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Automatically detecting individuals’ door-to-door multimodal trips has impor-
tant applications in an intelligent transport system. These include assisting
users in multimodal navigation, optimizing the transit network, and more.
Smartphones and other mobile devices today carry a multitude of radios
and sensors, including those suitable for detecting location via e.g. Wi-Fi
access point mapping or satellite navigation systems, and for detecting motion
activity including modes of transport using the accelerometer. Combining
these sources with open data from public transport operators, such as static
timetables and mass transit vehicle location time series, it is possible to also
detect use of mass transit by the smartphone user.
In this thesis project a representation for multimodal routes was developed,
suitable for analysis of mobility patterns. The modeling includes prerequisite
identification of stops and trips, trip origin and destination, mode of trans-
port and use of mass transit in trip legs, and recognizing the user’s regular
destinations and routes.
The discovered mobility patterns can further be combined with data from other
sources to produce relevant notifications of exceptions in traffic conditions,
such as traffic jams, accidents, or public transport disruptions.
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Ihmisten monikulkutapaisten reittien automaattisella havaitsemisella ovelta
ovelle on olennaisia sovelluksia älykkäässä liikennejärjestelmässä. Näihin
lukeutuvat mm. dynaaminen opastus monikulkutapaisella reitillä, ja tietojen
mahdollistama liikennejärjestelmän optimointi.
Nykyiset älypuhelimet ja muut mobiililaitteet sisältävät moninaisia antureita
ja radiolaitteistoa, joita voidaan käyttää laitteen paikannukseen kartoitet-
tujen Wi-Fi -tukiasemien tai satelliittipaikannuksen avulla, sekä liikeaktivi-
teetin tunnistukseen kiihtyvyysanturin avulla. Kun näitä tietoja yhdistetään
julkisen liikenteen palveluntarjoajien tuottamaan avoimeen dataan kuten
joukkoliikennevälineiden ajantasaiseen paikannustietoon sekä aikatauluihin,
voidaan myös tunnistaa puhelimen käyttäjän joukkoliikennematkoja.
Tässä diplomityöprojektissa kehitettiin monikulkutapaisten reittien kuvaami-
seen malli, jota voidaan käyttää liikkumistapojen analyysiin. Mallinnukseen
sisältyy edellytyksinä pysähdysten ja matkojen havaitseminen, matkojen alku-
ja loppupaikkojen kokoaminen, liikkumismuodon ja joukkoliikennematkojen
tunnistaminen, sekä käyttäjän toistuvien päämäärien ja reittien jäsentäminen.
Liikkumistapamallin tietoja muihin tietolähteisiin yhdistämällä voidaan myös
tarjota käyttäjälle relevantteja ilmoituksia poikkeustilanteista liikenteessä,
kuten merkittävistä ruuhkista, onnettomuuksista, tai joukkoliikennehäiriöistä.

Avainsanat: reittikuvaus, päämäärän havaitseminen, kulkumuodon tunnis-
tus, liikkumiskaavat, reitin tunnistus
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1 Introduction
The smartphones of today have come far from the cumbersome talk-only mobile
phones of decades past, and their pager siblings. Subsequent development has
produced integration of features from text messaging, to clock and calendar
functions, note taking and basic games. Now, smartphones have become
always present, always connected internet-enabled multifunction devices, with
large touchscreens, pocket quality cameras and full-featured operating systems
enabling marketplaces carrying vast collections of third-party applications.

The first global navigation satellite systems (GNSS), the United States’
Global Positioning System (GPS1) and the Russian GLONASS2, were developed
for military purposes [4]. Today, these systems, along with the European Space
Agency’s Galileo3, and other regionally operational systems, have been made
generally available to enable a variety of public and commercial applications.
Receivers in mobile phones, activity wristbands, and vehicles help users to
navigate by placing them on a map, to track exercise activities, and allow
transport and delivery operators to track vehicle fleets.

In addition to location services, smartphones typically include a host of
other sensors, such as accelerometer, ambient light and proximity sensors. The
accelerometer in particular allows for recognizing activities performed by a user
carrying the device, including modes of transport.

The European Union directive 2010/40/EU [1] defines Intelligent Transport
Systems (ITS) as “advanced applications which without embodying intelligence
as such aim to provide innovative services relating to different modes of transport
and traffic management and enable various users to be better informed and
make safer, more coordinated and ‘smarter’ use of transport networks”.

In a road traffic system, cameras can be placed at specific locations to
measure traffic levels and identify congestion. Location tracking, on the other

1http://www.gps.gov/
2https://www.glonass-iac.ru/en/
3https://www.gsc-europa.eu/

http://www.gps.gov/
https://www.glonass-iac.ru/en/
https://www.gsc-europa.eu/
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Figure 1: TrafficSense research project context and goals. [3]

hand, can be used for crowdsourcing of traffic congestion status anywhere with
a sufficient number of contributing terminals, by comparing movement speed
to typical or nominal speeds along the route.

Many public transport operators around the world provide publicly-accessible
mass transit data, such as static timetables and real-time vehicle locations.

Going forward, the proliferation of smartphones, and developments in mobile
sensing technology built into them, enables detailed analysis of phone users’
multimodal mobility patterns. With new traffic-related information services
and transportation solutions, the combination can enable improvements in e.g.
the efficiency of transportation systems.

The TrafficSense research project aims (cf. Figure 1) at improving the
energy efficiency of traffic with a mobile crowdsensing service that learns users’
regular door-to-door routes — composed e.g. of walking, biking, driving a
car, or riding a bus — and can detect in real-time the likely routes users are
following. Previous experiments on mobile crowdsensing in traffic have focused
on private cars and route choices of individuals; the novelty of TrafficSense is
in its focus on energy efficiency of the whole traffic system and the coverage of
multimodal, door-to-door routes. [3]

The objective of this thesis project is to develop representations for mul-
timodal routes, suitable, in the context of TrafficSense and similar systems,
for analysis of mobility patterns. This includes prerequisite identification of
stops and trips, trip origin and destination, mode of transport in trip legs,
and recognizing the user’s regular destinations and routes. The discovered
mobility patterns enable combining data from other sources to notify the user
of exceptions in traffic conditions, e.g. traffic jams, construction work, mass
transit outages and exceptions. There is also potential to improve energy
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efficiency by suggesting mass transit routes or ride-sharing corresponding to
the user’s predicted destinations.

This document covers the prerequisite background, detailed technical envi-
ronment, as well as implementation and evaluation of a model of stops, trips,
regular destinations, routes and their transport modes, generated from a user’s
location and activity trace collected using a mobile device. The methodology
and structure of the of the document is described in the following chapter.
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2 Method
As this work concerns feature development, it can be described in terms of the
Design Science Research (DSR) framework laid out by Hevner et al. [13]:

Information Systems are purposefully designed human-machine
artifacts that significantly impact people, organizations, and society.
Two paradigms characterize research in this discipline: behavioral
(or natural) science and design science. Whereas the behavioral
science paradigm seeks to discover and verify laws or principles
that explain or predict human or social behavior, the design science
paradigm seeks to extend the boundaries of human and social
capabilities by creating new and innovative artifacts.

Research in IT that uses a behavioral (natural) science paradigm
is fundamentally reactive. Its goal is to identify and codify emergent
properties and laws governing human and organizational behavior
as it affects and is affected by existing information technologies.
Research in IT that uses a design science paradigm is fundamentally
proactive. Its goal is to create innovative artifacts that extend
human and social capabilities and aim to achieve desired outcomes.
These artifacts often define the object of study in behavioral IT
research.

This framework for understanding, executing, and evaluating design science
research in the Information Systems field is illustrated in Figure 2.

The environment defines the problem space and context, composed of the
business and technology aspects. The knowledge base provides the materials for
constructing and evaluating artifacts. Here, the business environment described
in the introduction is further related to the knowledge base background and
foundations in the following chapter. The specific technological environment of
the TrafficSense system is described in Chapter 4.

The constructed design artifact implementation of data models, prerequisite
and other improvements to the system are presented in Chapter 5.
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The knowledge base provides the materials from and through which artifacts are 

constructed and evaluated.  It is composed of Theoretical Foundations and Research 
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Figure 2: Design Science Research Framework, Hevner et al. [13,
fig. 2, p. 5]

Hevner et al. [13, p. 15, table 1] also catalog methods for evaluation of
design artifacts under the Design Science Research framework.

On the observational front, the implementation in this work is subject to
a field experiment with a total of 93 distinct users contributing some data in
the span of 39 days. Also a smaller-scale one-day targeted data gathering and
evaluation was done.

Analytical evaluation discusses the fit into the technical context — the
resulting model of stops, trips, regular destinations, routes and their modes,
generated from a user’s location and activity trace, is assessed to evaluate the
suitability of the model. Under dynamic qualities the performance of accessing
processed data used for display to the user by the client software, is evaluated,
as well as the efficiency of storage.

These evaluations are described in Chapter 6, followed by conclusions and
further work in Chapter 7.
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3 Background
A representation of a multimodal route should allow effective comprehension of
different transport modes within trips. For regular routes, it is of interest to
compare trips by their origins, destinations, modes of transport, and paths taken.
The representation should also allow efficient visualization of the discovered
trips, routes and regular destinations. Some of the use cases for the multimodal
route model are outlined in Figure 3. The background concepts within the
problem subdomains that arise from these requirements are introduced in this
chapter.

Geolocation

To begin to analyze an individual’s mobility patterns, it is necessary to capture
their location as a time series, hereinafter called the location trace. This could
take the form of a manually recorded journal, but such recording is quite tedious,
as can be resolving geographic locations from manual input. Automatic data
collection on the other hand can produce more consistent and fine-grained
data. As mentioned in the introduction, there exist a variety of methods of
determining mobile phone location.

Zhao [28] foresaw the technologies of locating a mobile phone having a
significant impact on automotive telematics and modern public transit systems,
once these technologies are mature enough to be deployed. A particular driver
was the ability to locate the caller to an emergency number. Radio-based
technology typically uses cellular base stations, satellites, or devices emitting
radio signals to the mobile receiver to determine the position of its user.

The coverage of satellite-derived location can be intermittent especially
around large obstacles, or underground. Mobile phone location can be also
determined to a lesser accuracy, but with also less power demand, by the cell
tower in use, and nearby Wi-Fi access points.

Of the typical mobile phone geolocation methods, GPS and other satellite
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raw location and activity trace

multimodal route model:
● segmented modes
● simplified path
● regular destinations

• visualizations (on map, sequential)
● predict next destination
● suggest alternative transport
● notify of relevant disruptions

route grouping
to regular routes

Figure 3: Use cases for multimodal route model.

signal based systems can be more accurate at their best, but Park et al. [22]
found location reports based on mapped Wi-Fi base stations more accurate in
an urban canyon environment, which is relevant for observing transit patterns
in an urban context.

Trip and route features

To describe and reason about an individual’s mobility patterns, it is necessary
to establish definitions for the various features in the model. Here, a stop is
a pause in movement more significant than e.g. traffic lights. Letchner et al.
[19] used a five minute threshold for detecting a stop in journey segmentation.
The duration is not a completely accurate proxy for significance however, as
e.g. stopping for only a few seconds to drop off a passenger will be missed by
the criterion.

A trip leg is defined as contiguous movement such that no above described
stops are detected within it, and using the same mode of transport throughout.
A trip is a sequence of such legs between significant stops, possibly containing
also short stops for e.g. mass transit transfers.

Strathman, James G and Dueker, Kenneth J [25] define a trip chain from as
travel involving multiple purposes to single or multiple destinations and begins
and ends at home, or a similar origin — for example, a commute consisting of
a trip to pre-school, followed by a trip to work.

A trip chain at its most basic level includes a stop on the way to another
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destination. McGuckin and Nakamoto [21] describe an operational definition
by the U.S. Federal Highway Administration of a trip chain as a sequence of
trips bounded by stops of 30 minutes or less. A stop of 31 minutes or more
defines the terminus of a chain of trips, and that chain of trips is considered a
tour.

For the purposes of this work, a route is established by the path and modes
taken in a trip chain instance from the origin to the destination, and as such
can be repeated, or routes with alternate path or modes taken between a given
pair of origin and destination.

Activity recognition

While many aspects of an individual’s mobility patterns could be derived from
a location trace alone, determining the mode of transport is facilitated by
recognizing the physical activity being performed.

Activity recoginition takes wearable or mobile phone sensor readings as
input and recognizes a user’s motion activity. It is the core building block
in many applications, ranging from health and fitness monitoring, personal
biometric signature, urban computing, assistive technology, and elder-care, to
indoor localization and navigation. [26]

The most widely used inertial sensors for activity recognition are accelerom-
eters and gyroscopes. An accelerometer consists of a mass suspended by a
spring and placed in a housing, and the displacement of the mass is measured
as the difference of acceleration. A gyroscope sensor measures angular velocity
by using the tendency of vibration in the same plane as an object vibrates. [6]

Activity recognition systems based on accelerometer data employ statistical
feature extraction and, in most of the cases, either time- or frequency-domain
features [18]. For example, Ilomäki [16] explored recognizing transportation
modes by multivariate clustering of accelerometer data.

Detection of mass transit use

An important problem in creating efficient public transport systems is obtaining
data about the set of trips that passengers make. Kostakos et al. [17] described
a wireless system using a Bluetooth scanner to wirelessly detect and record
end-to-end passenger journeys.

Ekholm [10] explored the feasibility of recognizing tram trips by matching
location traces from mobile phones and trams. This is one of the approaches
taken in the TrafficSense system.

Recognizing regular routes and destinations

To enable navigation suggestions and comparison or prediction of user routes,
it is necessary to recognize regular destinations visited and routes taken.

González et al. [11] found that human trajectories show a high degree
of temporal and spatial regularity, each individual being characterized by a
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than with irregular intervals. If presented with a
choice, one would generally aim for smaller intervals
for research purposes, because they allow more pre-
cise treatment. The clear trade-off is with battery
power and network load, which is especially impor-
tant when the data is collected on personal mobile
devices and transferred to a remote server.

From the raw location data, higher-level fea-
tures can be constructed that often aid the prediction.

The most obvious and common features are speed,
direction, and acceleration, which can be calculated
easily from a set of time-indexed points. The main
idea is to describe mobility patterns in a way that is
invariant to data collection granularity, phase or
length of the trip. Challenges of data pre-processing
and feature construction are covered in Refs 10,11 in
more detail. Visual analysis of mobility patterns is
essential for identifying potential features and pat-
terns. A detailed overview of visual analysis tech-
niques in relation to mobility data can be found in
Ref 23.

Often, in addition to features describing mobil-
ity traces, contextual data describing the environment
is also considered. Several papers investigate how
contextual information improves the performance of
predictive models.16,24,25 The most common exam-
ples are time-context such as the day of the week, or
part of the day (morning/evening).26 Weather infor-
mation is also sometimes incorporated.27 These are
all contextual information as a function of time.
Functions of the spatial location and domain could
also be derived, such as the distance to the nearest
bus-stop. Activity recognition can also be considered
contextual information, where the activity is recog-
nized by the use of GPS and often additional sensors
such as the accelerometer. Even user emotion is
sometimes added as context.28 A good overview of
contextual information is provided in Ref 29 and
more specific for mobile-computing in Ref 30.

Privacy Considerations
Gathering and analyzing such mobility data
undoubtedly raises privacy concerns. The ability to
predict movements of individuals31 makes it possible
to identify individuals in combined GPS location

FIGURE 2 | Illustration of network (left) and grid (right) structure. Note that several points might snap to one grid, and that this specific grid
drawing allows for diagonal transitions.

TABLE 1 | Summary of Notation User in the Article

Symbol Definition

le(t) Location over time t on device e

Tr u = l u1 ,…, l uN
� �

A trace (of user u, length N)

u, v, e User, vehicle, device

t 2 T ‘Set’ of times

d̂
� �

d (predicted) destination

D u = d u
k

� �jD uj
k = 1

Set of destinations of user u

k = rankD u d uð Þ k-th most important destination

r Range (meters) within which a user stays

b Minimum time (seconds) within range
r to be a destination

dist(�, �) Distance function

X Set of (mapped) traces

Ru = (l1, …, lN) A route where l1 2 Du and lN 2 Du

S = {R1, …, RN} Set of routes

(l̂ t + x) lt (Predicted) location at time t
(x time from now)

(ŷ i) yi (Predicted) i-th destination/location/route

(Ŷ ) Y Set of (predicted) locations or destinations,
|Y | = N

w Waypoint

Overview wires.wiley.com/dmkd
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Figure 4: Generalized path representation options, network of
waypoints (left) vs grid (right). [24, fig. 2, p. 4]

time-independent characteristic travel distance and a significant probability to
return to a few highly frequented locations.

Liao et al. [20] show an approach for how to extract and label a person’s
activities and significant places from traces of GPS data. For instance, while
walking, driving a car, or riding a bus are not associated with significant places,
working or getting on or off the bus indicate a significant place.

In order to generalize traces to discover regular routes taken by users, it
is practical to have a representation of the path that is coarser than a raw
location trace as recorded by a mobile device. Various approaches to this end
are possible, such as coordinate quantization into a grid, or a road/transit
network based waypoint and link model. These are illustrated in Figure 4. [24].

The simplified representations of traces facilitate applications like predicting
the next route or destination. For example, Letchner et al. [19] used traces
snapped to a road network graph to produce such individualized route prediction
based on a driver’s preferred routes.



10

4 Environment: The TrafficSense System
The TrafficSense system consists of a mobile client for data collection and
display to the user, as well as server software implementing storage, analysis,
and web views. An overview of the system components and the data flow
between them is shown in Figure 5.

A time series of the raw location and recognized activity are captured by
the TrafficSense mobile client software using, respectively, the Fused Location
Provider and Activity Recognition APIs provided by Google Play Services4 on
Android.

The captured data points are buffered, then sent to the server in batches,
and stored in a relational database. The server then periodically post-processes
the collected traces, finding contiguous vehicle transit mode legs to identify
mass transit lines taken. The result is a filtered trace of the detected contiguous
spans. These processes are further described in this chapter.

The server side software consists of the apiserver, siteserver, devserver,
and scheduler components. These are implemented in Python, using the
PostgreSQL relational database system with the PostGIS extension for spatial
and geographic objects.

The apiserver implements an HTTP API for use by the TrafficSense mobile
client. It handles device registration and authorization using Google Sign-In,
and allows the client to upload collected activity and location data. The client
can also fetch processed data for display to the user, e.g. the path taken on a
map, or a graphic evaluating the energy efficiency of the user’s travels.

The siteserver implements the service web site, which also provides a map
view and the energy efficiency visualization. The devserver provides additional
views and reports for development purposes.

The scheduler runs periodical tasks, such as fetching data from various
sources — mass transit fleet locations, road and mass transit disruption bulletins,

4https://developers.google.com/android/guides/overview

https://developers.google.com/android/guides/overview
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Figure 5: Overview of system components and data flow.
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weather forecasts and reports — and batch processing of incoming data uploaded
by the client instances. The scheduler may also push notifications of disruptions
relevant to the user’s mobility history to the client application when appropriate.

4.1 Client data collection
The TrafficSense mobile client captures a location and activity trace. A trace
record includes a timestamp, an identifier for the device, the latitude and
longitude, an accuracy radius in metres, and the top three activities identified
as most likely, with a confidence indication for each activity. The client process
is described in greater detail in Rinne et al. [23].

Activity recognition

The first part of inferring the user’s mode of transport is done by using the
accelerometer of the mobile device to recognize the present activity. This is
achieved in the TrafficSense client using the Activity Recognition API5 provided
by Google on Android.

The possible activities returned by the Activity Recognition API are
in_vehicle, on_bicycle, on_foot, running, still, tilting, un-
known, and walking [12]. Several activities may be returned, along with a
confidence rating ranging from 0 to 100 for each. The three activities with the
highest confidence are stored.

Location tracing

The user’s location is captured by the TrafficSense client using the Fused
Location Provider API6 of Google Play Services. When the detected activity is
not still, the location is sampled at a 10 second interval with “high accuracy”
requested. If the detected activity becomes, and remains, still, the client
enters sleep state, where the location requests are dropped to “no power”
priority.

In smoothly moving rail transport, the activity recognition may report
still. This is why the location is sampled at “high accuracy” for an additional
40 seconds after transition to still. If the location changes for a distance
greater than the reported accuracy of the location fix, the timer is restarted,
and “high accuracy” maintained.

The Fused Location Provider API uses several underlying providers, such
as Wi-Fi, cell tower positioning and GPS, as available [5]. This means the
accuracy of the resulting trace can vary from a few metres to kilometres.

A client-side filter, illustrated in Figure 6, removes location updates where
the stated accuracy radius of the point, given by the location provider, is greater

5https://developers.google.com/android/reference/com/google/android/gms/location/
ActivityRecognitionApi

6https://developers.google.com/android/reference/com/google/android/gms/location/
FusedLocationProviderApi

https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderApi
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderApi
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Figure 6: Client side filtering algorigthm for incoming position
fixes. [23, fig. 1, p. 82]

than the distance from the prior accepted point. This way points that by their
stated accuracy do not establish that the client terminal has definitely moved,
are discarded. Also points whose reported accuracy is poorer than a threshold,
set at 50 metres by default, are discarded.

4.2 Server processing
The data points received from the client by the apiserver are stored in a
relational database. The scheduler component then periodically analyzes the
collected traces to split contiguous transit mode legs, and identify mass transit
lines taken.

To recognize mass transit usage, the live mass transit vehicle locations and
static timetables, in conjunction with the user location traces, are used to
automatically recognize mass transit trips taken by users. Contiguous spans,
after post-process filtering, of in_vehicle activity, are matched against the
vehicle position traces and timetable data.

The result is a filtered trace of the detected contiguous spans, as shown in
Figure 7.

The description of mass transit detection methods here closely follows that
in Rinne et al. [23], which goes into more depth especially with regard to the
static timetable matching algorithm.

Contiguous activity splitting

The activity recognition captured in the received trace is noisy, and often
includes spurious transitions. The initial implementation addresses this by
selecting the activty with highest reported confidence at each sample point,
then requiring six consecutive samples — typically one minute at the ten
second sampling interval — of the same activity to change activity states in the



14

  

device_data trace

device_data_filtered trace

(device_id, coordinate, accuracy,
  time, activity_1..3, 
  activity_1..3_conf)

(user_id, coordinate, time, 
  activity, line_type/name)

activity decision

mass transit recognition
live vehicle locations

static timetables

Figure 7: Filtering process for received device data.

resulting filtered trace, splitting any indeterminate region between consecutive
stable activities in half. In addition, points more than five minutes apart
in the trace, either due to the terminal being stationary or lacking location
reception, causes a segment break. Segments where no stable activity is found,
are omitted.

Mass transit detection using live vehicle locations

The latest locations of part of the mass transit vehicle fleet are made available
online by the local transport provider7. This data is sampled at 30-second
intervals, interpreted from json, and stored in the database. The vehicle
locations can then be compared with the user locations collected by the Android
app.

The collected location records contain a timestamp, the latitude and longi-
tude, a unique vehicle reference, the name of the transit line, and a line type of
bus, ferry, subway, train, or tram.

Potential issues in matching include:

• Missing vehicle or user data points

• Inaccurate location points

• Clock differences

• Distance between user and vehicle location sensor in longer vehicles

• Distance between location samples at higher speeds
7https://www.digitransit.fi/en/developers/services-and-apis/4-realtime-api/

vehicle-positions/

https://www.digitransit.fi/en/developers/services-and-apis/4-realtime-api/vehicle-positions/
https://www.digitransit.fi/en/developers/services-and-apis/4-realtime-api/vehicle-positions/
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• False matches to other mass transit vehicles

• False positives where car trip occurs near mass transit vehicles

• Intermittently changing line name label on some vehicles in the live data

To counteract the location accuracy and vehicle length issues, a distance
limit of 100 metres was used for collecting vehicle matches. A greater limit
may cause more false positive matches to appear.

The vehicle location points for comparison are collected in a ±60-second
window around the timestamp of each user point sample. This allows for some
clock difference, and sampling time difference.

For a vehicle to be accepted as a possible match, its must be within the 100
metre distance limit for a minimum of 75% of the user location samples.

In the initial implementation, four sample points from the user’s vehicle
leg were considered, and the vehicle with the most matches wins. In case of
a draw, the vehicle with the least total distance between matched user and
vehicle points wins.

Mass transit detection using static timetables

For finding mass transit trips in in_vehicle trip legs, the first and last point
of the contiguous activity are used for the time and place of the origin and
destination, respectively. They are used in a query to the journey planner
interface of the local transport provider8, and the resulting plans matched
against the user location trace.

Potential issues in matching include:

• Missing or inaccurate user location points

• Inaccuracy in activity determination and filtered transition points

• Clock differences

• False positives where car trip occurs near mass transit line

The device data can often have a fair amount of inaccuracy in location and
activity detection. For this reason the filtered transition point starting the
vehicular trip leg can often appear between stops during the actual mass transit
leg. Adjacent stops are assumed to be no more than one kilometre apart. To
account for inaccuracy in time and place of the origin, the earliest permissible
start time of the trip is adjusted back by 6.2 minutes, allowing 500 metres of
walking at a speed of 1.3 m/s. Correspondingly, to relax both the origin and
destination location constraints, the query to the journey planner specifies a
maximum of total 1000 metres of walking allowed in each resulting plan.

8https://www.digitransit.fi/en/developers/services-and-apis/1-routing-api/
x-service-architecture/

https://www.digitransit.fi/en/developers/services-and-apis/1-routing-api/x-service-architecture/
https://www.digitransit.fi/en/developers/services-and-apis/1-routing-api/x-service-architecture/
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From the three plans requested from the planner, the best match, if good
enough, is chosen.

Only plans containing a single vehicular leg are considered for matching.
Quick transfers between vehicles may not be detected as separate trips by the
activity detection and filtering determination, in which case a corresponding
plan cannot be found.

Plans that have a duration more than 3 minutes shorter than the user
vehicle leg, are discarded to avoid false positive matches, so assuming that the
transit vehicle must travel closely according to schedule.

Plans that have a duration more than 18 minutes longer than the user
vehicle leg, are also discarded. This includes the walk times for dealing with
location inaccuracy, discussed above, and the time assumed for a mass transit
vehicle to travel between adjacent stops.

Plans where the duration of the included vehicular leg differs by more
than 5.6 minutes from the user recorded vehicular leg, are discarded, based on
assumed time of travel of the vehicle between adjacent sparse stops.

Plans where the start of the included vehicular leg differs from that of the
recorded leg by more than 5.8 minutes, are likewise discarded.

The returned plans include a location point sequence of the planned trip.
This is also matched against the recorded user trace. For comparison, the
recorded user trace is sampled at no less than 100 metre intervals, and leading
and trailing points may be ignored based on assumed inaccuracy of origin and
destination. A minimum of 70% of sample points must match a plan point
within 100 metres, and no more than four consecutive sample points may fall
outside 100 metres of the plan points, for the plan to qualify.

Of the qualifying plans, the one with the closest start time to that of the
recorded leg wins.
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5 Implementation
This chapter covers enhancements and features developed as part of the work.

A more compact model for trips was developed, identifying stops and trip legs
of different transport modes as distinct entries. The stops were clustered into
regular destinations and trips grouped into regular routes. Some prerequisite
and related improvements were also implemented.

The location trace reported from devices sometimes includes incorrect
location points, where the reported location is far outside the reported accuracy
radius from the real location. This apparent movement would cause problems
to stop detection. Also trip legs would be affected by inflated distance, and
incorrect geometry making visualizations and route grouping less reliable. False
location filtering was implemented to elide these points.

Another raw data quality handling improvement was made to the determi-
nation of contiguous activity, particularily for cases where the real activity is
reported intermittently and with a weak confidence level.

The performance of mass transit detection from live position data was
improved, as well as its accuracy especially in case of vehicles moving at
relatively high speeds.

These enhancements are described in more detail in this chapter, followed
by the route model features and applications.

5.1 Conceptual model and schema
A more compact model for trips was developed. This model records stops
and trip legs having different transport modes, as discussed in the background
(Chapter 3), as distinct entries. An overview of the updated process is shown
in Figure 8.

The resulting relational database schema is shown in Figure 9. Here, both
stop segments and movement segments with their detected contiguous activity,
found in the location and activity trace, are identified in the legs table. The
modes table records opinions on the mode of transport for each movement leg,
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Figure 8: Updated process.

as claimed by different sources: the mass transit matching using live vehicle
positions, the mass transit matching using static timetables via the journey
planner, or input from the user themself via the web or mobile app.

When a user has multiple devices collecting data concurrently, the legs are
first processed per device. To create a single leg sequence for the user, the more
frequently changing legs are selected, with the assumption that a device that
is, for example, left at home, will not produce activity transitions on its own.
This is achieved by sorting the legs from multiple devices in ascending order by
their ending timestamp, and selecting those legs that do not overlap in time
with previously selected legs. The device legs selected to be part of the user
leg sequence have user_id set, while for unselected legs it remains null.

The user’s stop locations, along with the start and end coordinates of each
movement leg, are clustered in the leg_ends table, enabling queries to the user’s
regular destinations and transfer locations. The user-specific leg_ends are
further clustered into places that are common to all users, and automatically
labeled using reverse geocoding.

The trip chains between longer stops, referenced as the origin and destination,
are collected into the trips table. As the origin and destination reference longer
stops (cf. Section 5.3), and only leg instances that are not longer stops reference
a trip, the relationship is not circular on the instance level. A condensed
location trace, snapped to waypoints at road crossing clusters derived from
OpenStreetMap data, is recorded in leg_waypoints. The waypoint trace records
the timestamp from the first raw trace point in a run of consecutive points
snapping to a given waypoint. A coarser path representation such as the
waypoint trace, along with leg transport mode information, can then be used
to dynamically cluster the trips into the regular route options used between a
given origin and destination.
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The following sections describe the stop detection, mode detection, cluster-
ing, and related improvements in processing order.

5.2 False location filtering
Due to redundancy, noise and outliers from inaccuracy and errors in location
source data, some filtering of the data is required.

In some circumstances the captured location trace included data points
where the location is incorrect by a much greater distance than indicated by
the stated accuracy of the data point. The context of their appearance suggests
they may be caused by the location provider finding the location by a mobile
Wi-Fi access point that has since moved, but the cause was not investigated
further.

Figure 10 shows one such trace from clockwise trips from Kamppi, Helsinki
(at right) to Otaniemi, Espoo (at left) and back, with two intermittent false
locations. The true roadway is shown in grey outline.

Chen et al. [7, p. 4] describe five trace cleanup filters based on duplication,
speed, acceleration, total distance, and angle. Some of these methods were
considered or trialled but found not entirely satisfactory for the particular
pathology of this case. This was due to difficulty finding parameters specific
enough to the false location points, such that as much of the real trace can
be preserved, while getting the false points removed in the most cases. While
such filters can identify many of the suspicious leaps in the trace, a more
specific approach was needed to identify the true from the false side of the
trace, especially in a short window over the trace. A filter using a four-point
window was implemented based on the observed characteristics of the false
location points.

The intermittent false location points were found to be clustered very close
together, well within one metre from each other, except for one case where
the shift was nearly eight metres. The true side of the trace typically involves
more movement, or greater spatial noise even when the collecting terminal is
stationary.

To simplify further processing, the trace is preprocessed to group sub-
sequences of points no more than ten metres from the preceding accepted
point, leaving the first point in such a subsequence as a representative of the
group. After filtering, point groups whose representative is not filtered out, are
reintroduced.

The approach then uses a triangle inequality factor criterion, such that
it considers a point pi in the sequence suspect, if the distance between its
neighbors pi−1 and pi+1 through the point exceeds twice the direct distance
between the neighbors:

‖pi − pi−1‖+ ‖pi+1 − pi‖
‖pi+1 − pi−1‖

> 2

A solitary suspicious point, not followed by another suspicious point, is
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Figure 10: Unfiltered location trace with two intermittent false
locations

Figure 11: Trace of Figure 10 after filtering.
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filtered out. If a suspect point is followed by another suspect point, the lesser
movement and noise on the false side of the trace causes the direct distance
between the two neighbors of a point to typically be smaller, resulting in a
greater triangle inequality factor for the true side, so the point with the lesser
factor is filtered out.

Figure 11 shows the example trace after filtering. Two good location points
are seen detached from the path on the left, but otherwise the specificity is
good.

5.3 Stop detection
Stops are detected in the location trace where the time spent traversing a given
distance exceeds a threshold. An example is illustrated in Figure 12.

The distance parameter establishes a granularity for stops and for destina-
tions derived from the stops, as consecutive stops occurring within up to twice
that distance could be interpreted as one stop. In consideration of the transit
focus and routing applications, the distance parameter was selected with the
intent to, in most cases, uniquely identify subsequent transit stops along any
line. While the HRT planning principles for the Helsinki region mass transit
recommend that the distance between stops not be less than 300 metres within
the street network [15], intervals of less than 200 metres do occur in the most
dense areas within the region.

Also the typical accuracy of the location trace points establishes a lower
bound for a useble distance parameter. To prevent inaccurate location points
from breaking up a stop, such points are discarded that claim an accuracy of
worse than half the distance parameter.

With these factors in mind, the distance parameter was set at 100 metres,
corresponding with the accuracy threshold for accepted location trace points
set at 50 metres.

In this implementation, the stop detection time parameter was set to five
minutes, same as was used for journey segmentation by Letchner et al. [19]. In
informal exploration using collected data, this threshold appeared to effectively
eliminate non-destinations like traffic lights, while preserving more purposeful
stops as much as possible.

As another consideration to parameter selection, the chosen distance and
time parameters together in conjunction with the stop detection approach used
establish a lower bound on velocity of 0.33 m/s, or 20 metres per minute, that
can establish a movement leg distinct from a stop.

Further experimental analysis derived from the TrafficSense data regarding
the time and radius parameter selection is found in Stegmann et al. [24].

Entry and exit refinement

Given a stop where the location trace enters along a line, stays put for at
least the duration parameter, and exits again linearly, the stop entry and exit
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5 h

4 min

2 min

100 m

Figure 12: Stop detection in an example trace. Arrows indicate the
direction and duration of travel in the corresponding portion of the
trace. The shaded portion indicates the detected stop condition
where the trace stays within 100m of a base point in excess of the
threshold interval. The refined stop consists of the points at the
ends of the 5h arrow.
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Figure 13: Example of stop entry/exit refinement for a short stop
waiting for a bus. In the top graph, the stop condition is found
when the time spent to reach the next 100 metres exceeds five
minutes (capped to five minutes in graph). The stop entry point
is sought within the five minutes after the stop condition begins,
and the exit point within the five minutes after the stop condition
ends. The middle graph shows the distance reached in the following
and preceding five minutes, capped to 100 metres. Finally, the
refined entry and exit point is found at the minimum and maximum
difference of the capped distances within the entry and exit windows,
respectively.

points would both be a whole distance parameter away from the actual stop
location. With a distance parameter chosen for suitable granularity of stops,
the inaccuracy in entry and exit time and location poses a problem for mass
transit detection and other analysis.

This gives rise to the need to refine the stop entry and exit points. The
refinement can be accomplished by running a two-pane window with the pa-
rameters exchanged, that is, the duration criterion used as window size and
the distance travelled in the window panes as the measure. The points where
the difference in distance travelled between the panes is the greatest, are used
for entry and exit points.

To avoid window edge effects from changes in approach speed due to corners
and traffic lights further away from the actual stop, the refinenement distance
measure is also clamped to the detection distance criterion.

The stop entry and exit refinement process is illustrated in Figure 13.
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Figure 14: Activity transitions in an example trip. Collected
in_vehicle and walking confidence values (left scale), ±60s
walking to in_vehicle transition metric (right scale). Confi-
dences for other activities are omitted. Arrows indicate selected
next activity start point at the extremum metric within each tran-
sition range.

5.4 Activity selection
As part of the work, the following improvements to activity recognition were
implemented.

While the activity collection itself makes no use of location, the stop de-
tection with entry and exit refinement allows the activity selection to work on
only the movement segments of the trace, which reduce spurious activity bleed
from stationary activities into the movement segments.

The goals of the system do not have much use for very short mode legs
of less than a minute or so in duration. Also, the previously implemented
activity stabilizer already had a six point stability requirement, corresponding
to a minimum of one minute at the 10s collection rate. To help the stabilizer
stabilize over noisy data, a summing window over the activities recorded in
data points within ±60s of a point was implemented. This way, any longer
than one-minute stretch of an activity collected at full confidence will appear
in the trace for stabilization, while activities with lower duration or confidence
may be elided.

In particular, it was found that during trip legs in rail vehicles, the corre-
sponding in_vehicle activity appeared intermittently and with low confidence
in the raw activity trace. This is presumably because such vehicles travel rela-
tively smoothly, and exhibit less of the kinds of vibration patterns typical of
road motor vehicles. The window summing approach helps uncover these lower
confidence activities.

Due to the low confidence of in_vehicle activity in vehicles that move
relatively smoothly, the plain summing window approach has a tendency, in a
transition between a more confidently received activity, e.g. walking and an
adjacent less confident one, to shift the transition into the less confident activity
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up to almost the entire window length. Another approach using a split window
was implemented, with a front window and a back window both extending 60s
from the focus point. Transition windows can be found where the dominant
activity in the back and front windows differ, and a better transition point
selection within the transition window can be achieved by using the differences
in confidence sums between these windows. An example is illustrated in Figure
14.

After brief evaluations of mass transit detection performance and inspection
of traces, this final modification was not taken into use, as the resulting
improvements did not appear worth the added complexity.

5.5 Mass transit detection
As part of the work, the following improvements to mass transit detection were
implemented.

As discussed in the environment decription (Chapter 4), the maximum
distance for matching between user and vehicle location trace points is set at 100
metres, and the maximum time difference at 60 seconds. With the sample rate
of thirty seconds in the collected vehicle positions, a vehicle traveling at 80 km/h
would produce samples every 667 metres, much in excess of the abovementioned
distance limit. This caused false negatives with the user location samples falling
in between the vehicle points in such a way that they are not matched to trace
points from the vehicle the user travelled on, sufficiently for the 75% requirement,
for vehicles moving faster than 2× 100 m / 30 s / 0.75 = 32 km/h. Increasing
the distance limit to several hundred metres would be computationally less
efficient and more prone to false matches.

To correct the issue without increasing the distance limit, for each vehicle
the portion of its position sequence contemporaneous to the user location
sample is processed into linestrings, and user point distances calculated against
those line geometries. This matching approach is illustrated in Figure 15.

To make the updated comparison more efficient, it was implemented directly
in SQL using PostGIS extensions, replacing the prior Python implementation.
To maintain similar performance in terms of execution speed, the number of
user location samples used for matching a trip leg was restricted to a maximum
of 40, increased from the prior 4 points.

The match scoring was also made less granular, such that each match within
the permitted 100 metres’ distance accumulates a score of 100− d when the
distance is d metres. The vehicle with the highest score wins.

The line type and name are set according to the matched vehicle. On some
lines, a vehicle can intentionally change line name when passing a certain stop.
Also, some vehicles in the transit data source would erroneusly change line
name intermittently to false values. In case of the vehicle having multiple line
names in the matches, the most frequently occurring name is used.
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Figure 15: Mass transit matching using live vehicle positions. The
user location trace point under inspection is shown circled, the
linestrings formed for comparison with it for each vehicle from
trace points contemporaneus with the user point are shown solid,
with the non-contemporaneous portion of the paths as a dotted
line. A match is found where the distance to the vehicle linestring
is within the matching radius of the user point.

5.6 Regular destinations
As mentioned in the model and schema description in Section 5.1, in order
to identify the regular destinations visited by a user, and the transfer points
frequented on the way, the stop locations and trip leg endpoints are clustered.

In order to preserve the identity of existing clusters as new data is collected,
the clustering is achieved by a simple online algorithm. A newly added stop or
leg endpoint forms a one-point cluster. The two clusters closest to each other
are merged, and the location of the merged cluster updated to the mean of the
points collected therein, until there are no cluster pairs within a given distance
limit parameter. This stage is depicted in Figure 16.

The distance limit selected for use in clustering is 200 metres, or twice the
stop detection threshold, to avoid clustering consecutive stops along a linear
path together.

A second level of clustering combines per-user stop and leg endpoint clusters
in the same manner into shared place clusters. This stage is depicted in Figure
17. The shared places are labeled, combining two of primarily the “street” and
falling back on “name” properties, taken from the first ten results of a reverse
geocoding query.

While shared places could be clustered directly from all users’ stops and
leg endpoints, two levels of clustering is used in order to avoid splitting user
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destinations. In a dense urban environment, and given enough users, places
significant to some user occur roughly everywhere. In particular, a place
significant to a user could occur between two single-level clusters. Without two-
level clustering or another solution, stops at such locations could be split, finding
affinity in different clusters depending on variation in location measurement.
This would lead to irregularity also in the origin-destination assignment of
routes. This issue is illustrated in Figure 18.

Also, in using the regular destinations, to for instance assist the user in
navigation to the likely next destinations, displaying a location based on cross-
user data could result in location information leak across users. Maintaining
per-user locations makes the placement of such map markers more relevant to
each user, and doesn’t reveal information about nearby users inadvertently.

5.7 Trip visualization
Enabled by the abovementioned trip leg generation, stop and leg endpoint
clustering and place labeling, a user trip log view was developed. The trip
log features visualizations as shown in Figure 19, describing for each trip leg
its start and end times and places, duration, distance travelled, and transport
mode.

For path display to the client, presented as GeoJSON through the API, a
heap based line simplification was implemented as described by e.g. Eberly
[9, sec. 3, “Fast algorithm”], a local processing algorithm for redundant point
weeding using the perpendicular distance criterion, as illustrated by Weibel [27,
p. 117-118].

The trip log on the web provided by the siteserver, and the path display
in the mobile app, also allow for user correction or confirmation of transport
mode detection.

5.8 Route grouping
Grouping trips into regular routes taken by a user between given origin-
destination pairs can be used to summarize the user’s mobility patterns, and to
compare route options using data from several trip samples. Potentially data
across users relating to similar routes could be used in suggestions for faster or
more energy-efficient route options.

For purposes of route grouping, trips are separated at stops longer than
30 minutes in duration, corresponding to the threshold presented for the trip

Figure 19: Portion of a recognized multimodal trip sequence.
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chain delimiter in the definition of a trip chain described by McGuckin and
Nakamoto [21].

In order to group similar routes from trips taken by a user between an
origin-destination pair, a similarity criterion between trips or trip clusters is
needed. A similarity criterion in turn requires a generalized trip representation
practical for calculating such a comparison criterion.

A set of mode-location points, with a the location generalized by snapping
onto fewer, coarser coordinates, annotated with the mode of transport at that
location, is used for the generalized comparable trip respresentation. This allows
the comparison of routes for purposes of clustering using fuzzy sets. Such a
fuzzy set consisting a single trip contains simply the set of coarse mode-location
points visited by that trip. When trips are grouped in a fuzzy set, the weight
of each mode-location point in the set is the proportion of its occurrence within
the trips to the total number of trips in the group.

The comparison of similarity of trip clusters represented as fuzzy sets is
done by division of intersection size to union size, generalized such that the
union sums over the maximum probability of each mode-location point, and
the intersection over the minimum. The caveats of various generalizations of
fuzzy set connectives are discussed in depth by Dubois and Prade [8].

One alternative explored for the coarse location were waypoints set at
way crossings generated from OpenStreetMap data, snapping the sampled
geolocation coordinates to the nearest way within reasonable distance, and
then to the nearest crossing on that way. Another alternative is rounding
coordinates to a grid of appropriate size.

One downside of using a grid approach is that longer trips end up with
very large point sets, making the comparison operations slower. Waypoints
at crossings have lower density along higer-speed, more exclusive roadways,
reducing the number of points along those parts of the path. Also, waypoints at
crossings to a fair extent model the routing decisions made along the path. A
grid approach weights the importance of any distance along the route the same
way, whereas the choices at crossings should be more relevant to the travel time
outcome.

In practice, route grouping using crossings was found less effective in cases
where the route choice was between a more dense city route and a sparse
highway route — the low number of points generated in the highway route
segment makes it carry relatively little weight in route comparisons relative to
other differences that may occur in denser segments of the trips. One possibility
to counteract this would be to grant a higher weight to sparse crossings as
compared to dense crossings.

Another concern arises in selecting the coarse location properties due to
the location sampling interval. If the grid or waypoint locations are denser
than the sampled device location, some coarse points in between will be left
out of the trip properties. Unless the skipped-over grid cells or waypoints
are filled in by lines, with different time alignment on the path on different
trips leaving out different coarse locations, there appears a false difference
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Figure 20: Histogram of movement speed by transport mode (de-
tected and partially user corrected, Feb 8th – Mar 8th 2017, 82
distinct users). in_vehicle excludes other vehicular modes shown.
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between paths that are identical in reality. This sets a minimum for the grid or
waypoint location granularity dcoarse based on expected maximum speed vmax

and sampling interval tsample:

dcoarse ≥ vmaxtsample

In the data gathered, the speed rarely (1.3%) exceeds 30 m/s (108 km/h),
so with the 10s position sampling interval used by the client, the resulting
granularity limit is

dcoarse ≥ 30m/s · 10s = 300m

The chosen granularity of 0.002◦ latitude, 0.004◦ longitude, or approximately
222× 222 metres square at 60◦latitude, yields a speed limit of

vmax = 222m

10s
= 22.2m/s ≈ 80km/h

which is exceeded in 8.5% of the data point pairs. For reference, histograms
of speed by transport mode in a sample of the collected data are shown in
Figure 20.

The density of crossings typically relates inversely to the speed limit of a
road, so this issue could be mitigated by the waypoint crossings option.

The longitudinal grid size is adjusted by the cosine of the snapped latitude
to maintain an approximately square cell aspect. The drawback is that adjacent
cell rows are not aligned, but for route comparisons that is not a requirement.

Trip grouping is done in similar manner to leg end and shared place grouping,
using pairwise clustering, with a distance threshold applying in this case to
the union/intersection fuzzy sums similarity metric. Each trip is initialized as
a route point set, each point being coarse coordinates and transport mode at
that point. The nearest routes by similarity are then merged until a threshold
minimum similarity distance is reached.

To illustrate the clustering results, Figure 21 shows an example selection of
trips with the same origin and destination, from two distinct groups.
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(a) Route group with bus use. (b) Route group with bicycle use.

Figure 21: Route comparison example for two main route groups
arising from an origin-destination pair. The visualization of the
group’s mode-location fuzzy set overlaid on the map is shown at
top, followed by a selection of trip instances from the group.
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6 Evaluation
This chapter presents evaluations performed on the route model features and
improvements made within the scope of this work.

Analytical evaluations discuss the fit into the technical context — the
resulting model of stops, trips, regular destinations, routes and their modes,
generated from a user’s location and activity trace, is assessed to evaluate the
suitability of the model. Under dynamic qualities, the performance of accessing
processed data used for display to the user by the client software, is evaluated,
as well as the efficiency of storage.

Public study and surveys

During a wider campaign, the system was used in a field experiment with a
total of 93 users in a period of January 10th through March 17th 2017. 981,291
data points were collected in this time period, forming 13,999 active trip legs,
consisting of 1,208 bus, 201 tram, 113 train, 4,087 car and 1,020 bicycle trips
plus walking and running. Users also submitted 546 corrections to trip legs.

Two questionnaire links were presented to users through the mobile app
messaging during the campaign. The first survey concerned mostly mobility
habits and demographic questions, while the second survey was focused more
on the application and feature usage and preferences. 57 users responded to
the first, and 49 to the second survey.

The favourite features identified by the users in the second survey were the
display of previous trips on the map facilitated by the route model and path
simplification, the personal energy certificate visualizing the user’s mobility
energy efficiency, and the client-side convenience feature incorporating Google’s
real-time traffic information map overlay in the app.

The most interesting features for development, picked from options given
by the team, were notifications of exceptional traffic jams on predicted route,
automatic re-planning in case of a public transport problem, and better focus
of disruption notifications.
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In a freeform question “What’s the most important thing for TrafficSense
to address in the future?” the most common suggestions were related to quality
of transport mode and mass transit detection mentioned in 9 out of 29 entries,
followed by usability and interface related comments with 5 entries, and dynamic
rerouting based on disruptions in 3 entries.

Mass transit detection enhancements

The improved implementation of live vehicle location matching was evaluated
against the prior implementation. In the older implementation, four user trace
sample points were used, and matched against vehicle location points in the
surrounding time window. With the vehicle location sampling interval of
30 seconds, and the 100 metre distance criterion, this would be expected to
cause otherwise optimal user trace point samples to potentially fall outside the
matching radius once the vehicle speed exceeds 2 × 100m/30s ≈ 6.67m/s ≈
24km/h.

For trams, in Helsinki having an average speed of 14.7 km/h in 2013–2014
[14], with dense stops, the new and old methods should produce similar results.
More differences can be expected on the subway, and on bus lines with highway
portions, where speeds are higher and stops more sparse.

A smaller-scale one-day targeted data gathering and evaluation was per-
formed by the research group, with a focus on the subway train travel mode
that presented challenges due in part to location fix sparseness in underground
conditions. The eight participants — seven using public transportation and
one reference participant driving a private car — recorded trips using the
TrafficSense software during a seven-hour window, also manually journaling
a total of 103 vehicle trips. Within that experiment, the live mass transit
matching enhancements described in Section 5.5 resulted in an increase in mass
transit trip legs successfully matched using live vehicle location data from 20 to
29, with eight of the added matches being subway legs, and one a bus. Overall,
of the 97 journaled public transport trips, 47, or 48%, resulted in detection
of the correct public transport mode and line. This dataset and experimental
results are described in detail in Rinne et al. [23].

Evaluation of detected trips against journal

A 31-day window of data collected from the author, and processed using the
auxiliary mass transit data — live vehicle locations and static timetables — from
the same period, was used to evaluate the effectiveness of the data collection
and the correctness of its interpretation in the trip model. A corresponding
trip journal, collected using a web form at each stop and travel mode transition,
was used as the reference. Evaluation was done with respect to correctness of
detected mode and mass transit, missing or extraneous legs, and accuracy of
transfer times.

This data set consists of 547 manually recorded transitions between stops
and trip legs, and 347 automatically detected stops and trip legs without user
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Figure 22: Lateness of detected versus manually recorded transi-
tions.

none bicycle bus run still tram vehicle walk any all
none - - - 1 1 - - 3 5 5

bicycle - 4 - - - - - - 4 4
bus 28 - 43 - - - 11 1 55 83

still 83 - 1 - 107 1 3 1 113 196
tram 23 - - - - 13 7 1 21 44
walk 71 - - 1 1 - - 147 149 220
any 205 4 44 1 108 14 21 150 342 547
all 205 4 44 2 109 14 21 153 347 552

Table 1: Confusion matrix for mode detection in a 31-day sample.
Manually journaled true modes on rows, detected modes in columns.

sensitivity sensitivity specificity
incl. missing excl. missing excl. missing

bicycle 4/4 ≈ 1.000 4/4 ≈ 1.000 338/338 ≈ 1.000
bus 43/83 ≈ 0.518 43/55 ≈ 0.782 286/287 ≈ 0.997

still 107/196 ≈ 0.546 107/113 ≈ 0.947 228/229 ≈ 0.996
tram 13/44 ≈ 0.295 13/21 ≈ 0.619 320/321 ≈ 0.997
walk 147/220 ≈ 0.668 147/149 ≈ 0.987 190/193 ≈ 0.984

overall 314/547 ≈ 0.574 314/342 ≈ 0.918 1362/1368 ≈ 0.996

Table 2: Sensitivity and specificity per mode in the 31-day sample.
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corrections. The manually entered transitions have an automatically recorded
timestamp, and a user-supplied estimate of form entry lateness in minutes. As
such, the expected accuracy of the time differences is limited to one minute at
best.

An excerpt of the data is presented in Table 3. Notably, there are no trip
legs taken by car in this 31-day sample, so false positive mass transit matches
for such vehicle legs cannot occur.

Of the 547 manually recorded transitions, 205 were not present in automatic
detection. However, while the automatic detection was tuned to not find stops
of less than five minutes in duration, the manual bookkeeping had no such
limits. Restricting to the 251 manually recorded activity spans longer than five
minutes, 65, or 26%, were not present in automatic detection.

Of 342 corresponding transitions, 175, or 51%, were within one minute
of each other in manual bookkeping and automatic detection. 244, or 71%
were within two minutes, and 298, or 87%, within three minutes. The full
distribution is shown in Figure 22. For context, 273, or 80%, of these transitions
were manually logged within one minute.

The stop and activity detection within the 342 time-correspondent legs was
correct in 328 cases and incorrect in 14 cases. The correct mode including mass
transit type was found in 310 cases.

The confusion matrix of transit mode detection is shown in Table 1. The
sensitivity and specificity of detection per transit mode is shown in Table 2.

Recognition of tram trip legs was less reliable than buses, partly due to
being less reliably detected as in_vehicle in activity recognition. This could
be improved by using speed determined from location data to augment the
interpretation of the activity data. When using such augmentation, in particular
still activity while moving would strongly imply being in a smoothly moving
vehicle.

Route grouping

In inspection of regular routes grouping results, it is found that for frequently
travelled origin-destination pairs, the most common routes are clearly identified
according to path taken and major transport modes. Taking the author’s
most travelled origin-destination pair as an example, with a total of 136 trips
recorded, 30 trips match the most common route (via Kamppi to Otaniemi,
through northern Lauttasaari), and 15 the second most common variation (via
Kamppi to Otaniemi, through central Lauttasaari).

Irregularity in the trace recording, depending on the phone’s ability to get
location fixes, results in a long tail of smaller and individual route groups. For
the same example origin-destination pair, 55, or 40% of the trips are uniquely
intermittent in the clustering. In other words, with the devices and location
capture configurations used, getting a complete record of mobility could not be
achieved, but finding the most common patterns is possible.

In longer routes, trips with mode variation in a shorter trip leg may get
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Table 3: Manual trip log excerpt aligned with detected trip legs.
The columns contain, respectively:

• time — at journal stop or transit mode start transition,
• mode/line — stop or transit mode and line name,
• place — location where transition occurred,
• late — user-estimated lateness of form submission in minutes,
• time — at detected stop or transit mode start transition,
• km — distance travelled along location trace in kilometres,
• activity — detected activity, or stop found from location trace,
• live — mass transit line detected using live vehicle locations,
• timetable — mass transit line detected using static timetable,
• place — reverse geocoded label for place cluster at transition.

The raw journaled place names have been edited for con-
sistency, and some reverse geocoded place labels masked.

manually recorded transitions leg start transitions detected from trace
time mode/line place late time km activity live timetable place

Sunday

15:45:44 Walk Home 2 15:42:02 1.5 WALKING [Home / stop A]
16:06:42 Stop Pool 2 16:04:02 STILL Kauppatori / Market Square
19:40:04 Bicycle Pool 0 19:41:07 2.2 ON_BICYCLE Kauppatori / Market Square
19:52:34 Stop Café 0 19:53:31 STILL Ehrenströmintie / Itäinen Puistotie
15:58:55 Bicycle Café 0 19:59:03 1.5 ON_BICYCLE Ehrenströmintie / Itäinen Puistotie
20:09:34 Walk Home stop A 1 20:05:56 0.2 WALKING [Home / stop A]
20:09:55 Stop Home 1 20:10:25 STILL [Home / stop A]

Monday

12:00:24 Walk Home 0 12:00:06 0.4 WALKING [Home / stop A]
12:05:33 Bus 18 Home stop B 0 12:05:03 0.7 IN_VEHICLE [Home stop B]
12:08:18 Walk Hub stop 0 12:08:38 0.1 WALKING Urho Kekkosen katu / Kamppi
12:12:15 Stop Hub 0
12:16:47 Bus 103T Hub 0 12:29:53 4.2 IN_VEHICLE BUS 103T Luoteisväylä / Katajaharjuntie
12:37:26 Walk Office stop 0 12:37:20 0.6 WALKING Metallimiehenkuja / Otaniementie
12:45:10 Stop Office 0 12:46:18 STILL Konemiehentie / Tietotie
21:43:35 Walk Office 0 21:41:03 0.7 WALKING Konemiehentie / Tietotie
21:54:44 Stop Office stop 2
22:04:05 Bus 102T Office stop 2 22:05:01 7.2 IN_VEHICLE BUS 102T Karhusaarentie / Keilaniementie
22:20:28 Stop Hub 0 22:20:03 STILL Urho Kekkosen katu / Kamppi
22:25:38 Bus 18 Hub 0 22:25:30 1.2 IN_VEHICLE BUS 18 Urho Kekkosen katu / Kamppi
22:29:47 Walk Home stop A 0 22:29:38 0.1 WALKING [Home / stop A]
22:32:40 Stop Home 0 22:31:33 STILL [Home / stop A]

Tuesday

11:10:35 Walk Home 0 11:16:06 0.8 WALKING [Home stop B]
11:26:36 Stop Hub 0
11:35:23 Bus 102 Hub 0 11:38:15 7.8 IN_VEHICLE Porkkalankatu / Itämerenkatu
11:52:51 Walk Office stop 2 11:51:01 0.6 WALKING Metallimiehenkuja / Otaniementie
11:59:41 Stop Office 0 11:57:42 STILL Konemiehentie / Tietotie
15:30:56 Walk Office 0 15:31:36 0.6 WALKING Konemiehentie / Tietotie
15:39:53 Bus 102 Office stop 1 15:38:47 8.2 IN_VEHICLE BUS 102 Metallimiehenkuja / Otaniementie
15:55:02 Walk Transfer A 0
15:55:44 Stop Transfer B 0 15:55:07 STILL Hietalahdenkatu / Ruoholahdenkatu
16:01:58 Tram 9 Transfer B 0 16:01:10 1.1 IN_VEHICLE Hietalahdenkatu / Ruoholahdenkatu
16:08:07 Walk Gym stop 0 16:07:33 0.2 WALKING Tyynenmerenkatu / Hietasaarenkuja
16:11:03 Stop Gym 0 16:10:30 STILL Tyynenmerenkatu / Hietasaarenkuja
19:10:44 Walk Gym 0 19:08:15 0.3 WALKING Tyynenmerenkatu / Hietasaarenkuja
19:13:39 Stop Gym stop 0
19:14:39 Tram 9 Gym stop 0 19:13:19 1.7 TRAM 9 TRAM 9 Tyynenmerenkatu / Hietasaarenkuja
19:20:48 Walk Hub stop 0 19:20:02 0.4 WALKING Urho Kekkosen katu / Kamppi
19:24:02 Stop Hub shop 0
19:42:59 Walk Hub shop 0
19:46:01 Stop Hub 0 19:46:35 STILL Urho Kekkosen katu / Kamppi
19:58:50 Bus 18 Hub 0 19:55:20 1.3 IN_VEHICLE Urho Kekkosen katu / Kamppi
20:08:42 Walk Home stop A 0 20:08:16 0.2 WALKING [Home / stop A]
20:10:25 Stop Home 0 20:11:29 STILL [Home / stop A]
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Table 3: Manual trip log excerpt with detected trip legs (continued)

manually recorded transitions leg start transitions detected from trace
time mode/line place late time km activity live timetable place

Wednesday

08:55:57 Walk Home 0 08:55:31 1.2 WALKING [Home / stop A]
08:58:19 Stop Home stop A 1 09:14:42 6.0 IN_VEHICLE Hietalahdenkatu / Ruoholahdenkatu
09:01:14 Bus 14 Home stop A 0
09:05:24 Walk Hub stop 0
09:09:33 Stop Hub 0
09:12:20 Bus 102 Hub 0
09:29:00 Walk Office stop 2 09:23:21 1.3 WALKING Miestentie / Karhusaarentie
09:34:16 Stop Office 0 09:36:55 STILL Konemiehentie / Tietotie
21:32:30 Walk Office 0 21:33:28 0.6 WALKING Konemiehentie / Tietotie
21:40:38 Stop Office stop 0
21:44:45 Bus 103T Office stop 1 21:43:51 8.3 IN_VEHICLE BUS 103T Metallimiehenkuja / Otaniementie
22:01:01 Walk Hub 0 22:00:23 0.3 RUNNING Malminkatu / Lapinlahdenkatu
22:02:57 Stop Hub 0
22:03:45 Tram 2 Hub 0 22:03:45 3.4 TRAM 2 TRAM 2 Urho Kekkosen katu / Kamppi
22:22:36 Walk Home stop A 0 22:22:09 0.4 WALKING [Home / stop A]
22:24:57 Stop Home 0 22:27:03 STILL [Home / stop A]

Thursday

12:29:34 Walk Home 0 12:39:19 0.4 WALKING [Home stop C/D]
12:31:56 Stop Home stop A 0
12:35:46 Bus 18 Home stop A 0
12:40:26 Walk Hub stop 0
12:44:33 Stop Hub 0
12:47:40 Bus 102 Hub 0 12:52:05 5.8 IN_VEHICLE Salmisaarenkatu / Sulhasenkuja
13:01:46 Walk Office stop 0 12:58:43 1.3 WALKING Miestentie / Karhusaarentie
13:10:29 Stop Office 0 13:10:52 STILL Konemiehentie / Tietotie
15:33:48 Walk Office 0
15:41:32 Stop Office stop 0
15:44:23 Bus 103 Office stop 2 15:45:16 7.2 IN_VEHICLE BUS 103 Miestentie / Karhusaarentie
15:55:47 Walk Transfer A 0
15:57:25 Stop Transfer B 0 15:56:16 STILL Hietalahdenkatu / Ruoholahdenkatu
16:01:19 Tram 9 Transfer B 0 16:01:16 1.4 IN_VEHICLE Hietalahdenkatu / Ruoholahdenkatu
16:06:10 Walk Gym stop 0 16:05:49 0.2 WALKING Tyynenmerenkatu / Hietasaarenkuja
16:09:14 Stop Gym 0 16:11:34 STILL Tyynenmerenkatu / Hietasaarenkuja
18:51:10 Walk Gym 1 18:50:01 0.2 WALKING Tyynenmerenkatu / Hietasaarenkuja
18:52:38 Stop Gym stop 0
18:55:17 Tram 9 Gym stop 0 18:53:00 1.9 IN_VEHICLE Tyynenmerenkatu / Hietasaarenkuja
19:03:18 Walk Hub stop 0
19:06:27 Stop Hub shop 0
19:19:00 Walk Hub shop 1
19:21:33 Stop Hub 0
19:23:45 Bus 14 Hub 0 19:19:15 1.5 IN_VEHICLE BUS 14 Urho Kekkosen katu / Kamppi
19:29:47 Walk Home stop A 0 19:29:43 0.1 WALKING [Home / stop A]
19:31:51 Stop Home 0 19:31:18 STILL [Home / stop A]

Friday

11:27:59 Walk Home 0
11:30:46 Stop Home stop A 1 11:29:06 0.4 IN_VEHICLE [Home / stop A]
11:33:32 Tram 3 Home stop A 0
11:36:45 Walk Home stop D 0 11:34:47 0.3 WALKING [Home stop C/D]
11:39:04 Bus 18 Home stop C 0 11:38:37 0.3 IN_VEHICLE BUS 18 [Home stop C/D]
11:40:44 Walk Hub stop 0 11:40:44 0.2 WALKING Urho Kekkosen katu / Kamppi
11:45:50 Bus 102 Hub 0 11:48:29 6.8 IN_VEHICLE BUS 102 Porkkalankatu / Itämerentori
11:58:23 Walk Office stop 0 11:58:43 0.6 WALKING Metallimiehenkuja / Otaniementie
12:05:37 Stop Office 0 12:08:27 STILL Konemiehentie / Tietotie
21:50:08 Walk Office 1 21:46:39 0.7 WALKING Konemiehentie / Tietotie
21:56:40 Stop Office stop 0 21:57:29 STILL Metallimiehenkuja / Otaniementie
22:04:11 Bus 102T Office stop 2 22:02:23 8.4 IN_VEHICLE BUS 102T Metallimiehenkuja / Otaniementie
22:19:51 Walk Hub 0 22:21:25 STILL Urho Kekkosen katu / Kamppi
22:22:05 Stop Hub 0 22:24:42 0.3 WALKING Urho Kekkosen katu / Kamppi
22:27:02 Bus 18 Hub 1 22:27:20 1.1 IN_VEHICLE BUS 18 Malminkatu / Lapinlahdenkatu
22:32:04 Walk Home stop A 1 22:31:30 0.1 WALKING [Home / stop A]
22:33:37 Stop Home 0 22:35:40 STILL [Home / stop A]

Saturday

11:04:24 Walk Home 0 11:04:27 0.5 WALKING [Home / stop A]
11:11:59 Stop Home stop D 0 11:10:38 STILL [Home stop C/D]
11:15:36 Tram 6 Home stop D 0 11:15:45 0.8 IN_VEHICLE TRAM 6 [Home stop C/D]
11:19:28 Walk kalevankat 0 11:18:31 0.3 WALKING Abrahaminkatu / Lönnrotinkatu
11:21:11 Stop Gym stop 0
11:22:15 Tram 9 Gym stop 0 11:20:47 1.0 IN_VEHICLE Ruoholahdenranta / Eerikinkatu
11:25:32 Walk Gym stop 0 11:25:21 0.3 WALKING Tyynenmerenkatu / Hietasaarenkuja
11:28:34 Stop Gym 0 11:32:15 STILL Tyynenmerenkatu / Hietasaarenkuja
13:38:00 Walk Gym 0
13:41:36 Stop Gym~shop 1
14:00:08 Tram 6T Gym stop 0 14:00:30 1.6 IN_VEHICLE TRAM 6T Tyynenmerenkatu / Hietasaarenkuja
14:09:24 Walk Home stop D 0 14:08:25 1.6 WALKING [Home stop C/D]
14:24:55 Stop Pool 0 14:27:51 STILL Kauppatori / Market Square

16:01:58 0.2 WALKING Kauppatori / Market Square
16:06:15 Bicycle Pool 0 16:06:23 3.2 ON_BICYCLE Kauppatori / Market Square
16:21:37 Walk Home stop E 0 16:20:57 0.4 WALKING [Home / stop A]
16:27:45 Stop Home 0 16:29:26 STILL [Home / stop A]
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device_data trace, n rows
(device_id, coordinate, accuracy,
  time, activity_1..3, 
  activity_1..3_conf)

legs, 0.02n rows
(device_id, user_id, 
  time_start/end, 
  coordinate_start/end, activity,
  line_type/name/source)

stationary rejectrunwalk walk... bike bus 18

device_data_filtered, 0.8n rows
(user_id, coordinate, time, 
  activity, line_type/name)

leg_waypoints, 0.2n rows
(leg, waypoint, first timestamp)

Figure 23: Relative compactness of updated model.

grouped together, depending on the fuzzy set similarity clustering threshold.
For example, as might be expected, with a similarity parameter of 0.75, in a
ten-kilometre route, variation between a one-kilometre walk or bus leg is not
distinguished in the grouping. Higher similarity requirement results in more
fragmentary grouping. The location-mode point set comparison effectively
weights by distance, but comparing the leg structure directly using transfer
location clusters could produce more relevant results in the case of mass transit
trips. On the other hand, such an approach would not generalize well to e.g.
car and bike trips that, unlike mass transit lines, can take variable paths.

Access and storage performance

The trip leg data in the updated model is significantly more compact than the
raw or filtered trace, as illustrated in Figure 23, requiring 50 times fewer rows
of a similar width. Also the road crossings waypoint trace is about five times
more compact, and can be more practical for applications working with a road
network representation.

The updated mass transit detection was tuned, using the number of matched
points parameter, to perform in the same time as the prior implementation.
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7 Discussion and conclusions
Automatically detecting individuals’ door-to-door multimodal trips has impor-
tant applications in an intelligent transport system. The main objective of this
thesis project was to develop representations for multimodal routes, suitable,
in the context of TrafficSense and similar systems, for analysis of mobility
patterns.

Previous experiments on mobile traffic crowdsensing and personalized rout-
ing, such as Letchner et al. [19] have focused primarily on private cars and
route choices of individuals; the novelty of TrafficSense is in its focus on energy
efficiency of the whole traffic system. The software system with the additions
presented brings together use of activity recognition for transport mode detec-
tion, previous approaches of mass transit use detection from location traces
explored in Ekholm [10], and trip chain partitioning, to cover multimodal,
door-to-door routes.

To that end, features were developed such as discriminating of stops and
trip legs from a location trace, identifying trip origin and destination and the
mode of transport in trip legs, and recognizing the user’s regular destinations
and routes — along with a concrete model for storing these route features.
Improvements were also made to the existing system’s location trace and
activity recognition postprocessing as well as mass transit line detection.

The system was found functional for discovering and describing regular
routes and destinations, as well as providing trip logs, energy efficiency analysis,
and other user-facing features. While the most frequently occurring destinations
and routes become apparent, challenges with location trace data continuity,
and reliability of mass transit matching, leave the continuous picture of user
mobility less complete.

The related infrastructure makes progress however — more recently, the
expansion of live location data availability to more of the public transport vehicle
fleet in the greater Helsinki region makes more lines available for matching in
this manner. Also, anecdotal evidence during the project suggests that data
quality from newer mobiles can surpass that of older ones when it comes to



42

trace reliability. These developments suggest that some improvement is possible
already with the current approaches.

Other options for mass transit detection could be looked into, besides
matching location traces. For instance, installing Bluetooth beacons onto
public transport stops and vehicles [2] could allow mobile devices to use them
to detect public transport trips.

When matching mass transit using statit timetables, only plans containing a
single vehicular leg are considered for matching in the present implementation.
Quick transfers between vehicles may not be detected as separate trips by the
activity detection and filtering determination, so allowing plans with transfers,
and splitting the leg accordingly, could produce improved detection.

The regular destination recognition is effective in finding common places
where the user spends some time. For places visited for short durations, the
distinction between true intentional activity locations (e.g. a drop-off), and
transfer stopovers merely necessary for transit, is not so easily deduced from
the data. More informative analysis than a plain half-hour time threshold may
be available.

The accuracy of route recognition is suitable for finding regular mobility
patterns at the origin-destination level. Within origin-destination groups,
identifying regular routes based on reoccurrences of the route taken and the
transit modes used is also possible. However, due to the intermittency common
in the collected data, many individual trip instances to fall outside such groups.
A comparison method that generalizes better over intermittent data could be
sought.

Depending on use case, instances with more missing data could also be
discarded, if only complete traces are of interest.

In general, activity recognition is a low power feature and as such shouldn’t
depend on the higher power demand of fine location tracing. In this application,
however, as location data is required anyway, it could be used to inform the
activity recognition process, to better identify moving vehicles that exhibit less
motor and road vibrations.

Mobility data gathering and analysis remains a developing area, with wide
interest from transport related agencies and businesses, and municipalities.
The results can be applied for modeling and prediction in the traffic system.
Opportunities for optimization are enabled as well, either through design or
resourcing, or by influencing individual route choices by providing relevant and
current information. Also individuals interested in their own mobility habits
can make use of mobility analysis applications, whether for the sake of curiosity,
fitness, time tracking, or optimization.
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