in r

Boxplot of catch vs month

boxplot(raised~month,data=sp3621, main="Sardine catch ",

lab="months", ylab="catch(kg)",col=rainbow(length(unique(month))))

to plot a correlation in r

##we select sardine correlations

cordat <- sp362[,4:6]

library(PerformanceAnalytics)

chart.Correlation(cordat,method="pearson")

R for reading NetCDF data

NetCDF files contain one or more variables, which are usually structured as regular Ndimensional arrays. For example, you might have a variable named "Temperature" that is a function of longitude, latitude, and height. NetCDF files also contain dimensions, which describe the extent of the variables' arrays. In our Temperature example, the dimensions are "longitude", "latitude", and "height". Data can be read from or written to variables in arbitrary hyperslabs (for example, you can read or write all the Temperature values at a given height, or at a given latitude).

The R package 'ncdf4' allows reading from, writing to, and creation of netCDF files, either netCDF version 3 or (optionally) netCDF version 4. If you choose to create version 4 output files, be aware that older netcdf software might only be able to read version 3 files.

In fact this package can help extracting details from HDF5 format files too. This package can create NetCDF files from data.frames also. Nc_open() is the function to be used for opening a NetCDF fils and for creating a NetCDF file the function is nc_creat(). Once opened the attributes and variable names of the data can be got by using the generic print() command. To get specific variables the function is ncvar_get()

```
An example:

library(ncdf4)

ncold <- nc_open("states_population.nc")

data <- ncvar_get(ncold)

print("here is the data in the file:")

print(data)

nc_close( ncold )

The output is given below:

> ncold <- nc_open("states_population.nc")

> print(ncold)

File states_population.nc (NC_FORMAT_CLASSIC):

1 variables (excluding dimension variables):

int Pop[StateNo]

units: count

_FillValue: -1
```


long_name: Population
1 dimensions:
StateNo Size:50
units: count
long_name: StateNo
1 global attributes:
source: Census 2000 from census bureau web site
>

R in numerical methods

Taking cue from the fact that integration is infinitesimal addition, brutal algorithmic power of R has been put to use to find solutions of definite integrals. The most common function used for this purpose is integrate().

An example:

For the double integral given below

```
\int_{0}^{1}\int_{0}^{1}x\sin(y^{2})dydx
```

A couple of lines as given below would do the job in R environment

integrate(function(x) {

sapply(x, function(x) {

integrate(function(y) x*sin(y^2),x,1)\$value

})

},0,1)

The output is given below (with error measure)

```
> integrate(function(x) {
```

```
+ sapply(x, function(x) {
```

```
+ integrate(function(y) x*sin(y^2),x,1)$value
```

```
+ })
```

```
+ },0,1)
```

```
0.09105548 with absolute error < 1e-15
```

```
>
```


- Bryant, F. B., and Yarnold, P. R. 1995. Principal components analysis and exploratory and confirmatory factor analysis. In L. G. Grimm & P. R. Yarnold (Eds.), *Reading and understanding multivariate analysis*. Washington, DC: American Psychological Association.
- Crowley, M. J. 2007. The R Book. Chichester, New England: John Wiley & Sons, Ltd.
- Dunteman, G. H. 1989. Principal components analysis. Newbury Park, CA: Sage Publications.
- Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., and Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. *Psychological Methods*, 4(3), 272-299.

Fox, J. 2005. R commander: A basic-statistics user interface to R. Journal of Statistical Software. 14 (9): 1-42.

Gorsuch, R. L. 1983. Factor Analysis. Hillsdale, NJ: Lawrence Erlbaum Associates.

- Hair, J. F., Jr., Anderson, R. E., Tatham, R. L., and Black, W. C. 1995. *Multivariate data analysis with readings* (4th ed.). Upper Saddle River, NJ: Prentice-Hall.
- Hatcher, L. 1994. A step-by-step approach to using the SAS system for factor analysis and structural equation modeling. Cary, NC: SAS Institute.

http://www.statisticssolutions.com.

- Hutcheson, G., and Sofroniou, N. 1999. *The multivariate social scientist: Introductory statistics using generalized linear models*. Thousand Oaks, CA: Sage Publications.
- Kim, J. O., and Mueller, C. W. 1978a. *Introduction to factor analysis: What it is and how to do it.* Newbury Park, CA: Sage Publications.
- Kim, J. O., and Mueller, C. W. 1978b. *Factor Analysis: Statistical methods and practical issues*. Newbury Park, CA: Sage Publications.
- Lawley, D. N., and Maxwell, A. E. 1962. Factor analysis as a statistical method. *The Statistician*, 12(3): 209-229.
- Levine, M. S. 1977. Canonical analysis and factor comparison. Newbury Park, CA: Sage Publications.
- Pett, M. A., Lackey, N. R., and Sullivan, J. J. 2003. *Making sense of factor analysis: The use of factor analysis for instrument development in health care research*. Thousand Oaks, CA: Sage Publications.
- Rosales de Veliz L., David S.L., McElhiney D., Price E., and Brooks G. 2012. . *Introduction to R: The Basics* Contributions from Ragan. M., Terzi. F., & Smith. E."— Presentation transcript
- Shapiro, S. E., Lasarev, M. R., and McCauley, L. 2002. Factor analysis of Gulf War illness: What does it add to our understanding of possible health effects of deployment, *American Journal of Epidemiology*, 156, 578-585.
- Teetor, P. 2011. 25 Recipes for Getting Started with R. Sebastopol, CA: O'Reilly Media Inc.
- Teetor, P. 2011. *R cookbook*. Sebastopol, CA: O'Reilly Media Inc.
- Velicer, W. F., Eaton, C. A., and Fava, J. L. 2000. Construct explication through factor or component analysis:
 A review and evaluation of alternative procedures for determining the number of factors or components.
 In R. D. Goffin & E. Helmes (Eds.), *Problems and solutions in human assessment: Honoring Douglas Jackson at seventy*. Boston, MA: Kluwer.
- Widaman, K. F. 1993. Common factor analysis versus principal component analysis: Differential bias in representing model parameters, *Multivariate Behavioral Research*, 28, 263-311.

