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Abstract  
 
UPS devices are utilized to ensure a constant and undisturbed power supply for critical 
loads. If a fault occurs in the AC grid that normally supplies the load, the UPS device will 
instantly begin to supply power from its batteries via the inverter to the load. However, if a 
fault, such as a short circuit, occurs in the load side of the UPS when the UPS is supplying 
power from its batteries, the UPS must be able to supply enough fault current to clear the 
circuit breaker closest to the fault location and isolate the fault before the UPS itself trips to 
overcurrent. The maximum output current of the UPS is intentionally limited in time and mag-
nitude to prevent power semiconductor components of the UPS inverter from suffering over-
current damages. The problem is that UPS devices must be often oversized in terms of rated 
power so that a sufficient fault clearing capability of the UPS to clear respective circuit break-
ers in the load side is achieved. Thus, the spare power which results from oversizing the 
UPS is dispensable during normal operation of the UPS. 
This thesis aims to find economical ways to improve the fault clearing capability of a UPS 
device. Hence, a simulation model is developed which can be used to estimate how much 
the fault clearing capability of a UPS device may be improved by installing IGBTs and diodes 
in parallel to the main circuit of the UPS inverter. Current limit values of the UPS inverter and 
number of parallel connected IGBTs and diodes in the main circuit of the inverter are adjust-
able in the simulation model. Power losses and junction temperatures of IGBTs and diodes 
are calculated based on input data which may be obtained from datasheets of IGBTs and 
diodes. The solution to improve the fault clearing capability of a UPS device by adding IGBTs 
and diodes in parallel to the main circuit of the inverter is compared from economical and 
technical point of view to the use of an external fault clearing circuitry which is another worthy 
solution to improve the fault clearing capability of a UPS device. 
Cost comparison conducted between the two solutions revealed that improving the fault 
clearing capability of a 20 kW UPS device by adding IGBTs and diodes in parallel to the 
main circuit of the inverter may result in 20–30% higher costs than using the fault clearing 
circuitry. Furthermore, the fault clearing circuitry may be technically a more feasible solution 
to be applied for existing UPS devices than the change in IGBT and diode configuration. 
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UPS-laitteita käytetään varmistamaan jatkuva ja häiriötön sähkönsyöttö kriittisille kuormille. 
UPS-laite alkaa välittömästi syöttää sähköä akustostaan vaihtosuuntaajan kautta kuormalle, 
jos kuormaa normaalisti syöttävässä vaihtosähköverkossa syntyy vika. Jos UPS laitteen 
kuormapuolella syntyy kuitenkin vika, kuten oikosulku, kun UPS laite syöttää sähköä kuor-
malle akustostaan, UPS-laitteen täytyy pystyä syöttämään tarpeeksi vikavirtaa, jotta lähinnä 
vikapaikkaa oleva katkaisija avautuu ja erottaa vian ennen kuin UPS-laite katkaisee sähkön-
syötön ylivirran vuoksi. UPS-laitteen maksimilähtövirta on tarkoituksellisesti rajoitettu ajalli-
selta kestoltaan ja suuruudeltaan, mikä ehkäisee UPS-laitteen vaihtosuuntaajassa olevien 
tehopuolijohdekomponenttien vaurioitumista ylivirran vuoksi. Ongelmana on, että UPS-
laitteita joudutaan ylimitoittamaan nimellisteholtaan, jotta niille saadaan riittävän korkea vian 
erotuskyky laukaisemaan kuormapuolen katkaisijat vikatilanteessa. Tällöin UPS-laitteen yli-
mitoittamisesta syntyvä lisäteho on kuitenkin tarpeetonta UPS-laitteen normaalin toiminnan 
aikana. 
Tämän työn tarkoituksena on löytää taloudellisia keinoja parantaa UPS-laitteen vian erotus-
kykyä. Työssä kehitettiin simulointimalli, jolla voidaan arvioida, kuinka paljon UPS-laitteen 
vian erotuskykyä voidaan parantaa kytkemällä IGBT- ja diodikomponentteja rinnan 
UPS-laitteen vaihtosuuntaajan pääpiiriin. Vaihtosuuntaajan virtarajoja ja rinnankytkettävien 
IGBT- ja diodikomponenttien määrää voidaan säädellä simulaatiomallissa. IGBT- ja dio-
dikomponenttien tehohäviöiden ja liitoslämpötilojen laskenta perustuu niiden datalehdistä 
saataviin tietoihin, jotka syötetään simulaatiomallille. Ratkaisua, jossa UPS-laitteen vian ero-
tuskykyä parannetaan kytkemällä IGBT- ja diodikomponentteja rinnan vaihtosuuntaajan 
pääpiiriin, verrataan taloudellisesta ja teknisestä näkökulmasta ulkoiseen vian erotuspiiriin, 
joka on toinen varteenotettava ratkaisu, jolla UPS-laitteen vian erotuskykyä voidaan paran-
taa.  
Ratkaisuille tehtiin kustannusvertailu, josta selvisi, että parantamalla nimellisteholtaan 
20 kW:n UPS-laitteen vian erotuskykyä lisäämällä IGBT- ja diodikomponentteja rinnan vaih-
tosuuntaajan pääpiiriin lisää se kustannuksia 20–30% verrattuna ulkoisen vian erotuspiirin 
käyttöön. Vian erotuspiirin kytkeminen on lisäksi teknisesti helpompi toteuttaa jo olemassa 
oleviin UPS-laitteisiin verrattuna siihen, että niihin tehtäisiin vaadittavat IGBT- ja diodikom-
ponenttien laitekokoonpanomuutokset. 

Avainsanat UPS, vian erotus, vaihtosuuntaaja, IGBT, diodi, katkaisija, tehohäviöt 
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1 INTRODUCTION 

Data centers are facilities which process, store and transmit digital information. They may 

include tens of thousands of servers, storage devices and network appliances which must 

operate continuously hour after hour and day after day. A data center may consume from 

one to over 500 megawatts of electrical power depending on its size. Operations of data 

centers are dependent on electricity all the time and blackouts may cause considerable 

financial damage to companies. Therefore, they can be considered as critical loads from 

a power supply point of view.  Power grid companies strive to transfer power to their 

customers, such as data centers, as undisturbed as possible and without interruptions. 

However, it is a mission that can not be perfectly reached at least for the time being. 

Power failures do occur occasionally due to different environmental and technical rea-

sons. Uninterruptible power supply (UPS) systems, however, ensure that power is sup-

plied to critical loads constantly in a case of power failure in the grid. They provide tem-

porary backup power from their batteries for loads until generators are turned on to oper-

ate as main backup power supply. In addition, hospitals and factories are examples of 

facilities where the power failure would have serious consequences. Thus, UPS devices 

are used in hospitals and factories to increase the reliability of power supply and to main-

tain the power quality of supply power on a sufficient level.  

The reliability of UPS devices is a significant issue, since in grid fault situations they 

may be the only power supply for critical loads. A UPS failure could lead to a total black-

out of a system. The UPS may trip due to a fault in the load side, such as a short circuit 

or a ground fault, which may cause a large overcurrent. Furthermore, an internal fault of 

the UPS may bring on the UPS failure, however, internal faults are not in the scope of 

this thesis and therefore they are not discussed in more detail. 

In electric power systems, loads are typically protected from overcurrent with circuit 

breakers or fuses. Circuit breakers are nowadays more commonly used in the industry 

than fuses and therefore fuses are not studied in detail in this thesis. Circuit breakers are 

coordinated in a selective way which means that the breaker closest to the load would 

trigger quickest in overcurrent situation and isolate the fault location from other parts of 

the circuit. When the fault is isolated, other parts of the circuit may continue normal op-

eration.  

The UPS draws its supply power from batteries when it is operating in stored-energy 

mode. Stored-energy mode is used if AC grid voltage is not available. If a short circuit 

happens in the load side when the UPS is operating in stored-energy mode, the UPS de-

vice is able to supply only limited short circuit current for a limited time to the fault 

location. The current and time is intentionally limited to prevent semiconductor devices 

of the UPS, such as insulated gate bipolar transistors (IGBT), from suffering overcurrent 

damages. Typically, the current limit is adjusted in UPS devices to a value which is few 

times the UPS rated current and the UPS may be regulated to operate at current limit for 
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a few hundreds of milliseconds in maximum. If the maximum operating time at current 

limit exceeds, the UPS will trip and all loads connected to the UPS output will hence lose 

the power supply.  

Circuit breakers, however, require a sufficient overcurrent to act instantaneously. The 

current threshold for instantaneous tripping of the circuit breaker is dependent on rated 

current of the circuit breaker and its time-current characteristics. For this reason, the UPS 

will close the bypass switch and connect the load directly to the AC grid in fault situations 

if the UPS is overloaded to its current limit. When the load is connected to the AC grid, 

the rating of a bypass fuse primarily limits the available fault current. Nevertheless, the 

magnitude of the fault current that can be drawn from the AC grid through the bypass 

switch may be over ten times higher than the rated current of the UPS device. Thus, it is 

clearly more than the maximum output current that the UPS can draw from its batteries. 

This operating principle increases the probability that a selective protection of the load 

functions correctly and hence circuit breakers may isolate faults quickly. 

However, the foregoing operating principle is practicable only when the AC grid is 

available. During power outages, the UPS device must supply fault current on its current 

limit to the fault location until the circuit breaker trips and fault is cleared. The circuit 

breaker must trip before the UPS itself trips to the overload so that selectivity of the pro-

tection is remained. Because the current limit of the UPS is known, UPS manufacturers 

guarantee in the specification of the UPS device, which size and type of a circuit breaker 

the UPS is able to trigger when the UPS is operating on its current limit. This is referred 

to as a fault clearing capability of the UPS device.  

The aim of this thesis is to find economical ways to improve the fault clearing capa-

bility of a UPS device. Observed solutions for the problem comprise changing IGBT and 

diode configuration in the main circuit of a UPS inverter or using an external fault clear-

ing circuitry. Improving the fault clearing capability means that output current of a UPS 

operating at current limit is increased to a value that triggers larger circuit breakers in-

stantaneously when the UPS is drawing power from its batteries.  

Improving the fault clearing capability is important for UPS manufacturers as their 

customers usually have circuit breakers of their loads installed or selected beforehand. 

Therefore, the customer must select a suitable UPS according to the fault clearing capa-

bility so that the UPS is able to trigger respective circuit breakers when it is operating at 

current limit. A problem is that customers must often acquire a UPS with higher current 

and power ratings than required for the normal operation of the load just to achieve an 

adequate fault clearing capability. In normal operation, the spare power capacity is useless 

and therefore non-profitable. Problem could be avoided if customers would change their 

circuit breakers smaller and more sensitive to match the fault clearing capability of the 

UPS. However, the changing of circuit breakers may be challenging and expensive for 

customers. In some cases, it is neither possible to change circuit breakers if the load re-

quires certain time-current characteristics for the breaker. 

 For example, if the customer has a load with 20 kW rated power, the UPS device 

with 20 kW rated power may be sufficient in terms of rated power and current ratings. 
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However, the 20 kW UPS has the fault clearing capability to trigger certain type and size 

of circuit breakers stated in the device specification. Whether the customer has installed 

larger circuit breakers to protect the load than stated in the specification, the 20 kW UPS 

is no longer a valid solution. In that case the customer must acquire a UPS with a higher 

power rating, such as a 30 kW UPS, which has the fault clearing capability to trigger 

larger circuit breakers in terms of current rating. Oversizing the UPS device only due to 

the insufficient fault clearing capability, however, generates spare capacity with no pur-

pose in normal operation. With better fault clearing capability of the UPS, larger circuit 

breakers may be triggered and thus the gap between the rated power of the UPS and the 

load may be reduced. 

The reference UPS device studied in this thesis is a 20 kW double conversion three-

phase three-level UPS. The first target in this thesis is to discover how much the output 

current of the UPS operating at current limit could be increased by changing the present 

IGBT and diode configuration of the UPS inverter to a new configuration which has a 

higher current-carrying capacity. In addition, costs of new configurations which may im-

prove the fault clearing capability of a UPS device are analysed and compared with each 

other. The study is performed by creating a simulation model which simulates the opera-

tion of the UPS inverter at current limit and calculates average power losses and junction 

temperatures of IGBTs and diodes in the main circuit of the UPS inverter when the UPS 

is operating at current limit. The configuration of IGBTs and diodes in the main circuit 

of the inverter can be changed which denotes that IGBTs and diodes can be added in 

parallel in the simulation model. Power losses of IGBTs and diodes in the main circuit of 

the inverter are calculated with different configurations of IGBTs and diodes when a UPS 

device operates at current limit. Finally, the fault clearing capability of a UPS device with 

new IGBT and diode configurations is evaluated based on simulation results. 

Another target in this thesis is to consider whether an external fault clearing circuitry 

could be a possible and economical solution to increase the fault clearing capability of 

a UPS device.  The cost of the external fault clearing circuitry is studied and compared to 

the cost of the solution where IGBT and diode configuration of the UPS inverter is 

changed. The idea in the fault clearing circuitry is that in a fault situation it would supply 

enough fault current to clear the respective circuit breaker in the load side of the UPS 

device. 

Chapters 2, 3 and 4 in this thesis provide background knowledge and theory for the 

subject of the thesis. They are utilized in implementing the simulation model which cal-

culates power losses and junction temperatures of IGBTs and diodes in the main circuit 

of the inverter when the UPS operates at current limit. In Chapter 2, different topologies 

of UPS devices are presented. In Chapter 3, main circuit topology of a three-phase three-

level UPS inverter is presented. Furthermore, characteristics of IGBTs, diodes and LC 

filter of the inverter are discussed in Chapter 3. In Chapter 4, subjects related to fault 

clearing are discussed. Thus, it comprises discussing about faults, operating principle of 

the UPS device at current limit, circuit breakers and the fault clearing circuitry. Finally, 

in Chapter 5 the simulation model implemented in this thesis and simulation results are 
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revealed. Chapter 6 concludes this thesis and aims to give an answer to the research prob-

lem on solutions to economically improve the fault clearing capability of a UPS device. 
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2 UNINTERRUPTIBLE POWER SUPPLIES 

Sudden power outages or grid disturbances may cause severe damage to sensitive and 

vital electrical loads. These kinds of loads can be found for example from hospitals, data 

centers and factories. Uninterruptible power supply (UPS) devices serve as power supply 

backup systems for critical loads. The UPS device is typically located between the sup-

plying power grid and the critical load or loads. The UPS may consist of several power 

modules connected in parallel which makes the system modular and increases the overall 

reliability of the UPS system. In a case of power grid failure, the UPS provides continuous 

and high-quality input power for the load connected to the UPS device. Accordingly, the 

UPS provides time to switch off critical loads in a controlled way when a power cut oc-

curs. If the UPS is linked with a generator, it can be used to supply power to the load 

during the time required to turn on the generator. In addition to power failure, UPS de-

vices can protect loads from voltage sag, voltage surge, undervoltage, overvoltage, elec-

trical noise, frequency variation, switching transients and harmonic distortion. The extent 

of protection capabilities is dependent on topology of the UPS device. (1,2) 

UPS types can be categorized into three different types: static, rotary and hybrid 

static/rotary. The key difference between rotary and static UPS systems is that the rotary 

UPS comprises a motor-generator contrary to the static UPS. However, only static UPS 

systems are discussed in this thesis as they are the most frequently used UPS systems. 

Three main topologies of static UPS systems are passive standby topology, line-interac-

tive topology and double conversion topology. These three topologies and their basic 

structures are presented more closely in this chapter.  (1) 

2.1 Passive standby topology 

Passive standby topology, also known as off-line UPS, is the most common UPS topology 

used to protect personal computers. The off-line UPS is able to protect the connected load 

from power failures, voltage sags and voltage surges (2).  The off-line UPS consists of an 

AC/DC rectifier, a battery bank, a DC/AC inverter and a static switch. The topology is 

presented in Figure 1.  

During the normal mode of operation, the static switch is on and hence the load 

gets its supply power directly from the AC grid. To improve the power quality, the 

DC/AC inverter may be used to correct the power factor or as an active filter to reduce 

the harmonics of the supply current, however, generally the DC/AC inverter stays in 

standby when operating in normal mode and hence is not affecting the power quality of 

the supply power. The AC/DC rectifier converts alternating current of AC grid to direct 

current adequate for the battery bank and thus the rectifier charges the battery bank. (1)  
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Figure 1: Structure of passive standby topology and its operating modes. 

If the incoming supply voltage from the AC grid falls or rises beyond the preset permis-

sible voltage level or is not available at all the off-line UPS system switches its operating 

mode from normal to stored-energy mode of operation. In stored-energy mode the UPS 

supplies power to the load from the battery bank. The power is supplied from the battery 

bank via the DC/AC inverter. The inverter converts direct current delivered by the batter-

ies to alternating current applicable for the load. The off-line UPS operates in stored-

energy mode for the backup time, which is dependent on the capacity of the battery bank 

or until the voltage of AC grid is restored within the permissible values. (1) 

The main advantages of passive standby topology are low cost, high efficiency 

and small size, which makes this topology suitable for home and office environments 

where the supply voltage does not include frequent disturbances or have low quality. 

However, disadvantages of this topology are that the off-line UPS is not able to regulate 

the output voltage and a certain transfer time is required for the UPS to detect the lost grid 

voltage and to change the operating mode from normal to stored-energy mode. Transfer 

time may be for instance 25 milliseconds and during that time the supply voltage for the 

load is zero which is not acceptable for all kind of critical loads. Nevertheless, the transfer 

time is sufficient for most office applications such as personal computers.  (1,3) 

 

2.2 Line-interactive topology 

A line-interactive UPS topology is used to protect low-power applications. A line-inter-

active UPS consists of a static switch, a series inductor, a bidirectional converter and a 

battery bank. The topology is presented in Figure 2. A line-interactive UPS is able to 

protect the load from power outage, voltage sag, voltage surge, undervoltage and over-

voltage (2).  
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Figure 2: Structure of line-interactive topology and its operating modes. 

In normal mode of operation power flows to the load through the static switch and the 

series inductor. The bidirectional converter operates both as AC/DC rectifier which 

charges the battery bank and as DC/AC inverter which regulates the output voltage of the 

UPS. The voltage regulation in this case means that the inverter supplies reactive power 

to the load during undervoltage situations and consumes reactive power during overvolt-

age situations. In this way, the input voltage for the load is kept relatively stable despite 

voltage fluctuations in the AC grid. Furthermore, the input voltage is kept in phase with 

the input current and thus the power factor is close to unity.  

The series inductor is required in this topology for implementing the control of 

the voltage regulation. The voltage drop over the series inductor is detected and it is ap-

plied for adjusting the amount of reactive power supplied or consumed by the inverter. 

The amount of supplied or consumed reactive power by the inverter should be such that 

the power factor for the UPS load is kept close to unity and input voltage for the load 

stable. The desired inverter output voltage phasor is achieved by subtracting the series 

inductor voltage phasor from the AC grid voltage phasor. The magnitude and angle of 

series inductor voltage phasor depends on current flowing through the series inductor. 

Thus, the series inductor current phasor can be derived from the series inductor voltage 

phasor by dividing the series inductor voltage phasor with impedance of the series induc-

tor and making the current phasor to lag the voltage phasor by 90º. The desired inverter 

output current phasor is achieved by subtracting the load current phasor from the series 

inductor current phasor as the series inductor current is the current supplied from the AC 

grid. Consequently, the required amount for the inverter to supply or consume reactive 

power is obtained by a control device as the grid voltage and voltage over the series in-

ductor are known. The inverter adjusts its output voltage to the desired value by pulse 

width modulation (PWM). Active power is not required in the voltage regulation and 

therefore it does not consume the charge of the battery bank. (1) (4) 

In a case where the AC grid voltage increases or drops beyond the permissible 

voltage level the UPS switches its operating mode to stored-energy mode of operation. 
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Consequently, the static switch disconnects the load from the AC grid and the inverter 

supplies power to the load from the battery bank. Similarly, as the passive standby UPS, 

the line-interactive UPS requires a transfer time for switching the operating mode from 

normal to stored-energy. Nevertheless, the transfer time is shorter in line-interactive UPS 

than in standby UPS. (5) 

  

2.3 Double conversion topology 

Double conversion UPSs, which are also called as on-line UPSs, are able to protect the 

load from all nine power problems: power failure, voltage sag, voltage surge, undervolt-

age, overvoltage, electrical noise, frequency variation, switching transients and harmonic 

distortion. It consists of AC/DC rectifier, a battery bank, DC/AC inverter and a static 

bypass switch. The double conversion topology is presented in Figure 3. 

In normal mode of operation, the static bypass switch is in off state and power is 

supplied through the AC/DC rectifier and the DC/AC inverter into the load. Besides sup-

plying power for the inverter, the AC/DC rectifier also charges the battery bank and thus 

it has the highest power rating of the system. The DC/AC inverter is rated to entirely fulfil 

the power demand of a nominal load. (1) 

 

 

Figure 3: Structure of double conversion topology and its operating principle 

During the normal mode of operation, on-line UPSs has good line conditioning charac-

teristics and they can compensate or filter disturbances in AC grid from not being injected 

to the load. Furthermore, if the AC grid voltage is outside the permissible input voltage 

tolerance, on-line UPS can switch its operating mode to stored-energy mode without a 

transfer time because the DC/AC inverter is supplying the load all the time.  (1) 
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In the stored-energy mode the inverter supplies power to the load from the battery bank 

similarly as other topologies. The absence of a transfer time is a clear advantage in double 

conversion topology compared to other UPS topologies and therefore they can be used to 

protect any type of electrical load. However, because power flows through the rectifier 

and the inverter in normal mode, power losses are generated which decreases the effi-

ciency of this topology compared to other topologies. (1,2) 

In addition to normal and stored-energy mode, double conversion UPSs have also 

a third operation mode called bypass mode. The double conversion UPS switches to by-

pass mode in the case of an internal fault or overcurrent. Overcurrent may develop, for 

example, as result of a short circuit in the load. In the bypass mode, the bypass switch 

closes and the UPS interrupts the power supply to the load. Thus, all the power is supplied 

to the load straight from the AC grid. This operational principle ensures that fault clearing 

is effective as short circuit current can be drawn more from the AC grid than from the 

UPS. When the short circuit current is high enough, it is more likely that a selective load 

protection, implemented with fuses or circuit breakers, acts correctly. Furthermore, 

switching to bypass mode also protects the UPS from damages which the overcurrent 

may cause to the UPS itself. (1) 

However, if the UPS is operating in stored-energy mode because of power failure 

in AC grid, the UPS should have the ability to supply enough short circuit current to clear 

the fuse or circuit breaker closest to the fault location for the selectivity of overcurrent 

protection to remain. The selectivity of overcurrent protection is discussed in Chap-

ter 4.3.3. 
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3 THREE-LEVEL VOLTAGE SOURCE 

INVERTER IN DOUBLE CONVERSION UPS 

A two-level inverter topology has been traditionally used in low-power voltage source 

inverters (VSI) to convert DC voltage to sinusoidal AC voltage. The two-level VSI has 

two voltage levels: positive and negative. The AC voltage is generated by switching the 

inverter output either to positive or negative DC voltage. Insulated gate bipolar transistors 

(IGBT) are generally used as power switching devices and pulse width modulation 

(PWM) technique is applied to control the switching sequence so that as sinusoidal as 

possible voltage will be produced. Three-phase two-level VSIs have in total eight differ-

ent combinations for switching states which are used in modulation. 

A three-level neutral point clamped (NPC) voltage source inverter was first intro-

duced in 1981 (6). At present, three-level NPC inverters are widely used in UPS systems 

starting from 5 kVA power rating. They are developed from the two-level topology by 

adding a zero-potential level besides the positive DC and negative DC voltage levels 

which results in three voltage levels. In three-phase three-level inverters 27 different com-

binations for IGBT switching states are used in modulation. As a result, the harmonic 

content in the three-level inverter output is reduced compared to the harmonic content 

produced by the conventional two-level topology. Hence, the sinusoidal output voltage is 

closer to pure sine wave with three-level inverters when a proper PWM is applied. Fur-

thermore, due to the added zero voltage level, the voltage stress across IGBTs in three-

level topology may be approximately half of the voltage stress that IGBTs experience in 

two-level topology. Thus, the maximum voltage withstand levels required for IGBTs are 

smaller in three-level inverters than in two-level inverters with equivalent DC link volt-

age. The DC link voltage is the potential difference between positive and negative DC 

bus voltages. In addition, the reduced harmonics of three-level inverter give a possibility 

to reduce the size of a LC filter which is used at inverter output to filter the harmonic 

content of voltage and current. (7) 

On the other hand, the three-level VSI implementation requires higher number of 

diodes and IGBTs in the inverter main circuit and two capacitors in the DC link. Added 

components increase the price and complexity of the three-level inverter compared to the 

two-level inverter. Nevertheless, the reduced harmonics and lower voltage stress across 

IGBTs provide advantages in the component sizing and in the efficiency due to less 

losses. Those factors make the three-level inverter a more reasonable solution than the 

two-level inverter especially in high-power UPS applications. (8) 

In section 3.1 a topology of the three-phase three-level NPC inverter is presented. 

In subsection 3.1.1 operating principle and power loss calculation of IGBTs is presented. 

In subsection 3.1.2 operating principle and power loss calculation of diodes is presented 
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and in subsection 3.1.3 operating principle and characteristics of LC filter in the output 

of a UPS inverter is presented. 

IGBTs in the inverter main circuit are principal components which limit the fault 

clearing capability of a UPS device. An LC filter is discussed more closely since in short 

circuit situations of a UPS load, the inductor of the LC filter limits the rate of output 

current change besides the fault inductance. In section 3.2 the principle for thermal cal-

culation of IGBTs and diodes is presented. In section 3.3 a commonly used pulse width 

modulation technique in UPS inverters based on triangular carrier wave is presented.  

3.1 Topology of the three-phase three-level NPC inverter 

The topology of the three-phase three-level NPC inverter is presented in Figure 4. The 

direction of power flow is from DC to AC when the UPS is supplying a load. The inverter 

has 12 IGBTs T1-T12 connected with anti-parallel diodes DT1-DT12 which act as free-

wheeling diodes. Diodes DT1-DT12 are copacked within the IGBT. When the inverter is 

feeding an inductive load, anti-parallel diodes provide a current path for the load current 

at the times when the direction of the current is such that IGBTs are not conducting cur-

rent. By providing a current path for the load current, they also protect IGBTs from suf-

fering high voltage peaks which may otherwise emerge as a result of IGBTs turn off. 

External diodes D7-D12, marked with a dashed line in Figure 4, are optional anti-

parallel diodes used in some configurations to minimize power losses in copacked diodes 

DT1-DT12. Power loss reduction in diodes DT1-DT12 results in lower temperature rise of 

IGBTs during operation. Because a single external diode is connected in parallel with two 

series connected copacked diodes, forward voltage over a single copacked diode is 

smaller than forward voltage over the corresponding external diode. Thus, most of the 

reverse current flows through external diodes D7-D12 instead of diodes DT1-DT12 as for-

ward voltage over diodes DT1-DT12 may not be large enough to switch them on properly. 

Lower current which flows through diodes DT1-DT12 leads to lower power loss in them. 
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Figure 4: Topology of the three-phase three-level NPC inverter. Optional diodes 

D7-D12 are marked with a dashed line. 

Diodes D1-D6 are clamp diodes which enable the connection of output phases L1, L2 and 

L3 to the neutral point N of the inverter. The capacitor Cp is connected between the pos-

itive DC bus voltage and the neutral point and the capacitor Cn between the negative DC 

bus voltage and the neutral point. Capacitors Cp and Cn are called DC link capacitors and 

they maintain a constant DC bus voltage level and suppress the ripple in DC voltage. An 

LC filter is located in the inverter AC side. It mitigates harmonic current and voltage 

components of the inverter output and hence enhances the quality of the power supplied 

by the UPS.  

 

3.1.1 IGBT and its power losses 

An insulated gate bipolar transistor (IGBT) is a voltage-controlled power semiconductor 

switch. They are widely used in high power inverters due to their high voltage and current 

ratings compared to other power semiconductor switches such as metal-oxide-semicon-

ductor-field-effect transistors (MOSFET) or bipolar junction transistors. Furthermore, 

IGBTs have a reasonable maximum switching frequency for power conversion purposes, 

varying usually between 5 kHz–150 kHz, and they are easy to control. (9) 

The IGBT has three terminals: collector, emitter and gate. A circuit symbol of the 

IGBT with an anti-parallel diode is presented in Figure 5a, where C represents collector 

terminal, G represents gate terminal and E is the emitter terminal. Voltage applied to the 

gate terminal creates a potential difference UGE between gate and emitter terminals. The 

gate-to-emitter voltage UGE is used to control a conductance path between collector and 

emitter. When a positive voltage UGE is applied to the gate terminal of the IGBT, the 

collector current Ic starts to flow in forward direction from collector to emitter. However, 

voltage UGE has to be above the gate-to-emitter threshold voltage so that collector current 
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Ic will flow.  Current Ic can not flow in reverse direction from emitter to collector due to 

the structure of P- and N-type semiconductor layers in the IGBT. In the P-type layer, 

charge carriers have a positive charge and in N-type they have negative. Therefore, IGBTs 

require anti-parallel connected diodes so that current can flow in both directions.  

In Figure 5b is sketched theoretical waveforms of collector-to-emitter voltage 

UCE, collector current Ic and gate-to-emitter voltage UGE during a turn-on period ton, a con-

duction period tcond and a turn-off period toff of the IGBT. In waveforms of Figure 5b, it is 

assumed that while the IGBT is not conducting and thus Ic = 0, the negative current from 

an inductive load flows through the anti-parallel diode. Figure 5b is illustrative and thus 

the scale may differ from reality. 

During the turn-on period ton, the collector current Ic begins to rise after the gate-

to-emitter voltage UGE has increased above the gate-to-emitter threshold voltage. Hence, 

the current begins to commutate from the anti-parallel diode to the IGBT of lower or 

upper branch in the main circuit. The spike in Ic waveform before stabilization to the 

constant load current value is caused by the reverse current of the anti-parallel diode 

which is developed due to the diode switching off. The reverse current of the diode is 

discussed more closely in Chapter 3.1.2. By adjusting the magnitude of UGE, the conduc-

tivity of the IGBT may be controlled and thus the stabilization value of Ic may be regu-

lated. However, regulating the stabilization value of Ic by adjusting the magnitude of UGE 

may cause significant power losses and heating of the IGBT. Thus, the aim is usually to 

switch on IGBTs properly by supplying enough UGE voltage so that collector current Ic is 

not regulated. Flatten parts in UGE waveform during ton and toff occur due to the internal 

structure of the IGBT as collector and gate has a capacitive connection. The collector-to-

emitter voltage UCE decreases when Ic increases and the decrease in UCE becomes steeper 

after the peak in Ic as the diode reverse current begins to decrease. (9) 

During conduction period tcond the current Ic is constant if the load draws constant 

current through the IGBT and the value of UCE is the voltage drop over the IGBT. The 

magnitude of the voltage drop over the IGBT in conduction state depends on the collector 

current Ic and junction temperature Tj.  

 When the IGBT switches off, the gate to emitter voltage UGE is decreased. Shortly 

after the UGE has started to decrease, the collector-to-emitter voltage UCE begins to rise. 

After the voltage UGE has dropped below the required level to sustain the collector current 

Ic, the collector current decreases rapidly. The spike in UCE during collector current cut-off 

results from stray inductances in the circuit. After the voltage UCE has stabilized, collector 

current Ic still remains and causes losses. Thus, IGBT is not fully switched off until all 

the collector current has vanished. (9) 
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Figure 5: a) Circuit symbol of the IGBT with an anti-parallel diode. b) Theoreti-

cal current and voltage waveforms of an IGBT during turn-on (ton), conduction 

state (tcond) and turn-off (toff). (9) 

IGBTs produce power losses during conduction period tcond and switching periods ton and 

toff because the collector current Ic is above zero and at the same time there is a voltage 

drop UCE across the IGBT. Hence, total power losses of the IGBT are divided into switch-

ing losses and conduction losses. Power losses produce heating of the IGBT and the IGBT 

may overheat whether cooling of the IGBT is insufficient. Overheating may result into 

destruction of the IGBT. Therefore, when the current limit of UPS inverter is increased, 

a loss calculation of IGBTs is essential. With the loss calculation, it can be ensured, 

whether the junction temperature of the IGBT is within the ranges given by the IGBT 

manufacturer when maximum output current of the inverter flows through the IGBT.  

 Switching losses of the IGBT are composed of turn-on losses, which occur during 

ton, and turn-off losses, which occur during toff. In inverter circuits, the amount of IGBT 

power loss during a single switching event depends on collector current, DC bus voltage, 

gate drive resistance, junction temperature and stray inductances. The gate drive re-

sistance and stray inductances affect on switching delays and current rise time. As conse-

quence of longer switching delays and current rise time, switching losses will grow. IGBT 

manufacturers offer usually graphs of switching losses in IGBT datasheets. Switching 

losses are usually presented as a function of collector current at certain collector-to-emit-

ter voltage, junction temperature and gate drive resistance. The collector-to-emitter volt-

age is approximately equal to the DC bus voltage when the IGBT is in non-conducting 

state in inverter circuit.  The average switching power loss of the IGBT over cycle T can 

be expressed as  

 

𝑃𝑠𝑤 =
1

𝑇
∑ [𝐸𝑜𝑛(𝑡𝑖) + 𝐸𝑜𝑓𝑓(𝑡𝑖)],

𝑇𝑓𝑠𝑤

𝑖=1

 (1) 
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where fsw is the switching frequency, Eon is the energy consumption of turn-on at switch-

ing time instant ti,  Eoff is the energy consumption of turn-off at switching time instant ti 

and Tfsw is equal to number of switchings during one cycle. (10) 

 The average conduction power loss of IGBT over cycle T can be expressed as  

 

𝑃𝑐𝑜𝑛𝑑 =  
1

𝑇
∫ 𝑈𝐶𝐸(𝑡)𝐼𝑐(𝑡) 𝑑𝑡

𝑇

0

. (2) 

 

The higher the junction temperature is, the higher the conduction losses are as voltage 

drop UCE over the IGBT increases with increasing junction temperature. (10) 

The average total power loss of IGBT over cycle T is expressed as the sum of 

conduction and switching losses in Equations (1) and (2) 

 

𝑃𝑡𝑜𝑡 = 𝑃𝑐𝑜𝑛𝑑 + 𝑃𝑠𝑤 , (3) 

 

where Ptot is the average total power loss of IGBT.  

In Figure 4, IGBTs T2, T3, T6, T7, T10 and T11 experience higher conduction losses 

than other IGBTs during normal operation of the inverter and during operation at current 

limit. This is because of they are in conductive state when the output phase is connected 

to negative or positive DC bus but also when the output phase is connected to the neutral.  

Therefore, current ratings of above mentioned IGBTs in the inverter main circuit designs 

are often scaled higher than current ratings of other IGBTs which has to conduct only 

when the output phase is connected either to negative or positive DC bus.   

 

3.1.2 Diode and its power losses 

Diodes are two-terminal semiconductor components, often made of silicon, and they con-

sist of two electrodes: anode and cathode. They are uncontrolled components which let 

current to flow in forward direction from anode to cathode but block the reverse signed 

current flow from cathode to anode. Characteristics of the diode result from the structure 

of the diode. The anode is doped with charge carriers of positive charge, yielding a P-type 

semiconductor region, and cathode is doped with charge carriers of negative charge, 

yielding an N-type semiconductor region. Hence, they are called pn-diodes. In power 

diodes, an i-type region, which is slightly doped with negative charge carriers, is added 

between p- and n-type regions to enhance the voltage rating of the diode and thus they 

are called pin-diodes. Pin-diodes are used in high power applications where current and 

voltage ratings of general pn-diodes are insufficient. Circuit symbol of the diode and 

structure of the pin-diode in principle are presented in Figures 6a and 6b, where the char-

acter A depicts anode and K depicts cathode. (9) 
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Figure 6: a) Circuit symbol of the diode b) Structure of the pin-diode in princi-

ple   

Similar to IGBTs discussed in Chapter 3.1.1, diodes have also conduction, turn-on and 

turn-off losses which cause heating of the diode. When a voltage, which is above diode’s 

threshold voltage, is applied to the diode in forward direction, current will start to flow 

through the diode from anode to cathode. The diode is fully turned on after the turn-on 

delay and the forward current and voltage will stabilize to their final values. Current IF 

flowing through the diode causes a voltage drop UF in the diode due to the internal re-

sistance of the diode. Figure 7 illustrates current and voltage waveforms of the diode 

during turn-on of the diode td_on, conduction state td_cond and turn-off td_off.  

During turn-on, the resistivity of the diode is high which results in a spike in di-

ode’s voltage which is shown in Figure 7 as UFP. However, the turn-on delay is typically 

very low and therefore turn-on losses of the diode are negligible compared to turn-off and 

conduction losses. Thus, turn-on losses may generally be omitted in loss calculations of 

the diode as their influence on total losses is low. Waveforms in Figure 7 are illustrative 

and thus the scale may differ from reality. (9) 

 In conduction state, the average power losses of the diode over cycle T are calcu-

lated according to equation 

 

𝑃𝑐𝑜𝑛𝑑,𝑑𝑖𝑜𝑑𝑒 =  
1

𝑇
∫ 𝑈𝐹(𝑡)𝐼𝐹(𝑡) 𝑑𝑡

𝑇

0

. (4) 

 

In addition to current IF and voltage drop UF, junction temperature of the diode affects to 

conduction losses. Voltage drop UF increases as the forward current IF increases. How-

ever, the increase in junction temperature may reduce the voltage drop UF in silicon di-

odes and therefore conduction loss of the diode may decrease at higher junction temper-

atures. (10) 

 In inverters, diodes are turned off by forced commutation when current commu-

tates from the diode to the IGBT. Thus, a reverse voltage is applied to the diode and 

current decreases rapidly in the diode when it commutates to the IGBT. However, when 

the current decreases rapidly and reaches the zero value, the number of charge carriers in 
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the I-region of the diode has not decreased to zero yet and hence the diode has low re-

sistance. It leads to a negative current during turn-off as shown in Figure 7. This negative 

current is called the reverse recovery current of the diode. The negative peak in reverse 

recovery current Iprr causes also a peak in reverse recovery voltage Uprr before the reverse 

voltage stabilizes to its final value UR. The magnitude of the Iprr depends on the rate of 

change of the decreasing current 
𝑑𝑖

𝑑𝑡
. The steeper the slope is, the higher is the magnitude 

of the peak reverse recovery current Iprr.  The value of 
𝑑𝑖

𝑑𝑡
 is defined by the characteristics 

of the IGBT where the current commutates from the diode because the current decreases 

in the diode at the same rate as it increases in the IGBT. Thus, the gate drive resistance 

of the IGBT and stray inductances define the value for diode 
𝑑𝑖

𝑑𝑡
. (9) 

In Figure 7, the time trr is the reverse recovery time. It is measured from the zero 

point of the current, when the sign of the current changes from positive to negative, to the 

point at which the straight line drawn through the peak reverse recovery current Iprr and 

point 0,25* Iprr crosses the zero. Diode manufacturers declare often in the datasheet of a 

diode a value for Qrr which is a reverse recovery charge. It is defined as the area under 

the current curve defined by Iprr and trr as shown in Figure 7 with slash lines.  

Reverse recovery energy Erec is the energy loss which occurs in the diode during 

a single turn-off. The magnitude of forward current of the diode before turn-off, reverse 

voltage UR, rate of change of the current 
𝑑𝑖

𝑑𝑡
 and junction temperature influence the mag-

nitude of the reverse recovery energy. When turn-on losses of the diode are omitted, the 

average switching loss of the diode over cycle T can be expressed as  

 

𝑃𝑠𝑤,𝑑𝑖𝑜𝑑𝑒 =
1

𝑇
∑ 𝐸𝑟𝑒𝑐(𝑡𝑖)

𝑇𝑓𝑠𝑤

𝑖=1

, (5) 

 

where fsw is the switching frequency, Erec(ti) is the reverse recovery energy, or turn-off 

energy loss, at time instant ti when the diode turns off and Tfsw is equal to number of 

switchings during one cycle. However, the reverse recovery energy Erec is not always 

given in the datasheet of the diode. Nevertheless, Erec may be estimated by means of re-

verse voltage UR and reverse recovery charge Qrr which is usually given in the datasheet 

of the diode.  
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Figure 7: Current and voltage waveforms of a diode during turn-on (td_on), 

conduction state (td_cond) and turn-off (td_off). 

In (11) is proposed, that the area of Qrr in Figure 7 may be estimated by approximating 

the reverse recovery current waveform and calculating the area of a triangle which height 

is Iprr and base trr as shown in Figure 8. The area of the triangle can be divided into sec-

tions Qs and Qf according Figure 8, where Qrr = Qs + Qf and trr = ta + tb. The charge Qf 

during tb advances the reverse recovery energy Erec because Erec may be approximated by 

multiplying the charge with the reverse voltage. The reverse voltage affects across the 

diode after the peak in reverse current Iprr occurs and thus the reverse recovery energy 

Erec is increasing during tb. Therefore, the charge Qs during ta does not have influence on 

Erec as the reverse voltage across the diode is zero. Thus, Qf has to be extracted from Qrr 

when the reverse recovery energy Erec is approximated. 
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Figure 8: Approximated reverse recovery current waveform. 

Reverse recovery energy can then be calculated as 

 

𝐸𝑟𝑒𝑐 =  𝑄𝑓𝑈𝑅 =  
𝑠

𝑠 + 1
𝑄𝑟𝑟𝑈𝑅, (6) 

 

where UR is the reverse voltage and s = 
𝑄𝑓

𝑄𝑠
 is a softness factor of the diode. In soft-recov-

ery diodes the softness factor s is high and thus the slope of the reverse current during tb 

is lower than in diodes which recover abruptly. Therefore, soft-recovery diodes cause 

smaller voltage spikes in the circuit than abruptly recovering diodes as the induced volt-

age in the circuit, due to the stray inductances and rate of change of the current, is lower. 

However, soft-recovery diodes generally have lower maximum reverse voltage values 

than abruptly recovering diodes as the i-region is doped irregularly in soft-recovery di-

odes. (9,11)   

Diodes can be divided into normal rectifier diodes and fast diodes according to 

the reverse recovery time trr. In the industry, some manufacturers specify the diode fast 

when its reverse recovery time is below 500 ns.  Fast soft-recovery diodes are generally 

used in inverter circuits. They withstand higher switching frequencies than normal recti-

fier diodes which have a longer reverse recovery time. However, conduction losses are 

generally higher in fast diodes than in rectifier diodes which limit the current carrying 

capability of fast diodes. (9)  

 

3.1.3 LC filter  

The LC filter consists of three filter inductors Lf1, Lf2 and Lf3 and three filter capacitors 

Cf1, Cf2, Cf3 which can be seen from Figure 4. Inductors are connected in series with the 
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inverter and load and capacitors are connected on the grid side between inverter output 

phases and neutral. The LC filter reduces the total harmonic distortion (THD) of the in-

verter output voltage and current by attenuating high frequency voltage and current com-

ponents which are developed due to the pulsating IGBT switching.  

The impedance of filter inductors comprises mainly from inductive reactance 𝑋𝐿 

which increases directly proportional to the frequency 𝑓 according to equation 

 

𝑋𝐿 = 2𝜋𝑓𝐿, (7) 

 

where 𝐿 is the inductance of the inductor. Thus, inductors Lf1, Lf2 and Lf3 provide a low 

impedance path for the current component of fundamental frequency and high impedance 

path for high frequency current components. This results in attenuation of high frequency 

current and voltage components. If a short circuit or a low-impedance ground fault occurs 

in the load side of the UPS and UPS starts to operate at current limit, the inductance of 

the filter inductor is the only factor which limits the rate of change of the current whether 

other inductances in the circuit are negligible. Correspondingly, the rate of change of the 

current affects on power losses of IGBTs and diodes in the inverter when UPS operates 

at current limit. The rate of change of the current affects to power losses because it affects 

to lengths of conduction periods and to switching frequencies of IGBTs and diodes. Thus, 

the inductance of the filter inductor must be considered in power loss calculations 

of IGBTs and diodes. The impact of filter inductor on the rate of change of the current is 

discussed more closely in Chapter 4.1. 

The impedance of capacitors comprises mainly from capacitive reactance 𝑋𝑐 

which decreases inversely proportional to the frequency 𝑓 according to equation 

 

𝑋𝑐 =
1

2 𝜋𝑓𝐶
 . (8) 

 

Hence, capacitors Cf1, Cf2, Cf3 shunt high-frequency current components by constituting 

them a low impedance current path and they are directed away from the UPS output. Due 

to filter capacitors the size of filter inductors may be reduced and more effective filtering 

may be reached compared to a filter solution where only filter inductors would be used. 

Reduction in filter size results in lower inductance and inductive reactance on fundamen-

tal frequency and thus voltage losses are cut. Therefore, the capacitance of capacitor 

should be as high as possible and the inductance of inductor minimized to achieve as low 

as possible voltage loss on fundamental frequency due to the filtering. Consequently, a 

trade-off between capacitance and inductance values should be found when designing the 

LC filter. (12,13) 

The LC filter starts to attenuate harmonics with a rate of 40 dB/decade on fre-

quencies after the resonance frequency 𝑓𝑟𝑒𝑠 (12). The resonance frequency is dependent 

on inductance L and capacitance C values of the filter according to equation 

 



  

 

 

21 

𝑓𝑟𝑒𝑠 =  
1

2𝜋√𝐿𝐶
 . (9) 

 

However, the LC filter amplifies harmonics near the resonance frequency 𝑓𝑟𝑒𝑠 due to the 

resonance effect which is caused since the impedance of inductor and capacitor cancel 

each other on the resonance frequency. Thus, the resonance frequency of the filter should 

be adjusted on frequencies where the voltage harmonics are inherently low. In addition, 

it has been presented that the resonance frequency should be clearly above the fundamen-

tal frequency of the system but clearly under the switching frequency of the inverter ac-

cording to equation 

 

10 𝑓𝑓𝑢𝑛𝑑 < 𝑓𝑟𝑒𝑠 < 0,5𝑓𝑠𝑤 , (10) 

 

where 𝑓𝑓𝑢𝑛𝑑 is the fundamental frequency and 𝑓𝑠𝑤 is the switching frequency. (12,14) 

  

3.2 Thermal calculation of IGBTs and diodes 

A careful thermal design is indispensable when power semiconductor devices are selected 

for an inverter. Heating of IGBTs or diodes occurs always as a result of power losses 

when IGBTs or diodes are conducting current. The temperature is increased the most in 

the junction area of the IGBT or diode because the power dissipation originates in the 

junction. However, the increase of the junction temperature reduces the expected lifetime 

of an IGBT or a diode (15). IGBTs or diodes may suffer serious damages leading to fail-

ures in their operation if the maximum operating junction temperature is exceeded. Max-

imum operating junction temperatures of IGBTs and diodes are typically on the order of 

150ºC or 175ºC.  For minimizing the temperature rise in the junction, heat should be 

conducted away from the junction as effectively as possible. Thus, air or liquid cooled 

heatsinks are mounted on cases of IGBTs and diodes in inverters. Heatsinks are usually 

made from copper or aluminum due to good heat conduction characteristics of them. Heat 

dissipation in the junction is conducted to the case of the IGBT or diode and from the 

case into the heatsink which has a high thermal capacity. Accordingly, the rise of the 

junction temperature may be restricted compared to the situation where heatsinks are not 

used as heat transfer from the case to the heatsink may be significantly greater than from 

the case to the ambient air. 

Typically, heat conduction characteristics between junction and case and between 

junction and ambient are described in datasheets of IGBTs and diodes as thermal re-

sistances Rth(j-c) and Rth(j-a). In addition, thermal response from junction to case as a func-

tion of time of a current pulse is given in datasheets as transient thermal impedance curve 

Zth(j-c) (t). Values given in the Zth(j-c) (t) curve may be used in thermal calculations of IGBTs 

and diodes when IGBTs and diodes are conducting current transiently and duration of a 

single pulse is short, typically below 1 second. When duration of a single current pulse 
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draws nearer to 1 second, the Zth(j-c) (t) curve may saturate to a value which is equal to the 

value of thermal resistance Rth(j-c). Thus, Rth(j-c) is the maximum value of Zth(j-c) (t) curve 

and the value of Rth(j-c) may be used in thermal calculations when IGBTs or diodes are 

powered continuously or for a longer current pulse time.  

Junction temperatures of IGBTs and diodes can not be directly measured. How-

ever, they can be evaluated by measuring the collector to emitter voltage UCE of the IGBT 

or forward voltage UF of the diode by supplying small measurement current through the 

IGBT or diode when they are cooling down after being loaded by a constant power PL. 

Magnitudes of UCE and UF are temperature dependent and thus junction temperatures can 

be evaluated by measuring UCE or UF values. With above mentioned indirect junction 

temperature measurements, power semiconductor manufacturers may create Zth(j-c)(t) 

curves for datasheets of IGBTs and diodes. Junction temperature values achieved by in-

direct measurements may be referred to virtual junction temperatures Tvj, because they 

represent average temperature values in the junction. In truth, temperature may differ 

within the junction and local hot spots may exist.  (16,17) 

The thermal behavior of power semiconductor components may be sketched with 

two different thermal equivalent circuit models: with a Cauer model and a Foster model. 

In the Cauer model it is necessary to know physical properties and construction of mate-

rials in all layers between the points where the thermal impedance is desired for being 

solved. Hence, when the temperature difference is calculated, for example, between the 

junction and case of the IGBT, thermal capacitances of all material layers and thermal 

resistances between them must be known if the Cauer model is applied. Material layers 

in this case may denote silicon, solders, metals and ceramic which may lie between the 

junction and case inside the IGBT. On the other hand, the Cauer model makes it also 

possible to calculate temperatures in internal layers. The equivalent thermal circuit be-

tween junction and case implemented as Cauer model is presented in Figure 9 where R 

denotes thermal resistance, C denotes thermal capacitance, Tj is the temperature in the 

junction and Tc is the temperature on the case. (17) 

 

 

Figure 9: Cauer model of thermal impedance between junction and case. (17)  

 

Contrary to the Cauer model, in the Foster model values of thermal resistance R and ther-

mal capacitance C do not have any physical meaning. Instead the values for R and C are 

selected in a manner that the analytical function described as  
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𝑍𝑡ℎ(𝑗−𝑐)(𝑡) =  ∑ 𝑅𝑖 (1 − 𝑒
−

𝑡
𝜏𝑖) ,

𝑛

𝑖=1

(11) 

 

where t is the length of the current pulse in seconds, n is the number of RC-terms and 𝜏𝑖 

is equal to 𝑅𝑖 ∗ 𝐶𝑖, is fitted to the Zth(j-c) curve which is attained by measurements in a way 

explained earlier in this Chapter. The experimentally achieved Zth(j-c) graph is commonly 

presented in datasheets of IGBTs and diodes. Furthermore, parameters for R and C terms 

required in the Foster model may be afforded besides the Zth(j-c) graph. As a result, values 

for Zth(j-c) at different current pulse lengths may be calculated analytically according to 

Equation (11). The number of RC-terms required in Foster model varies, however, usu-

ally the number of terms shall be four or more so that the accuracy of the Foster model is 

sufficient (18).  The equivalent thermal circuit between junction and case implemented 

as Foster model is presented in Figure 10. Number of RC-terms in Figure 10 is three and 

Tj denotes temperature in the junction while Tc stands for temperature on the case. (17) 

 

 

Figure 10: Foster model of thermal impedance between junction and case when 

the number of RC-terms is three. (17) 

Cauer and Foster models may also be connected in series for calculating the temperature, 

for example, between the junction and air. Then, if heatsink is used, thermal impedances 

between the case and heatsink and between heatsink and air must be solved. A thermal 

interface material (TIM) such as thermal grease is usually used between the case and 

heatsink for achieving a proper thermal connection. Then thermal characteristics of TIM 

and firmness of the coupling determine the thermal impedance between the case and 

heatsink. (17) 

 Temperatures at opposite ends of the thermal equivalent circuit model can be cal-

culated when temperature at the other end, magnitude of the power loss of the semicon-

ductor component and thermal impedances of the thermal equivalent circuit model are 

known. Thermal impedances are summed together if they are series connected in the 

model. Thus, for example, the junction temperature of a semiconductor component may 

be calculated with the following equation when the temperature of the heatsink is known 

 

𝑇𝑗(𝑡) =  𝑃𝐿(𝑡) ∗ (𝑍𝑡ℎ(𝑗−𝑐)(𝑡) + 𝑍𝑡ℎ(𝑐−ℎ)(𝑡)) + 𝑇ℎ(𝑡), (12) 

 

where PL is the power loss of the semiconductor component, Zth(j-c) is thermal impedance 

between junction and case, Zth(c-h) is thermal impedance between the case and the heatsink 



  

 

 

24 

and Th is the heatsink temperature at time instant t. In the simulation part of this thesis, 

average junction temperatures of IGBTs and diodes are evaluated according to Equation 

(12). Average power loss calculated for an IGBT or diode over one cycle is used as PL 

and heatsink temperature Th is assumed to be constant. The maximum value of Zth(j-c)(t) 

curve in the IGBT or diode datasheet or thermal resistance Rth(j-c) is used as Zth(j-c)(t) value. 

A value for Zth(c-h)(t) is calculated according to the data gained from the specification of 

TIM. (16) 

 

3.3 Pulse width modulation 

Pulse width modulation techniques are employed in inverters for controlling the output 

voltage and frequency of the inverter. In three-phase three-level NPC inverters, each out-

put phase may be connected either to positive or negative DC bus voltage or to zero po-

tential depending on which IGBTs and diodes are in conducting state. A pulse width 

modulator controls switching sequences of IGBTs by producing a control signal which in 

this thesis has a value of 1, 0 or -1. The control signal value is given as input for a complex 

programmable logic device (CPLD) which turns on and off certain IGBTs according to 

the signal value. The signal value determines on which of the three potential levels the 

CPLD connects output phases of the inverter. Thus, the control signal forms a pulse se-

quence and the width of single pulses determines, how long the output phase is connected 

to positive or negative DC bus voltage or to zero potential. In three-phase inverters, three 

control signals are required since switchings of IGBTs at each output phase are controlled 

by a separate control signal. 

 In this thesis, a pulse width modulation technique based on a triangular carrier 

wave comparison is presented. In this PWM method, a triangular carrier wave is com-

pared to a sinusoidal reference waveform which has the same frequency as desired for the 

AC voltage at inverter output. The frequency of the carrier wave is equal to the switching 

frequency of the inverter which is limited by characteristics of IGBTs. The frequency of 

the carrier wave should be clearly above the fundamental frequency of the reference 

waveform so that the quality of the output voltage of the inverter is maintained. The 

higher the switching frequency is, the less the output voltage of the inverter contains har-

monic distortion, however, switching losses of IGBTs may increase. When the triangular 

wave is used as carrier wave instead of the sawtooth wave, less harmonics are produced 

as a result of modulation. (19) 

In three-phase three-level inverters, where the PWM technique based on the tri-

angular carrier wave comparison is used, two triangular carrier waves and three sinusoidal 

reference waveforms are compared in the modulation. Two carrier waves are required in 

the modulation due to the three potential levels of the three-level inverter. The first carrier 

wave may have values between zero and one and the second may have values between 

zero and minus one. Reference waveforms have a 120º phase shift between each other. 
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Carrier waves may be in phase with each other or may have 180º phase shift between 

each other but frequencies of carrier waves shall be equal. (19) 

The principle of the modulation is, that when the reference waveform is higher 

than either of the triangular carrier waves, the modulator produces a control signal with a 

value of one. In that case, the respective output phase of the reference waveform will be 

connected to the positive DC bus voltage. For example, when the phase L1 in Figure 4 is 

connected to the positive DC bus voltage, IGBTs T1 and T2 are turned on, whereas IGBTs 

T3 and T4 are in non-conducting state. Thus, when the direction of the positive current is 

towards the load, the positive current may flow through IGBTs T1 and T2. Whether the 

current is negative, the current may flow through diodes DT1 and DT2 to the positive DC 

link capacitor Cp. If optional diodes are applied, the negative current may flow through 

the diode D7. 

When the value of the reference waveform is smaller than the first triangular car-

rier wave but higher than the second triangular carrier wave, the modulator outputs a 

control signal with a value of zero. Then, the respective output phase of the reference 

waveform will be connected to the neutral N. It denotes that when, for example, the phase 

L1 is connected to the neutral N, IGBTs T2 and T3 in Figure 4 are turned on and IGBTs 

T1 and T4 are in off state. Consequently, positive current may flow through the IGBT T2 

and the diode D1 to the load and negative current through the IGBT T3 and the diode D2 

to the ground. 

At the times, when the value of the reference waveform is below both carrier 

waves, the respective output phase of the reference waveform will be connected to the 

negative DC bus voltage. Hence, in the case of phase L1, for instance, IGBTs T3 and T4 

are turned on while IGBTs T1 and T2 are in non-conducting state. The positive current 

towards the load may flow through diodes DT3 and DT4. Whether optional diodes are used, 

positive current may flow through the diode D8. Negative current to the negative DC link 

capacitor Cn may flow through IGBTs T3 and T4. 

When an output phase is switched from a potential level to another, a delay occurs 

between switchings of IGBTs. This delay is called a dead time and its magnitude is usu-

ally a few microseconds. In three-level inverters, the dead time may prevent IGBTs from 

being exposed to overvoltage. For example, when the L1 phase is switched from the pos-

itive DC voltage level to zero voltage level, the IGBT T1 is first turned off and the IGBT 

T3 is not turned on until the dead time has elapsed after the T1 turn-off. This will protect 

the IGBT T4 from overvoltage. Whether, IGBTs T1, T2 and T3 would momentarily be in 

conductive state at the same time, the whole DC link voltage would influence over the 

IGBT T4. Thus, the IGBT T4 may be damaged if the DC link voltage exceeds the collec-

tor-to-emitter breakdown voltage of T4. 

The output voltage of the inverter may be controlled by changing the modulation 

index which is expressed as 

 

𝑚 =  
𝑢̂𝑟

𝑢̂𝑐
, (13) 
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where ûr is the peak value of the reference wave and ûc is the peak value of the carrier 

wave. The inverter operates in a linear modulation region, when the peak value of the 

reference wave is below the peak value of the carrier wave. Thus, the maximum value for 

the modulation index is m = 1 in the linear modulation region. Whether the peak value of 

the reference waveform exceeds the peak value of the carrier wave and thus m > 1, in-

verter operates in an overmodulation region. Output voltage of the inverter may be in-

creased when the inverter operates in the overmodulation region, however, the total har-

monic distortion of the output voltage may increase. (20,21) 

 Sinusoidal reference phase-to-neutral voltage waveforms for three phases L1, L2 

and L3, which are required in the modulation, may be expressed as  

 

𝑢𝑟𝐿1(𝜔𝑡) = 𝑚 sin(𝜔𝑡) (14) 

𝑢𝑟𝐿2(𝜔𝑡) = 𝑚 sin (𝜔𝑡 −  
2

3
𝜋) (15) 

𝑢𝑟𝐿3(𝜔𝑡) = 𝑚 sin (𝜔𝑡 −  
4

3
𝜋) , (16) 

 

where m is the modulation index and 𝜔 is the angular frequency of the reference wave-

form. Reference waveforms urL1, urL2 and urL3 with two triangular carrier waves are pre-

sented in Figure 11 for one cycle T. The modulation index is 0.9 in graphs of Figure 11. 

In addition, respective control signals ucL1, ucL2 and ucL3, which determine the voltage 

level where the output phase is connected at different times, are presented. (20) 
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Figure 11: Principle of the pulse width modulation technique based on carrier 

wave comparison for a three-phase three-level inverter. 

When the inverter operates in linear modulation region, the amplitude of the fundamental 

frequency component of the phase-to-neutral voltage is equal to  

 

𝑈𝑝ℎ,𝑓𝑢𝑛𝑑 = 𝑚
𝑈𝑑

2
, (17) 

  

where Ud is the DC link voltage of the inverter and m is the modulation index. (20) Thus, 

the highest amplitude of the fundamental frequency component of the phase-to-neutral 

voltage in the linear modulation region is 
𝑈𝑑

2
, which is achieved when m = 1. Then the 

maximum phase-to-phase voltage of the inverter is equal to 
√3

2
𝑈𝑑. (22) 

In (22) is disclosed that approximately 15.5- percent increase in the amplitude of 

the fundamental frequency component of the phase-to-neutral voltage is achieved in the 

linear region by adding a third harmonic component to the sinusoidal reference voltage 

waveforms. The added third harmonic component have an amplitude which is one-sixth 

of the amplitude of the fundamental component. Hence, the peak amplitude of the in-

creased fundamental frequency component 
2

√3
≈ 1,1547 is diminished by 

1

6
 ≈ 0,166 and 

the reference phase-to-neutral voltage waveform stays in linear region when m ≤ 1. Nev-

ertheless, the whole DC link voltage can now be utilized in the phase-to-phase voltage of 

the inverter as 
√3

2
∗

2

√3
𝑈𝑑 =  𝑈𝑑.  When the third harmonic component is added similarly 

to all phase-to-neutral voltages, they cancel each other from phase-phase voltages and 
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from phase voltages in three-phase loads. Therefore, adding the third harmonic compo-

nent does not increase the total harmonic distortion of phase-to-phase voltages. However, 

if a three-phase UPS is feeding one-phase loads, this kind of modulation technique may 

not be advised as the third harmonic voltage component remains between the phase and 

neutral. Reference phase-to-neutral voltage waveforms, where the third harmonic com-

ponent is added may be expressed as  

 

𝑣𝑟𝐿1(𝜔𝑡) =
2

√3
𝑚 (sin(𝜔𝑡) +  

1

6
sin (3𝜔𝑡)) (18) 

𝑣𝑟𝐿2(𝜔𝑡) =
2

√3
𝑚 (sin (𝜔𝑡 −

2

3
𝜋) +  

1

6
sin (3𝜔𝑡)) (19) 

𝑣𝑟𝐿3(𝜔𝑡) =
2

√3
𝑚 (sin (𝜔𝑡 −

4

3
𝜋) +  

1

6
sin (3𝜔𝑡)) , (20) 

 

where m≤1 when the inverter operates in linear modulation region. (20,22) 
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4 FAULT CLEARING 

This chapter discusses different faults and magnitudes of fault currents which may occur 

at the UPS output, operation principle of the UPS inverter operating at current limit and 

circuit breakers which are used in the load side of the UPS to isolate faults from other 

parts of the grid. The operating principle of the UPS inverter at current limit determines 

the shape of the output current waveform of the UPS device if a short circuit or ground 

fault occurs in the UPS output. Therefore, the operating principle of the UPS inverter is 

presented in detail in this chapter as the algorithm of the simulation model developed in 

this thesis is based on the shape of the current waveform.  In addition, a fault clearing 

circuitry which may be installed externally beside a UPS device to improve the fault 

clearing capability of a UPS device is presented in this chapter. 

4.1 Short circuits and ground faults 

Short circuits are electrical faults where a low impedance path for current occurs between 

phases or neutral in AC systems or between positive and negative poles in DC systems. 

Due to the low impedance path, current may rise rapidly to high values. In three-phase 

AC systems short circuits can be divided into phase-to-phase faults, where short circuit 

happens between two phases, and three-phase faults, where short circuit happens between 

three-phases. In addition, the short circuit can happen in three phase systems between one 

or more phases and neutral if there is a neutral conductor. Typically, UPS devices have a 

neutral terminal in the output. In single-phase AC systems short circuit can happen be-

tween the phase and neutral. An example which may cause a short circuit fault in UPS 

output would be a metallic tool forgotten between phase conductors in equipment or de-

vice that serves as UPS load. In that case, the metallic tool acts as a low impedance current 

path between phases when the UPS is started to supply power to the load.  

 Ground faults are electrical faults, where a conductive path occurs between a live 

conductor and ground. Thus, current flows to ground as not intended. The difference in 

fault current between short circuits and ground faults is that, the magnitude of fault cur-

rent may not always rise to high current values in ground faults. The magnitude of fault 

current depends on impedance in the fault current path both in short circuits and ground 

faults. However, in ground faults the fault impedance may be significantly higher than 

the fault impedance in short circuits and thus the magnitude of fault current may be lower 

in ground faults than in short circuits. Ground faults may emerge, for example, due to the 

degradation of electrical insulation in UPS load equipment. Because of the insulation fail-

ure, current may flow to ground via the grounded equipment frame. 

 Short circuits can be depicted with equivalent resistive-inductive (RL) circuits as 

shown in Figure 12, where U is a constant voltage from the source, such as a DC-link 

voltage of the inverter. In Figure 12, the short circuit occurs between points A and B and 
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the respective fault current path is drawn between them. Resistance R and inductive reac-

tance XL of the fault circuit result from resistivity and inductivity of conductors and filter 

inductor of the inverter. In addition, the fault location may contain inductance and re-

sistance which has to be considered when fault current waveform is evaluated. However, 

in short circuits impedance of the fault location may be very small and thus negligible. 

(23) 

 

 

Figure 12: Equivalent circuit model of short circuit which occurs between 

points A and B with DC voltage source. 

Voltage equation for the circuit in Figure 12 can be written according to Kirchhoff’s volt-

age law 

 

𝑢 = 𝑅𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
 . (21) 

 

By solving the differential equation, the fault current magnitude at time instant t can be 

evaluated as 

 

𝑖 =  
𝑢

𝑅
(1 − 𝑒−

𝑡
𝑇) , (22) 

 

where 𝑇 =
𝐿

𝑅
=

𝑋𝐿

2𝜋𝑓𝑅
 and e is Euler’s number. In Equation (22) is assumed that the ini-

tial current of the fault is zero. If the initial current is not equal to zero, the DC offset 

current expressed as 

 

𝑖𝑑𝑐 = 𝑖(0) ∗ 𝑒−
𝑡

𝑇, (23)  

  



  

 

 

31 

where i(0) is the initial current of the fault, should be summed to Equation (22) to get 

the total fault current magnitude at time instant t. The DC offset component is character-

ized by the ability of inductor to store energy. (23) Hence, the total fault current magni-

tude at time instant t can be expressed as 

 

𝑖𝑡𝑜𝑡 =
𝑢

𝑅
(1 − 𝑒−

𝑡
𝑇) + 𝑖(0) ∗ 𝑒−

𝑡
𝑇 . (24) 

 

If a short circuit or a low-impedance ground fault happens in the load side of a UPS when 

the supply grid is not available, a UPS inverter starts to operate at current limit. The UPS 

inverter operation at current limit is presented in Chapter 4.2. The UPS inverter limits the 

output current by switching the faulted phase alternately between positive DC bus, neu-

tral, and negative DC bus in a way that current does not exceed preset current levels. 

Thus, Equation (24) can not be directly applied for inverter short circuit calculations as 

inverter controls the current magnitude by switching sequences which is not considered 

in Equation (24). Nevertheless, Equation (24) for current magnitude is valid between sin-

gle switching sequences when current either increases, is constant or decreases.  

Total inductance L of the fault circuit can be expressed as the sum of inductance 

of conductors Lg and inductance of the filter inductor Lf.  If the fault circuit resistance R 

is assumed to be very small, as it in short circuits usually is, inductances Lg and Lf in the 

fault circuit and the voltage U affect on the rate of change of the fault current supplied by 

the inverter according to equation  

 

𝑑𝑖

𝑑𝑡
=

𝑢

𝐿𝑔 + 𝐿𝑓
 . (25) 

 

The voltage U is in fault situations either positive DC bus voltage, negative DC bus volt-

age or zero voltage depending on which bus the output phase is connected via IGBTs or 

diodes. The inductance Lg is dependent on the length and cross-sectional area of cables 

between the UPS and the fault location. The longer the cable is, the higher the inductance 

is but by enlarging the cross-sectional area of the cable, the inductance may be diminished 

(24). However, the UPS is often located near the load and hence the inductance of the 

filter inductor Lf may usually have larger influence on the rate of change of the fault cur-

rent than inductance of conductors Lg.  

 The inductance of the filter inductor Lf for a 20 kW UPS varies from few dozens 

of microhenries to few hundreds of microhenries depending on the current flowing 

through the inductor. The inductor consists of a coil which is wrapped around a core. The 

core material used in filter inductors of UPS devices is usually iron-silicon (Fe-Si) powder 

or iron-silicon-aluminum (Fe-Si-Al) powder. Fe-Si powder core provides better DC bias 

characteristics and lower losses than a powder core made only from iron. DC bias char-

acteristics of the core material denotes the dependency between permeability µ in the core 
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material and the magnetic field intensity H which acts as a magnetizing force for the core. 

(25) 

A growing current through the inductor creates a growing magnetic field intensity 

H inside the inductor as H is directly proportional to the current magnitude and number 

of turns in the coil. The increasing magnetic field intensity H increases the magnetic flux 

density B in the core material. However, at a certain point, which is dependent on the core 

material, the magnetic flux density B saturates in the core when H is raised. After the 

saturation, the magnetic flux density B in the core does not increase significantly anymore 

even though magnetic field intensity H is increased by increasing the current. When B 

approaches saturation in the core due to increasing H, the permeability µ in the core ma-

terial decreases because µ is defined as the ratio of magnetic flux density B and the mag-

netic field intensity H according to equation  

 

𝜇 =
𝐵

𝐻
 . (26) 

 

Inductance of the filter inductor Lf is not a constant as it is directly proportional to the 

permeability µ in the core. Thus, when high currents flow through the inductor, for ex-

ample due to a short circuit, the inductance Lf of the filter inductor decreases as the per-

meability µ decreases in the core. It leads to a weakened ability of the inductor to resist 

changes in the current magnitude which leads to higher 
𝑑𝑖

𝑑𝑡
 values at high currents accord-

ing to Equation (25). (26) 

In (24) is derived an equation to calculate the self-inductance of a straight con-

ductor. According to the equation, for example, a 15 m copper cable with a cross-sectional 

area of 6mm2 would result in self-inductance of 27,7 µH. Hence, the maximum total in-

ductance resisting current changes in fault situation may be usually only around few hun-

dreds of microhenries for a 20 kW UPS. Therefore, very high values of 
𝑑𝑖

𝑑𝑡
 will be gener-

ated in short circuits or low-impedance ground faults as the DC bus voltage is usually on 

the order of several hundreds of volts.  

 

4.2 UPS inverter operation at current limit 

The inverter in a UPS device is adjusted to limit the maximum output current that may be 

supplied to the load. Therefore, if a short circuit happens in the UPS output or the UPS is 

overloaded, the UPS may not be able to supply as much output current as the load or 

faulty circuit would inherently draw. Particularly in short circuit situations, the UPS has 

to limit the output current as the output current would otherwise rise rapidly to high values 

due to a low impedance path.  

The output current of the inverter must be limited since high currents flowing 

through IGBTs or diodes in the inverter main circuit may increase the junction 

temperatures of IGBTs or diodes above permissible levels. Consequently, IGBTs or 
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diodes may be damaged or destroyed.  Thus, maximum operating junction temperatures 

of IGBTs and diodes are major factors limiting the maximum collector or forward 

currents of IGBTs and diodes. The maximum collector or forward current may be usually 

increased by sufficient cooling of IGBTs and diodes. Increasing the magnitude of the 

collector or forward current increases also power losses in the IGBT or in the diode which 

results in heating of the IGBT or diode. However, by cooling, the heating may be 

compensated. Thus, defining the magnitude of the current limit for the inverter is always 

case-specific which depends on cooling of the semiconductor devices and switching 

frequency of IGBTs and diodes since switching losses also increase junction temperatures 

of IGBTs and diodes. In addition to junction temperatures, IGBT and diode manufacturers 

apprise safe operating areas for IGBTs and diodes according to their maximum current 

and voltage carrying capabilities. Maximum operating currents and voltages of IGBTs 

and diodes must not be exceeded even though junction temperatures of IGBTs and diodes 

would be kept within the allowed area by efficient cooling.  

The current limit for the inverter is usually determined by estimating the highest 

current magnitude that IGBTs and diodes can carry for a limited time without exceeding 

their maximum operating junction temperatures or safe operating areas declared by man-

ufacturers of semiconductor components in datasheets. The switching frequency and the 

effect of cooling must be taken into account when an adequate current limit value for the 

inverter is estimated. It is also a common practice to leave a certain safety margin between 

estimated junction temperatures and maximum junction temperatures declared by semi-

conductor device manufacturers when the current limit is defined. Hence, the risk that the 

current limit value is defined too high due to an error in the estimation of the junction 

temperature may be diminished. Furthermore, maximum junction temperature values an-

nounced by IGBT and diode manufacturers may be optimal since those values may be 

verified at specific test conditions. Thus, they may not be suitable for being directly ap-

plied to varying real-world conditions.  

When the UPS operates at current limit, IGBTs are switched on and off in a way 

that the current flowing through IGBTs of an output phase does not exceed the pre-deter-

mined maximum or minimum current limit values of a half cycle. A comparator compares 

the magnitude of the current flowing through IGBTs with the maximum and minimum 

current limit values. If a short circuit happens in the UPS output, currents in correspond-

ing output phases may rapidly increase and the rate of change of the current is only limited 

by the impedance of the fault circuit. When the current reaches the maximum current limit 

value in a three-level inverter of a UPS, the output phase will be connected to the opposite 

voltage level via the zero-voltage level.  

For example, in the case of the three-level inverter topology presented in Figure 4, 

if a short circuit happens between L1 and L2 phases when the output phase L1 is con-

nected to the positive DC bus voltage level, the current in phase L1 may increase rapidly 

through IGBTs T1 and T2. Eventually, the current may reach the maximum current limit 

value adjusted for the inverter. When the maximum current limit value is reached, the 

phase L1 will be connected to the zero-voltage level which means that the IGBT T1 in 
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Figure 4 is switched off and IGBT T3 is switched on. The principle on how the output 

phase may be connected to different voltage levels is explained more closely in Chap-

ter 3.3. When the output phase is connected to the zero-voltage level, the positive current 

may flow through the IGBT T2 and diode D1. The phase L1 is kept connected to the zero-

voltage level for the time of a dead time tdead as illustrated in Figure 14. If it is assumed 

that the impedance of the fault circuit consists only of inductive reactance and hence the 

circuit has zero resistance, the current will be constant when the output phase is connected 

to the zero-voltage level according to Equation (21). In the real world, of course, the small 

amount of resistance caused by for example non-ideal conductors and output filter induc-

tor of the UPS, will cause the current gradually to decrease when the output phase is 

connected to the zero-voltage level. 

 After the dead time tdead has elapsed, the phase L1 will be connected to the nega-

tive DC bus voltage level by turning off the IGBT T2 and turning on the IGBT T4. Con-

sequently, the positive current starts to decrease rapidly and, whether external diodes are 

used, current may flow through the diode D8. If external diodes are not used in the con-

figuration, the positive current would flow through diodes DT3 and DT4. The positive cur-

rent will decrease for the time tfall until the minimum current limit value of the positive 

half-cycle is reached as shown in Figure 14. Then the phase L1 will be connected again 

to the zero-voltage level and, after a dead time tdead has passed, L1 will be connected again 

to the positive DC bus voltage level until the current reaches the maximum current limit 

value after a current rise time trise as illustrated in Figure 14. Current rise and decrease 

times are dependent on DC bus voltages and impedance of the fault circuit according to 

Equation (25). In addition, of course, the difference between respective maximum and 

minimum current limit values affects on magnitudes of trise and tfall.  

The switching sequence described above is continued when the fundamental ref-

erence waveform of the PWM is on the positive half cycle. The illustrative waveform of 

the current flowing through the filter inductor of the inverter during inverter operation at 

current limit with a 50 Hz fundamental frequency is presented in Figure 13. Maximum 

and minimum current limit values during positive half cycle are depicted as imax and imin 

and corresponding current limits during negative half cycle as -imax and -imin. The purpose 

of Figure 13 is only to be explanatory and thus the switching frequency in Figure 13 is 

smaller than typically in UPS inverters where it may be dozens of kilohertz.  Figure 14 

presents a more detailed graph of current waveform with corresponding switching se-

quences of semiconductor devices when the UPS operates at current limit on positive half 

cycle. Abbreviations T1, T2, D1, D8, DT3 and DT4 depict equivalent components stated in 

Figure 4. In current waveforms of Figures 13 and 14 it is assumed that the fault circuit 

has a zero resistance and a constant inductance. If the variation of the inductance along 

with the change of the current magnitude would be considered, shapes of current wave-

forms in Figures 13 and 14 would be more curved instead of straight.  
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Figure 13: Illustrative waveform of the current flowing through the filter inductor 

when the inverter operates at current limit. 

 

 

Figure 14: Detailed graph of the current waveform on positive half-cycle when 

UPS inverter operates at current limit with corresponding IGBT and diode 

switchings. 

When the current is on the negative half cycle, it may flow through opposite semiconduc-

tor components than in the case of positive half cycle. It denotes that the output phase is 

connected to the negative DC bus voltage until the negative current through IGBTs T3 

and T4 attains the maximum negative current limit value. Then the output phase will be 

connected to the positive DC bus voltage level via the zero-voltage level in a manner 

described in Chapter 3.3. Accordingly, the current will start to approach the minimum 

negative current limit value. The UPS inverter will operate at current limit until the faulty 

network is cleared or in maximum for a pre-set current limit time which is typically a few 

hundreds of milliseconds. 

The maximum current limit value should be adjusted to be as high as possible 

since during AC grid fault situations, a high fault current contributes a selective fault 
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clearing with overcurrent protective devices in the network supplied by the UPS. How-

ever, as the maximum current limit value is often adjusted close to the ultimate perfor-

mance values of power semiconductor devices, power semiconductor devices are exposed 

to high thermal stress. Therefore, a time for the inverter to operate at current limit must 

be limited to prevent IGBTs or diodes from falling into thermal runaway. Whether, the 

maximum time limit for the inverter to operate at current limit is exceeded the UPS may 

trip and disconnect itself from the supplied network. If the fault is cleared by the overcur-

rent protective device when the UPS is operating at current limit, the UPS may cease the 

operation at current limit and continue to supply remaining UPS loads with conventional 

current magnitudes. 

4.3 Circuit breakers in general 

Overcurrent is defined as current flowing in the circuit which exceeds the rated current 

value of conductors or electrical equipment in the circuit. Short circuits and ground faults 

are examples of incidents which may cause overcurrent. Furthermore, overcurrent occurs 

in overload situations. As a result, overcurrent may lead to overheating of conductors and 

malfunction of the electrical equipment in the circuit. Overheat in conductors may result 

in deterioration of insulation materials, melting of conductor and in worst case it may lead 

to fire. Circuit breakers and fuses are used to protect conductors and electrical equipment 

from overcurrent conditions. A difference between fuses and circuit breakers is that fuses 

must always be replaced with a new one after they are blown. Circuit breakers, however, 

can be reset after they are tripped and hence be operated again. Furthermore, circuit break-

ers can be used as manual on-off switches in circuits which is not possible with fuses.  

(27,28) 

A circuit breaker is defined in the standard (29) as “a mechanical switching de-

vice, capable of making, carrying and breaking currents under normal circuit conditions 

and also making, carrying for a specified duration and breaking currents under specified 

abnormal circuit conditions such as those of short circuit”. Circuit breakers come in dif-

ferent classes according their voltage and current ratings. In Chapter 4.3.1 miniature cir-

cuit breakers, which belong to molded case circuit breaker class (MCCB) are introduced.  

Tripping characteristics of the miniature circuit breaker determines a delay on how 

quickly the circuit breaker operates in different overcurrent situations. Tripping charac-

teristics of miniature circuit breakers are presented in Chapter 4.3.2 and co-ordination of 

circuit breakers so that selective overcurrent protection is ensured, is discussed in Chapter 

4.3.3. (30) 

 

4.3.1 Miniature circuit breakers 

The International Electrotechnical Commission (IEC) is a worldwide organization for 

standardization in the electrical field. It provides in its standard IEC 60898 requirements 

for circuit breakers used in households and similar installations for overcurrent protection.  

In industry and in colloquial language these circuit breakers are also known as miniature 
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circuit breakers (MCB). MCBs are molded case circuit breakers with a pole width of 

25.4 millimetres (1 inch) or less and their current ratings are 125 A or below. Number of 

poles varies from single-pole circuit breakers to four-pole circuit breakers. They are com-

monly used in residential applications at phase voltages varying from 120VAC to 

240VAC. Maximum current breaking capacity of a typical MCB is between 5 – 15 kA. 

MCBs protect the connected load and conductors mechanically from overcurrent. De-

pending on the magnitude of the overcurrent, thermal trip unit or magnetic trip unit is 

triggered in MCB to break the overcurrent. High overcurrent, which usually results from 

short circuit or ground fault, triggers the magnetic trip unit and lower overcurrent, which 

may result from overload, usually triggers the thermal trip unit. Magnetic tripping is in-

stantaneous whereas thermal tripping has a delay. Figure 15 represents a simplified struc-

ture of a MCB and its parts. (27,30) 

 Thermal trip unit is made up of a bimetal strip which consists of two metals having 

different rate of heat expansion coupled together. When current flows through the bi-

metal, the bimetal strip is heated and it bends towards a trip bar because two metals ex-

pand at different rate. A prolonged overload eventually leads to contacts opening when 

the bimetal strip bends and pushes the trip bar which opens the latch to separate the con-

tacts. The higher the current is and the longer time the current flows the more the bimetal 

heats because of the bimetal’s impedance. Thus, both time and current magnitude affect 

to thermal tripping.  (27)  

 Magnetic trip unit is an electromagnet which is often made up of a coil twisted 

around a ferromagnetic material. Current, which flows through a circuit breaker, flows 

also through the coil which creates a magnetic field attracting an armature. The armature 

is attached to the trip bar and hence the trip bar turns when a magnetic force pulls the 

armature. A short circuit or ground fault may cause a rapidly increasing overcurrent 

through the circuit breaker and an electromagnet directs an increasing magnetic force to 

the armature and finally the bended trip bar triggers the latch to separate the contacts. 

Generally, the larger the overcurrent the quicker the circuit breaker trips and breaks the 

current flow when magnitude of the overcurrent is within the limits of circuit breaker’s 

rating. (27,30) 
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Figure 15: Structure of a typical miniature circuit breaker (adapted from      

IEEE P1458 draft (27)) 

 

4.3.2 Tripping characteristics of MCB 

The IEC standard 60898 divides miniature circuit breakers into three different types ac-

cording to ranges of instantaneous tripping: B, C and D. Instantaneous tripping, also 

known as magnetic tripping, is triggered by a magnetic trip unit of a circuit breaker and 

therefore it requires always an overcurrent which is several times the rated current of the 

circuit breaker. Figure 16 shows typical tripping curves of B, C and D type circuit break-

ers. Time is illustrated on the y-axis and current on the x-axis as multiples of the circuit 

breaker’s rated current In. Magnetic tripping zone starts from point 3 In for B-type circuit 

breakers, from 5 In for C-type and from 10 In for D-type. Those starting points can be seen 

from Figure 16 as points where the tripping curve of each type drops vertically downward. 

Thermal tripping zone of each type is the zone starting from point 1,13 In to the point 

where the magnetic tripping zone of each type begins. Thermal tripping is triggered by a 

thermal trip unit. (31,32) 

 



  

 

 

39 

 

Figure 16: Typical time-current characteristics of B-, C- and D -type circuit 

breakers (adapted from (31)). 

Table 1 lists current thresholds for type B, C and D circuit breakers as multiples of rated 

current In which are required in the standard concerning the instantaneous tripping of the 

circuit breaker. For instantaneous tripping, the standard sets two different current thresh-

olds for each type of circuit breaker with the difference of required tripping time. For the 

lower current threshold, it is required that a circuit breaker shall not trip in less than 0,1 s 

and for the higher current threshold it is required that a circuit breaker must trip in less 

than 0,1 s.  

The magnetic tripping zone, which is the area between these current thresholds, 

can be considered as a tolerance for instantaneous tripping. The instantaneous tripping of 

different circuit breakers may differ within the tolerance even though they would be same 

type and comply with the IEC 60898 standard. The standard requires only that the instan-

taneous tripping, in less than 0,1 s, should occur within the tolerance or at least on the 

higher current threshold. Therefore, when examining and choosing a circuit breaker from 

the fault clearing point of view, the higher current threshold of magnetic tripping is usu-

ally a point of interest because the instantaneous tripping operation is most reliable on the 

higher threshold or above. For example, C-type miniature circuit breakers, which comply 

with the IEC 60898 standard, will trip in less than 0,1s when the current is 10 times the 
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rated current of the circuit breaker or above.  Practically, the more the current is above 

the threshold the faster and more reliable the circuit breaker operates to interrupt the cur-

rent. However, the overcurrent value must be less than the rated short circuit capacity of 

a circuit breaker so that circuit breaker can reliably interrupt the current. (32) 

It is notable to consider that circuit breakers, in accordance with the IEC 60898 

standard, are designed to operate with sinusoidal 50 Hz or 60 Hz current and rated cur-

rents of circuit breakers and their multiples are specified as rms values. Thus, a circuit 

breaker may not operate as intended if the current is other shape than sinusoidal such as 

square wave shaped or pure DC. The instantaneous tripping of a circuit breaker is com-

monly designed to operate in accordance with the peak value of a sinusoidal current. The 

rms value of a square wave is the same as the peak value of the square wave whereas the 

peak value of a sinusoidal wave is √2 times the rms value of a sinusoidal wave. Therefore, 

a circuit breaker may not operate similarly with square wave shaped current and sinusoi-

dal current even though both currents would have the same rms value. Generally, the 

current thresholds in Table 1 should be multiplied with a factor √2 if the circuit breaker 

is used with pure DC or square wave shaped current so that instantaneous tripping acts 

correctly. (32) 

 

Table 1: Instantaneous tripping requirements in accordance with IEC 60898   

standard.  

Tripping time B-type CB C-type CB D-type CB 

> 0,1s 3 In 5 In 10 In 

< 0,1s 5 In 10 In 20 In 

 

The standard IEC 60898 sets uniform tripping time and current characteristic require-

ments for B, C and D type circuit breakers with same rated current when current is in the 

thermal tripping zone. However, exceptions do exist depending on whether the rated cur-

rent of the circuit breaker is more or less than 63 A or 32 A. The standard sets three current 

thresholds and tripping or non-tripping time requirements for thresholds and they are pre-

sented in Table 2. The standard requires that B, C and D type circuit breakers with rated 

current 63 A or less must not trip in less time than one hour when conventional non-

tripping current 1,13 In is flowing through the circuit breaker. The same non-tripping time 

requirement is less than 2 hours for CBs with rated current over 63 A. (32) 

 If conventional tripping current 1,45 In is passed through the circuit breaker, CBs 

with rated current 63 A or below should trip in less than 1 hour and CBs with rated current 

above 63 A should trip in less than 2 hours. Table 2 shows that the tripping time should 

be between 1 s and 60 s or 1 s and 120 s depending on the rated current when the current 

passed through the CB is 2,55 In. At these current thresholds circuit breakers in accord-

ance with the IEC 60898 standard generally interrupt the current flow by means of trig-

gering the thermal trip unit.  
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Current thresholds are valid when ambient air temperature is 30 °C. Lower ambient tem-

peratures increase current thresholds and higher temperatures decrease current thresholds. 

Typically, miniature circuit breakers are rated for temperatures between -5 °C and 40 °C. 

The standard requires that CBs in the ambient temperature of -5 °C should trip at current 

value of 1,9 In within the conventional time which is 1 hour for CBs of rated current 63 A 

or below and 2 hours for CBs of rated current above 63 A. In the ambient temperature of 

40 °C circuit breakers should not trip within the conventional time when the rated current 

In is passed through the circuit breaker. (32) 

 

Table 2: Time-current characteristic requirements in accordance with IEC 60898 

standard. 

Current B, C, D –type CBs 

1,13 In 

(conventional non-tripping current) 

No tripping, t ≤ 1 h (for CBs with In ≤ 63 A) 

No tripping, t ≤ 2 h (for CBs with In > 63 A) 

1,45 In 

(conventional tripping current) 

Tripping, t < 1 h (for CBs with In ≤ 63 A) 

Tripping, t < 2 h (for CBs with In > 63 A) 

2,55 In 
Tripping, 1 s < t < 60 s (for CBs with In ≤ 32 A) 

Tripping, 1 s < t < 120 s (for CBs with In > 32A) 

 

 

4.3.3 Selective co-ordination of circuit breakers 

Electric systems in households, in factories or in similar facilities are often built in a way 

that power is supplied from a single main line to several branch lines which supply loads. 

In networks with a UPS, the UPS may be installed on the main line. Thus, the UPS sup-

plies several parallel connected loads via branch lines. Each branch line and the main line 

is equipped with a circuit breaker or a fuse to protect wires and loads from overcurrent. 

Miniature circuit breakers are often used in branch lines as downstream protective de-

vices. (33) 

Selectivity of overcurrent protection means that protection devices are co-ordi-

nated in a way that in fault situations the protection device, which is closest to the fault 

location, regarded from the supply side, operates first and breaks the fault current while 

other protection devices do not operate. Hence, the fault is isolated and other parts of the 

circuit or network may continue normal operation. Figure 17 illustrates the fulfilment of 

selective overcurrent protection in a UPS network where the UPS supplies two parallel 

connected loads via branch lines. When the fault, such as a short circuit, occurs in the 

marked location in Figure 17, only the downstream protective device marked with red 

outlines trips while other protective devices do not trip. 
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Figure 17: Selective overcurrent protection. Only the downstream protective de-

vice marked with red outlines trips (adapted from (33)). 

Circuit breakers or fuses, however, may not be able to break the current above their rated 

ultimate breaking capacity Icu which is defined as the rms value of AC current. Therefore, 

back-up protection is required. Back-up protection is implemented with circuit breakers 

or fuses in the upstream side which has higher rated ultimate breaking capacity than over-

current protection devices in the downstream. Consequently, the protection device in the 

upstream may break the fault current if the protection device in the downstream fails to 

break the current. In this case, of course, the selective overcurrent protection is not 

reached. Nevertheless, the back-up protection provided by the upstream protective device 

may prevent the fault current from causing severe damage to conductors and other circuit 

equipment or danger to persons close to the faulted electrical equipment. (33) 

Operating characteristics of overcurrent protective devices in the network are se-

lected such that the overcurrent selectivity and back-up protection are ensured. Selectivity 

can be divided into total selectivity and partial selectivity. Total selectivity is a situation, 

where the selectivity is ensured up to the ultimate breaking capacity Icu of the downstream 

breaker. Thus, it is the optimal situation. However, it requires that the fault current or 

prospective short circuit current of the circuit is below the value of Icu. The prospective 

short circuit current is defined as “the current that would appear in a short-circuit without 

any other change of the supply conditions” (29). In addition, non-current limiting circuit 

breakers, whose tripping time is delayed in the magnetic tripping zone, must be used as 

upstream breakers. (33) 

Short-time delay is the time that circuit breaker will carry short circuit current in 

magnetic tripping zone before tripping. For example, such molded case circuit breakers, 

which have electronic trip units, allow the adjustment of a short-time delay. Hence, they 

are suitable to be used as upstream breakers to ensure the back-up protection and enable 

the total selectivity when their tripping time is adjusted to be delayed. (33) 
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Current-limiting circuit breakers, which operate fast and without additional delay in mag-

netic tripping zone, are often used as downstream circuit breakers. Thus, they reduce the 

duration of fault current and prevent fault current to reach its peak value. Miniature circuit 

breakers are, for example, current-limiting circuit breakers. The fulfilment of total selec-

tivity can be evaluated by comparing tripping curves of downstream and upstream pro-

tective devices. Their tripping curves shall not cut each other, as shown in Figure 18, so 

that total selectivity may be possible.  

 

 

Figure 18: Tripping curves of upstream and downstream protective devices. To-

tal selectivity may be possible, however, it can be verified only by testing 

(adapted from (33)). 

Partial selectivity is a situation where the selectivity is ensured up to the value of selec-

tivity limit current Is. The selectivity limit current Is is the current value of the intersection 

between tripping curves of upstream and downstream protective devices as shown in Fig-

ures 19a and 19b. In circuits, where the prospective short-circuit current or fault current 

does not exceed the value of Is, partial selectivity may be an adequate solution and there 

is no essential purpose to implement the overcurrent protection according to total selec-

tivity requirements. (33) 



  

 

 

44 

 

Figure 19: Tripping curves of a downstream circuit breaker and an upstream 

circuit breaker (a) or a downstream circuit breaker and an upstream fuse (b) when 

overcurrent protection selectivity is partial (adapted from (33)). 

It has to be noted that short-time delays of miniature circuit breakers, discussed in Chap-

ter 4.3.2, are not adjustable and their tripping curves in thermal tripping zones are very 

similar as can be seen from Figure 16. Therefore, using miniature circuit breakers both as 

upstream and downstream protective devices in the network may not provide selectivity 

at all. Hence, miniature circuit breakers are often applicable to be used only as down-

stream overcurrent protection devices. Nowadays, fuses are rarely used as downstream 

protective devices but instead they are well suitable to be used as upstream protective 

devices for back-up protection due to their high ultimate breaking capacity Icu. (33). If the 

UPS supplies power from the batteries in fault situations, when AC grid is not available, 

the maximum fault current is equal to the current limit of the UPS. Fault current should 

be high enough to trip the downstream protective device. 

 

4.4 Use of external fault clearing circuitry 

The aim of this thesis is to find economical ways to improve the fault clearing capability 

of a UPS by making changes to an IGBT configuration in the inverter main circuit. How-

ever, another solution, which has to be considered for increasing the magnitude of fault 

current that may be supplied by the UPS in stored-energy mode, is the use of external 

fault clearing circuitry besides the UPS. The fault clearing circuitry may produce a current 

pulse in a case of a fault, such as a short circuit, at the load side of the UPS. The object is 

that the current pulse injected into the faulted output phase by the fault clearing circuitry 

would be high enough to clear the circuit breaker closest to the fault instantaneously.  

Thus, the fault clearing capability of the UPS may be improved without making changes 
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to the IGBT configuration in the inverter main circuit. The required magnitude of fault 

current to clear the circuit breaker will be produced by the fault clearing circuitry. 

 In (34) is presented different configurations of fault clearing circuitries which may 

be employed to improve the fault clearing capability of the UPS when the UPS operates 

in stored-energy mode. The proposed fault circuitries may be installed at the UPS output 

so that the fault clearing circuitry is extracted from the main circuit of the inverter. In 

addition, fault clearing circuitries that may be integrated to the main circuit of the inverter 

are proposed, however, only a fault clearing circuitry which may be installed externally 

at the UPS output is presented in this thesis. 

 A fault clearing circuitry which may be parallel connected to a single output phase 

of the UPS is presented in Figure 20. The fault clearing circuitry in Figure 20 consists of 

four diodes, two silicon controlled rectifiers, two inductors, two capacitors, two charging 

resistors and a control and drive circuit. The fault clearing circuitry may be able to provide 

a current pulse high enough to clear the respective circuit breaker when a fault occurs 

during a positive or negative half cycle of pulse width modulated current.   

 

 

Figure 20: Circuit diagram of the fault clearing circuitry which may be employed 

for improving the fault clearing capability of a UPS device. 

Operating principle of the fault clearing circuitry is such that the electrical energy stored 

in a capacitor C1 or C2 will be discharged into the output line via a silicon controlled 

rectifier SCR1 or SCR2 when a fault in the output line is indicated. A fault situation is 

indicated by the control and drive circuit which monitors the magnitude of the current in 

the output line with a current sensor. If the current magnitude in the output line exceeds 

a certain current threshold, the control and drive circuit will fire a gate current pulse into 

the gate of the silicon controlled rectifier SCR1 or SCR2 which results in turning on of 

the respective silicon controlled rectifier.  If a fault, such as a short circuit, occurs in the 

output line during positive half cycle of the current waveform, the gate current pulse will 
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be fired to the SCR1. A fault occurring during negative half cycle of the current will cause 

the gate current pulse to be fired to the SCR2. Thus, the electrical energy stored in the 

capacitor C1 or C2 will be discharged into the output line as turning on of the silicon 

controlled rectifier SCR1 or SCR2 will form a closed circuit between poles of the respec-

tive capacitor in a short circuit situation. The capacitor C1 may be discharged when the 

SCR1 is turned on and the capacitor C2 may be discharged when the SCR2 is turned on. 

An inductor L1 limits the current rise through the SCR1 or and inductor L2 limits current 

rise through SCR2 if the fault circuitry is triggered. The aim is that the current which 

arises from discharging of the capacitor C1 or C2 would be high enough for magnetic 

tripping of the circuit breaker in the output line. Current produced by the fault circuitry 

is, however, limited in time and magnitude by capacity of the discharging capacitor, in-

ductance of the inductor through which the current flows and impedance of the fault. The 

capacitor C1 may be charged with positive current through the diode D1 and charging 

resistor Rchg1 and capacitor C2 may be charged with negative current through the diode 

D3 and charging resistor Rchg2. Diodes D2 and D4 which are connected in parallel with 

the capacitors C1 and C2 are applied to protect the respective capacitor from a reverse 

polarity. 
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5 SIMULATIONS OF UPS INVERTER 

OPERATION AT CURRENT LIMIT 

Simulation modelling is a method to digitally simulate the operation and behaviour of a 

real-world physical system or phenomenon. Simulations are based on models and as-

sumptions which may be simplifications of their real-world counterparts. Assumptions 

may cause difference between simulation results and results achieved in the real world, 

however, simplifications and assumptions are often essential to use as modelling a real-

world system perfectly may be extremely complicated or impossible due to numerous 

variables affecting each other. Nevertheless, the target is that a simulation model is accu-

rate enough in modelling the investigated real-world system or occasion. A practical 

method to evaluate the accuracy of the simulation is to compare simulation results to test 

results achieved by real-world measurements. A major advantage of simulation modelling 

is that, for example, the behaviour of an investigated system at different situations may 

be quickly and safely simulated by just reconfiguring simulation parameters. Thus, it may 

be clearly cheaper, easier and faster than performing same actions with a real-world sys-

tem. Consequently, simulation models are usually applied as tools to determine whether 

 the investigated system is profitable to be implemented physically in the real-world. 

A simulation model, simulating average power losses and average junction tem-

peratures of IGBTs and diodes when a three-level inverter of a UPS device is operating 

at current limit, is created in this thesis. IGBTs and diodes, which power losses are sim-

ulated, are located in the main circuit of the inverter. The simulation model is constructed 

with Microsoft Excel 2016 which is a spreadsheet application released by Microsoft ini-

tially in 2015. Simulations are also run in Microsoft Excel 2016.  

The simulation model created in this thesis may be used as a tool when suitability 

of different IGBTs and diodes in the main circuit of a UPS inverter are evaluated. It is 

designed to simulate temperatures and power losses of IGBTs and diodes when a fault 

occurs in the UPS output leading to the UPS to start operating at current limit. The current 

limit operation is inevitable during a fault situation whether AC grid is not available or if 

the static bypass switch of the UPS is not managed to be switched on. Due to the current 

limit operation of a UPS inverter, the assumption for the shape of the current waveform 

at the UPS output is explicitly fixed in the simulation model created in this thesis. The 

assumed current waveform complies with the shape of current waveforms presented in 

Figures 11 and 12. However, the effect of filter and fault inductance may be considered 

in the simulation model which makes the lines of current waveform curvier than in Fig-

ures 11 and 12. Hence, this simulation model may not be suitable in evaluating power 

losses of IGBTs and diodes when the UPS is operating in other than current limit mode 

as the shape of the current waveform may in that case differ from the assumed waveform. 

The shape of the current waveform can not be changed in the simulation model by the 

user.  
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Current limit values of the UPS inverter are adjustable in the simulation model. Thus, the 

simulation model makes it possible for the user to asses how much the maximum current 

limit value of a UPS could be increased, for example, by using different IGBTs or diodes 

in the main circuit of the inverter. Furthermore, influence of the switching frequency, DC 

bus voltage, the dead time and inductance magnitude on total power losses of IGBTs and 

diodes may be estimated. Moreover, the simulation model allows adding IGBTs and 

diodes in parallel in the main circuit of the inverter. It makes the use of the simulation 

model worthwhile, for example, in cases when it is investigated whether it is technically 

and economically more reasonable to use several lower rated IGBTs or diodes in parallel 

instead a single higher rated IGBT or diode. However, it should be highlighted, that the 

simulation model may be used as a tool for technical and economical comparison of 

IGBTs and diodes only when the fault clearing capability of the UPS is considered. 

Hence, the simulation model does not provide valid information for comparison of IGBTs 

and diodes in other situations. All the data of IGBTs and diodes required to run the power 

loss calculation in the simulation model is usually available in datasheets of IGBTs and 

diodes offered by IGBT and diode manufacturers. 

Section 5.1 introduces how the simulation model is used and Section 5.2 presents 

in detail how the simulation model is built and designed. In this thesis eight simulation 

cases were performed where improvement of fault clearing capability of a UPS device 

was investigated with different configurations of IGBTs and diodes in the main circuit of 

the inverter. Simulation results of the simulation cases are disclosed in Section 5.3. Ad-

ditionally, cost comparison and cost analysis of solutions to improve the fault clearing 

capability of a UPS device is presented in Section 5.3. 

5.1 Use of the simulation model 

The simulation model is designed to calculate power losses and junction temperatures of 

IGBTs and diodes in the main circuit of the inverter when the UPS is operating at current 

limit. Thus, the simulation model requires data about IGBTs, diodes, filter inductor, fault 

circuit and thermal impedances between the junction and case or between the junction 

and heatsink to perform power loss and thermal calculations. The fault circuit denotes in 

this case the closed circuit after the filter inductor when, for example, two phases are 

short-circuited in the output of a three-phase three-level UPS. In addition, if a heatsink is 

used, the temperature of the heatsink is assumed to be constant and hence the user is 

required to give a constant temperature value of the heatsink as input to the simulation 

model so that thermal calculation of IGBTs or diodes may be performed. Operation char-

acteristics of the inverter during operation at current limit are defined by maximum and 

minimum current limit values of the inverter which must be inserted to the simulation 

model. Furthermore, the duration of dead time may be determined in simulations.   

User must select which IGBT or diode in the main circuit of the inverter is being 

studied. This is conducted by selecting the right component symbol “o”, “i”, “Dc” or “Da” 

from the drag-down menu in the simulation model. Corresponding power semiconductors 

with the component symbols are presented in Figure 21 which depicts topology of one 
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output phase of the inverter. Component symbol “o” depicts outer IGBT of the inverter 

leg, “i” depicts the inner IGBT of the inverter leg, “Dc” depicts a clamp diode and “Da” 

depicts an anti-parallel diode. Component symbols are represented in Figure 21 for upper 

branch of the inverter leg. However, they may be applied also with power semiconductors 

of the lower branch. When similar power semiconductors are used in the upper and lower 

branch and their switching sequence is similar power losses caused by power semicon-

ductors in the lower branch during negative half-cycle are equal to power losses caused 

by power semiconductors in the upper branch during positive half-cycle. Due to the drag-

down menu, the simulation model offers for the user a possibility to compare quickly how 

much power losses and junction temperature of an IGBT or diode is changed if location 

of the component is changed. The performance of IGBTs may be quickly compared 

whether they are used as outer or inner IGBTs in the inverter main circuit and perfor-

mance of diodes may be evaluated whether they are used as clamp diodes or anti-parallel 

diodes. Furthermore, IGBTs or diodes may be added in parallel in the simulation model 

with a parameter change and thus investigate power losses and junction temperatures of 

IGBTs or diodes if they are added two or more in parallel into the main circuit of the 

inverter. 

 

Figure 21: Component symbols “o”, “i”, “Dc” and “Da” of the simulation 

model and their counterparts in the main circuit of the inverter. 

For the power loss calculation, the essential information required for the user to enter as 

input to the simulation model comprises: output voltage and current characteristics of the 

IGBT or diode, switching losses of the IGBT or reverse recovery energy loss of the diode 

and inductance of the filter inductor and fault circuit. However, if the average junction 

temperature of the IGBT or diode is also desired to be calculated, the user must enter the 

thermal impedance between the junction and case or between the junction and heatsink 

into the simulation model. If the thermal impedance between the junction and heatsink is 
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entered into the simulation model, the user must also enter the constant heatsink temper-

ature into the model. Respectively, if only the thermal impedance between junction and 

case is entered, the case temperature must be assumed constant and fed into the model. 

Other parameters of the simulation model such as DC bus voltage, grid frequency, num-

ber of IGBTs or diodes connected in parallel and current limit and dead time values of 

the inverter are adjustable by the user. Grid frequency refers to the fundamental frequency 

of the current at the inverter output. Above mentioned user adjustable parameters allow 

the user to simulate power losses and junction temperatures of IGBTs or diodes at differ-

ent situations. 

The simulation model gives as output the simulation results which contain: aver-

age conduction losses of the IGBT or diode, average switching losses of the IGBT or 

diode, average total losses of the IGBT or diode, switching frequency of the IGBT and 

average junction temperature of the IGBT or diode. 

In the simulation model, it is assumed that the resistance of the filter inductor and 

the fault circuit is zero and they can not be changed in the model. Thus, the impedance of 

the system, which affects to the shape of current waveform according to Equation (25), 

consists only of inductance of the filter inductor and inductance of the fault circuit. In-

ductance of the filter inductor and fault circuit are entered as separate parameters into the 

simulation model. Inductance of the filter inductor may be entered into the simulation 

model as a function of current in tabular form or as a constant value. However, the in-

ductance of the fault circuit may be entered only as a constant value. The worst case 

situation relative to the junction temperature of the IGBT or diode is the case when the 

inductance of the fault circuit is assumed to be zero. This is an imaginary situation as the 

fault circuit always retains some inductance, for example, from the cables in the real 

world. However, the fault circuit inductance may still be low in real world short circuit 

situations.  When the inductance of the fault circuit is assumed to be zero, only the in-

ductance of the filter inductor resists the rate of change of the current. It results in in-

creased switching frequency of IGBTs if other parameters which affects to the switching 

frequency are kept constant. Consequently, the increased switching frequency leads to 

increased switching losses of IGBTs or diodes and therefore the worst case situation oc-

curs when the inductance of the fault circuit is assumed to be zero. 

Output characteristics of the IGBT or diode which are required in the simulation 

model are usually available from graphs offered in datasheets of IGBTs and diodes. The 

data of collector current Ic as a function of collector to emitter voltage UCE is required 

when conduction losses of an IGBT are calculated. Respectively, the data of forward cur-

rent IF as a function of forward voltage UF is required when conduction losses of a diode 

are calculated. These data are often presented as graphs in IGBT or diode datasheets and 

can be digitized with a digitizer program into a tabular form. When the data is in tabular 

form, it can be inserted to the simulation model.  

Usually output characteristics of IGBTs and diodes are presented in datasheets 

separately for conditions where the case or junction temperature is 25ºC and 175ºC. 
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Sometimes case or junction temperature of 150ºC is used instead of 175ºC. Output char-

acteristic curves of the IGBT or diode may be inserted in tabular form to the simulation 

model both at higher case temperature, such as 175ºC, and at lower case temperature, 

such as 25ºC. Then the simulation model can interpolate output characteristics at a desired 

temperature value between 175ºC and 25ºC. In simulation results of this thesis, output 

characteristics of IGBTs and diodes are applied at the highest case temperature value 

which is 175ºC or 150ºC because power losses of IGBTs are greatest on highest case 

temperature values. 

In addition, switching losses of IGBTs are commonly presented as a function of 

collector current in datasheets of IGBTs. Graphs of switching losses as a function of col-

lector current may be digitized into a tabular form and inserted to the simulation model 

separately as turn-on and turn-off losses. Switching losses are usually apprised in 

datasheets of IGBTs at case temperatures of 25ºC and 175ºC or sometimes at a case tem-

perature of 150ºC. In the simulation results of this thesis, switching loss data at the case 

temperature of 175ºC or 150ºC is used because switching losses increase with increasing 

case temperature. Thus, the highest switching losses occur at highest case temperature 

values and worst case scenarios may be simulated when the maximum case temperature 

value is used. Alternatively, switching losses of IGBTs may also be entered into the sim-

ulation model as constant turn-on and turn-off values if switching losses data as a function 

of collector current is not available.  

For diodes, the reverse recovery energy loss is required to be entered as a constant 

value into the simulation model. Hence, only turn-off losses of diodes are considered in 

the simulation model when current commutates from a diode to the IGBT. Turn-on losses 

of diodes are considered to be negligible and therefore they are not entered in the simu-

lation model. However, reverse recovery energy losses of diodes may not be directly an-

nounced in datasheets of diodes. Nevertheless, reverse recovery time, reverse recovery 

charge and peak reverse recovery current are often declared in datasheets. A calculation 

tool which may calculate the reverse recovery energy loss of a diode based on reverse 

recovery time, reverse recovery charge or peak reverse recovery current, is integrated 

with the simulation model. It may be used for quick approximation of the reverse recovery 

energy loss of the diode if a more accurate value for reverse recovery energy loss is not 

available. The calculation tool for calculating reverse recovery energy loss of diodes is 

presented more closely in Section 5.2.3. 

After the required input parameters are inserted to the simulation model, different 

simulation results may be achieved by adjusting DC bus voltage, fundamental output fre-

quency of the UPS inverter, maximum current limit value, minimum current limit value, 

dead time and number of IGBTs or diodes connected in parallel in the main circuit of the 

inverter. When the fault clearing capability of the UPS device is investigated, the greatest 

interest falls upon adjusting the maximum and minimum current limit values. It may be 

approximated that the average between maximum and minimum current limit values rep-

resents the fault clearing capability of the UPS device. In addition, it is worthwhile that 

the simulation model allows adding IGBTs or diodes in parallel into the main circuit. 
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Thus, it may be solved, how much the fault clearing capability may be increased when 

IGBTs or diodes are connected in parallel instead of using single components. Maximum 

operating junction temperatures and switching frequency of IGBTs define conditions for 

the maximum fault clearing capability which can be adjusted for the UPS device. Switch-

ing frequency of IGBTs is usually limited by the clock frequency of the control circuit of 

the inverter. 

Furthermore, output characteristics of IGBTs may be presented in datasheets at 

different gate to emitter voltage magnitudes.  In simulation results of this thesis, the gate 

to emitter voltage is assumed to be 15 V for all IGBTs whose power losses and junction 

temperatures are calculated. 

 

5.2 Design and implementation of the simulation model 

The simulation model is implemented with Microsoft Excel 2016 spreadsheet software. 

Power loss calculation of IGBTs and diodes in the simulation model is based on Equa-

tions (1),(2),(3),(4) and (5). The filter and fault circuit inductance affect to the rate of 

change the current according to Equation (25) and thus to the shape of the fault current 

waveform. Thermal calculation of IGBTs and diodes in the simulation model is based 

on Equation (12). In this section is disclosed in detail how the simulation model is im-

plemented and designed to achieve the simulation results. 

 

5.2.1 Principle of conduction loss calculation in the simulation model 

Output voltage and current characteristics data of IGBTs and diodes form the basis of the 

conduction loss calculation. The voltage and current data is digitized from a datasheet 

and inserted in a table format to the simulation model so that current and voltage values 

are in separate columns. Thus, discrete points from output characteristics curve of the 

IGBT or diode are entered as input to the simulation model. Similarly, inductance of the 

filter inductor as a function of magnetizing current may be digitized and inserted to the 

simulation model in table format so that inductance and current values are in separate 

columns. In the simulation model, the magnitude of DC bus voltage, inductance of the 

filter inductor and inductance of the fault circuit affect to the rate of change of the current 

according to Equation (25). Thus, they also affect to the conduction losses of IGBTs and 

diodes as they affect to the shape of the current waveform. However, a more considerable 

influence on magnitudes of conduction losses results from output characteristics of the 

IGBT or diode, number of IGBTs or diodes connected in parallel, selected maximum and 

minimum current limit values and the magnitude of dead time. 

 In Figure 22 is presented an illustration of the digitizing process when output char-

acteristics curve of an IGBT is digitized by using Engauge Digitizer software. The user 

shall perform digitizing with an external digitizing software as digitizing feature is not 

included in the simulation tool. Collector current Ic and collector-to-emitter voltage UCE 
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values are inserted to the simulation model at target points which are depicted in Figure 22 

as blue crosses. The simulation model will then interpolate linearly current values be-

tween target points at 0,003 V intervals. It means that current values are calculated at 

0,003 V intervals on a straight line which is drawn between target points. Thus, as for 

accuracy of the digitizing, it does not matter how many target points are employed in 

digitizing. However, it is important that the straight line drawn between target points lies 

on the output characteristics curve that is being digitized. Thereafter the simulation model 

stores interpolated current values and their respective voltage values to a database in the 

simulation model. Next the simulation model multiplies respective current and voltage 

values together. It results to a new table which indicates discrete power loss values which 

the IGBT or diode may have. 

 

 

Figure 22: Output characteristics curve of an IGBT digitized when 15V gate-to-

emitter voltage is used and the case temperature is 175°C. 

Similarly, the user may digitize the inductance curve of the filter inductor as a function 

of current and insert it to the simulation model if such curve is provided by the filter 

manufacturer. Then the simulation model interpolates inductance values of the filter in-

ductor at equivalent current points where discrete power loss values of the IGBT were 

calculated previously. Thereafter the simulation model calculates the rate of change of 

the current at those current points by using Equation (25) as inductance values of different 

current points are known. Consequently, time instances, when discrete power loss values 

of IGBTs or diodes occur, may be calculated. At last the energy loss between two adjacent 

discrete power loss instances are calculated in the simulation model by exploiting trape-

zoidal rule which is a numerical integration method.  

The principle of the trapezoidal rule is presented in Figure 23. Figure 23 is purely 

illustrative and does not relate to simulation results achieved with this simulation model 

in this thesis. The absolute power loss is depicted with red curve. The discrete power loss 

values at time instances ti are known and they are depicted as vertical black lines in Fig-

ure 23. The energy loss can be calculated by integrating power loss over time. Thus, the 
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energy loss between adjacent time instances ti and ti+1 may be approximated by calculat-

ing the area of the trapezoid, where time values ti and ti+1 form the base of the trapezoid 

and power loss values p(ti) and p(ti+1) the height of the trapezoid. When areas of single 

trapezoids are chained and summed together, the energy loss over the desired power loss 

curve may be approximated. The approximation is the more accurate, the shorter is the 

difference between time instances ti and ti+1 which leads to higher number of individual 

trapezoids summed together.  

In the simulation model the time difference between ti and ti+1, or width of single 

trapezoid, is defined at intervals, when voltage UCE changes 0,003V as a result of increase 

or decrease in current Ic. When the IGBT or diode is conducting, areas of trapezoids are 

calculated and summed together over positive half cycle. As a result, the total conduction 

energy loss over one cycle is achieved because the IGBT or diode conducts only during 

the other half cycle. Thus, it is enough to calculate conduction losses for the other half 

cycle only. Finally, the average conduction power loss over one cycle is achieved by di-

viding the total conduction energy loss over one cycle with a duration of the cycle. Con-

duction periods during positive half cycle differ between IGBTs and diodes and applying 

conduction loss calculation for IGBTs and diodes based on their conduction periods is 

discussed in Chapter 5.2.2.   

 

 

Figure 23: Principle of trapezoidal method which is used in the simulation 

model when power loss curve is integrated numerically. 

 

5.2.2 Application of conduction loss calculation technique to IGBTs and 

diodes 

The simulation model calculates total energy losses of IGBTs and diodes over a half-

cycle according to their conduction sequences and conduction times which are presented 

in Figure 14. The simulation model is built such that, based on user input values, it will 

always calculate energy losses for all four IGBTs and diodes which are depicted in the 
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simulation model as symbols “o”, “i”, “Dc” or “Da”. Thus, power loss and junction tem-

peratures are calculated in the simulation model for all components whose location is 

presented in Figure 21 regardless of which symbol the user has chosen from the drag-

down menu. However, simulation results are showed only for the IGBT or diode which 

symbol the user has chosen from the drag-down menu in the simulation model. Maximum 

and minimum current limit values imax and imin, as well as the magnitude of dead time tdead, 

are user adjustable parameters in the simulation model. They define limits for the energy 

loss calculation.  

The IGBT T2 in Figure 14 is depicted as inner IGBT and the IGBT T1 is depicted 

as outer IGBT in the simulation model. Inner and outer IGBTs conduct always when 

current increases towards maximum current limit value as can be seen from Figure 14. 

Furthermore, they conduct in the beginning of half cycle when current rises from zero to 

the value of imax which must be considered in the conduction loss calculation.  

When the current rises from imin to imax, conduction losses for inner and outer 

IGBTs are computed in the simulation model by calculating first the conduction loss when 

current rises from zero to the value of imax. Next the simulation model counts the 

conduction loss when current rises from zero to the value of imin. Then the two calculated 

conduction loss values are subtracted from each other which results in conduction loss 

value when current rises from imin to imax. The conduction loss during current decrease 

from imax to imin is calculated in the same principle and thus conduction losses for anti-

parallel diode, or diode D8 in Figure 14, may be solved. Respectively, conduction losses 

of the anti-parallel diode are calculated in the end of half-cycle when current decreases 

from imax to zero.  

In the simulation model it is assumed that the power is constant when clamp di-

odes are conducting current according to Figure 14, because current through a clamp di-

ode remains constant during its conduction periods. Hence, conduction energy losses of 

clamp diodes are calculated by multiplying the dead time with constant power values 

when current is at its maximum and minimum limit. Furthermore, as inner IGBTs are 

conducting also when clamp diodes are conducting, the power loss of inner IGBTs during 

dead time periods must be calculated and added to the power losses which occur in them 

during the increase of current from imin to imax. 

The switching frequency of the inverter is calculated in the simulation model 

based on rise time, fall time and dead time periods of the current waveform. In Figure 14 

is shown the principle how rise time trise, fall time tfall and dead time tdead periods are 

determined in the simulation model. The switching frequency of the inverter is derived 

as  

 

𝑓𝑠𝑤 =
1

𝑇𝑠𝑤
=

1

𝑡𝑓𝑎𝑙𝑙 + 𝑡𝑟𝑖𝑠𝑒 + 2 ∗ 𝑡𝑑𝑒𝑎𝑑
 , (27) 
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where Tsw is cycle time of switching sequence waveform. The current waveform which 

arises from IGBT switchings between imax and imin and includes dead time periods is called 

as switching sequence waveform in this thesis. 

 Total conduction energy loss of IGBTs and diodes during positive half-cycle is 

obtained by calculating the number of single conduction times of IGBTs and diodes dur-

ing positive half cycle and multiplying that with conduction losses of IGBTs and diodes 

during respective single conduction periods. Losses during single conduction periods of 

IGBTs and diodes are calculated with trapezoidal method explained in Section 5.2.1.  

 Calculation of single conduction times of IGBTs and diodes during positive half-

cycle is based on dividing the cycle time Thalf of positive half-cycle with the cycle time 

Tsw of switching sequence waveform. However, both the time t0-imax required for the cur-

rent to increase from zero to imax in the beginning of half-cycle and the time timax-0 required 

for the current to decrease from imax to zero in the end of half-cycle must be subtracted 

from Thalf before executing the division. Periods t0-imax and timax-0 are equal as inductance 

affecting to the rate of change of the current is equal during increase and decrease of 

current. Thus, the number of cycles Nsw of switching sequence waveform during positive 

half-cycle is solved in the simulation model according to equation 

 

𝑁𝑠𝑤 =  
𝑇ℎ𝑎𝑙𝑓 − 𝑡0−𝑖𝑚𝑎𝑥 − 𝑡𝑖𝑚𝑎𝑥−0

𝑇𝑠𝑤
. (28) 

 

In Figure 24 is illustrated the determination of Thalf, Tsw, t0-imax and timax-0 on current wave-

form during positive half-cycle when a UPS inverter operates at current limit. Figure 24 

is only explanatory and thus relation between lengths of Thalf, Tsw, t0-imax and timax-0 periods 

may differ from reality. Lines of the current waveform are curvy as the inductance of the 

filter inductor varies as a function of current and thus the current rate of change is not 

constant.  
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Figure 24: Current waveform during operation of a UPS inverter at cur-

rent limit with time periods which are used to determine number of cy-

cles of switching sequence waveform during positive half-cycle. 

Conduction losses of the IGBT or diode over half-cycle Thalf is derived by multiplying 

conduction losses during one cycle Tsw of switching sequence waveform with number of 

cycles Nsw of switching sequence waveform during positive half-cycle. Furthermore, 

when conduction losses of inner and outer IGBTs are calculated, conduction losses oc-

curring in them during time period t0-imax must be considered. Respectively, conduction 

losses of the anti-parallel diode during timax-0 must be considered when its conduction 

losses during half cycle Thalf is being calculated. The proportion between magnitudes of 

Thalf, t0-imax and timax-0 have a minor effect on average conduction power loss of IGBTs and 

diodes as it affects to the value of Nsw. Thus, increasing the fundamental frequency of the 

output current of the inverter, which is referred to as grid frequency in the simulation 

model, will slightly decrease average conduction losses as the magnitude of t0-imax and 

timax-0 will increase in proportion to the magnitude of Thalf. 

5.2.3 Switching losses calculation and a tool for calculating reverse re-

covery energy loss of diodes 

Inner and outer IGBTs both switches once on and once off during one cycle Tsw of the 

switching sequence waveform which can be seen from conduction periods of IGBTs T1 

and T2 presented in Figure 14 where Tsw = trise+tfall+2*tdead. Reverse recovery energy loss 

occurs one time for both clamp diode D1 and anti-parallel diode D8 when current com-

mutates from the diode to the IGBT.  

Switching losses graph of IGBTs may be digitized and inserted to the simulation 

model in table format as a function of current. Then the simulation will automatically 
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search for correct switching loss values from the data table according to inserted maxi-

mum and minimum current limit values. Both inner and outer IGBTs switch on at mini-

mum current limit value and off at maximum current limit value. The simulation model 

exploits interpolation for retrieving the exact switching on and off loss value from the 

data table according to current limit values. Hence, if current limit values are changed, 

the simulation model will automatically change also the switching loss values to match 

with new current limit values.  

Additionally, the switching voltage for the switching losses graph is presented in 

datasheets of IGBTs as switching losses of IGBTs are dependent on magnitude of switch-

ing voltage. Thus, the user must enter as input the switching voltage which is valid for 

the inserted switching loss data. The simulation model will then form a scaling factor for 

the switching losses according to the inserted DC bus voltage parameter value as it is 

equal to the switching voltage magnitude used in the simulation. The scaling factor is 

formed by dividing the DC bus voltage used in the simulation with the valid switching 

voltage of the inserted switching loss data. Values of inserted switching loss data are then 

multiplied with the scaling factor so that switching loss values match with the switching 

voltage used in the simulations. 

However, if a graph of switching losses of the IGBT is not available, switching 

loss values may be inserted manually to the simulation model. In that case the simulation 

model will resemble the user with a pop-up window to change also switching loss values 

when current limit values are changed as switching losses of IGBTs may be current sen-

sitive variables. The pop-up window may prevent invalid simulation results from occur-

ring due to a user mistake.  

Switching losses during one cycle Tsw of switching sequence waveform are calcu-

lated by multiplying the number of switchings during Tsw with switching losses of respec-

tive single switchings. Total switching losses of IGBTs during half-cycle Thalf are calcu-

lated by multiplying switching losses during one cycle of switching sequence waveform 

Tsw with number of cycles Nsw of switching sequence waveform during half-cycle. Simi-

larly as in conduction loss calculations, increasing the grid frequency will slightly reduce 

the average switching power loss of IGBTs and diodes as the value of Nsw is diminished. 

 Reverse recovery energy losses of diodes are considered as switching off losses 

of diodes in the simulation model and they shall be inserted manually to the simulation 

model. However, as reverse recovery energy losses of diodes are rarely apprised directly 

in datasheets of diodes, a tool for approximating reverse recovery loss of a diode is inte-

grated to the simulation model.  

The tool calculates the reverse recovery energy loss a diode according to Equa-

tion (6). The tool requires the rate of change of the current 
𝑑𝑖

𝑑𝑡
, which shown in Figure 8, 

always as input for the calculation. Then the user must insert peak reverse recovery cur-

rent Iprr and reverse recovery charge Qrr or peak reverse recovery current Iprr and reverse 

recovery time trr or reverse recovery charge Qrr and reverse recovery time trr to the cal-

culation tool. With one of those three combinations, the tool calculates the area of Qf in 
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Figure 8 which is required in calculation of reverse recovery current according to Equa-

tion (6). In addition, the magnitude of reverse voltage UR which is equal to DC bus voltage 

of the inverter must be inserted to the calculation tool. The calculation tool gives as output 

an approximation of reverse recovery energy loss of a diode which is multiplied with a 

safety factor 1,2. The safety factor is used to prevent the tool from outputting too ideal 

reverse recovery energy losses if values Iprr, trr or Qrr apprised in diode datasheets would 

be misjudged by the diode manufacturer. Furthermore, the tool draws an illustrative graph 

of the reverse recovery current as a function of time. The validity of reverse recovery 

energy losses may be evaluated from the graph. Similarly to IGBTs, total switching losses 

of diodes during half-cycle Thalf are calculated by calculating first reverse recovery energy 

losses of diodes during Tsw and multiplying that with the number of cycles Nsw of switch-

ing sequence waveform during half-cycle. 

5.2.4 Parallel connection and thermal calculation of IGBTs and diodes  

A key factor, which makes the simulation model useful in investigating the fault clearing 

capability of UPS inverter, is that the number of IGBTs and diodes connected in parallel 

in the main circuit of the inverter may be changed easily with a parameter change. Thus, 

it may be investigated how much current limit values, or fault clearing capability of the 

inverter, can be raised when diodes or IGBTs are added in parallel. The user may choose 

an unlimited number of IGBTs or diodes connected in parallel in the main circuit of the 

inverter and the simulation model will calculate power losses and junction temperatures 

of single IGBTs and diodes. However, it is assumed that the parallel connected IGBTs or 

diodes are similar and that current is divided equally between them.  

 Power loss calculation of single parallel connected IGBTs or diodes is imple-

mented in the simulation model by calculating the maximum and minimum current limit 

values and rate of change of the current that flows through single IGBTs or diodes. Max-

imum and minimum current limit values of the current flowing through single parallel 

connected IGBTs or diodes are calculated by dividing the maximum and minimum cur-

rent limit values of the inverter with the number of IGBTs or diodes connected in parallel. 

Thus, for example, if the used maximum current limit value of the inverter is 120 A and 

minimum current limit is 90 A and three IGBTs are connected in parallel, the maximum 

current limit of the current flowing through a single IGBT is 40 A and minimum current 

limit 30 A. Thus, switching of IGBTs occur at current magnitudes of 40 A and 30 A. The 

rate of change of the current must be also calculated separately for the single parallel 

connected IGBT or diode as the number of parallel connected IGBTs or diodes must not 

affect to the switching frequency of the IGBTs. Thus, the inductance data of the filter 

inductor and fault circuit is multiplied with the number of IGBTs or diodes connected in 

parallel. As a result, the rate of change of the current that flows through a single parallel 

connected IGBT or diode is divided by the number of parallel connected IGBTs or diodes. 

Hence, the resultant current waveform which arises from current waveforms of single 

parallel connected IGBTs or diodes is the output current of the inverter.  
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Calculation of the average junction temperature of IGBT or diode is based on Equation 

(12). Average conduction and switching power loss of the IGBT or diode during one cycle 

of the inverter output current waveform are summed together which results in average 

total power loss PL of the IGBT or diode. User must insert a constant heatsink temperature 

TH to the simulation model if heatsink is used or a constant case temperature TC of the 

IGBT or diode if heatsink is not used. Furthermore, a constant value for the thermal im-

pedance between the junction and case of the IGBT or diode, which is apprised in IGBT 

or diode datasheet, must be entered as input to the simulation model. Usually, the thermal 

impedance of the thermal interface material between case and heatsink is apprised in rel-

ative to the contact area of TIM. Thus, the user may insert the contact area of the TIM 

and the thermal impedance of the TIM relative to the contact area to the simulation model. 

Then the simulation model may calculate a constant thermal impedance value between 

case and heatsink. Consequently, the average junction temperature of IGBT or diode may 

be calculated.  

It must be noticed that as the junction temperature calculation is based on average 

total power loss of IGBT or diode over one cycle, the average junction temperature out-

putted from the simulation model does not describe the maximum junction temperature 

that may occur momentarily. The higher the current deviation through the IGBT or diode 

is, the more the maximum junction temperature may differ from the average junction 

temperature calculated with the simulation model. Thus, a certain gap shall be left be-

tween the maximum allowed operating junction temperature of the IGBT or diode and 

average junction temperature of the IGBT or diode achieved from simulation results. 

5.2.5 Summary of simulation parameters dependency on each other 

In Figure 25 is presented an explanatory chart about the calculation algorithm on how the 

simulation model is implemented. Figure 25 summarizes parameters which the user must 

enter as input to the simulation model and the relevant parameters to be adjusted when 

the fault clearing capability of a UPS inverter is investigated. Arrows declare dependen-

cies between parameter values and simulation result values. Changing the parameter 

value from where an arrow begins will have an influence on value of the simulation result 

which the arrow points at. In previous sections 5.2.1, 5.2.2, 5.2.3 and 5.2.4 is explicated 

that why and how input parameter values influence on respective simulation results.  

Dotted lines indicate that changing the parameter value from where the dotted line 

starts has only minor relative influence on a value of the pointed simulation result. Thus, 

their significance on the pointed simulation result value is minor. Parameters from where 

a continuous line is drawn to point at the simulation result has a more significant effect 

on the simulation result value. Colours of the arrows indicate which simulation result 

parameter is being affected when respective input parameter is changed. From Figure 25 

can be seen that changing any of the input parameters or user adjustable parameters will 

have at least some influence on average junction temperature of the IGBT or diode. 
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Figure 25: Calculation algorithm of the simulation model and parameter dependen-

cies on each other. 
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5.3 Simulations with different IGBT and diode configura-
tions 

A target in simulations of this thesis is to investigate how much the fault clearing capa-

bility of a UPS device could be increased if several IGBTs or diodes are connected in 

parallel in the main circuit of a UPS inverter. The IGBTs and diodes, which are under 

examination are used originally as single components in main circuits of 15 kW and 

20 kW UPS inverters. The greatest interest of completing simulations is to solve what 

kind of parallel configuration of IGBTs and diodes may be required so that the UPS in-

verter is able produce an output fault current that may clear a C16 miniature circuit 

breaker instantly.  

At present, when single IGBTs and diodes are used in the main circuit of 20 kW 

UPS inverter, the inverter is able to provide enough fault current to clear a C6 miniature 

circuit breaker instantly if a fault occurs at UPS output. However, inventors of the fault 

clearing circuitry, which is presented in Chapter 4.4, have tested that the fault clearing 

circuitry may provide enough fault current to clear a C16 miniature circuit breaker in-

stantly whether a short circuit happens in the load side of the UPS. Thus, the aim is to 

figure out the parallel configuration of IGBTs and diodes in the main circuit of inverter 

that may clear the C16 miniature circuit breaker instantly without exceeding safe operat-

ing areas of IGBTs and diodes. Eventually, when the targeted parallel configuration of 

IGBTs and diodes is found out, a cost comparison between the cost of the fault circuitry 

and the cost of components required to be added in parallel to the main circuit of the 

inverter is executed. Hence, it may be estimated, whether it is economically more reason-

able to improve the fault clearing capability of a UPS device by adding power semicon-

ductors in parallel to the main circuit of the inverter or by installing the external fault 

clearing circuitry beside a UPS device. Simulations performed in this thesis consist of 

several cases, where IGBT and diode configurations and current limit settings of the in-

verter are varied. Current limit values are adjusted to achieve the highest fault clearing 

capability of the UPS inverter which fulfils preconditions.  

Components and preconditions applied in the simulations are presented in Section 

5.3.1, simulation results are presented in Section 5.3.2 and cost comparisons between 

possible solutions to improve the fault clearing capability of a UPS device to clear 

C16 circuit breakers are presented in Section 5.3.3.  

5.3.1 Components and preconditions of simulations 

In simulations of this thesis it is assumed that the inductance of the filter inductor is the 

only parameter limiting the rate of change of the current. The inductance curve of the 

filter inductor, which is used in all simulation cases of this thesis, is presented in Figure 26 

as a function of DC magnetizing current. The inductance curve is digitized and entered 

as input to the simulation model. Thus, the current rate of change is equal in all simulation 

cases as the applied positive and negative DC bus voltage is also a constant 350 V in all 

simulation cases. 
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Figure 26: Inductance curve of the filter inductor as a function of DC magnetizing 

current. 

IGBTs and diodes, which performances are investigated in this thesis during current limit 

operation of a UPS device, are presented in Table 3. IGBTs and diodes presented in Ta-

ble 3 are used currently as single components in existing 20 kW and 15 kW UPS inverters. 

The investigated IGBTs and diodes are identified only according to their rated currents 

and voltages. Their locations in the main circuit of the inverter can be checked from Fig-

ure 21 and they conduct during positive half-cycles of current. Similar components are 

used in lower branch of the inverter at respective places and they conduct during negative 

half-cycles of current. Thus, losses of components in upper and lower branches of the 

inverter main circuit are assumed to be equal. Therefore, losses and junction temperatures 

of components in other branch only are required to be calculated for solving losses and 

junction temperatures of all components in the main circuit of the inverter.  

 

Table 3: IGBTs and diodes whose performance is evaluated in simulations of this 

thesis. IGBTs and diodes are identified according to their rated currents and volt-

ages. 

 20 kW UPS inverter component 15 kW UPS inverter component 

Outer IGBT IGBT 600V 60A IGBT 650V 40A 

Inner IGBT IGBT 650V 75A IGBT 650V 50A 

Clamp diode Diode 600V 75A Diode 600V 60A 

Anti-parallel diode Diode 1200V 60A No component 

 

Two preconditions, which must be fulfilled in all simulation cases of this thesis, are that 

the switching frequency of IGBTs must be below 18 kHz and junction temperatures of 

IGBTs and diodes must be kept below 150°C. Therefore, maximum and minimum current 

limit values are adjusted in the simulation model so that above mentioned preconditions 
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are fulfilled. The reason of using preconditions is to ensure that operation of IGBTs and 

diodes is kept within their safe operating areas. However, the average between maximum 

and minimum current limit values should be maximized to achieve the highest possible 

fault clearing capability for the UPS inverter. Obviously, it must be considered, that the 

maximum current limit value does not exceed maximum current ratings apprised in 

datasheets of IGBTs and diodes or current ranges of graphs presented in IGBT and diode 

datasheets. Otherwise, a high risk for destruction of IGBTs or diodes may exist.  

It should be noted that the maximum fault current flowing through the miniature 

circuit breaker in the load side is not equal to the maximum current limit value of the 

inverter, or the maximum current flowing through IGBTs and diodes, as the filter capac-

itor shunts high frequency current components and thus cuts peaks in fault current wave-

form at the load side. Therefore, an average of maximum and minimum current limit 

values is a good approximation of current magnitude flowing through the miniature cir-

cuit breaker. 

Besides inductance and DC voltage values, other settings of the simulation model 

which are applied as equal in all simulation cases of this thesis are heatsink settings, the 

magnitude of dead time and the used grid frequency which is the fundamental frequency 

of the output fault current waveform. The magnitude of dead time used in simulations is 

1,1 μs and the grid frequency is 50 Hz.  The used constant temperature of the heatsink is 

below 100°C and the thermal impedance between case and heatsink is 0,399 °C/W. The 

thermal impedance value between the case and heatsink is assumed to be same in all 

components. Thus, the used thermal interface material and contact area between the case 

and heatsink are equal in all IGBTs and diodes presented in Table 3 as they are encapsu-

lated into same packages. Furthermore, the output characteristics data of IGBTs and di-

odes and switching losses data are taken from datasheets according to 175°C junction 

temperature value and according to 15 V gate-to-emitter voltage value. Reverse recovery 

energy losses, which are switching losses of diodes, are calculated with the calculation 

tool which is integrated to the simulation model. Thermal resistance values used in the 

simulations between junction and case correspond with steady-state condition values ap-

prised in IGBT and diode datasheets.  

In first simulation cases of this thesis, power losses and junction temperatures of 

IGBTs and diodes are calculated according to known semiconductor configurations and 

current limit adjustments of existing 15 kW and 20 kW UPS devices. Thus, the validity 

of simulation results and input parameters may be verified when junction temperatures of 

IGBTs and diodes which the simulation model gives as output may be compared to gen-

eral estimations of real IGBT and diode junction temperatures which are valid in respec-

tive UPS devices. In addition, it may be verified that above mentioned preconditions are 

fulfilled when same current limit values are used in the simulation model as are used in 

their real world counterparts.  
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5.3.2 Simulation results 

In this thesis, eight different simulation cases were performed in total where the fault 

clearing capability of the UPS inverter was investigated with different configurations of 

IGBTs and diodes in the main circuit of the inverter. The investigated configurations of 

the eight simulation cases are listed in Table 4. Cases 1 and 2 represent configurations 

which are currently used in 20 kW and 15 kW UPS inverters. In cases 3–5 components 

are added in parallel and it is investigated how much the output current of the UPS may 

be increased as a result of parallel connections. In cases 6–8 switching frequency of the 

inverter was decreased from around 18 kHz and its influence on power losses and junction 

temperatures of IGBTs and diodes was investigated. 

 

Table 4: Investigated simulation cases and their configurations. 

 

 

In the first simulation case, which results are disclosed in Table 5, the simulation was 

performed according to current limit values of the inverter and configurations of IGBTs 

and diodes which are valid in the existing 20 kW UPS device. The simulation results in 

Table 5 confirm that the simulation model gives reasonable results with current limit ad-

justments and configurations of power semiconductor devices which are used in the ex-

isting UPS device.  

 

Table 5: Results of the first simulation case where IGBTs, diodes and their con-

figuration are chosen as they are used in the 20 kW UPS device currently. 

 

Max. Current limit: 110 A

Min. Current limit: 59 A

Switching frequency: 17,799 kHz

Location Component Configuration Avg. Conduction losses Avg. switching losses Avg. total losses Avg. junction temperature 

Outer IGBT IGBT 600V 60A Single 49,24 W 32,13 W 81,37 W < 150 °C

Inner IGBT IGBT 650V 75A Single 35,03 W 44,19 W 79,22 W < 150 °C

Clamp diode Diode 600V 75A Single 2,29 W 3,42 W 5,71 W < 150 °C

Anti-parallel diode Diode 1200V 60A Single 35,67 W 18,42 W 54,09 W < 150 °C

Avg. current: 84.5 A

PERFORMANCE OF POWER SEMICONDUCTOR DEVICES

INVERTER CURRENT LIMIT ADJUSTMENTS

Fault clearing capability: C6 miniature circuit breaker
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The switching frequency is below 18 kHz and thus it fulfils the precondition. In addition, 

it is known that total power losses of IGBTs should be around 80 W which results in 

average IGBT junction temperature that is below 150 ºC. The fault clearing capability of 

the UPS device is estimated in the simulation results according to average current value 

which is calculated as an average between the maximum and the minimum current limit 

values. Thus, it equals approximately the peak magnitude of the output current because 

the filter capacitor shunts high frequency current components at the UPS output. Hence, 

the current waveform fed through the circuit breaker resembles the shape of a square 

waveform. Magnitude of the average current during negative and positive half-cycles of 

the fault current is the same and only the direction of the current is opposite.  

The fault clearing capability is announced for C-type miniature circuit breakers in 

this thesis. The rated current value of the circuit breaker is chosen such that the average 

output current of the UPS is high enough to clear the circuit breaker instantly. The output 

current of the UPS shall be clearly in the magnetic tripping zone of the circuit breaker to 

ensure instant tripping. Therefore, one size smaller circuit breaker in terms of magnitude 

of the rated current is preferred if output current of the inverter is closer to lower current 

threshold of the magnetic tripping zone than the higher current threshold.  Magnetic trip-

ping zones of different circuit breaker types are shown in time-current characteristic 

curves in Figure 16 and it shall be remembered that current thresholds of miniature circuit 

breakers should be multiplied with a factor √2 when square wave shaped current is fed 

through them as described in Chapter 4.3.2.  

 According to the simulation results of Table 5, the UPS device may produce an 

output fault current of 84,5 A. However, in the specification of 20 kW UPS device is 

announced that the 20 kW UPS device may produce an output current of 72A in a short 

circuit situation. The value announced in the device specification is based on results 

achieved from short circuit tests which are performed with the existing device. Hence, it 

shall be considered that the simulation model may give ideal results compared to real 

world situations since in the simulation model is assumed, for instance, that the fault re-

sistance is zero and that the inductance is comprised only from the filter inductance. Fur-

thermore, it is assumed that the filter capacitor filters high frequency current components 

from the UPS output current so that the average between maximum and minimum current 

limit values is the peak current which is fed to the circuit breaker. This coarse assumption 

may also add error to simulation results and thus the simulation model may give higher 

output currents than occurs in the real world. Nevertheless, the fault clearing capability 

of C6 miniature circuit breaker which is achieved from simulation results is equal with 

the fault clearing capability announced in the 20 kW UPS device specification.  

In the second simulation case, which results are presented in Table 6, the simula-

tion parameters were adjusted according to IGBTs, diodes and current limit values which 

are used in the existing 15 kW UPS device. Diodes D1,D2,D3 and D4 in Figure 21 which 

are integrated within IGBTs act as anti-parallel diodes because in this configuration di-

odes D7 and D8 of Figure 21 are not applied in the main circuit of the inverter.  In this 

case, it was also noticed that the average output current 66 A given by the simulation 
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model was 12 A higher than value 54 A announced in the device specification of 15 kW 

UPS.  

 

Table 6: Results of the second simulation case where IGBTs, diodes and their 

configuration are chosen as they are used in the 15 kW UPS device currently. 

 

 

However, based only on two simulation cases a generic conclusion about the size of the 

difference in simulation results and real world results can not be drawn in a reliable way. 

Thus, it can be only concluded that the simulation model may give higher output currents 

than which are valid in real world situations and it must be considered when the fault 

clearing capability of the inverter is determined according to simulation results. When the 

main circuit of the inverter is built with IGBTs, diodes and their configuration as per they 

are used in 15 kW UPS device, the fault clearing capability of the inverter is high enough 

to clear C6 miniature circuit breakers instantly according to simulation results of Table 6. 

An equal fault clearing capability is also announced for the 15 kW UPS device in its 

specification. 

 In the third simulation case, IGBTs and diodes of 20 kW UPS device were added 

two in parallel to the main circuit of the inverter. Current limits of the inverter were ad-

justed so that preconditions concerning the switching frequency and junction tempera-

tures of IGBTs and diodes were fulfilled. Diodes must be added also two in parallel be-

cause if single diodes would be used the forward current of the diode would have ex-

ceeded the safe operating area announced in datasheets of diodes. Results of the third 

simulation case are shown in Table 7. According to simulation results, average output 

current of 173,5 A may be able to be drawn from the UPS device in short circuit situations 

when each IGBT and diode are installed two in parallel in the main circuit. Thus, output 

fault current of the inverter may be high enough to clear C16 circuit breaker.  

However, C16 circuit breakers would need a momentary peak current of 226 A to 

ensure their operating in under 0,1s and thus it is the higher current threshold of magnetic 

tripping zone. The lower current threshold of magnetic tripping zone in C16 miniature 

circuit breakers is at 113 A and thus the current 173,5 A is located approximately in the 

middle of the magnetic tripping zone. Due to the wide magnetic tripping tolerance of 

C16 circuit breaker, it can not be verified that the current 173,5 A is always enough to 

clear C16 circuit breakers in few hundreds of milliseconds before the UPS trips. It may 

depend on manufacturer and item of the circuit breaker whether 173,5 A may clear 

C16 circuit breaker in under 300 ms which is the time limit how long 15 kW and 20 kW 

Max. Current limit: 89 A

Min. Current limit: 43 A

Switching frequency: 17,475 kHz

Location Component Configuration Avg. Conduction losses Avg. switching losses Avg. total losses Avg. junction temperature 

Outer IGBT IGBT 650V 40A Single 36,02 W 24,40 W 60,42 W < 150 °C

Inner IGBT IGBT 650V 50A Single 41,45 W 32,67 WW 74,12 W < 150 °C

Clamp diode Diode 600V 60A Single 1,63 W 8,63 W 10,26 W < 150 °C

Anti-parallel diode No component - - - - -

PERFORMANCE OF POWER SEMICONDUCTOR DEVICES

INVERTER CURRENT LIMIT ADJUSTMENTS

Avg. current: 66 A Fault clearing capability: C6 miniature circuit breaker
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UPS devices can operate at current limit before tripping. If a full reliability of fault clear-

ing is desired to be ensured C10 circuit breakers should be used with this configuration 

even though clearing C16 circuit breakers may be possible. 

 

Table 7: Results of the third simulation case where IGBTs and diodes of 20 kW 

UPS device are installed two in parallel in the main circuit of the inverter.  

 

 

In the configuration of fourth simulation case, IGBTs of 15 kW UPS device were added 

two in parallel to the main circuit and diodes of 20 kW UPS device were used as single 

components. Results of the fourth simulation case are shown in Table 8. With this con-

figuration the output fault current is 130 A according to simulation results and it may 

clear a C10 circuit breaker. However, it should be noticed that the junction temperature 

of the anti-parallel diode may increase close to 150°C as shown in Table 8. Therefore, it 

may be reasonable to add them also two in parallel which would increase the reliability 

of anti-parallel diodes when the UPS operates at the current limit even though it is not 

compulsory as temperature is kept below 150°C according to the simulation results of 

Table 8. 

 

Table 8: Results of the fourth simulation case where IGBTs of 15 kW UPS device 

are installed two in parallel and diodes of 20 kW UPS device as single components 

in the main circuit of the inverter.  

 

 

Results of the fifth simulation case are shown in Table 9. In this case, three IGBTs of 

15 kW UPS device were added in parallel and two diodes of 20 kW UPS device in paral-

lel. Thus, the average output current of the inverter could be raised to 185,5 A without 

exceeding preconditions or safe operating areas of the power semiconductor devices. In 

fact, the maximum current limit value must be constrained in simulations to 230 A as the 

Max. Current limit: 216 A

Min. Current limit: 131 A

Switching frequency: 17,761 kHz

Location Component Configuration Avg. Conduction losses Avg. switching losses Avg. total losses Avg. junction temperature 

Outer IGBT IGBT 600V 60A two in parallel 50,83 W 33,56 W 84,39 W  139,73 °C

Inner IGBT IGBT 650V 75A two in parallel 36,05 W 45,96 W 82,02 W 148,86 °C

Clamp diode Diode 600V 75A two in parallel 2,33 W 3,56 WW 5,89 W  89,35 °C

Anti-parallel diode Diode 1200V 60A two in parallel 36,77 W 19,12 W 55,89 W 124,61 °C

INVERTER CURRENT LIMIT ADJUSTMENTS

Avg. current: 173,5 A Fault clearing capability: C16 miniature circuit breaker

PERFORMANCE OF POWER SEMICONDUCTOR DEVICES

Max. Current limit: 164 A

Min. Current limit: 96 A

Switching frequency: 17,704 kHz

Location Component Configuration Avg. Conduction losses Avg. switching losses Avg. total losses Avg. junction temperature 

Outer IGBT IGBT 650V 40A two in parallel 34,76 W 24,46 W 59,22 W  144,14 °C

Inner IGBT IGBT 650V 50A two in parallel 39,72 W 35,84 W 75,56 W  148,36 °C

Clamp diode Diode 600V 75A Single 4,28 W 3,91 W 8,19 W 91,05 °C

Anti-parallel diode Diode 1200V 60A Single 66,83 W 23,46 W 90,29 W 148,98 °C

PERFORMANCE OF POWER SEMICONDUCTOR DEVICES

INVERTER CURRENT LIMIT ADJUSTMENTS

Avg. current: 130 A Fault clearing capability: C10 miniature circuit breaker



  

 

 

69 

inductance data of the filter inductor ended in 230 A as can be seen from the graph in 

Figure 26. The minimum current limit was then adjusted so that the switching frequency 

was settled to be slightly below 18 kHz. With this configuration, it may be possible to 

achieve a fault clearing capability of the inverter to clear C16 circuit breakers instantly. 

However, similarly as in the third simulation case, it can not be verified that the 185,5 A 

will always clear a C16 circuit breaker as it is still clearly below 226 A which is the higher 

current threshold value of magnetic tripping zone in C16 circuit breakers. Nevertheless, 

185,5 A may be enough to clear C16 breakers but if reliability of the fault clearing is 

wanted to be confirmed C10 circuit breakers should be used.  

 

Table 9: Results of the fifth simulation case where IGBTs of 15 kW UPS device 

are installed three in parallel and diodes of 20 kW UPS device two in parallel in 

the main circuit of the inverter. 

 

 

During simulations it was noticed, that when the switching frequency of the inverter was 

decreased, by increasing the difference between maximum and minimum current limit 

values, average output current of the inverter could be somewhat increased without caus-

ing significant increase in junction temperatures of IGBTs. The reason for that results 

from the decreased average switching losses of IGBTs when the switching frequency is 

decreased. Thus, of course, the conduction losses of IGBTs and diodes increase as con-

duction times and current magnitudes increase due to the lowered switching frequency. 

However, the switching losses of IGBTs may decrease more than conduction losses in-

crease when the switching frequency is lowered a certain amount. Therefore, a possibility 

to increase the average output current of the inverter may be realized.  

 Practically, however, changing the switching frequency may not be easily realiz-

able in existing 15 kW and 20 kW UPS devices which are used as reference devices. This 

originates from control systems of the UPS devices which may be adjusted to function 

only at certain clock frequencies such as 18 kHz and they may not be easily modified. 

Nevertheless, in sixth, seventh and eighth simulation cases were investigated average out-

put currents and fault clearing capabilities of UPS inverters when the switching frequency 

is lowered from around 18 kHz.  

 Table 10 shows simulation results for the sixth simulation case where the main 

circuit of the inverter is implemented according to power semiconductor components 

which are used currently in 20 kW UPS device. However, the switching frequency of the 

inverter is lowered from 17,8 kHz to 15,6 kHz. When results in Table 5 and in Table 10 

Max. Current limit: 230 A

Min. Current limit: 141 A

Switching frequency: 17,85 kHz

Location Component Configuration Avg. Conduction losses Avg. switching losses Avg. total losses Avg. junction temperature 

Outer IGBT IGBT 650V 40A three in parallel 32,25 W 23,01 W 55,27W 140,19 °C

Inner IGBT IGBT 650V 50A three in parallel 36,60 W 33,94 W 70,54 W  144,16 °C

Clamp diode Diode 600V 75A two in parallel 2,58 W 3,67 W 6,25 W 89,61 °C

Anti-parallel diode Diode 1200V 60A two in parallel 40,58 W 20,07 W 60,66 W 127,98 °C

INVERTER CURRENT LIMIT ADJUSTMENTS

Avg. current: 185,5 A Fault clearing capability: C16 miniature circuit breaker

PERFORMANCE OF POWER SEMICONDUCTOR DEVICES



  

 

 

70 

are compared, it is seen that the average output current of the inverter may be increased 

from 84,5 A to 89 A when the switching frequency is lowered. This may not increase the 

fault clearing capability of the inverter to one size larger circuit breaker, however, the 

higher output current increases the probability that the C6 circuit breaker may be cleared 

instantly in its magnetic tripping zone if a short circuit occurs at the load side of the UPS. 

The maximum current limit value is limited to 119 A as otherwise the safe operating area 

of IGBTs would be exceeded in the configuration. 

 

Table 10: Results of the sixth simulation case where a lower switching frequency 

is used and IGBTs, diodes and their configuration are chosen as per they are 

applied in the 20 kW UPS device currently. 

 

 

In the seventh simulation case, the configuration of IGBTs and diodes is the same as in 

the third simulation case, where components of 20 kW UPS device are added two in par-

allel to the main circuit. However, the switching frequency is lowered from 17,8 kHz to 

15,9 kHz. Simulation results in Table 11 show that with a lowered switching frequency 

output current of the inverter may be increased from 173,5 A to 181 A when results in 

Table 11 are compared to results in Table 7. Lowering the switching frequency may there-

fore consolidate the probability that the UPS device has the fault clearing capability to 

clear C16 circuit breakers. 

 

Table 11: Results of the seventh simulation case where IGBTs and diodes of 20 kW 

UPS device are added two in parallel to the main circuit and the switching fre-

quency is lowered. 

 

 

In the eighth simulation case, IGBTs of 15 kW UPS device are added two in parallel, the 

clamp diode of 20 kW UPS device is used as a single component and anti-parallel diodes 

Max. Current limit: 119 A

Min. Current limit: 59 A

Switching frequency: 15,619 kHz

Location Component Configuration Avg. Conduction losses Avg. switching losses Avg. total losses Avg. junction temperature 

Outer IGBT IGBT 600V 60A Single 53,35 W 31,24 W 84,59 W  139,87 °C

Inner IGBT IGBT 650V 75A Single 37,38 W 41,58 W 78,96 W 146,48 °C

Clamp diode Diode 600V 75A Single 2,19 W 3,00 W 5,19 W  88,83 °C

Anti-parallel diode Diode 1200V 60A Single 38,48 W 16,16 W 54,64 W 123,72 °C

PERFORMANCE OF POWER SEMICONDUCTOR DEVICES

INVERTER CURRENT LIMIT ADJUSTMENTS

Avg. current: 89 A Fault clearing capability: C6 miniature circuit breaker

Max. Current limit:  230 A

Min. Current limit:  132 A

Switching frequency: 15,9 kHz

Location Component Configuration Avg. Conduction losses Avg. switching losses Avg. total losses Avg. junction temperature 

Outer IGBT IGBT 600V 60A two in parallel 54,31 W 32,51 W 86,82 W 141,32 °C

Inner IGBT IGBT 650V 75A two in parallel 38,04 W 43,37 W 81,41 W 148,39 °C

Clamp diode Diode 600V 75A two in parallel 2,23 W 3,19 W 5,42 W 89,00 °C

Anti-parallel diode Diode 1200V 60A two in parallel 39,17 W 17,11 W 56,27 W 124,88 °C

INVERTER CURRENT LIMIT ADJUSTMENTS

Avg. current:  181 A Fault clearing capability: C16 miniature circuit breaker

PERFORMANCE OF POWER SEMICONDUCTOR DEVICES
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of 20 kW UPS device are added two in parallel to the main circuit of the inverter. Results 

of the eighth simulation case are shown in Table 12.  

 

Table 12: Results of the eighth simulation case where IGBTs of 15 kW UPS device 

are added two in parallel, clamp diode of 20 kW UPS device is used as a single 

component and anti-parallel diodes of 20 kW UPS device are added two in par-

allel to the main circuit. Furthermore, switching frequency of the inverter is low-

ered from 18 kHz. 

 

 

The switching frequency of the inverter is 13,8 kHz and thus output current of 143 A may 

be drawn from the inverter without exceeding safe operating areas of IGBTs and diodes. 

The configuration is nearly the same as in the fourth simulation case presented in Table 8. 

However, anti-parallel diodes must be added two in parallel in the eighth simulation case 

due to the 143 A output current of the inverter as if single anti-parallel diodes would be 

used the junction temperature in them would raise over 150ºC. The increase in the output 

current can be seen by comparing simulation results of Table 8 and Table 12. With the 

configuration and switching frequency of the eighth simulation case, the fault clearing 

capability of the inverter to clear C10 circuit breakers may be consolidated compared to 

the fourth simulation case where output current of the inverter is 13 A lower. On the other 

hand, anti-parallel diodes are required two more per one inverter leg of a three-level UPS 

inverter in the configuration of the eighth simulation case.  

As a consequence, it can be concluded according to simulation results presented 

in Tables 10,11 and 12 that output currents of UPS devices operating at current limit may 

be increased 5–10% by optimizing the switching frequency of the UPS inverter. 

 

5.3.3 Cost comparison of solutions to improve the fault clearing capabil-

ity of a UPS device  

One of interests in this thesis is to study the cost of required modifications in IGBT and 

diode configuration so that the UPS device may have a fault clearing capability to clear 

C16 miniature circuit breakers and compare it to the cost of the fault clearing circuitry 

which may also clear C16 circuit breakers. Cost comparisons are applied for a three-phase 

three-level UPS inverter. Thus, when IGBTs and diodes are added in parallel to the main 

circuit of the inverter, they are added to all three phases on upper and lower branches of 

inverter legs. Similarly, the fault clearing circuitry, which is based on the circuit diagram 

Max. Current limit: 190 A

Min. Current limit: 96 A

Switching frequency:  13,793 kHz

Location Component Configuration Avg. Conduction losses Avg. switching losses Avg. total losses Avg. junction temperature 

Outer IGBT IGBT 650V 40A two in parallel 40,01 W 21,57 W 61,59 W 146,51 °C

Inner IGBT IGBT 650V 50A two in parallel 45,76 W 30,30 W 76,06 W 148,79 °C

Clamp diode Diode 600V 75A single diode 3,91 W 3,04 W 6,96 W 90,14 °C

Anti-parallel diode Diode 1200V 60A two in parallel 27,74 W 12,84 W 40,58 W 113,76 °C

PERFORMANCE OF POWER SEMICONDUCTOR DEVICES

INVERTER CURRENT LIMIT ADJUSTMENTS

Avg. current:  143 A Fault clearing capability: C10 miniature circuit breaker
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presented in Figure 20, is applied at the output of a three-phase UPS device. Therefore, 

the number of silicon controlled rectifiers in Figure 20 must be tripled which results in 

six silicon controlled rectifiers which are required in total in the fault clearing circuitry of 

a three-phase UPS device. 

 From results of simulation cases presented in Chapter 5.3.2 it is seen that IGBT 

and diode configurations which are used in the third and fifth simulation case may have 

the capability to clear a C16 circuit breaker. A configuration in the third simulation case 

comprises of two IGBTs of 20 kW UPS device connected in parallel and two diodes of 

20 kW UPS device connected in parallel. In the fifth simulation case, three IGBTs of 

15 kW UPS device are connected in parallel and two diodes of 20 kW UPS device are 

connected in parallel. Simulation results for the third and fifth simulation cases are pre-

sented in Tables 6 and 8. From results can be seen that 12 A higher output current is 

achieved by applying the configuration of IGBTs and diodes which is used in the fifth 

simulation than which is used in the third simulation case. Thus, a probability that the 

maximum output current achieved with the configuration suffices to clear C16 circuit 

breakers instantly is higher in the fifth simulation case.  

 However, as explained in Chapter 5.3.2, it can not be guaranteed that output cur-

rents of configurations in both simulation cases are high enough to clear C16 circuit 

breakers instantly in all cases before the UPS device itself trips to overcurrent. Therefore, 

a full certainty for the UPS inverter to clear C16 circuit breakers with IGBT and diode 

configurations of the third and fifth simulation cases can not be provided. It should be 

considered when technical applicability of configurations in the third and fifth simulation 

case to improve the fault clearing capability of UPS device is discussed. Nevertheless, in 

simulations of this thesis, configurations in the third and fifth simulation cases provided 

the greatest probability to clear C16 breakers. The lack of the filter inductance data pre-

vented executing simulation cases with a higher maximum current limit value than 230 A. 

Extrapolating the filter inductance data further from 230 A would have weakened the 

scientific reliability of simulation results and therefore it was not performed in this thesis.   

 Table 13 presents a cost comparison between estimated costs of configuration 

changes which are required to be implemented to the original main circuit of the inverter 

in the third and fifth simulation cases. Thus, costs are calculated in Table 13 according to 

the cost of IGBTs and diodes which are added in parallel with single IGBTs and diodes 

of the original main circuit of the inverter. The original main circuit of the inverter denotes 

in these cases the main circuit which consists only of single IGBTs and diodes.  

The original main circuit of the inverter in the third simulation case is equal with 

the main circuit of the inverter used in 20 kW UPS device which consists of single com-

ponents presented in Table 3. The original main circuit of the inverter in the fifth simula-

tion case consists of single IGBTs of 15 kW UPS inverter and single diodes of 20 kW 

UPS inverter. Therefore, the original main circuit of the inverter in the fifth simulation 

case does not represent either of the real 15 kW or 20 kW UPS inverters whose power 

semiconductors are presented in Table 3. However, in principle such configuration of the 

main circuit of the inverter could be designed and built.  
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In addition, other expenses which may result from adding IGBTs and diodes in parallel, 

such as heatsink enlargement, added gate drivers and added gate resistors, are estimated 

in sections ‘heatsink’ and ‘other’ in Table 13. The cost comparison is based on real prices 

which are achieved from a UPS manufacturer. However, costs are announced only as 

proportional prices. Cost comparison between simulation cases is implemented so that 

the cost of the fifth simulation case is compared to cost of the third simulation case which 

reference cost are determined to be 1,0 as presented in Table 13. 

 

Table 13: Cost comparison executed as proportional prices between cost of added 

components in the third and fifth simulation case. Configurations are applied for 

a three-phase three-level UPS inverter.   

 

From the cost comparison presented in Table 13 can be seen that only the cost of diodes 

is equal with the two simulation cases. It is obvious since in both simulation cases diodes 

of 20 kW UPS inverter are added in parallel with original diodes of the main circuit. 

Otherwise, the configuration in the third simulation case will be cheaper to implement in 

all observed sections as shown in Table 13. The cost of IGBTs is 86 % higher in the fifth 

simulation case than in the third simulation case. It is caused by the two IGBTs of 15 kW 

UPS inverter which are required to be added in parallel with original IGBTs in the fifth 

simulation case. It raises the cost of IGBTs higher than in the third simulation case where 

single IGBTs of 20 kW UPS inverter are added in parallel with original IGBTs. Even 

though the cost of single IGBTs of 15 kW UPS inverter may be lower than IGBTs of 

20 kW UPS inverter, the cost of IGBTs in the fifth simulation case remains higher due to 

the higher number of IGBTs required in the configuration. 

The cost of all components in total which are required to be added in the config-

uration of the fifth simulation case are nearly 48 % higher compared to the cost of com-

ponents required to be added in the third simulation case. Furthermore, the configuration 

of the fifth simulation case may include more expenses resulting from wirings and me-

chanics as it consists of higher number of IGBTs. However, costs resulting from changes 

in mechanics and wirings are not included in Table 13. The section ‘other’ in Table 13 

includes, for instance, cost of gate drives and gate resistors which are related to number 

of added IGBTs. In addition, due to the higher number of IGBTs in the fifth simulation 

case, a larger heatsink may be required which increases the cost of a heatsink. 
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According to the cost comparison between configurations of third and fifth simulation 

cases it can be discovered that improving the fault clearing capability of a UPS device is 

more economical to be implemented according to the configuration of the third simulation 

case than with the configuration of the fifth simulation case. Therefore, a cost comparison 

between the cost of the configuration in the third simulation case and the cost of the fault 

clearing circuitry is executed next.  

An estimated cost structure of the fault clearing circuitry is shown in Table 14 

where costs of different electrical components of the fault clearing circuitry are separated. 

Costs in Table 14 are announced in proportion to total costs of electrical components in 

the fault clearing circuitry. Proportional costs are based on real and estimated prices of 

electrical components used in the fault clearing circuitry. The section ‘other electrical 

components’ in Table 14 includes, for instance, cost of resistors, gate drivers, wire termi-

nals and printed circuit board which are required in implementing the fault clearing cir-

cuitry.  

 

Table 14: Estimated cost structure of the fault clearing circuitry. Costs are an-

nounced in proportion to total costs of electrical components in the fault clearing 

circuitry. 

 

From the estimated cost structure of the fault clearing circuitry can be seen, that a majority 

of costs results from silicon controlled rectifiers, capacitors and inductors which cover in 

total approximately 72 % of total costs of electrical components in the fault clearing cir-

cuitry. It should be noticed that total costs presented in Table 14 do not include costs 

resulting from wirings and mechanics which obviously increase total costs of the fault 

clearing circuitry. It may be estimated that mechanics and wirings will increase total costs 

of the fault clearing circuitry with several dozens of percentages. 

 An estimated total cost of added components in the configuration of the third sim-

ulation case is compared to the estimated total cost of the electrical components required 

in the fault clearing circuitry. As a result, it was noticed that the total cost of components 

which are required to be added in the third simulation case may be approximately 14 % 

higher compared to the total cost of electrical components required in the fault clearing 

circuitry. However, the enlargement of the heatsink was included to the calculated total 

cost of the configuration in the third simulation case. If the enlargement of the heatsink 

is omitted from cost calculations in the third simulation case and thus only cost of elec-

trical components of solutions are compared with each other, it was noticed that the cost 
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of electrical components in the configuration of the third simulation case is 9 % lower 

compared to the cost of electrical components in the fault clearing circuitry.  

The cost of mechanics and wirings of solutions was not included in the above presented 

cost comparison. However, it can be estimated that the cost of wirings and mechanics 

may be higher in the fault clearing circuitry than in the configuration change of the in-

verter main circuit. The fault clearing circuitry would be a completely separate module 

which may be installed, for example, on top of the UPS device and therefore it may re-

quire installing more new mechanics and wirings than is required in the configuration 

change. In the configuration change where IGBTs and diodes are added in parallel with 

the original IGBTs and diodes, the existing mechanics and wirings could be better utilized 

which may lead to lower costs resulting from mechanics changes and new wirings.  

If a coarse comparison between total costs of the two solutions is performed, when 

cost of wirings and mechanics is included in the comparison, it can be estimated that cost 

of the configuration change implemented according to the third simulation case may re-

sult in 10–20 % lower total costs compared to the cost of the fault clearing circuitry. 

However, it must be highlighted that especially estimations of costs of mechanics and 

wirings are very coarse since estimating them more precisely would require more pre-

pared designs to exist. Nevertheless, according to results of the cost comparison per-

formed in this thesis, it seems that it is somewhat more economical to improve the fault 

clearing capability of a UPS device by adding IGBTs and diodes of 20 kW UPS inverter 

in parallel with existing IGBTs and diodes of 20 kW UPS inverter than by using the fault 

clearing circuitry. However, technically the fault clearing circuitry may provide better 

reliability to clear C16 circuit breakers than configuration of the inverter main circuit 

where IGBTs and diodes of 20 kW UPS inverter are added two in parallel.  

Practically, it can be deduced, that according to the simulation results of third and 

fifth simulation case, at least three IGBTs and two diodes of 20 kW UPS inverter should 

be added in parallel so that output current of the inverter could be increased close to 226 A 

and hence C16 circuit breakers could be cleared in a reliable way. However, in that case 

the configuration change in the main circuit may lead to 20–30 % higher costs in total 

compared to the cost of the fault clearing circuitry.  

Therefore, it can be concluded that using the fault clearing circuitry is a more 

economical way to improve the fault clearing capability of a 20 kW UPS device to clear 

C16 breakers reliably than making the required configuration changes to the main circuit 

of the UPS inverter. However, it must be noticed that difference between cost estimations 

of the solutions is not substantial and therefore either of the solutions can not be consid-

ered as superior compared to another.  

Nevertheless, other advantages which the fault clearing circuitry provides com-

pared to the configuration change is that it may be installed only to UPS devices of cus-

tomers who require higher fault clearing capability than which the UPS device may afford 

as standard. Thus, the fault clearing circuitry provides more flexibility since it is not re-

quired to be installed to those customer devices for which the improvement of the fault 

clearing capability is not necessary. Adding the fault clearing circuitry to existing UPS 



  

 

 

76 

designs afterwards may be also more feasible to implement than making the required 

configuration changes afterwards. New main circuit and mechanics designs must be prob-

ably developed to the existing UPS inverter so that configuration changes can be imple-

mented as the physical space in the present main circuit board may not be large enough 

so that required number of new components can be added there.  

In addition, it shall be considered that when the number of power semiconductors 

in the main circuit of the UPS inverter grows, the number of components which may fail 

during normal operation of a double conversion UPS also grows. Instead, components in 

the fault clearing circuitry are not continuously stressed by a load current when the double 

conversion UPS operates in normal mode. In the fault clearing circuitry components are 

conducting current only during charging and discharging of capacitors and at times when 

the fault clearing circuitry is triggered. Otherwise, capacitors are kept being charged and 

other components in the fault clearing circuitry experience voltage stress but they are not 

conducting current which may reduce their probability to fail accidentally during normal 

operation of the double conversion UPS. 
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6 SUMMARY AND CONCLUSIONS 

The aim of this thesis was to find economical ways to improve the fault clearing capability 

of a UPS device. Characteristics of IGBTs and diodes in the main circuit of a UPS inverter 

determine the highest magnitude where the maximum current limit of the UPS inverter 

may be adjusted when the UPS is operating in stored-energy mode. Exceeding maximum 

operating currents, voltages or junction temperatures of IGBTs and diodes may lead to 

their break down and thus must be avoided. However, if a short circuit or a ground fault 

occurs in the load side of the UPS and the UPS is operating in stored-energy mode, the 

UPS must supply enough output current at its current limit to clear a respective circuit 

breaker on the load side before the UPS itself trips to overcurrent. By clearing the circuit 

breaker, the fault location may be isolated and the UPS can continue to supply power to 

remaining loads. Therefore, the current limit of the UPS shall be adjusted as high as pos-

sible so that a selective fault clearing may be executed with circuit breakers. However, it 

must be considered from not causing damage to power semiconductor devices in the main 

circuit of the UPS inverter when the UPS operates at current limit. 

 The problem is that at present UPS devices must be oversized in terms of rated 

current and rated power if circuit breakers protecting the load of the UPS and its wires 

are larger in terms of rated current and type of the circuit breaker than which is the fault 

clearing capability of a UPS device. Oversizing the whole UPS device only to achieve 

a higher fault clearing capability is dispensable during normal operation of the UPS. 

In this thesis a simulation model was developed, which can be used to estimate 

how much output current of a UPS operating at current limit may be increased, or the 

fault clearing capability of a UPS device improved, by installing IGBTs and diodes in 

parallel to the main circuit of a UPS inverter. Thus, only the current-carrying capacity of 

the UPS inverter is consolidated but the whole UPS device including, for instance, the 

AC/DC rectifier is not oversized. The simulation model requires the user to input data 

which may be obtained from datasheets of IGBTs and diodes. It calculates average power 

losses of IGBTs and diodes and the switching frequency of IGBTs based on shape of the 

current waveform when the UPS operates at current limit. Number of IGBTs and diodes 

connected in parallel in the main circuit of the inverter can be entered as input to the 

simulation model. From average power losses, the simulation model derives average 

junction temperatures of IGBTs and diodes which may be used as references when ade-

quate current limit values are adjusted for the inverter. 

In simulations it was investigated that what kind of IGBT and diode configuration 

in the main circuit of the UPS inverter is required so that the UPS has a fault clearing 

capability to clear C16 miniature circuit breakers. The study was implemented by using 

IGBTs and diodes which are currently used as single components in 20 kW and 15 kW 

UPS inverters. Hence, the aim of simulations was to study if the fault clearing capability 
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of the existing 20 kW UPS device could be improved from C6 circuit breakers to C16 cir-

cuit breakers by adding IGBTs and diodes in parallel with existing power semiconductors 

in the main circuit of the UPS inverter. Furthermore, the cost of changes which are re-

quired to be done into the main circuit of the existing UPS inverter was estimated.  

A fault clearing circuitry, which has been developed to improve the fault clearing 

capability of a UPS device was also introduced in this thesis. Inventors of the fault clear-

ing circuitry have proven that it is able to supply enough current to clear C16 circuit 

breakers in short circuit situations. Consequently, the fault clearing capability of a UPS 

device may be improved without making changes to the main circuit of the UPS inverter 

if the presented fault clearing circuitry is installed at the UPS output. A cost analysis of 

the fault clearing circuitry was executed and the estimated cost of the fault clearing cir-

cuitry was compared to the cost of the configuration change in the main circuit of the UPS 

inverter which may enable achieving the desired fault clearing capability. 

As a result of simulations, it was discovered that by using two IGBTs and two 

diodes of 20 kW UPS device in parallel or by using three IGBTs of 15 kW UPS device 

and two diodes of 20 kW UPS device in parallel the fault clearing capability of a UPS to 

clear C16 circuit breakers may be achieved. However, it was also noticed that magnitudes 

of output currents 173 A and 185,5 A achieved with above mentioned configurations in 

the simulation model may not be high enough to clear C16 breakers instantly in all cases. 

Even though the output currents lie in the magnetic tripping zone of C16 circuit breaker, 

they are clearly below the higher current threshold 226 A of the magnetic tripping zone. 

Hence, above presented configurations do not provide full certainty to clear C16 circuit 

breakers instantly in all cases. Nevertheless, during simulations it was observed that by 

lowering the switching frequency of the UPS inverter a certain amount from 18 kHz out-

put currents of UPS devices operating at current limit could be increased 5–10 %. How-

ever, changing the switching frequency of the UPS inverter may not be easily realizable 

with the existing 20 kW UPS device as the control system of the UPS is adjusted to func-

tion at 18 kHz clock frequency and therefore it prevents changing the switching frequency 

dynamically. 

Simulations were not performed with IGBT and diode configurations which could 

clear C16 circuit breaker reliably due to a lack of filter inductance data on higher current 

values. Nevertheless, it was deduced that practically at least three IGBTs and two diodes 

of 20 kW UPS device are required to be used in parallel in the main circuit of the UPS 

inverter so that the fault clearing capability of a UPS to clear C16 circuit breakers may be 

ensured. In that case, however, it was estimated that implementing the configuration 

change may result in 20–30 % higher costs compared to the cost of implementing the 

fault clearing circuitry. Thus, the result of cost comparison supports the fault clearing 

circuitry as a more economical solution to improve the fault clearing capability of a UPS 

device. However, the cost difference is not remarkable and thus the fault clearing circuitry 

can not be considered as superior solution in terms of arising costs compared to the con-

figuration change. In addition, it must be highlighted that cost calculations included 

coarse estimations especially on cost of mechanics and wirings of the solutions which 
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were hard to estimate accurately due to a lack of proper and valid designs. Hence, the 

result of cost comparison shall be considered only as suggestive.   

Technically the fault clearing circuitry may be a more feasible solution to be applied in 

existing UPS devices than the configuration change. The fault clearing circuitry can be 

installed, for example, on top of a UPS device without a need to make significant modi-

fications to the framework of the UPS device. However, new main circuit and mechanics 

designs may be required to be implemented when IGBTs and diodes are added in parallel 

to the main circuit of the UPS inverter if added components do not physically fit to the 

existing main circuit board. Another advantage which the fault clearing circuitry provides 

is its flexibility since it can be installed only to UPS devices of such customers who re-

quire higher fault clearing capability for their UPS devices than is afforded as standard. 

 Furthermore, an inevitable risk that arises from adding more IGBTs and diodes in 

parallel to the main circuit of the inverter is that at the same time the number of compo-

nents which may accidentally fail during normal operation of a double conversion UPS 

is increased as IGBTs and diodes conduct current when the inverter is operating normally. 

On the other hand, components in the fault clearing circuitry conduct current only during 

charging and discharging of capacitors and when the fault clearing circuitry is triggered. 

Hence, they do not conduct current continuously during normal operation of the double 

conversion UPS which may reduce their risk to fail accidentally in normal operation mode 

of the UPS.  

 Finally, it can be concluded that the fault clearing circuitry appears to be a more 

efficient solution to improve the fault clearing capability of a UPS device both economi-

cally and technically compared to the configuration change in the main circuit of a UPS 

inverter. However, more detailed mechanics and electrical designs should be imple-

mented for the solutions so that a more precise cost comparison between the solutions 

may be performed. In the future, same kind of study as performed in this thesis could be 

performed to UPS inverters of higher rated powers and investigate what is the most eco-

nomical way to improve the fault clearing capability in that case. Additionally, when the 

power semiconductor technology develops in the future and if, for example, the use of 

silicon carbide replaces the use of silicon in power semiconductor devices, further studies 

could be conducted on investigating how this development affects dynamic characteris-

tics of power semiconductor devices used in UPS inverters. 
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