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Abstract
Telecommunications systems being inherently distributed and collaborative in nature
present a plurality of attack surfaces to malicious entities and hence vulnerable to
many potential attacks even indirectly demanding a need in prioritising security. The
choice of security implementations depends upon the currently understood threats,
future possible threat vectors, and the dependencies between systems. Executing
these choices while contemplating the financial aspects is exceptionally difficult. It
is thus critical to have a perceptible decision support framework for better security
decision-making. This thesis studies the strategic nature of the interaction between
the Telecoms operators and attackers utilising game theory to understand their
strategic decision-making characteristics strengthening security decisions.

To understand the security investment decision-making criteria of operators, this
thesis utilises static security investment games. Through these games, we study the
effects of security investment decision of an operator on other operators’ behaviour.
We determine conditions supporting the security investment decisions and propose
strategic recommendations supplementing the dependency conditions.

We then study attackers’ behaviour considering them with strategic incentives in
contrary to their strictly-bounded rationality in traditional game-theoretic modelling
approaches. We utilise a behavioural approach and design a decision-flow model
capturing the choices of attackers in the attack process. An outcome of this work is
a generalised attack framework. Moreover, using this framework, we derive attack
strategies optimising attackers’ effort. Through this work, we are probing the
foundations for drawing inferences about attackers’ strategic characteristics from a
cybersecurity perspective.

Keywords Telecommunications, Game Theory, Operators, Attackers, Cybersecurity,
Security Games, Strategies, Decision-making Behaviour, Economics,
Deceit Games, Security Investment Games, Static Games
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1 Introduction

Our increasing reliance on computer networks and information systems are making
them attractive targets for cybercriminals [7]. The recent activities in cyberspace
[8, 9] are evidence that security breaches can cause enormous loss to governments,
public and private institutions, and the general public in terms of money, privacy,
and reputation.

Even though cybersecurity problems have been paid attention to for over two decades,
the problems are far from being resolved. In cybersecurity, quantifying the security
risks and determining the effectiveness of one’s security investment against perceived
threats are major challenges. The ability to prevent a breach is defined by one’s
security investments as well as on the security standards of other interacting entities.
This security interdependencies between entities contribute additional complexities
in identifying and quantifying the security risks and crafting suited countermeasures
[10].

Besides, cyberattackers are becoming more financially oriented [11, 12] with diverse
attack strategies displaying unanticipated behaviour [13]. The malicious activities
are due to curiosity, or for peer recognition, and are often undecided in terms of
ethical legitimacy [14]. [15] states that the motivations behind attacks are shifting
from fame and fun towards profits. Conversely, this shift can be used in arguing that
the attackers are becoming more rational (predictable) by being financially oriented
as by [16, 17].

This shift in the motives could be a reason behind the increasing frequencies of
cybersecurity encounters [18] indicating necessity in investing in security. Results of
surveys [19, 20] have stated that users are inclined towards preventing attacks and
minimizing the damages from security breaches. However, despite the availability of
wide ranges of consumer security technologies, investment in security is elusive [21]
providing opportunities for adversaries to exploit.

This uncertain behaviour of users in terms of security and exploitation creates
a need for studying and analysing users behaviour to understand their possible
interactions, intentions and decision making criteria. Nonetheless, the possibilities
of utilising illegitimate methods stimulate advanced strategies and new classes of
attacks demanding a comprehensive understanding of attackers’ behaviour. This
would enable us in anticipating their intentions and priorities.

The telecommunication domain, being the backbone of cyberspace, faces identical
challenges with multi-dimensional interactions among multiple stakeholders. These
interactions involve diverse motives and intents requiring them to behave strategically
to manage demanding situations [22]. This thesis focuses on studying such strategic
decision-making behaviour of Telecommunications operators and attackers from a
cybersecurity perspective utilising game theory.

Game theory [23] is a mathematical modelling tool for studying multi-person decision-
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making scenarios. It has been widely utilised in studying various facets of security [4,
24] and privacy [25]. It provides means to determine and quantify elements influencing
decisions and predicting behaviour [26]. It is extremely useful in formulating complex
real-life situations into simplified representations and assessing them based on well-
defined goals. The expressibility of game theory has encouraged researchers to exercise
its concepts in modelling and evaluating a myriad of security-related situations [27,
p. 2].

To understand the strategic characteristics of Telecommunications operators we utilise
security investment games. The security investment games involve non-malicious
strategic players (operators in our study) deciding on whether to invest or not to
invest in security [28]. Through these games, we study the interdependency effects
of security investment decisions on operators’ behaviour.

The next segment of this thesis focuses on studying the attackers’ behaviour. Due to
lack of conclusive evidence on the forms of motives and intents behind attacks, most
studies have assessed security scenarios with strictly bounded attackers displaying
prescribed behaviour [29, p. 336] [30]. However, this assumption of attackers dis-
playing confined behaviour is not ideal; particularly in real-world situations which
involve human adversaries [27].

To address this, we utilise a behavioural approach to understand the strategic choices
of attackers with an intention to better understand their strategic preferences and
predict them. Our approach differs from the existing body of research by modelling
adversaries rather than defenders.

More precisely, this thesis bases itself on the hypothesis that attackers behave as
rational entities and could have various underlying determinants for an attack. It,
therefore, seeks to explore different possible implications behind attackers’ displayed
behaviour. In simple terms, understand different considerations and reasons behind
actions. This reflection logically brings us to the second level of strategising that
is expected of the defenders. If attackers could have multiple reasons and motives
behind attacks, are defenders equipped with multiple countermeasures - strategies
or even a strategic modality to address the multiplicity of determinants moderating
attackers’ behaviour?

1.1 Problem Statement

Although the research community has extensively focused on studying the importance
of security, existing practices lack decent security measures implementation [10]. The
major reasons supporting the inefficacy in security adaptation are the lack of adequate
incentives for investing in security [31], and the available security information being
highly asymmetric - favouring the attackers [28, p. 5]. The attackers need to exploit
one vulnerability of a target, whereas the operators have to defend against all
possible threat vectors. Furthermore, the possibility of using illegitimate practices
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provide attackers with a broader range of breaching options than the operators could
determine and prevent a breach.

The key limitations in current research practices are that the approaches are con-
siderably restricted through biases and heuristics and are struggling to incorporate
rapidly emerging new classes of attacks [32]. The critical difficulties in modelling
adversaries are due to lack of decisive information regarding potential adversaries
and the interactions being highly complex and extensive [33]. Furthermore, lack of
conclusive data and evidence generation on the forms of motivation and intention
behind attacks makes it immensely challenging in understanding and modelling
attackers’ behaviour.

The security modelling approaches normally operate under the presumption that
attackers are strategy-less or strictly bounded displaying restrained behaviour [34];
inconsistent with reality which involves human attackers [27]. A prescribed set of
actions for attackers consistent with the threat models confines the applicability of
the proposed security solutions.

Besides, taking rationality of attackers into account expands the possibilities where
actions could bear latent motives raising concern on the admissibility of existing
cybersecurity defence tactics. Above all, admitting that attackers have strategies,
which they do [35, 13, 36], implies that defenders need to reassess their investment
in security and change how they perceive, defend and react to attackers. The ability
to assess with such details would require a perceptible decision support framework
with capabilities to decisively predict attackers’ behaviour which further depends on
the extent of our understanding of intents, incentives and strategic preferences of
attackers.

In addition, securing systems and networks with confined resources is a well-known
challenge and decision-makers need to follow effective decision-making strategies[37].
Hence, it is a necessity to investigate effective ways and strategies to be able to
successfully defend our systems and networks from malicious entities.

1.2 Research Objectives and Questions

The principal objective of this study is to enhance cybersecurity by understanding
attackers’ behaviour. More specifically, the focus is on understanding the economics
behind strategic interactions between Telecoms operators and attackers from a
cybersecurity perspective. In particular, this research advocate in exploring the
following questions:

Q1. What are the core parameters and how do they influence the security investment
decisions of Telecoms operators?

Q2. What factors moderate the strategic priorities of attackers?

This research inquires the stated topics by:
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1. applying a game-theoretic approach to understand conditions influencing the
security investment decisions of Telecoms operators.

2. applying a behavioural game-theoretic approach to understand the choices of
attackers and their strategic decision-making behaviour.

3. representing the abstract behavioural parameters as quantifiable and modellable
units.

1.3 Contributions

Contributions from this research are as follows:

1. Investigated conditions influencing security investment decisions of operators
in a cooperative and competitive environment, and extended the security
dependency model presented by Kunreuther and Heal [38].

2. Proposed financially beneficial strategies for operators in choosing collaborators
or partners. Further, discussed the strategic moves for operators in dependency
relations against attackers utilising the results of [39].

3. Extended the investigation of security interactions by acknowledging attackers
with strategic incentives, contrary to the traditional game-theoretic security
modelling approach, and designed a decision model capturing the choices of
attackers during the attack process.

4. Introduced a reusable attack framework decomposing the attack process into
effort requiring in a successful attack and determined attack strategies opti-
mising the overall effort. This attack framework could be used in categorising
attacks as [6] and can be used in extending the model proposed by [40].

1.4 Significance of Research

Even though this study utilises game theory and concentrates on understanding inter-
actions between Telecoms operators and attackers, the ultimate goal of this research is
to better understand the preferences and behaviour of attackers. Understanding these
would enable us in decisively anticipating their behaviour and fabricating suitable
countermeasures strengthening cybersecurity. The attack framework, after being
evaluated, could be employed in categorising security encounters and determining
the intentions behind attacks.

Additionally, a refined attack model could rightly predict attackers’ behaviour with
the adequate reasoning for such behaviour. This model could be practised supporting
the strategic decision-making against the perceived threat. We believe it is no more
confined to the boundaries of cybersecurity and can be applied to the whole class
of security scenarios. However, this study is in its preparatory stage and is a step
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towards comprehensively understanding the motivation, intention and behavioural
characteristics of attackers from a cybersecurity perspective.

1.5 Structure of the Thesis

After this introduction chapter, the next chapter provides a literature review on areas
related to this work, followed by a chapter describing the cybersecurity environments
analysed in this work. The next two chapter models the behavioural characteristics
of Telecommunications operators and attackers utilising the described environments,
and then the conclusion chapter. The chart in the figure 1.1 summarises the flow of
this thesis.

2. Theoretical 
Background

3. Game Environments

4. Operators' Security
Investment Decisions 

5. Attackers' Behaviour
and Strategies 

6. Discussion Appendix: 
Deceit Games

7. Conclusion 

Figure 1.1: Illustrates the structure of this thesis. The boxes represent the chapters appearing in
the thesis. A solid arrow connecting two boxes indicates one chapter depends on the other. The
dotted arrow indicates the additional work not included as a core idea of the thesis.

Chapter 2
Presents an overview of game theory and relevant game-theoretic concepts, cyberse-
curity, and a literature review on the application of game theory to cybersecurity.

Chapter 3
Formulates the game environments to study the strategic behaviour of the Telecom-
munications operators and attackers, classifies the operators and discusses existing
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game theory supported practices enhancing operators’ security levels, and the re-
search methodology utilised in this work.

Chapter 4
Discusses the first research question, that is to determine the critical parameters
influencing the security investment decisions of Telecoms operators. A model captur-
ing the conditions influencing the decisions is discussed, together with our evaluation
and strategic recommendations.

Chapter 5
Discusses the second research question, that is understand factors moderating attack-
ers’ strategic preferences. A decision-flow model capturing the strategic choices of
attackers is illustrated, together with an attack framework. Utilising the framework
attack strategies against the operators are proposed.

Chapter 6
Presents the application of the core concepts of this thesis in real life and highlights
important future work.

Chapter7
Summarises and concludes this thesis.



2 Conceptual and Theoretical Background

This chapter presents an overview of game theory, cybersecurity and the application
of game theory in cybersecurity. We also discuss the significance of game theory in
investigating security interactions.

2.1 Basic Game Theory

Game theory, conceptualised by von Neumann and Morgenstern in 1944 [41], is a
mathematical modelling tool to analyse multi-person decision-making interaction
scenarios. The fundamental assumptions that define the underline theory are that the
decision-makers are rational entities (exogenous) seeking well-defined objectives and
behave anticipating the rational choices of other decision-makers. The expectations
of others’ behaviour are based on strategical reasoning [23, p. 1].

The following sections discuss the basics of game theory to aid the understanding
of games and game-theoretic concepts. Further specific and formal explanations of
these concepts can be found in [42, 23].

2.1.1 Games

A game is a staged environment representing an instance of a strictly bounded
interaction between a set of players (participants). The environments are studied to
understand the strategic behaviour of the players.

A game includes a set of players, a set of actions available to each player, and resultant
payoffs (outcomes) for each action for each player. Moreover, a game could include
additional rules affecting the payoffs (eg. order of the play, frequency of the play),
and the information available to players.

A number of classifications of games exist, and a game can satisfy characteristics of
more than one category. The classification of games relevant to this thesis are listed
below

a) Cooperative Games
In cooperative games, players are enforced to cooperate with other players.
The cooperative behaviour of players could be the result of agreements imposed
by an external entity (e.g. through contract law, standardised policy). These
games are often analysed through cooperative game theory with an objective
to anticipate decisions forging alliances.

Contrarily, in non-cooperative games, there are no possibilities of imposed
coalitions, and coalitions are self-enforcing. These games are studied using the
non-cooperative theory which focuses on individual players rather than the
group.
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b) Zero-sum Games
A game in which each player’s intention is contradictory to every other player’s
intention is defined as a zero-sum game [43]. In these games, the payoffs of
a player are counterbalanced by payoffs of his opponents leading to a total
outcome of zero. Due to an exact balance between the positive payoffs and the
negative payoffs these games are referred as zero-sum games. This definition
implies that when a player wins his opponents has to lose. Zero-sum games
are also known as strictly competitive games.

On the other hand, a game where the aggregate payoff is greater than or less
than zero is defined as a Non-zero sum game. Non-zero sum games can facilitate
both cooperation and competition among the players.

c) Static Games
A static game is a single-shot game where all the players act simultaneously. In
these games, a player chooses a plan of action with no prior knowledge of the
plan of action chosen by any other player. This class of games is also referred
as simultaneous games.

d) Dynamic Games
The games where players interact repeatedly are known as dynamic games.
These games are also known as repeated or iterative games. The players in a
dynamic game have some information regarding the actions chosen by other
players and thus can adapt to demanding situations. These games can be
acknowledged as a sequential form of a static game with either a finite or
infinite iterations.

e) Perfect Information Games
A sequential game in which each player is assumed to be aware of all the past
moves of each player is known as a perfect information game. In contrast, a
game where at least one player is unaware of the past moves of at least one
other player is known as an imperfect information game. By definition, all
static games are games with imperfect information [4, p. 4].

f) Complete Information Games
In a complete information game, all players are assumed to have knowledge of
every other player’s strategies and payoffs, but not necessarily their actions.
The fact that these games do not acknowledge the actions other players have al-
ready taken distinguishes them from the perfect information games. Incomplete
information games are those where at least one player is unaware of possible
strategies and payoffs of at least one other player. A dynamic game can be of
complete or incomplete information [4, p. 5].
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2.1.2 Players and Actions

A player is a principal entity of a game with decision-making abilities to choose
actions. The players are the central decision makers and are rational with abilities to
behave strategically maximising their utilities. A player can represent an individual,
a machine, an organisation or a group of individuals within a game.

A player’s move in the game is known as an action. It signifies a decision to execute
a particular behaviour. The actions available to a player depends on the game
environment, which is further defined by the motivation of each player of the game.

2.1.3 Payoffs and Utility Functions

Payoff represents the outcome a player receives on taking a particular action. The
payoff for each action of a player is anticipated using a utility function.

The utility function is a mathematical representation which quantifies the payoffs
of a player. It is defined by the factors influencing the game environment. These
environment variables can alter the payoffs of a player independently or in various
combinations. The payoffs are generally in the integer range of -x to x where -x <
x. Positive payoff denotes a gain whereas a negative payoff denotes a loss, and the
payoff of 0 is neutral with no effects.

2.1.4 Strategies and Equilibria

A strategy is a plan of actions a player can practice during the game to achieve the
desired goal. A strategy can either be a ’pure’ strategy or a ’mixed’ strategy. A pure
strategy specifies a unique action to take in a situation. Whereas the mixed strategy
refers to a specific plan involving a probability distribution over all the available
actions.

These strategies can be further refined based on the resultant payoffs. If a strategy
fetches a better payoff than all other available strategies regardless of the opponents’
strategies, then it is known as a dominant strategy. A dominant strategy which
always gives a better payoff than all other available strategies is a strictly dominant
strategy. Whereas, a weakly dominant strategy gives a better payoff in at least one
set of the opponents’ strategies and as good a payoff as other available strategies for
the rest of the opponents’ strategies.

A game is assessed with a common assumption that players favour strategies max-
imising their payoffs. When all the players have made their decision and are reluctant
in switching their actions as a change would reduce their payoffs, a steady state
solution (equilibrium) of the game is achieved known as the Nash Equilibrium [23,
p. 11]. The Nash equilibrium is the most famous solution concept, even though there
exist many others [44, p. 9].
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2.1.5 Representation of Games

Games can be represented in either Normal-form or Extensive-form depending on
the timing of the interaction among players.

In normal-form games, all the players are restricted to choosing actions at the
same time. These games are also known as simple games or strategic games and
are composed of three elements: a set of players, a set of actions (or pure-strategies)
available to each player and a set of payoffs each action will result for each player.

All static games are represented in this form, as a matrix presenting the players, the
actions and the payoffs. A dominant fraction of this thesis investigates interaction
among players using the normal-form games. The following definition is used to
describe a normal-form game:

a) A set of players represented as P = {P1, P2, . . . , Pm}.

b) Each player i, i ∈ P, has a set of actions Ai, also known as the information set,
which consists of the actions available to player i. Thus, player i’s action set is
Ai = {ai1, ai2, . . . , aik}, where ai ∈ Ai and k is the number of actions available
to player i.

Let a = (a1, a2, . . . , ai, . . . , an) be the list of actions chosen by each player. This
list of actions chosen by each player is defined as the outcome of the game. The
set a, referred as an outcome set, is a vector denoting that the order of choice
of an action is of importance. For example, an outcome is a list of chosen
actions where the first action in the list is the action chosen by player 1, the
second action chosen by player 2 and so on. In contrast, the action set A has
no consequence of ordering.

c) A utility function U defines the payoff of choosing an action for each player by
assigning a real number to every outcome of the game. Formally, the utility
function can be represented as Ui(aj) : V → R where aj is the jth action from
the set of available actions Ai for the ith player. V is an abstract representation
of the expected outcome.

In extensive-form games, players have the flexibility to move at different times.
In addition to the content of a normal-form game, an extensive-form game explicitly
contains information available to a player while making a move. These games are
generally represented as decisions trees where each vertex represents a point of
choice for a player and each edge represents a possible action that a player can take.
The final consequence of a game tree is the payoff to each player for each possible
outcome. Sequential and dynamic games are usually studied using the extensive-form
of representation.
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2.2 Cybersecurity

Cybersecurity is the fabrication of countermeasures against perceived threats in a
cyber situation. Robinson et al. [45] considered two influential components defining
a cyber situation:

1. the actor, one who instantiate the attacks

2. the purpose of an attack

leading to unlawful activities that can potentially cause harm and distress, and are
unacceptable in ethical terms. Tekes [46] defines cybercrime as: "any illegal cyber
activity or unlawful computer network action".

The intent behind an attack is crucial for any cyber situation. Some intentions
behind malicious activities include gaining personal benefit through illegal means
(crime [47]), achieving military objectives (warfare [45]), influencing a nation’s politics
through violence and fear (terrorism [48, 49]), causing psychological distress to others
(cyber-bullying [50]), peer recognition, curiosity, and are often undecided in terms of
ethical legitimacy [12, 14].

Klimburg and Tirmaa-Klaar [47] define cybersecurity as "Cybersecurity encompasses
the defence against all types of cyber attacks, and includes a number of related
issues not normally associated with cyberwarfare or even foreign policy, including
critical infrastructure protection, Internet governance, cybercrime, data protection,
and others". The Figure 2.1 illustrates critical cybersecurity components of a security
programme.

The term cybersecurity is often used interchangeably with the term information
security due to a substantial overlap between them. Von et al. [50] distinguished
cybersecurity from information security by stating that information security is a
component of cybersecurity. Cybersecurity extends information security by including
non-information based assets such as human factors. As an example cyber-bullying
or illegal sharing of movies (piracy) which does not necessarily involve the loss of
confidentiality, integrity, or availability of information but results in a direct harm to
the well-being of a person. This study acknowledges and adopts cybersecurity as a
comprehensive concept, as by most literature [24].

2.3 Application of Game Theory to Cybersecurity

A glance at the current literature shows that game theory has been receiving more
and more attention of the research community and is been used to study a variety
of security facets. Current research aims at applying game theory to complicated
real-life situations supporting better decision-making [17]. The security-related game-
theoretic research has focused on developing computational algorithms corresponding
to novel problems and have stretched from utilising classic concepts to complex
behavioural/cognitive modelling approaches.
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Figure 2.1: Illustrates critical cybersecurity components of a security programme by Mandient
adapted from [3]. It displays the key facets of cybersecurity as Risk-based analysis, Intel-driven
threat profiling and Technology-enabled support.

Merrick et al. [24] studied information warfare games to identify and model different
types of information warfare operations. [26] noted that the strategic decisions in
information warfare scenarios are economic in nature. Roy et al. [4] particularly
studied game-theoretic solutions enhancing network security and presented a taxon-
omy for classifying the solutions. This work is extended by [51] through an extensive
literature survey.

Manshaei et al. [25] provided a structured and comprehensive overview of game-
theoretic models and approaches to address security and privacy problems in computer
and communication networks. [22] studied the application of networking games in
telecommunication and discussed mathematical challenges and methodologies involved
in the application.

The attacker-defender games and interdependent security games are the most pop-
ular forms of games used in studying the security interaction scenarios [29]. The
interdependent security game involves only defenders and aims at studying the in-
terdependency effects on a player’s security investment decisions. Laszka et al. [28]
specifically focused on studying the interdependent security games and discussed
security inefficiencies together with mechanisms to address the inefficiencies.

The attacker-defender games explicitly involve a malicious entity as a central decision-
maker. A significant amount of research work has utilised game theoretic approaches
to model interactions between attackers and defenders using Stackelberg framework
and the games are known as Stackelberg Security Games (SSGs) [52, 30, 53]. A
SSG is a sequential game where the defender acts first, the attacker observes the
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defender’s action and then act accordingly. This sequential approach is repeated over
rounds to analyse repeated interactions between the attacker and the defender.

Grossklags et al. [39] characterised the social optima and Nash equilibria for different
classes of defences and attacks using the weakest-link, sum-of-effort, and best-sort
security games. They designed the weakest-target game "where the attacker will
always be able to compromise the entity (or entities) with the lowest protection level
but will leave other entities unharmed." By introducing the concept of free-riding
(discussed by [54]) to the least protected entity in the weakest-target game of [39],
Florencio et al. [36] stated that even though there are many economically profitable
targets, profiting from many attacks are extremely difficult, associating the attacks
to the economics of attacks [55].

A number of game-theoretic supported deception techniques have been proposed
supporting defenders chances of successfully preventing attacks [56, 57]. While [58]
have demonstrated how pretending to be a honeypot decreased the amounts of
attacks. [59] studied dynamic adaptation of deceiving strategies by online deceivers
in computer-aided communications using game theory and [60] has analysed the
effects of extent of deception and timing of deception on attacker’s decision to attack
a computer network.

In modelling approaches bounded rationality has always been a concern [61, p. 1].
Researchers have been applying alternative approaches to address the bounded
rationality of adversaries. One of the two approaches includes enhancing the defenders’
chances of successfully defending against attacks by utilising robust optimising
techniques avoiding adversarial modelling [62, 33, 30]. Whereas, the other alternate
approach involves incorporating human decision-making models for computing defence
tactics [63].

To address the bounded rational adversaries in repeated SSGs, [64] developed an
adaptive behavioural model, SHARP, which considers adversaries’ future adaptation
in decision-making based on the successes or failures of their past actions. To this,
Tambe et al. [65] discussed the challenges in applying game theory for security
from computational and behavioural aspects and illustrated examples of successful
deployment of game theory derived algorithms in real-life situations.

To understand the behavioural aspects of participants, [40] utilised the mini-max
solution to determine parameters influencing the behaviour of attackers, defenders
and users. While, [66] focused on understanding and modelling motivations, roles,
and conflicting objectives of players using sequential games.

Yang et al. [63] proposed algorithms to devise defence strategies by predicting attack-
ers, decisions. They utilised two fundamental theories of human behaviour, Prospect
Theory and Quantal Response Equilibrium, to predict attackers’ behaviour. The
algorithms were evaluated using experimental data from human subjects generated
in a simulated security scenario.
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2.3.1 Why Game Theory?

Game theory is extremely useful in breaking complex real-life situations into highly
abstract representations [23, p. 1]. It is used in analysing what could likely happen
in a strategic interaction and justify suitable strategic moves. Moreover, it can be
applied to formally describe a wide range of interactions which involves competitive
situations (players with opposing interests), cooperative situations (players with
aligned interests), and situations with mixed interests (players with neither fully
opposing nor fully agreeing).

The generality, precision and expressive nature of game theory [27, p. 2] have
advocated researchers to exercise game-theoretic approaches to analyse and motivate
complex security decisions relating to real-life security problems [29]. In addition, a
key advantage of game theory is to be able to evaluate a large number of possible
threat scenarios [67] offering insights and perspectives to assess and address security
threats. Other advantages of using game theory are the ability to assess suited
actions, with the possible outcomes, against potential threats [4] and anticipate
the expected behaviour of players through detailed strategic analysis [26] which
considerably strengthens the decision process [68].

2.3.2 Game-theoretic Models

A game-theoretic approach involves at least two strategic players. The players
confront each other and strategies are evaluated to achieve the well-defined goals.
The strategic interactions involve common as well as conflicting interests and are
modelled as non-cooperative or cooperative games. The non-cooperative game models
focus on possible actions of individual players whereas the possible joint actions of
the group of players are studies using cooperative game models.

The Figure 2.2 illustrates the basic classification of game models in game theory.
The non-cooperative games are sub-categorised as static games and dynamic games,
which could be further grouped with regards to complete and/or perfect information.

We utilise two players, non-cooperative static games to study the decision-making
behaviour of operators and attackers. As such, this thesis does not cover cooperative
games and non-cooperative dynamic games.
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Figure 2.2: Basic Classification of Game Models adapted from [4]. Based on the conflicting or
aligned interests of the players, the games are modelled as Non-cooperative or Cooperative games.

2.4 Summary

In this chapter, we have presented the basic concepts of game theory, cybersecurity
and the application of game theory to cybersecurity. Further, we have discussed
the reasons behind utilising game theory for modelling security interactions. In the
last section, we looked into types of game-theoretic modelling approaches. In this
thesis, we utilise the non-cooperative modelling approach for analysing the game
environments discussed in the next chapter.



3 Games Environment and Research Method

This chapter formulates the game environment used in studying the strategic interac-
tions of attackers and operators. Furthermore, we describe the research methodology
utilised in this research, how this research is extending the existing state-of-the-art,
and present the existing methods for improving the security standards of operators.

3.1 Players Categorisation

The telecommunications domain involves several players, as introduced by Clemm
[69], such as the Network Equipment Provider (NEP), software vendors and Mobile
Network Operators (MNO). The NPE sells hardware like base stations, storage
resources and other networking resources. The software vendors provide corresponding
software to run on the networking resources. The MNO builds the network and
provides services through the network like firewall, Mobility Management Entity
(MME), Home Location Register (HLR), Domain Name Services (DNS), computation,
and caching. In the rest of this report, only the MNOs are considered and are referred
as operators. The Figure 3.1 illustrates targeted malware detections in EU nations
between January and September 2016.

The interacting participants in the telecommunications domain can be broadly
categorised into segments based on their characteristics such as roles, offerings,
objectives, or on a combination of these. These participants, known as players, are
the central decision makers. The players are categorised as operators (defenders),
attackers and policy-makers.

1. Operators

An operator is a defensive player aiming at successfully defending against mali-
cious attempts. Operators have to balance their security-related investments
against the security risks. Operators can have common as well as conflicting
interests. The examples of operators are Elisa, Telia, Sonera, Orange, Deutsche
Telekom and Vodafone. The operators set is represented as O and is a set of n
players.

O ={o1, o2, . . . , on}

2. Attacker

An attacker is an offensive player aiming to compromise the target by attacking.
They represent individuals or group with malicious intent causing discomfort
to others. Attackers intent to breach their targets by paralysing, deteriorating,
destroying, interrupting and deceiving [70] to acquire personal, sensitive, and
valuable data. Acquiring others’ data, attackers cause social, economic, and
psychological discomfort [50]. The attackers set is represented as Atk and is a
set of n players.
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Figure 3.1: Illustrates targeted malware detections from January to September 2016 from all EU
nations except Turkey and Russia adapted from [5]. It has also been noted that in 2016 hackers
mostly targeted manufacturing, financial, telecom industries and governments in Germany, Great
Britain, Belgium, Spain, Denmark, Sweden, Norway and Finland.

Atk ={atk1, atk2, . . . , atkn}

3. Policy-maker

Policy-makers are external influencers who set policies and laws. For exam-
ple standardisation bodies such as European Telecommunications Standards
Institute (ETSI), Global System for Mobile Communications (GSMA), Fed-
eral Communications Commission(FCC) and other government organisations.
However, studying the policy-makers is beyond the scope of this report.
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3.2 Attacker-Defender Games

An attacker-defender game involves at least a defensive player and an offensive player.
Large varieties of security-related topics are studied using the static, two-players
attacker-defender games [29, p. 337].

The repeated version of the security games are popularly studied using the Stackelberg
framework and the games are known as Stackelberg Security Games [52, 53]. However,
this study is confined to the static security games and does not cover the repeated
security games. Furthermore, neither the security technologies on their capabilities
to defend specific attacks nor the attacks based on their severity and classes are
discussed in this thesis.

We define a security game as a static game between the operator and the attacker
capturing the strategic interactions between them. An operator’s goal is to maximise
his chances of successfully defending against perceived attacks besides optimising
the security investment cost. Whereas, the goal of the attacker is to successfully
compromise a target while optimising the investment of resources. We study in
Chapter 5 the interactions between attackers and operators.

3.3 Security Investment Games

A security investment game is a sub-game of a security game, played among operators.
It represents strategically interacting non-malicious operators who can choose whether
to invest or not to invest in security leading to a complete protected or unprotected
state. We consider that the external threat is persistent and contagious.

An operator’s goal is to maximise his chances of successfully defending against
attempted attacks while minimising his security investment costs. Together with
preserving his system’s integrity, an operator should also make strategically optimal
decisions for tackling competition.

On the nature of interaction among the operators, an operator’s risk depends on his
security investment decision as well as on the investment decision of some or every
other operator in the interacting network. In chapter 4 we study bot cooperating
and competing interactions between operators.

3.3.1 Types of Operators

In this section, we categorise operators on their capabilities for providing services
as either an independent or a dependent operator. The Figure 3.2 illustrates the
classification of operators.

The independent operators are ones with adequate resources to satisfy customers’
demands without external dependencies. They, being self-capable of providing
services, have the abilities to willingly take decisions. Whereas, the dependent
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operators are ones with limited resources and rely on external collaborations for
catering services. A dependent operator is further grouped, based on the degree of
collaboration, as either a cooperating or coordinating operator.

Operators

Dependent Independent

CompetingCooperating

Small Large

Coordinating

Figure 3.2: Illustrates the types of operators categorised on their capabilities for providing services.
Dependent operators are ones with limited resources and have to rely on others for providing services
while the independent operators are self-capable of providing services.

The cooperating operators represent an association of operators sharing resources;
for example, an operator relying on others’ infrastructural resources for providing
services.

The coordinating operators are a subset of cooperating operators with agreements
on only demonstrating specific responsibilities (e.g. implementing/investing in an
agreed security technology) rather than sharing resources as described in [38].

The competing operators are independent operators and lack motivation for external
collaborations.

As such, this report considers cooperating and competing operators as extensive
units, and it does not cover interactions of further concentrated groups of operators.
In the remainder of this thesis, cooperating and competing operators are attributed
to as dependent and independent operators respectively.

3.3.2 Operators’ Choices and Decision Space

In multiple self-interested player1 scenarios, the choice of an action by a player
influences the decision of other players. The effect of a player’s action on other

1a self-interested player prefers a specific state of the world and acts accordingly to achieve the
state [44, p. 1]
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players is referred to as an externality [28]. These are captured as a cost to the
player, but often cannot be fully compensated [29].

The externalities introduced due to investment in security influence operators’ be-
haviour. An operator’s decision can nudge a positive or a negative effect on other
operators. In a positive externality, an operator’s security investment decision bene-
fits himself as well as other operators. This type of externality is typically exhibited
in information security defences [28, p. 4]. Conversely, a negative externality inflicts
counteractive effects on other players. These effects are studies through interactions
across the categories of operators.

Operator

Invest 
in security 

Don't invest 
in security 

Figure 3.3: Illustrates the decision space of operators. For simplicity, the decision space only
includes the choice of investing or not investing in security. Investment in security fetches complete
protection against direct as well as indirect threats.

The ultimate choice of an operator in a security investment game is to decide whether
to invest or not to invest in security technology. The Figure 3.3 illustrates the
decision space of operators. We consider investment in security as discrete[39, 38, 71],
providing insulation from all forms and classes of attacks.

In a discrete security investment model, a standard assumption is that when a player
invests in security the overall risks is always zero providing perfect (also known as
strong or complete) protection. The model proposed by Lelarge and Bolot [71] and
the second class of problems in [72] assumed security investment leading to perfect
protection.

3.3.3 Practices Improving Operators’ Security Levels

The investment in security will positively enhance the chances of successfully defending
against a range of attacks. However, the improvement in operators’ capabilities to
prevent attacks does not necessarily demand an increased security investment, rather
can be achieved through additional practices. This section discusses some proposed
mechanisms to enhance the level of security.
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1. Insurance

A means of enhancing the security levels is by sharing the risks. The risk-
sharing reduces the chances of critical loss, and from the information security
context, this is known as Cyberinsurance [28, p. 27].

Recent research has been extensively studying cyber insurance. Insurance is a
critical incentive enforcing players to invest in self-protection enhancing security
[73]. However, the major issues with insurance are that it intensifies the adverse
effects of externalities and discourages investment in security [38, 72].

In contrary, Hayel and Zhu [74] proposed that implementing a robust cyber
insurance policy can reduce the number of successful cyber attacks. The price
of the insurance, coverage of the insurance, and the intensity of the attack
defines the characteristics of the optimal insurance policy. It is noted that
the optimal insurance policy advocate users in adopting suitable protection
mechanisms and mitigating the risks. Further, the magnitude of loss, in case
of successful security breach, can be limited by investing in protection such as
a firewall, or in self-insurance such as provisioning backups [39].

2. Liability, Bonuses and Penalties

Varian [54] proposed a way of achieving the socially optimal levels of investment
by introducing the optimal penalty to the player with the lowest cost of reducing
the probabilities of a successful security breach. Here, the socially optimal level
refers to the Nash equilibrium. It is stated that the penalty should be equal to
the total losses of other players.

Sun et al. [75] introduced a penalty parameter to achieve the optimal level of
security investment when reducing the investment cost is a constraint. The
penalty parameter induces additional cost to the player failing to meet the
socially optimal level (Nash equilibrium). It is noted that the optimal level of
investment can be achieved by moderating the penalty value.

Kunreuther and Heal [38] discussed that the public sector could ensure appro-
priate security levels by introducing a fine to players not investing in security,
or providing players who have invested in security a subsidy encouraging better
security.

3. Regulations

Jiang et al. [76] introduced a social planner to monitor the optimum security
levels in a competitive environment. The responsibility of the social planner is
to ensure that each player invests at least the minimum required to achieve the
socially optimal level. In addition, when a player fails to meet the requirements,
he has to bear the total cost incurred by others due to his deviation.

[38] proposed that third-party inspections with insurance can considerably
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reduce the risk. Such management-based regulatory strategy can be used by
the public sector in partnerships with the private sector, as a third party, to
enforce regulations ensuring better security.

4. Coordination and Cooperation

[38] discussed two decentralised coordinating mechanisms to enhance security
levels in the context of airline security. The first mechanism proposed that an
association of players could coordinate requiring every member to follow spe-
cific rules and regulations, including the adoption of specific security measures.
Further, the association could decline business with non-members and players
not satisfying the requirement. The second mechanism stated that players who
have invested in security could announce publicly that they will not support
business with players not adhering to certain security standards. This strategy
might encourage defaulters to invest in security.

5. Sharing of Security Information

Information sharing can enable in improving the socially optimal level of pro-
tection. Gordon et al. [77] stated that information sharing does not affect the
levels of security, rather it assists in achieving the same level of security at a
lower cost. It is noted that when players share information each tend to spend
less on security that they would have invested without sharing information.

6. Deception

Use of deception as a defence mechanism is a common practice in computer
security [78]. The act of deception has been deliberately used to mislead hackers
into predicted path aiding computer security [78, 79].

One of the widely proposed methods of deception is the use of honeypots as
camouflage for deceiving the attackers [56, 57, 80]. Beside honeypots, Yuill [78]
have proposed methods for deceptive hiding by defeating the processes adver-
saries implement to discover hidden things. [58] demonstrated how pretending
to be a honeypot decreased the amounts of attacks.

In [39], the weakest player might be a strategic move to divert the attention
of the attacker knowing that they will most probably attack the weakest link.
Thus for the weakest player in the dependency chain, it might be economically
beneficial to invest in self-insurance rather than investing in security as it is
most likely that he is going to be attacked.
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3.4 Research Methodology

In this thesis, we use a qualitative research methodology supported by existing
literature. To precisely understand the strategic behaviour of operators in relation to
security-related investments, we build our work (Chapter 4) on an existing research
[38]. During this inductive process, our critical observation was that this field lacks
extensive studies on attackers. To extend the facet, we utilise a novel approach to
study the attackers’ behaviour from a cybersecurity perspective (Chapter 5).

The security investment model captures the strategic decision-making behaviour of
Telecoms operators (in Chapter 4) is a sub-class of the model proposed by Kunreuther
and Heal [38]. They investigated the incentives behind security investment decisions
in interdependency conditions where a degree of uncertainty from the direct and
indirect risks affect the investment decisions.

The risk of being attacked is known as a direct risk, while the risk induced by another
interacting player is the indirect/propagation risk. They studied the interdependent
security investment games with two players and more than two players. The uncer-
tainty of propagation risk from another player introduced ambiguity in investment
decisions leading to an indeterminate solution for the games.

We assess a two-players security investment games acknowledging a positive indirect
risk from other interacting operators. Together with the dependency situation, we
extend the analysis to games played with strictly competing operators and when
only a single-operator is depending on the other. Admitting an indirect risk for sure,
rather than a probability, leads to a steady-state solution in the games. Moreover, it
decreases the uncertainty towards investing in security. In particular, operators are
more motivated to invest in security resulting in improved security levels.

The security games, in general, have been studied considering strictly bounded
attackers presenting limited insights into their strategic preferences and behaviour.
Besides technical aspects, very few works have shown interest in understanding
behavioural and psychosocial aspects of attackers [40, 66].

Kasumastuti et al. [40] studied cyber attackers, defenders, and users using behavioural
games with an intention to capture key parameters moderating their interactions.
They analysed subgames of a three players game to study technological and psychoso-
cial aspects of participants and proposed solutions using the mini-max rule. Besides,
attacking and not attacking a target, the attackers have an additional option of not
attacking and investing resources to enhance their capabilities strengthening future
attacks.

We investigate security interactions acknowledging attackers as rational entities with
strategies incentives. Our work studies attackers with extended strategies, rather
than only attacking or not attacking, with an intention to understand their behaviour.
Furthermore, we introduce a decision-flow model capturing the attack process from
attackers’ perspective. We envisage that utilising a decision-flow model, we can
learn factors inducing specific behaviour and intuitively reason about a displayed
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behaviour. Although the framework is established on assumptions, it facilitates
a way of assessing security interactions from attackers’ perspective and assist in
understanding attackers’ behaviour.

3.5 Summary

In this chapter, we defined the game environments as security games involving
attackers and operators, and security investment games between operators. We then
categorised operators as dependent and independent on their capabilities to provide
services. Furthermore, we discussed mechanisms to improve operators’ security levels.
The last section described the research methodology utilised in this thesis and how
this study is extending the current state-of-the-art.

The next chapter studies the security investment decisions of operators and their
interdependencies utilising the categories of operators presented in this chapter.



4 Operators’ Security Investment Decisions

This chapter focuses on understanding the strategic behaviour of operators with
respect to security-related investments. We analyse the interactions between operators
using security investment games capturing conditions influencing investment decisions.
These particular games demonstrate the dependency effects on the operator’s decision-
making abilities. We then discuss how these dependency conditions can strategically
aid the operators against attackers.

4.1 Payoff Structure

At any point of choice, an operator has to decide between investing or not investing
in security. The choice of action defines the state of the operator as secure (complete
protection) - if invested, or unprotected - if did not invest in security. An operator
with protection will positively defend an attempted attack, whereas an attack will
positively compromise an operator without protection. An attack is acknowledged
as contagious and can transmit from one operator to other collaborators.

The payoff structure is determined by

- r is the available expendable resources for an operator to invest without involving
any expenditure and loses,

- c is the cost of investment in security,

- l is the loss to an operator when it’s system is compromised and

- l′ represents the loss imposed by another operator.

The following sections evaluate the interactions between independent operators,
followed by dependent operators utilising this payoff structure for the security invest-
ment games. In the payoffs matrices, the first value of a cell represents the payoff
for the row player and the second value for the column player. For simplicity in
evaluation, we consider r, c, l and l′ to be scalar in nature.

4.2 Games with Independent Operators

The operators have to manage competition among other operators as well as with
entities providing similar services, such as [81] which demonstrates direct competition
for multimedia services between operators, and cable and satellite Pay-TV providers.

The following game explores a strictly competitive scenario between two independent
operators (refer to the types of operators in section 3.3.1). An operator’s investment
in security can affect other competing operators, such as an operator with protection
might be a less attractive target for the attacker and the attacker might prefer
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targeting other competing operators [35].

o2
Invest Don’t invest

o1

Invest r − c, r − c r − c, r − l − l′

Don’t invest r − l − l′, r − c r − l − l′, r − l − l′

Figure 4.1: Illustrates the payoff matrix for the security investment game involving independent
operators. It presents the scenario where operators are strictly competing against each other.

The Figure 4.1 presents the payoff matrix for the security investment game between
independent operators. From the payoff matrix, if both the operators invested in
security, then each has to bear the cost of investment c which would provide them
complete protection. If operator o1 invested and operator o2 does not invest (top-right
chamber), then operator o1 has to incur the cost of investment while operator o2 has
to bear the loss of direct breach and the loss of induced risk of breach. The lower
left chamber contains the payoffs in the reverse situation. If neither operators invest
in security, then both have to bear the loss of direct breach and loss of induced risk
of breach.

For an operator to invest in security, the decision of investing has to be a dominant
strategy. From the payoff matrix, the choice of investing in security to be a dominant
strategy, it must be

r − c > r − l − l′ (1)

Solving the inequality 1, we obtain c < l + l′ which states that investment in security
will be a dominant strategy for an operator if the cost of investment is less than the
combined expected loss (direct and indirect loss). Similarly, if c > l + l′, then neither
of the operators will be motivated towards investing in security.

Apart from the pure strategies, a mixed (randomised) strategy where the operators
are indifferent towards their choice of actions can be achieved using the mini-max
solutions. Under uncertain conditions, operators’ best response would be a strategy
maximising their payoff and minimising opponents’ payoffs. To achieve the optimal
strategy, operators must mix their choice of actions such that their opponents have
no prefered choice of action.

Assuming there is no prefered choice of action and both operators have decided
to randomise their strategy. An operator has decided to invest in security with a
probability of p and not to invest in security with 1 − p. To achieve the optimal
strategy, the operator must mix the choices such that the opponent is indifferent
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towards any choice of action. To achieve the optimal strategy,

Uopponent(Invest) = Uopponent(Don’t invest)
p ∗ (r − c) + (1 − p) ∗ (r − c) = p ∗ (r − l − l′) + (1 − p) ∗ (r − l − l′)

c = l + l′
(2)

In uncertain conditions, the operators are best responding to each other by investing
in security an amount c = l + l′, in equation 2, equal to the combined expected
loss. The induced effect l′ is challenging to identify. The condition c ≤ l − l′

defines investment in security on the possibilities of external influences introducing
uncertainty.

The dependency of one’s security investment decision on another player’s decision
reduces the incentives to invest in security [38]. The solution, thus, is undetermined
with the possibility of the game terminating at either of the two Nash equilibria -
when both operators invest (Invest, Invest) or when both operators do not invest
(Don’t invest, Don’t invest). The independent operator invests in security expecting
complete protection. In contrast, such external influences introduce additional
contingency in the decision-making lessening incentives for investing in security.

4.3 Games with Dependent Operators

The telecom operators have to manage strategic alliances, partnerships, and fierce
competition. For an operator to penetrate a new market, a known economically
beneficent strategy is to form coalitions [82]. An individual operator cannot meet the
financial and non-financial (e.g. competition) requirements of the new market. The
collaborations facilitate sharing of resources complementing each other’s requirements.

For example, the merging between Vodafone (UK) and Hutchison Essar (India) in
2007 [83] which paved way for Vodafone to enter the Indian market and for Hutchison
Essar to expand their services in Europe. The pan-European strategic alliance
between Swedish Telia, Dutch KPN, Swiss Telecom and Spanish Telefonica to meet
new regulations, competition and growing demands of quality telecom services [84].

In such dependency conditions, the actions of an operator not only influences own
payoffs but also affect other operators. The success of defending against attempted
attacks, therefore, depends on a combined protection level determined by all the
interacting players. In the two players games, if none of the operators has protection,
every attempted attack will successfully compromise the whole system. We refer
to the whole system as a network of systems formed due to shared dependencies
among the operators. In contrast, if both the operators have invested in security,
every attempted attack will be defended successfully.

The dependency relationship among the operators is indicated by an arrow where the
tail representing the depending operator. A darker circle illustrates an operator with
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protection in the relationship. The possible scenarios of the two players dependent
games are:

4.3.1 Single Operator Dependent Scenario

This section studies the dependency scenarios involving only one operator with
protection. The Figure 4.2 presents operator o1 with protection is dependent on
operator o2 without protection.

When operator o1 is attacked, having invested in security, he will successfully defend
the attempted attack preserving the integrity of the whole system. Here, operator o2’s
system remains protected even under attack without investing in security. Besides,
being able to maintain the integrity without investing in security is be economically
profitable resulting in a positive payoff.

On the contrary, when operator o2 is attacked, being unprotected, will compromise
the whole system. In this case, even if operator o1 has invested in security will lose
its system’s integrity. Thus, incurring a larger negative payoff to the operator o1.

Figure 4.2: Illustrates the situation where an operator with protection is depending on an operator
without protection.

The alternate possibility is when operator o1 without protection is dependent on
operator o2 with protection. The Figure 4.3 illustrates this situation.

When operator o2 is attacked, he will positively prevent the attempted attack pre-
serving the integrity of the whole system. Here, operator o1 remains protected even
without investing in security acquiring a positive payoff. Whereas, operator o1 when
attacked will compromise only its system rather than the whole system.

Figure 4.3: Illustrates the alternate situation to Figure 4.5 where an operator without protection
is depending on an operator with protection

Acknowledging the choice of investing in security is a decision to be made by operators,
the following security investment game is played capturing the dependency effects in
a single-operator dependent situation. The Figure 4.4 illustrates the payoff matrix
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odng

Invest Don’t invest

odnt

Invest r − c , r − c r − c − l − l′, r − l

Don’t invest r − l, r − c r − l − l′, r − l − l′

Figure 4.4: Illustrates the payoff matrix for a security investment game with only one operator
being dependent on the other.

of the security investment game where the operator odnt depends on the operator odng.

The integrity of operator odnt’s system relies on own security investment decision
and the decision of operator odng. From the payoff matrix in Figure 4.4, if both the
operators invested in security, then each has to bear the cost of investment c which
would protect them from direct and indirect risks.

If operator odnt invested and operator odng does not invest (top-right chamber), then
operator odnt has to incur the cost of investment, loss on breach l and the loss from
the risk of breach l′ from operator odng as operator odnt is dependent on operator
odng. The operator odng has to only bear the loss l as there is no propagation risk
from operator odnt. This propagation risk l′ represents the negative externality in
dependency cases.

The payoffs in the lower left chamber are when operator odng having invested in
security will successfully prevent direct as well as indirect attacks. If neither operators
invest in security (lower right chamber), then both have to bear the loss of own
system being compromised along with the loss due to the risk of contagion from the
other operator when attack.

From an economic perspective, it is natural to accommodate a known cost rather
than an obscure cost. Thus, the operator odng has a prefered strategy of investing as
the cost of investment is comprehensible rather than not investing which introduces
an uncertain loss. For operator odnt to invest in security, it must be

r − c > r − l and r − c − l − l′ > r − l − l′ (3)

Solving these inequalities in 3, we obtain c < l and c < 0. The condition of investing
in security with the investment being less than zero, c < 0, is unrealistic, as a
cost of investment cannot be in the negative, introducing uncertainty. While c > l
operator odnt would favour not to invest in security, which is a natural condition.
The ambiguity leads to an undetermined solution and the possibility of the game
terminating at either of the two Nash equilibria - when both operators invest (Invest,
Invest) or when both operators do not invest (Don’t invest, Don’t invest).
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4.3.2 Interdependent Operators Scenario

This section analyses an security interdependency scenario between the operators.
The Figure 4.5 represents the interdependency scenario. The operators being in-
terdependent, any successful attack, irrelevant of the target, will compromise the
whole system. Based on an operator’s security investment decision the payoffs are
determined under compromised conditions.

Figure 4.5: Illustrates the situation where operators are interdependent on each other. The
interacting operators are protected only under the condition where both invest in security.

The Figure 4.1 presents the payoff matrix for the interdependent security investment
game. From the payoff matrix, if both the operators invested in security, then each
has to bear the cost of investment c which would provide them complete protection.
If operator o1 invested and operator o2 does not invest (top-right chamber), then
operator o1 has to incur the cost and the risk of propagation breach l′ from operator
o2 since operator o2 is without protection. The operator o2 has to only bear the
loss l as there is no propagation risk from operator o1. If neither operators invest in
security, then both have to bear the loss of own system being compromised together
with the loss due to contagion from the other unprotected operator on an attack.

o2
Invest Don’t invest

o1

Invest r − c, r − c r − c − l′ , r − l

Don’t invest r − l, r − c − l′ r − l − l′, r − l − l′

Figure 4.6: Illustrates the payoff matrix for a security investment game with interdependent
operators.

For a conclusive decision to invest in security, it has to be a dominant strategy. From
the payoff matrix in Figure 4.1, the choice of investing in security to be a dominant
strategy, it must be

r − c > r − l and r − c − l′ > r − l − l′ (4)

Solving these inequalities in 4 we obtain c < l which states that investment in security
will be a dominant strategy for an operator if the cost of investment is less than the
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expected loss. Similarly, if c > l, then neither of the operators will be motivated
towards investing in security.

Using similar calculation as in the games with independent operators section (in
section 4.2), to achieve the optimal (mixed) strategy,

Uopponent(Invest) = Uopponent(Don’t invest)
p ∗ (r − c) + (1 − p) ∗ (r − c − l′) = p ∗ (r − l) + (1 − p) ∗ (r − l − l′)

c = l

(5)

The operators are best responding to each other when the cost of investment in
security is equal to the expected loss, from equation 5, leading to a less desired state
known as the weak Nash equilibrium. The conditions of investing in security, as a
dominant strategy, c < l, and as the best response, c = l, lead to a steady-state
solution in the game, Nash equilibrium, and the game terminates by both operators
investing in security (Invest, Invest). Thus, considering a definite propagation risk
reduces the uncertainty in the investment decision and motivates operators to invest
in security.

This model is a sub-class of the model proposed by Kunreuther and Heal [38], in which
the investment decision is influenced by the uncertainty in the direct and indirect loss.
The uncertainty of risk introduced by other players reduces the incentives to invest
in security. Besides, a tighter bound on the cost of investment, pl < c < pl − pql′,
defines the security investment decision. Here, p and q are the probabilities of direct
and indirect loss respectively.

The constraint of determining the cost of investment on the induced effect is challeng-
ing (as seen in the independent operators and single-operator dependency scenarios)
and introduces uncertainty in the game, and the solution is undetermined with the
possibility of the game terminating at either of the two Nash equilibria - when both
operators invest in security or when both operators do not invest in security.

From an economic perspective, the decision of investing in security has always been a
concern [85, 72], and the uncertainty in successfully defending while having invested
in security magnifies the challenges in making security investment decisions.

The payoff matrices (in Figure 4.4 and 4.6), describes that a dependent operator’s
investment in security does not ensure protection against malicious activities. Besides
the issue of contingency in security investment, dependent operators face the problem
of free-riding.

Free-riding [54] is a situation where players avoid investing in security and depend
on other players’ security efforts to protect themselves. Players free-ride on the
positive externality created by the security investment decision of another player. A
consequence of free-riding is underinvestment in security [28, p. 4] leading to a lower
combined protection level facilitating exploitable opportunities to attackers.
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4.4 Strategic Analysis

The games show that the weaker operators are always in danger and investment
is security is critical. As investment in security does not assure protection for a
dependent operator, it is at least safer to rely on operators with security measures,
rather than on operators without security.

It is financially beneficial for weaker operators to not to invest in security and depend
on operators with protection, free-riding on the stronger partner. Similarly, it is
profitable for stronger operators to not invest in security and only allow operators
with protection to be dependent on them. Here, the stronger operators can free-ride
on the positive externalities created by security investments of depending operators.

From a strategic perspective, these conditions favour operators to divert the attention
of attackers knowing that the attackers will most likely attack the operator with the
lowest protection. A strategic move would be using an operator as a decoy to receive
all attacks protecting other operators depending on him. Thus, perceiving the most
likely point of attack, the operators would be strategically ahead of the attackers.

In particular, it might be economically beneficial for the weakest player in the
dependency chain determining that he will be attacked, thus investing in self-insurance
rather than in self-protection, as stated in [39]. These strategic results when combined
with other aspects of an operator’s business, particularly the financial aspects, has
influential effects upon budgetary and other economic choices, not to mention the
reputation.

Ultimately, investment in security is always at operators’ advantage. However, oper-
ators should not compete against security, rather security should be a collaborative
effort making a breach harder for attackers.

4.5 Summary

In this chapter, we studied the security investment decisions of independent and
dependent operators and the interdependencies effects on the decisions. We then
demonstrated conditions for investing in security for each category of operators.
Further, we presented how these dependencies conditions can be used as strategic
moves by the operators in deceiving the attackers.

However, to be able to make better security decisions threat modelling can be used
as a foundation for security requirements [86]. Besides, instead of just investing in
security with the expectation of successfully defending against attacks, an efficient
way could be to understand the attackers preferences, anticipate their strategic
behaviour and devise security measures counteracting their attempts. The next
chapter essentially centres on studying attackers’ behaviour by assessing security
interactions from attackers’ perspective.



5 Attackers’ Behaviour and Strategies

This chapter focuses on understanding the strategic behaviour of attackers. We start
by admitting attackers have strategic incentives aiming towards maximising their
returns and present a decision model as a cognitive walkthrough capturing the attack
process. From this model, we derive a generalised attack framework categorising
the total effort required during the attack process. Using the attack framework, we
evaluate and optimise attack strategies against the different categories of operators.

5.1 Attackers and Attacks Classifications

Attackers are entities with malicious intentions. Their primary motive is to obtain
personal, sensitive, and valuable data by compromising a target such as a tele-
com operator. Leveraging the acquired data, attackers cause social, financial, and
psychological distress [50].

Based on the motives, objectives and threats behind attacks, attackers are categorised
into various kinds, as Parker [87] categorised them on the threat levels as a terrorist,
criminal, foreign government, foreign military, non-state combatant and business.
From a psychological perspective, Rogers [88] classified hackers depending on their
expertise (from novice to experienced), areas of interests (software, hardware, etc.)
and behavioural patterns.

From an economic perspective, Herley [55] classified attacks as scalable and targeted
attacks and pointed that the economics of attacks determines an attack strategy. For a
scalable attack such as Distributed Denial-of-Service (DDoS) attack [89], the required
effort is disproportional to the number of targets. Whereas, for targeted attacks
such as LTE location tracking attacks [90], the effort depends on each target. Thus,
suggesting specific attacks must be on targets with higher than average expected
value.

Hausken [35] noted that the expected returns of an attack regulate the strategic
choices of attackers, as likely as it defines the decision of investing in security for
defenders. Although, for a profitable attack, attackers need to differentiate viable
from non-viable targets and determine which viable target to attack from the expected
returns [91].

[13] classified attack strategies on probable types of attacks such as

• attacks on a single target

• attacks against multiple targets

• consecutive attacks

• random attacks

• attacks involving a combination of intentional and unintentional impacts
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• attacks with incomplete information

• attacks with variable resources from a broader literature survey.

However, the barriers in aptly modelling adversaries are due to the lack of credible
information on potential adversaries, and the interactions being extremely complicated
and extensive [33]. Moreover, speculating the intentions behind attacks from the
available security encounter data, which mostly includes security breach data [92] and
data from decoys such as honeypots and honeynets [93] is challenging. This problem
exaggerates when predicting the human behaviour administering a strictly bounded
rationality [94], especially while addressing the human adversaries. Moreover, the
difficulty in identifying, confirming and quantifying the intents further limits our
understanding of cyber attacks and adversarial behaviour.

We, humans, are bounded rational rather than being perfectly rational [95] due to a
myriad of cognitive and situational constraints. Behavioural game theory [61] has
been utilised to gain a comprehensive view of the strategic choices of humans.

Behavioural game theory differs from the traditional game theory by utilising "ex-
perimental evidence and psychological intuition" [27] to predict human behaviour.
From a security perspective, [96, 65, 97] have demonstrated improvement in the
predictability of attackers’ behaviour by using behavioural/cognitive modelling in
repeated security interaction environments. In the following section, we utilise a
behavioural approach to capturing the strategic choices of attackers during the attack
process with an intention to understand their behaviour.

5.2 Behavioural Analysis

It is economically infeasible for operators, being a deficit of resources, to invest in
high standard defences securing each system. They need to devise effective strategies
and tactics balancing the cost of security investment against the risks [98]. Similarly,
attackers have also limited resources to invest and need to act strategically optimising
their investment and maximising their utility [36].

The expected return from attacks moderates their strategic choices; particularly
the motivations [35], signifying attackers do have strategic preferences and aim
towards maximising their desired gain [55]. Moreover, [99] demonstrates that attacks
are results of cooperation among participants which reconfirms that attackers have
strategies.

We study attackers’ behaviour acknowledging that they have strategic incentives to
attain their utilities while minimising their effort during the attack process. This
assumption eases the strictly bounded rationality of attackers and facilitates a unique
way of analysing the interactions, in contrast to the only choice of attacking and not
attacking options utilised in traditional game-theoretic modelling approaches [29,
p. 336].
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In particular, it facilitates examining diverse attack strategies involving conditions
when attackers do not react - ignore or watch the target; diverging from the traditional
approach where the attackers follow a prescribed action of invariably attacking the
target.

Introducing strategic attackers into the game environments expands the possibilities
where an action could bear latent objectives and motives challenging the efficacy
of the proposed defence strategies [1]. As an illustration, consider the case of a
Distributed Denial-of-service (DDoS) attack [89], where the attacker attempts to
prevent an operator from delivering information or services by clogging the network.

A game-theoretic strategy for the operator against a strategy-less attacker would
be to invest resources in countering the attack with full capacity to minimise the
damage. The attacker being strategy-less, the attack would precisely be an attempt
to harm the existing state of the operator. In contrast, for a rational attacker with
strategic priorities, the DDoS attack might be merely a probing attack to assess
the strength of the operator. It could be a small diversion depleting the operator’s
resources and flooring conditions to perform a powerful targeted attack.

The Figure 5.1 presents a glimpse of the extended decision space of attackers with
a diverse choice of actions. This decision space is on a macro level with no further
characterisation of attacks based on the severity of attacks and dependencies between
attacks.

Attacker

Attack Don't attack

­ Full attack

­ Partial attack

­ Probing attack

...

­ Watch

­ Ignore

...

Figure 5.1: Illustrates the decision space of attackers adapted from [1]. It presents an extended
choice of actions available to attackers rather than simple attacking or not attacking considered in
traditional game-theoretic security modelling approaches.

The choice of not attacking the targeted operator does not necessarily mean that the
attacker has simply ignored the target and operators are not under threat. In order
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to have a comprehensive understanding of attackers’ viewpoint, there is a need to
acknowledge possible implications of such behaviour. In simple terms it could be a
strategic move of the attacker to not attack and observe operators’ reactions (also
known as passive attacks [100]). Moreover, attackers could probe the operators with
intents to induce specific behaviour.

Think of an attack

Look for vulnerabilities Decide type of attack

Commit to an attackDon't attack

Exploit target 

Devise strategies 

*

* influence

Figure 5.2: Illustrates the decision-flow model of attackers adapted from [1]. It captures the
cognitive walkthrough of an attack process from attackers’ perspective.

Figure 5.2 presents a decision model capturing the choices of attackers during the
attack process. This model represents the cognitive flow of attackers during the
attack process. The lowest level of the flow represents the definitive actions which
include either attacking or not attacking. These low-level actions are dependent on
the higher-order goals. The states become increasingly abstract as we ascend towards
the higher levels. These higher order abstract states could be disintegrated further
into transitional stages aptly expressing precise interaction scenarios.

The cognitive process initiates from the thought of an attack and terminates on a
definitive decision of either attacking or not attacking. The choice for an attack
is supported by either searching for vulnerabilities to breach or choosing a specific
attack to perform within the attacker’s capabilities. There could be numerous other
decision-flow paths to select based on the context of an interaction.
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The attacker’s motive behind an attack latently or precisely influences the choice of
intermediate paths. The subsequent steps descending the flow involves determining
attack strategies and deciding on whether to attack. The lower level decisions
demonstrate specific behaviours [101] and game theory could be used in studying
these behaviours [26]. Further, these behaviours could be used to infer the higher
order objectives and intentions driving such behaviour [101, p. 2]. An understanding
of the intents and motives will support better reasoning for estimating attackers’
behaviour and comprehensively predicting their behaviour.

5.3 Attack Framework

The attack process can be characterised, based on the decision model (refer to Figure
5.2), into stages requiring different effort in performing the attack which can be
broadly characterised as Searching effort and Breaking-in effort. The Figure 5.3
displays the attack framework illustrating the effort required in the attack process.

The Searching effort inculcates effort requiring in choosing a target, gathering
information regarding the target and scanning vulnerabilities to breach. While
Breaking-in effort involves the effort requiring to compromise the target. An expected
value from a successful attack can be derived summing all the effort requiring in
the attack process. The expected value is a critical determinant moderating attack
decisions [55, 28].

Figure 5.3: Illustrates the attack framework derived from the decision-flow model in Figure 5.2
adapted from [1]. This framework disintegrates the abstract states of the decision-flow model into
effort required in the attack process facilitating a way of quantifying and modelling them.

Mapping the decision model, in Figure 5.2, into the attack framework, in Figure 5.3
transforms the abstract states of the decision model into modellable units. These
modellable units can be utilised in quantifying the expected utilities of the attackers
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unveiling their incentives aiding in an improved understanding of the attackers’
decision-making behaviour.

Furthermore, the attack framework facilitates in evaluating and enhancing attack
strategies by optimally regulating the overall effort required in compromising a target
which further strengths the efficacy of attacks while optimising attackers’ effort.

5.4 Optimising Attack Strategies

A crucial factor affecting players’ decision is their inability to assess the environment
which introduces uncertainty in their decisions [28, p. 35]. Uncertainty due to lack
of complete and perfect information against an operator could hamper attackers’
decision. For example, attackers might have information about alliances among
operators but gaining information regarding an operator’s investment in security and
on what specific security might be challenging. Due to this the attack process involves
a certain degree of uncertainty. However, the attack process eventually converges
to a point when the attacker has to choose between attacking or not attacking the
target.

The Figure 5.4, illustrates the expected payoffs of an attack against a targeted
operator in uncertain conditions. As mentioned earlier, the investment in security
is discrete, protecting from all forms and degrees of attacks. The insecure implies
a successful breach resulting in a positive payoff for the attacker while the secure
represents the alternate. The gray box represents additional conditions on the
decision of not attacking the target and exploring these conditions are beyond the
scope of this work.

Apart from uncertainty, a critical challenge attackers face is in identifying potential
targets such that an attack would yield something [91]. To sustain, it is crucial to
distinguish viable from non-viable targets such that an attack is worth performing.
Moreover, to gain from an attack, the attacker must decide which operator to attack,
successfully compromise the operator, and leverage the accessed resources.

In particular, attacks are not worthwhile if the gain is not at least as good as the cost
of performing the attack. As a concrete example, let’s consider a telecommunications
domain with N operators, among which Nc operators share security dependencies and
Nn independent operators compete against security. It is an extremely expensive task
for attackers to choose a viable target from such an intertwined mesh of operators.
As such, the number of systems under each operator is not included as it magnifies
the complexity by many folds. Possible tactics attackers might adopt addressing this
situation are

1. randomly choosing a target operator and attempt breaching the operator’s
defence. This approach demands a substantial searching effort and could include
a large breaking-in effort. This adds further uncertainty to as the attacker is
doubtful regarding his abilities to successfully compromise the target.
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Attack? System's 
State?

­ve 
Payoff 

+ve 
Payoff

Attacker's point  
of choice

Secure

Insecure

Yes
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Figure 5.4: Illustrates the expected payoff for the attackers’ decision of attacking or not attacking
an operator adapted from [1]. Lack of complete and perfect information on a targeted operator
introduces uncertainty in attackers’ decision process. Here, if the target is protected an attack will
fetch a negative payoff else the alternate. The gray box represents additional conditions on the
decision of not attacking the target. However, exploring these conditions are beyond the scope of
this work.

2. search for a specific vulnerability and then attempt breaching it. This approach
would involve a substantial searching effort but a small breaking-in effort, as
the attacker can surely exploit the vulnerability. Even though this approach
involves high searching effort, chances of successfully compromising the chosen
operator are very high.

The expected Utility (U) represents the probable payoff an attacker will receive on
successfully compromising a targeted operator. Based on the attack framework in
Figure 5.3, the expected Utility for an attack is the difference between the overall
cost of performing an attack minus the expected gain from a successful attack and is
represented as

U = cost(Information_searching + Target_searching +
V ulnerability_searching + Breaking_in) − expected V alue

(6)

where from [55],

cost(Information_searching) < cost(Target_searching)
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Gathering and sharing of security-related information is one of the key factors improv-
ing cybersecurity in both cooperating [102] and non-cooperating [103] environments.
Gordon et al. [77] noted that information sharing assists in achieving security at a
lower cost while promoting the socially optimal levels of investment. However, it
is a known fact that the proposed information by defenders supports attackers in
devising attack strategies.

The following analysis illustrates how by utilising commonly available knowledge on
operators can assist attackers in planning optimal attack strategies. Utilising the
available information reduces the information-searching cost to a static cost Ci rather
than a variable cost. However, attackers have to bear the vulnerability-searching
costs Cv as a common cost irrelevant to any choice of target. t is the choice of a
target from the set of operators.

In a cooperating environment, the state of an operator is not only influenced by his
decision but also by other cooperating operators’ decisions (refer to chapter 4 for
further details). Knowing a set of operators (Nc) are cooperating, the attacker can
refine the target-searching scope from N operators to Nc operators, where Nc < N ,
reducing the searching effort to an extent. The expected Utility (Uc) for attacking
dependent operators is

Uc = Ci + cost(Breaking_in)+
Cv

∑
cost(Target_searching)Nc(t,−t)

− expected V alue

(7)

In a non-cooperating environment, an operator’s security investment might encourage
competing operators to invest in better security measures. It might, therefore, also
increase the likelihood of attacks on competing operators as the attacker will prefer
a victim will lower resistance (described in Section 4.2).

Identifying operators are competing would reduce the victim-searching effort con-
siderably, as it is economically beneficial to attack the losing operator. Reduce in
victim-searching effort could facilitate attackers in reallocating additional resources
for vulnerability-searching, and breaching the target. The expected Utility (Un) for
attacking independent operators is

Un = Ci + cost(Breaking_in)+
Cv

∑
cost(Target_searching)Nn(t,−t)

− expected V alue

(8)

The desired gain G represents the minimum amount of gain the attacker would want
from an attack. From an economic perspective, an attacker would prefer the attack
that maximises G. That is, from a range of available attack strategies, the attacker
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would prefer the strategy that maximises U minus G. This expresses co-existence of
several classes of attacks on a point of attack. The expected payoff and the desired
gain from an attack would moderate the decisions of the attacker. As

decision ∼=

⎧⎨⎩Attack, if U ≥ G
Don’t attack, if U < G

The attack framework is a reusable design capturing the attack process. It could
be utilised in many situations assessing the attack process. In the simplest case,
it could be used in categorising attacks based on the effort required (eg: resource,
time) to compromise a system, similar to Figure 5.5 which illustrates a threat matrix
categorising the malicious actors on their technical capabilities and potential impact
they could cause through attacks 2.

The attack framework could also be used in incorporating and extending the existing
models such as [40], where the attacker has the option of not attacking and investing
resources to enhance his capabilities. This characteristic of attackers could be further
extended using the attack framework as an investment made towards improving
capabilities refining the searching effort or breaking-in effort, or both. Besides, the
attack framework facilitates an additional dimension to classify the attacks.

5.5 Summary

In this chapter, we examined the attackers utilising a behavioural approach. We
considered attackers as rational entities and built a decision model capturing the
choices of attackers during the attack process. We designed a reusable attack
framework from the decision model which disintegrated the effort requiring in the
attack process. Utilising this attack framework, we further proposed attack strategies
optimising attackers’ effort against dependent and independent operators.

2Refer to Figure A1 and A2 in Appendix A.1 for further details on the scales
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Figure 5.5: Illustrates a threat matrix categorising malicious actors based on their capability and
the potential impact they could cause through attacks adapted from [6]. Here, the capability of an
actor indicates the technical knowledge (sophistication) measured on a six-point scale where the
’Tier 1’ represents the extremely limited technical capability and ’Tier 6’ the most sophisticated.
The levels of potential impact are measured on a five-point scale with ’Negligible’ representing the
attack where damages are most unlikely and ’Catastrophic’ representing attacks which could cause
complete paralysis and/or destruction of critical systems and infrastructures.



6 Discussion: Need to Gain Adversarial Perspec-
tives

Protecting and securing systems is emerging priority of modern information-driven
economy. Given that complete protection is unlikely and the implications of evolving
threats (results of smarter attacks); it is imperative that operators need to significantly
reassess their security decisions. This chapter highlights the methods of application
of the core concepts of this thesis and future research directions.

One critical component to explicate the basic objective is ‘trust’. Trust is an essential
component of computer systems [104], but trust demands a reason for belief, and this
belief bases itself on the ‘expectation’ of how a trustee will behave or perform [105].
Computer systems have well-defined actions and prescribed outcomes displaying
identical characteristics as the bounded rational players in games. The key essence of
this thesis that is to understand the behavioural characteristics of players can thus
be applied to study the responses of systems defining trust on them.

We demonstrate an application of this in the second paper (from the list of original
publication) which reasons on administering trust on systems; particularly amidst
the elements of ETSI’s Network Function Virtualisation Reference Architecture,
based on their behavioural characteristics. It presents a trust metrics where the most
trusted system is the one with identified characteristics [2].

Contemporary research has inadequate empirical evidence to indicate ‘intent’ and
‘motive’ behind attacks. The attack framework described in Section 5.3 can be used
in categorising attacks around different dimensions. It would also help in gaining
insights into the purpose of attacks.

However, to be able to predict expected behaviour of attackers in a realistic way
requires a profound understanding of their behavioural characteristics. It demands a
multi-disciplinary approach with efficient application of concepts from behavioural
psychology, behavioural economics and cognitive science. Understanding attackers
characteristics will support us to better assess the emerging threat vectors, vulner-
abilities and fabricate comprehensive mitigation tactics supporting effective risk
decision-making.

Having explored the motives behind attackers action; we aim at extending the
application of the model described in Section 4.3 and Section 5.3 to deceit games
(described in Appendix A.2) to determine the deceit failure point in a repeated
interaction scenario.

Figure A9 represents the deceit failure point for a simple security deceit game. In the
repeated deceit game, one likely outcome is that attackers may learn about the deceit
and use multiple strategies such that the propensity of each attack becomes more
successful. If the rate of success of attackers over a period of time is greater than
the improvement of deceit strategy of operators, then the attackers will eventually
discover the deceit. We define this point as the ‘deceit failure point’ where the deceit
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strategy fails and attackers effectively win.

This game-theoretic argument is based on the premise of strong assumptions such as
the knowledge players possess, actions sets and sequence of interaction. These as-
sumptions help to reduce the complexity and uncertainty of real-life interactions such
that they are computationally feasible to model. However, during this dimensionality
reduction valuable information in lost and we are restricted to a tiny exploration
area of the solution space. A facet of our future research is to design the evaluation
environment in an intuitive manner acknowledging the psychological and economical
aspects of security [106].

To model player behaviour, repeated games would be an ideal choice because real-life
players have to interact repeatedly with partners and competitors. [28] states that
repeated games assist in determining efficient equilibrium. However, every attempted
attack might not be with an intention to acquire financial targets. For example, for
a novice attacker gaining experience or reputation might be the foremost priority.
Secondly, the attack process might end on an attempted attack. By contrast, this
might be completely different in the case of an experienced attacker.

When such personality traits, as identified in [88]; the multiplicity of attack reasons
especially the passive attack strategies, disconcert and unsettle security modelling
approaches, particularly the Stackelberg approach [52]. The Stackelberg approach
proceeds on a simplistic assumption that attackers always follows defenders and most
likely attack.

When the psychological and personality aspects are reflected, it raises a number
of research questions and challenges the traditional approach used in modelling
cybersecurity situations. For example;

a. Is every interaction between an attacker and defender a repetitive process or is
it a single-point interaction which ends on an attempted attack? Further, is
using repetitive modelling approaches to model cybersecurity interactions an
ideal choice?

b. By heavily investing in defending critical systems, are defenders appraising
attackers around which particular system is most valuable to them? How would
the knowledge of knowing the most valuable system influence the choice of
attack strategies and the preference of system to be attacked?

c. A commonly adopted defensive strategy is deception. Is deceit a strategy for
lack of resources or is it for lack of information? How do attackers behave
acknowledging that an operator has deceiving characteristics?

This thesis argues attempts to delve deeper into these questions by substantiating
that each interaction is unique, with a unique set of parameters characterising and
moderating it. Modelling these unique interactions under common grounds is highly
ineffective and leads us to a ‘one size fits all’ strategy that often fails as seen in the
above mentioned Stackelberg approach. These unique situations require context-
based modelled and using only game-theoretic concepts restricts the analysis to a
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larger extent through biases, heuristics, and convenience.

This preliminary exploration will guide future studies in aptly modelling behavioural
aspects of both attackers and defenders; help to design context-based scenarios
intuitively by applying attack trees, defence trees, cognitive modelling, categorising
players on intellectual traits and past experiences, and empirical data. Further-
more, this would help in comprehensively modelling the behavioural aspects of the
participants supporting better security decision strengthening cybersecurity.



7 Conclusion: Security should be a Social Synergy

The telecommunications systems being inherently distributed and collaborative in
nature presents a myriad of attack surfaces and threats. To this, the lack of adequate
information on evolving threats and the inability to decisively predict adversaries’
actions add challenges in prominently assessing situations and executing suited
security decisions. This thesis investigated circumstances and factors influencing
the strategic behaviour of Telecoms operators and attackers using game theory to
understand their decision-making criteria to assist cybersecurity.

In chapter 4, we examined security investment games displaying the interdependency
effects of security investment decisions on operators’ behaviour. The exploration
reconfirmed that investment in security does not necessarily guarantee protection
against threats; existing, perceived and future threats. Besides financial aspects,
operators need to contemplate their relationships with other operators as well as
the indirect risks while security decision-making. Acknowledging these factors, we
illustrated conditions encouraging succinct security investment decisions. Further,
we discussed the financial and strategical aspects of dependency conditions among
operators and how these conditions could aid in planning effective countermeasures.

Chapter 5 speculated the cybersecurity environment from attackers’ perspective
to gain insights into their strategic preferences. We assessed the environment ac-
knowledging them as rational entities contrary to the strictly-bounded rationality
of attackers in traditional game-theoretic approaches. In particular, we modelled
attackers’ characteristics with an extended set of choices available to them.

A decision-flow model has been designed capturing the choices of attackers during the
attack process. An outcome of this is a generalised attack framework representing
the effort required during the attack process. Utilising the framework, we proposed
attack strategies optimising attackers’ effort in achieving their utilities as it is a key
parameter moderating attackers’ decisions.

The results are still on a hypothetical level due to the complexities in modelling
decision-making processes of humans. Moreover, lack of consistent temporal data
and each security incident being unique advances the challenges in modelling human
adversaries. In particular, the limitations in decisively inferring the intents, motives
and other factors guiding attackers’ actions from the existing security encountered
data. Nonetheless, through this work, we are probing the foundations for drawing
inferences about attackers’ characteristics based on the empirical evidence from
[1, 8, 90]. Especially their strategic behaviour from the context of cybersecurity.

Our initial inferences from this work exhibit that taking into consideration and
admitting that attackers have incentives and strategic preferences imply operators;
defenders in general, need to envisage how they apprehend attackers. Ultimately,
investment in security is critical. However, operators should not compete against each
other concerning security rather security should be a collaborative effort depreciating
the chances of successful attacks.
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A.1 Threat Matrix Scales

Figure A1: Illustrates the capability scale for the threat matrix in Figure 5.5 adapted from [6].

Figure A2: Illustrates the potential impact scale for the threat matrix in Figure 5.5 adapted from
[6].

A.2 Attacker vs Deceiving Operator

In this work, we perform a behavioural game-theoretical investigation on deception
in cybersecurity from an attacker’s perspective with an intention to determine attack
strategies strengthening the chances of successfully compromising a target. The
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examined scenario illustrates a deceit game between an attacker (cyber criminal,
hacker) and a telecommunication operator (defender) considering the operator to be
deceiving.

Being deficit of resources, it would be economically infeasible for an operator to invest
in high standard defence technologies securing each and every system. An effective
solution is to devise strategies and tactics to optimally invest resources which would
include estimating how much investment in a particular security technology would
be optimal or when would it be optimal to invest in a particular security technology.

However, an operator can save a lot of money by deliberately falsifying his actual
state with respect to the actual implementation of a particular security technology.
The operator being deceptive might influence the behaviour of the attacker, as the
attacker might not attack believing the operator has defences - eventually being
a victim of the deceiving strategy! The deceiving nature of the operator causes
uncertainty in the choice of an action for the attacker as reliable information regarding
the state of the operator cannot be derived from the proposed state. Additionally,
considering an attacker would always prefer to maximise his chances of successfully
compromising a targeted system, so, what would be an effective strategy for the
attacker in deceptive conditions?

A common practice in computer security is to hide things from an agent, computer,
or human. Use of firewalls, access-controls, and encryption are common forms of
hiding through denying information [78]. Use of deception is another means of hiding
information extensively used in military and has found its way into computer security
and information protection [107] [108] [109].

Deception, as stated by [110], is distorting one’s perceptions of reality. Deceptive
strategies when deployed can aid the deceiver by placing the target at a disadvantage.
One of the most widely accepted definitions of computer-security deception is from
Yuill [111] stating computer security deception as "planned actions taken to mislead
attackers and to thereby cause them to take (or not take) specific actions that aid
computer-security defences". In this paper, the definition of deception we are using is
falsely disclosure of investment in a particular security technology than the operator
(defender) has actually made.

A wide variety of deception techniques have been proposed for defending computer
networks and information systems. One of the widely proposed methods is the use
of honeypots as camouflage for deceiving the attackers [56] [57] [58] [80]. Beside
honeypots, Yuill [78] have proposed methods for deceptive hiding by defeating the
processes adversaries implement to discover hidden things. Cohen [112] studied
deception as a means to protect information system and [107] have shown how it can
be used to guide the path of an attacker. Rowe et al. [109] have provided taxonomies
of deception methods in cyberwar and [110] have used these taxonomies in exploring
types of deception related to cybersecurity for control systems.

Advantages of deception based security mechanisms have been proposed by [113].
While [58] have demonstrated how pretending to be a honeypot decreased the
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amounts of attacks. [59] studied dynamic adaptation of deceiving strategies by
online deceivers in computer-aided communications and [60] has analysed the effects
of extent of deception and timing of deception on attacker’s decision to attack a
computer network.

From the above literature review on deception in computer security, [56] [57] [59]
and [60] have employed game theoretic approaches to devise strategies favouring
the defenders. Game theory, being a mathematical modelling tool, has been widely
used to study a variety of security scenarios in computer networks, communica-
tions and information security [4] [24] [22] [25] [51] for exploring and addressing
security vulnerabilities, and understanding decision-making behaviour of concerned
participants.

Our work differs from the research discussed above by studying the behavioural aspects
in a deceiving cybersecurity interaction environment and evaluating the interaction
from an attacker’s perspective considering the telecommunication operator (defender)
to be of deceptive nature. This paper extends the assessment of the interaction
environment by supplementing it through hierarchical decision analysis tree and have
provided further research directions in refining the strategies by understanding the
psychological aspects of an attacker against deceiving operator.

A.2.1 Security Game

Oinvestment

Truth Lie

Atk
Attack r − c − l, r − c r − c + g, r − l

Don’t attack r, r − c r, r

Figure A3: Illustrates the payoff matrix for the security deceit game.

r − c − l > r and r − c + g > r

Solving these inequalities we obtain c + l < 0 and c < g

whereas for the operator to lie

r − l > r − c and r > r − c

Solving these we obtain c > l and c > 0

Apart from the pure strategies, a mixed (randomised) strategy where the players
are indifferent towards their choice of actions can be achieved using the mini-max
solutions. Under uncertain conditions, an operator’s best response would be a
strategy maximising his payoff and minimising his opponent’s payoff. To achieve the
optimal strategy, the operator must mix his choice of actions such that the attacker
has no prefered choice of action. Assuming there is no prefered choice of action and
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both players have decided to randomise their strategy, and the operator has decided
to be truthful regarding his investment in security po times and lie with 1 − po. The
operator’s best response would be a strategy maximising his payoff and minimising
the attacker’s payoff. To achieve the optimal strategy, the operator must mix the
choices such that his opponent is indifferent towards his choice of actions. To achieve
the optimal strategy,

UAtk(Attack) = UAtk(Don′t attack)
po ∗ (r − c − l) + (1 − po) ∗ (r − c + g) = po ∗ (r) + (1 − po) ∗ (r)

c = gpo − l(1 − po)
(A1)

For the attacker to attack

UO(Truth) = UO(Lie)
pa ∗ (r − c) + (1 − pa) ∗ (r − c) = pa ∗ (r − l) + (1 − pa) ∗ (r)

c = pal

(A2)

A.2.2 A simple example

Oinvestment

Truth Lie

A
Attack -1, 1 1, -1

Don’t attack 1, 0 -1, 1

Figure A4: Illustrates the payoff matrix for a simple security deceit game.

Due to the variability in the nature of the operator, it is harder for an attacker to
decisively opt an action making the decision process a stochastic process. Figure A5
presents the stochastic decision model of an attacker against an deceiving operator.
The grey boxes represent the stages where an attacker has to make mission-critical
decisions based on the proposed status of the targeted operator.

Under these uncertain conditions, there exists no preferable pure strategy the attacker
can implement. Game theory suggests that for the best response a player should
devise a strategy maximising his payoff and minimising his opponent’s payoff. From
the payoff matrix, Figure A4, there exist no preferable choice of pure strategy and
to achieve an optimal strategy a player must mix his choice of actions such that it
removes any incentives of choosing one action over the other for his opponent. Further,
considering the deceiving nature of an operator, let us assume that the attacker
perceives that the operator is truthful regarding his investment in the security with
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Figure A5: Illustrates the decision model of attackers’ with imperfect information allocating
certain probabilities to address the uncertainty in conclusive decision-making.

a probability of m and lying about his investment in the security with a probability
of n, irrelevant of the proposed status by the operator. Where

m + n = 1; 0 ≤ m, n ≤ 1 (A3)

Attacker’s strategy to make the operator indifferent to his choice of actions, per-
ceiving that the operator is truthful regarding his proposed status with a probability
of m can be represented as

UO(Truth) = UO(Lie)
1 ∗ m = (−1) ∗ m + 1(1 − m)

m = 1/3
(A4)

Thus, the attacker must choose to attack with a probability of 1/3 and not to attack
with a probability of 2/3 to make the operator indifferent towards his choice of
actions. The operator’s payoff against this mixed strategy of the attacker is 1/3,
irrelevant of any choice of action.

Similarly an operator would want to devise a strategy to maximise his payoffs by
balancing the extent of deceit. To achieve this, the operator must make the attacker
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indifferent to his choice of actions. Operator perceiving that the attacker will attack,
the mixed strategy can be represented as

UA(Attack) = UA(Don′t attack)
(−1) ∗ mo + 1 ∗ (1 − mo) = mo + (−1) ∗ (1 − mo)

mo = 1/2
(A5)

Thus, the operator can maximise his payoff by truthfully proposing with a probability
of 1/2 and falsely proposing with a probability of 1/2. Attacker’s payoff against this
mixed strategy of the operator is 0, irrelevant to any choice of action.

From the attacker’s perspective, if the operator anticipates the frequency of certain
types of attacks is more then certainly he will invest in security raising his defences
against such attacks. This would be a highly undesirable situation for an attack on
his chances of successfully compromising the system will be slim, motivating him to
figure out mixed attack strategies keeping the operator unalarmed.

Whereas, from the operator’s perspective, a higher security level will certainly
decrease attacks. But, investing in defences for all the systems would be economically
infeasible for operators even though it might be a higher desirable state from a security
perspective. A means of economically benefiting strategy would be to persuade an
attacker in believing that he has invested in defences, while have not invested in
reality. However, the operator needs to know the extent to which he should be
deceiving such that it is optimal and the attacker still believes him.

Figure A6 presents an opponent’s payoffs for the probabilities of choice of actions
by a player where the attacker believes the operator is truthful and the operator
believes that the attacker will attack. Point B represents the maximum payoff the
attacker can reach by minimising the maximum payoff of the operator for being
truthful. Whereas, point C represents the maximum payoff an operator can achieve
by minimising the maximum attack payoff of the attacker (represented as point A).
The triangle ABC represents the solution space obtained from the computed mixed
strategy of the players.

Using similar evaluation, Figure A7 presents an opponent’s payoffs for the condition
where the attacker perceives that the operator is lying regarding his investment in
security and the operator perceives that the attacker will not attack.

The triangle KML represents the solution space obtained from the computed mixed
strategy of the players. Point L represents the maximum payoff the attacker can
reach by minimising the maximum payoff of the operator for lying. Whereas, point M
represents the maximum payoff an operator can achieve by minimising the maximum
payoff of the attacker for not attacking (represented as point K). Combining the
solution spaces from Figure A6 and Figure A7, the area PQRS in Figure A8 represents
the solution space for the deceit interaction scenario.
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Figure A6: Illustrates the opponents’ payoff structure for the scenario where the attacker believes
that the operator is truthful and the operator believes that the attacker will attack.

A.2.3 Deceit Failure

The previous sections have presented the games and payoffs as points in time. In
an extended scenario, these games are played in more dynamic environments over
time with the payoffs changing according to local circumstances. We can use the
models presented here to explore particular points that may (or may not) occur and
from these, understand the conditions, or if not, the circumstances that lead to these
solutions.

Figure A9 presents the analysis of point in time which we term of deceit failure. As
a game progresses one outcome is that it is likely that the attacker learns about the
deceit and varies his or her strategy such that attacks become more successful. If the
rate of success of the attacker over time is greater than the improvement of deceit
strategy of the telecoms operator then eventually the attacker will discover the deceit.
It is at this point that the operator’s deceit fails and the attacker effectively ‘wins’.

The rate of change of the area can be used to determine the efficacy of the strategy. A
threshold value can be assigned which would indicate the level of success of a strategy
and this can be used to determine the actual investment point for an operator.

This work has described so far the games and work in now continuing on characterising
the above scenario - albeit using linear equations for simplicity at this time. However,
we have provided the characteristics that show when an attacker’s belief in the deceit
is failing. Understanding this is critical for the operator to understand in making
the security technology decision.
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Figure A7: Illustrates the opponents’ payoff structure for the scenario where the attacker believes
that the operator is lying and the operator believes that the attacker will not attack.

We have seen from our previous SS7/Diameter examples such characteristics develop
with some telecommunications operators and that the rate at which the deceit failure
point is reached in both exceptionally rapid in time as well as in the solution spaces.
For some operators we can also show situations where the current state of the system
is already after the deceit failure point and that at this stage any investment in
the deceit strategy is purely cosmetic leading to another set of failures with similar
characteristics, ie: ultimate failure of the company.
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Figure A8: Illustrates the solution space for the deceit interaction.
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Figure A9: Illustrates the analysis of the solution space in Figure A8 to the point of deception
failure.
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