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Abstract Amethod for solving delay Volterra integro-differential equations is introduced. It
is based on two applications of linear barycentric rational interpolation, barycentric rational
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studied. Numerical tests demonstrate the excellent agreement of our implementation with
the predicted convergence orders.
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1 Introduction

Natural phenomena in which a quantity varies in time and simultaneously depends on its past
values are often modeled with Volterra integral equations. When these past values arise at a
shifted abscissa as well as at present time, one speaks of an equation with delay or a delay
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equation. A classical system of delay Volterra integral equations (DVIEs) of the second kind
is therefore often assumed to be⎧⎨

⎩ y(t) = f
(

t, y(t), y(t − τ),

∫ t

t−τ

K (t, s, y(s)) ds
)
, t ∈ [t0, T ],

y(t) = ϕ(t), t ∈ [t0 − τ, t0],
in which y : R → R

D1 is the unknown function and K : R
2 × R

D1 → R
D2 , D1, D2 ∈ N,

the given so-called kernel of the integral operator characterizing the equation together with
the given functions f : R × R

D1 × R
D1 × R

D2 → R
D1 and ϕ : R → R

D1 ; ϕ is the initial
function and τ > 0 is the (constant) delay. (An equation of the first kind is one in which the
lone y on the left-hand side is absent, i.e., zero.)
In some models, f rather describes the behavior of the derivative of the unknown: one

then obtains a system of so-called delay Volterra integro-differential equations (DVIDEs)⎧⎨
⎩ y′(t) = f

(
t, y(t), y(t − τ),

∫ t

t−τ

K (t, s, y(s)) ds
)
, t ∈ [t0, T ],

y(t) = ϕ(t), t ∈ [t0 − τ, t0]
(1)

for the same classes of functions as above. Practical examples of (1) are the modelling of
the cohabitation of different biological species [19] or of the human immune response [25].
In the present paper, we shall introduce a numerical procedure for the solution of systems of
equations such as (1). We thereby assume that the given functions f , K and ϕ are smooth
enough for the system to have a unique solution y (for conditions guaranteeing this, see [34]).
We further assume that the initial function ϕ is compatible with the solution y in the sense
that ϕ ∈ Cd+2[t0 − τ, t0] and for the derivatives at t0,

ϕ ( j)(t0−) = y( j)(t0+), j = 0, . . . , d + 2, (2)

where d is the parameter in the barycentric approximation which lies at the basis of our
method, see the convergence theorem (Theorem 1). This eliminates the risk of primary
singularities in the solution at multiples of τ [11,24,26], singularities which do not occur in
most applications of DVIDEs in the natural sciences. (In fact, it would perhaps be preferable
to call this property “consistency”, but this term is already taken in the context of functional
equations.)
In view of the advance in time, it is very natural, at least if nothing particular is known

about the behavior of the solution, to approximate it at equispaced values of the t-variable,
i.e., to calculate values ym ≈ y(tm), tm = t0 + mh. Several methods are already available
[12,17,27,33–36]. Most of them, in particular the very popular Runge–Kutta and collocation
ones, consider and/or compute values of y and/or f at intermediate points as well, e.g.,
Legendre points stretched to fit into the interval [tm, tm+1]; the resulting piecewise Legendre
point set obviously breaks the regularity of the time variable. (We leave off here global
methods which treat Volterra equations as the Fredholm ones: although their convergence
may be spectral [30], they require the determination of T in advance and a restart from scratch
for any increase of T ; moreover, they require solving a dense system of equations, which
becomes very costly for large D1 and/or D2.)
In contrast, quadrature methods merely consider values at the equispaced tm . The method

we shall present is an extension to DVIDEs of the quadrature method introduced in [6]. The
treatment of the right-hand side will thereby be an application of the composite barycentric
rational quadrature (CBRQ) rule presented in that same article. Thus the approximation at
tm of y′, the left-hand side of (1), remains to be chosen. To stay with the mere values at
equispaced tm , divided differences are the natural way to go. Since only values at tk , k ≤ m,

2

ht
tp
://
do
c.
re
ro
.c
h



are known at time tm , left one-sided differences should be used. For relatively large time
steps h, customary polynomial differences work well only for small numbers of points, for
as this number increases, the approximation becomes ill-conditioned in view of the Runge
phenomenon affecting the underlying polynomial interpolant [22]; this limits the order of
convergence of the polynomial method. We therefore use instead the barycentric rational
finite differences (RFD) formula introduced in [22]; they have the advantage of leading to
a fully (linear) rational method. We recall that both the quadrature and the differentiation
methods introduced in [21], resp. [22], are based on the exact integration, resp. differentiation,
of the linear barycentric rational interpolant presented in [14] and further discussed in [7]
and [16].
After the present introduction, Sect. 2 briefly reviews the two applications of linear

barycentric rational interpolation which lie at the basis of this work, namely the compos-
ite barycentric rational quadrature and the barycentric rational finite differences. Section 3
introduces the method for solving DVIDEs based on barycentric rational interpolation and
discuss its zero–stability and convergence. Section 4 illustrates the results with numerical
experiments. General remarks about the method conclude the paper.

2 A Short Review of the CBRQ Rule and the RFD Formulas

In this section, we recall the construction of the CBRQ rule for the approximation of definite
integrals and of the RFD formulas for the approximation of the first derivative of a func-
tion at a grid point. Both are based on an exact application of the corresponding operator
to a linear barycentric rational interpolant instead of the interpolating polynomial. Linear
barycentric rational interpolants have been introduced by the second author in [4]. They
consist in replacing the weights λ j in the barycentric formula

pn(t) =
n∑

j=0

λ j

t − t j
f (t j )

/ n∑
j=0

λ j

t − t j
, λi = 1

/ n∏
j=0, j �=i

(ti − t j )

for the interpolating polynomial pn with more appropriate weights β j , which are still inde-
pendent of the interpolated function, but are chosen in such a way that bad properties of the
polynomial such as ill–conditioning and Runge’s phenomenon are avoided, and convergence
and well–conditioning are guaranteed.
The two sets of weights presented in [4] are β j = (−1) j and the same with the first and

last ones halved; this requires that the nodes are ordered according to t0 < t1 < . . . < tn . The
corresponding two interpolants are excellently conditioned, but the first converges as O(h)

and the second as O(h2), where h is the usual steplength h := max {ti+1 − ti }. Another linear
rational interpolant, which depends on a parameter d and converges at the rate O(hd+1), has
been introduced in [14]. Its barycentric weights for equispaced nodes—only the latter are
used in the present work—are

β j = (−1) j−d

2d

∑
i∈J j

(
d

j − i

)
, J j := {i ∈ {0, . . . , n − d} : j − d ≤ i ≤ j} . (3)

As it is based on a blend of all interpolating polynomials of d +1 consecutive nodes, it may be
ill-conditioned and/or unstable for large d and/or arbitrary sets of points [5], but is excellent
for equispaced nodes and not too large d. This makes it an interesting choice for solving
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smooth problems on the basis of equispaced samples [7]. This is the case of the quadrature
method for Volterra integral equations introduced in [6].

2.1 The CBRQ Rule

The basic idea here is to replace the function to be approximated, say g, by the linear ba-
rycentric rational interpolant and apply the operator to the latter. In the global barycentric
rational quadratic rule [21], the integrand is approximated by a single interpolant on the
whole interval of integration,

rn(t) =
n∑

j=0
g(t j )� j (t), � j (t) := β j

t − t j

/ n∑
i=0

βi

t − ti
,

which for equispaced nodes leads to the rule
∫ tn

t0
g(s)ds ≈ h

∑n
k=0 wk g(tk), with the quadra-

ture weights wk = h−1· ∫ tn
t0

�k(t)dt ; the latter are evaluated in machine precision by means
of an accurate quadrature rule such as Gauss or Clenshaw–Curtis, both provided in the Cheb-
fun system [31]. In the corresponding quadrature method for the solution of classical VIEs,
the number of terms in the rule becomes larger and larger with increasing n. The last two
authors have therefore suggested with Klein in [6] to construct instead a composite barycen-
tric rational quadrature rule, in which the interval of interpolation is divided into subintervals
of length nh and a last interval of smaller length, and to use only the weights corresponding
to the said subintervals; we shall use the same rules here.
For integrals such as that in (1.1) over intervals of length τ > 0, we assume that there

exists a positive integer q, such that

h = τ

q
,

and consider a uniform grid

0 = x0 < x1 < · · · < xq = τ,

with x j+1 − x j = h, j = 0, 1, . . . , q − 1. We choose a value of the parameter d, a fixed
number n of nodes with d ≤ n ≤ q/2 and we set p := �q/n	 − 1. After an obvious change
of variable, we approximate the integral with the composite rule

∫ τ

0
g(s)ds ≈ h

p−1∑
j=0

n∑
k=0

w
(n)
k g(x jn+k) + h

q−pn∑
k=0

w
(q−pn)
k g(x pn+k), (4)

where

w
(r)
k = r

∫ 1

0

βk
rs−k∑r

j=0
β j

rs− j

ds, r = n, n + 1, . . . , 2n − 1.

The convergence order of the rule (4) is given in the following proposition.

Proposition 1 [6] Suppose n, d and q, d ≤ n ≤ q/2, are positive integers, g ∈ Cd+2[0, τ ].
Then the absolute error in the approximation of the integral of g with (4) is bounded by
Chd+1, where the constant C depends only on d, on derivatives of g and on the interval
length τ .
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When n − d is odd, the bound on the interpolation error given in [14], Thm. 2, involves
an additional factor nh, so that the order of the related quadrature rule increases to d + 2.
Notice that in some of our computations we used n close to q, which implies p = 0; then
the method is global, not composite [6].

2.2 The RFD Formulas

In the same fashion, linear rational finite differences are obtained by exactly differencing the
linear barycentric rational interpolant [22]. In practice, central differences do not perform
better than polynomial differences, when the nodes are equispaced. In the case we are con-
cerned with here, however, the derivatives are needed at tm , the right extremity of the interval
of interpolation, so that left–sided differences are necessary. In that case and with a large
number of nodes, rational differences are much more accurate than polynomial ones [22].
Let m be a positive integer. For the approximation of the first derivative of a sufficiently

smooth function g at the node tm via tm−n , . . ., tm , we compute [2,20,22]

g′(tm) ≈ 1

h

n∑
j=0

v j g(tm− j ), (5)

where

v j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βn− j

jβn
, j �= 0,

−
n∑

l=1
vl , j = 0.

Proposition 2 [20,22] Suppose m, n and d, d ≤ n, are positive integers, tm−n, . . ., tm are
equispaced nodes in the interval [a, b] and g ∈ Cd+2[a, b]. Then the absolute error of the
approximation formula (5) is bounded by Chd .

One can prove that

n∑
j=0

v j e
− j z = z + O(zd+1).

Some values of v j are given in Sect. 3.1 below.
In fact, when n − d is odd, and in view of the increase of the guaranteed order of the

interpolation error by one unit mentioned after Proposition 1, the order of the related divided
difference increases to d + 1.
Further results on the convergence of the derivatives of the Floater–Hormann family of

interpolants have just been published [13].

3 Description of the Method for DVIDEs

Consider a uniform grid

t0 − τ = t−q < t−q+1 < · · · < t0 < t1 < · · · < tN , tN ≥ T,

and let ti+1− ti = h, i = − q,− q + 1, . . . , N − 1, with h = τ/q as in Sect. 2. Let d, n, and
p be as in Sect. 2.1. Applying the RFD formula (5) and the CBRQ rule (4) to the derivative
and integral parts of (1) at the point tm , respectively, yields
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n∑
j=0

v j ym− j = h f
(
tm, ym, ym−q , Q̃m(h)

)
, m = 1, 2, . . . , N , (6)

for the unknown ym , where

Q̃m(h) = h
p−1∑
j=0

n∑
k=0

w
(n)
k K (tm, t jn+k+m−q , y jn+k+m−q )

+ h
q−pn∑
k=0

w
(q−pn)
k K (tm, tpn+k+m−q , ypn+k+m−q).

Here ym , m = 1, 2, . . . , N , is an approximation to the exact solution y of (1) at the mesh
point tm . According to the initial condition in (1), we may take

ym = ϕ(tm), m = −q,−q + 1, . . . , 0.

If the functions f and/or K are nonlinear in y, the fact that ym appears on both sides of (6)
implies that nonlinear algebraic equations must be solved at each step; our implementation
uses Newton’s method for this purpose.
In the next two subsections, we shall discuss the zero–stability and the convergence of the

method (6).

3.1 Zero–Stability

It is well-known that the zero–stability of a method is a necessary condition for the con-
vergence of that method [23]. The zero–stability of a method is warranted, if the numerical
solution ym of problem (1) with f (·, ·, ·, ·) ≡ 0 is bounded. The method (6) applied to
such problems gives the difference equation

∑n
j=0 v j ym− j = 0. We may then define its

zero–stability as follows.

Definition 1 The method (6) is said to be zero–stable, if the roots of the polynomial

ρ(x) := v0xn + v1xn−1 + · · · + vn

lie inside or on the unit circle, those on the circle being simple.

To assist the reader in the use of the method (6) and the study of its zero–stability, the
vector v = [v0 v1 · · · vn]T is given for some special cases in Table 1. Note that for
d = n − 1 the Floater–Hormann interpolant coincides with the interpolating polynomial.
As a consequence, the coefficients vi ’s, i = 0, 1, . . . , n, are those of the cooresponding
backward differentiation formula (BDF) [10,23]. For example, in the case of (n, d) = (4, 3)
and (n, d) = (6, 5), the vi ’s are the coefficients of the BDFs of orders 4 and 6, respectively.
To investigate the zero–stability of the method (6), we use Bistritz’ stability criterion

[8], which determines how many zeros of ρ(x)/(1 − x) lie strictly inside the unit disk. For
example, the Bistritz stability sequences of the polynomial ρ(x)/(1 − x) corresponding to
the pairs (n, d) of Table 1 are given in Table 2. The number of sign changes, nsc, in these
sequences gives the number of zeros of ρ(x)/(1 − x) that lie outside of the closed unit
disk. From this table, we find that the method with the values of (n, d) given in Table 1 is
zero–stable except for (n, d) = (7, 6) and (11, 6). Continuing in this way, one can show that
the method (6) is zero–stable for every choice of n ≥ d with n ≤ 20 and d ≤ 6, except for
(n, d) = (7, 6), (8, 6), (11, 6), and (12, 6).
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Table 1 Weights for left-sided RFD formula (5) for various pairs (n, d)

(n, d) v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

(4, 3) 25
12 − 4 3 − 4

3
1
4

(6, 4) 9
4 − 5 11

2 − 14
3

11
4 − 1 1

6

(6, 5) 49
20 − 6 15

2 − 20
3

15
4 − 6

5
1
6

(7, 5) 1019
420 − 6 8 − 25

3
25
4 − 16

5 1 − 1
7

(7, 6) 363
140 − 7 21

2 − 35
3

35
4 − 21

5
7
6 − 1

7

(8, 5) 681
280 − 6 8 − 26

3
15
2 − 26

5
8
3 − 6

7
1
8

(9, 6) 49
19 − 7 11 − 14 14 − 56

5 7 − 22
7

7
8 − 1

9

(11, 6) 165
64 − 7 11 − 14 57

4 − 63
5

21
2 − 57

7
21
4 − 22

9
7
10 − 1

11

Table 2 Bistritz stability sequences of the polynomial ρ(x)/(1− x) for various pairs (n, d)

(n, d) Bistritz stability sequences nsc

(4, 3) − 2 − 4 − 30
7 − 16

3 0

(6, 4) − 2 − 6 − 242
29 − 1255

168 − 178
117 − 32

3 0

(6, 5) − 2 − 6 − 1330
157 − 1181

141 − 86
105 − 208

15 0

(7, 5) − 2 − 7 − 1884
137 − 859

325 − 1824
65 − 22

81 − 3712
105 0

(7, 6) − 2 − 7 − 668
49 − 259

109 − 1887
44

15
233 − 4832

105 2

(8, 5) − 2 − 8 − 2226
179 − 893

91 − 262
73 − 2413

156 − 103
157 − 2176

105 0

(9, 6) − 2 − 9 − 511
29 − 249

59 − 9173
257 − 89

114 − 4723
66 − 4

45 − 5389
76 0

(11, 6) − 2 − 11 − 1599
74 − 349

57 − 864
25 − 189

71 − 2507
79 − 97

93 − 11408
131

1
88 − 10981

124 2

3.2 Convergence Analysis

Let y ∈ Cd+2[t0 − τ, T ], K ∈ Cd+2(Ω) where Ω := S × R
D1 with S = {(t, s) : t0 ≤ t ≤

T, t − τ ≤ s ≤ t}, f be continuous on R := [t0, T ] × R
D1 × R

D1 × R
D2 , and

∀ (t, y1, u, z), (t, y2, u, z) ∈ R : ∥∥ f (t, y1, u, z) − f (t, y2, u, z)
∥∥ ≤ L1

∥∥y1 − y2
∥∥,

(7a)

∀ (t, y, u1, z), (t, y, u2, z) ∈ R : ∥∥ f (t, y, u1, z) − f (t, y, u2, z)
∥∥ ≤ L2

∥∥u1 − u2
∥∥,

(7b)

∀ (t, y, u, z1), (t, y, u, z2) ∈ R : ∥∥ f (t, y, u, z1) − f (t, y, u, z2)
∥∥ ≤ L3

∥∥z1 − z2
∥∥,

(7c)

∀ (t, s, y1), (t, s, y2) ∈ Ω : ∥∥K (t, s, y1) − K (t, s, y2)
∥∥ ≤ L4

∥∥y1 − y2
∥∥, (7d)

where ‖ · ‖ is any norm in the corresponding spaces.
Definition 2 The local truncation error of the method (6) at the point tm is defined by

L [y(tm); h] :=
n∑

j=0
v j y(tm− j )−h f

(
tm, y(tm), y(tm−q ), Qm(h)

)
, m = 1, 2, . . . , N , (8)
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where

Qm(h) = h
p−1∑
j=0

n∑
k=0

w
(n)
k K (tm, t jn+k+m−q , y(t jn+k+m−q ))

+ h
q−pn∑
k=0

w
(q−pn)
k K (tm, tpn+k+m−q , y(tpn+k+m−q )).

In view of proving the convergence of the proposed method, we state some lemmas.

Lemma 1 Let y ∈ Cd+2[t0 − τ, T ], K ∈ Cd+2(Ω), f be continuous on R and let the
condition (7c) be satisfied. Then

L [y(tm); h] = O(hd+1), m = 1, 2, . . . , N .

Proof Equation (1) at the mesh point tm is

y′(tm) − f
(

tm, y(tm), y(tm−q),

∫ tm

tm−τ

K (tm, s, y(s)) ds
)

= 0, m = 1, 2, . . . , N . (9)

Subtracting (9) from (8) yields

1

h
L [y(tm); h] = 1

h

n∑
j=0

v j y(tm− j ) − y′(tm)

+ f

(
tm, y(tm), y(tm−q ),

∫ tm

tm−τ

K (tm, s, y(s)) ds

)
− f

(
tm, y(tm), y(tm−q ), Qm(h)

)
.

Using Proposition 2 and (7c), we have

1

h
L [y(tm); h] ≤ C1h

d + L3

∥∥∥∥
∫ tm

tm−τ

K (tm, s, y(s)) ds − Qm(h)

∥∥∥∥ ,

and with Proposition 1,

1

h
L [y(tm); h] ≤ C1h

d + L3C2h
d+1,

where C1 and C2 are constants. So,

L [y(tm); h] = O(hd+1). ��
Lemma 2 Let n and d be such that (6) is zero–stable. If the sequences {ek}, {ẽk} and {�k}
satisfy the difference equation

n∑
j=0

v j em− j = hẽm + �m, m = 0, 1, . . . ,

where e−n = · · · = e−1 = 0, then

em = h
m∑

j=0
am− j ẽ j +

m∑
j=0

am− j� j ,

8
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where
∞∑
j=0

a j x j is the power series for (vn + vn−1x + . . . + v0xn)−1 and |a j | ≤ C < ∞ for

all j .

Proof The proof is similar to that of Lemma 2.4 in [1]. ��
Lemma 3 (Discrete Gronwall inequality) Suppose the nonnegative sequences {rm} and {δm}
satisfy the difference inequality

rm ≤ hΛ

m−1∑
j=0

r j + δm, m = 1, 2, . . .

where δm ≤ 
. Then,

rm ≤ 
eΛNh, m = 1, 2, . . . , N .

We are now in position to state our main theorem about the convergence of the method (6).

Theorem 1 Let y ∈ Cd+2[t0 − τ, T ], K ∈ Cd+2(Ω), f be continuous on R and the
conditions (7) hold. Also, let n and d be such that (6) is zero–stable. Then, the method (6) is
convergent of order d:

‖ym − y(tm)‖ ≤ Chd .

Proof Define em = y(tm) − ym . From (6) and (8), we have

n∑
j=0

v j em− j = hẽm + L [y(tm); h], m = 1, 2, . . . (10)

where

ẽm = f
(
tm, y(tm), y(tm−q ), Qm(h)

) − f
(
tm, ym, ym−q , Q̃m(h)

)
, m = 1, 2, . . .

and e−q = · · · = e0 = 0. Applying Lemma 2 to (10) yields

em = h
m∑

j=0
am− j ẽ j + Sm, (11)

where

Sm =
m∑

j=0
am− j L [y(t j ); h] =

m∑
j=1

am− j L [y(t j ); h].

By Lemma 1, we have ‖Sm‖ = mC · O(hd+1) = mhC · O(hd), where C is the constant
appearing in Lemma 2. So,

sup
1≤m≤N

‖Sm‖ = O(hd), as h → 0, (12)

with Nh = T − t0 remaining fixed.
Now, using (7), we have

‖ẽ j‖ ≤ ∥∥ f
(
t j , y(t j ), y(t j−q), Q j (h)

) − f
(
t j , y j , y(t j−q), Q j (h)

)∥∥
+ ∥∥ f

(
t j , y j , y(t j−q), Q j (h)

) − f
(
t j , y j , y j−q , Q j (h)

)∥∥
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+ ∥∥ f
(
t j , y j , y j−q , Q j (h)

) − f
(
t j , y j , y j−q , Q̃ j (h)

)∥∥
≤ L1‖e j‖ + L2‖e j−q‖ + hL5

q∑
i=0

‖e j−q+i‖, (13)

with L5 = 2L3L4 max
{
|w(n)

k |, |w(q−pn)
k |

}
. Substituting (13) in (11) yields

‖em‖ ≤ hC
m∑

j=0

{
L1‖e j‖ + L2‖e j−q‖ + hL5

q∑
i=0

‖e j−q+i‖
}

+ ‖Sm‖.

Define E j = max{‖el‖, l = j − q, . . . , j}. So,

‖em‖ ≤ hC
m∑

j=0
(L1 + L2 + (q + 1)hL5)E j + ‖Sm‖.

This implies

Em ≤ hL
m∑

j=0
E j + ‖Sm‖,

where

L = C(L1 + L2 + 2τ L5) ≥ C(L1 + L2 + (q + 1)hL5).

Thus, for hL < 1,

Em ≤ hL

1− hL

m−1∑
j=0

E j + ‖Sm‖
1− hL

.

Using Lemma 3 yields

Em ≤
( 1

1− hL
sup

m
‖Sm‖

)
e

L
1−hL Nh .

From this and (12), we conclude that Em = O(hd), and so ‖em‖ = O(hd). ��

According to the remarks following Propositions 1 and 2, the error may be expected to be
of order d + 1, when n − d is odd.
To construct an infinitely smooth approximate solution on the whole interval [t0, T ], it is

natural and elegant to make use of the same barycentric rational interpolant as the one which
lies at the basis of our scheme for determining the discrete approximations y0, . . . , yN , i.e.,

rN (t) =
N∑

j=0

β j

t − t j
y j

/ N∑
j=0

β j

t − t j
, (14)

with the weights β j from (3). Under the hypotheses of Theorem 1 and with the choice d of
the parameter, by Theorem 2 in [14] and Theorem 1 the maximum absolute error in rN may
be bounded as
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max
t0≤t≤T

‖rN − y‖∞ ≤ max
t0≤t≤T

∥∥∥∥∥∥
∑N

j=0
β j

t−t j
y(t j )∑N

j=0
β j

t−t j

− y(t)

∥∥∥∥∥∥∞

+ max
t0≤t≤T

∥∥∥∥∥∥
∑N

j=0
β j

t−t j

(
y j − y(t j )

)
∑N

j=0
β j

t−t j

∥∥∥∥∥∥∞
≤ Chd+1 + ΛN max

0≤ j≤N

∥∥y(t j ) − y j
∥∥∞ ,

where C is a generic constant that does not depend on N , and ΛN is the Lebesgue constant
associated with the linear barycentric rational interpolant rN :

ΛN = max
t0≤t≤T

N∑
j=0

∣∣∣ β j

t − t j

∣∣∣/∣∣∣∣
N∑

j=0

β j

t − t j

∣∣∣∣.
Since ΛN is known to be bounded by C log(N ) for equispaced nodes [9], one has

max
t0≤t≤T

‖rN − y‖∞ ≤ C log(N )hd .

The derivatives of any order of y may be approximated with the corresponding derivatives
of (14) by means of the simple formula by Schneider and Werner [28].

4 Numerical Verifications

In this section, we apply the method (6) with various choices of n, d, and q to a number of
linear and nonlinear DVIDEs to demonstrate the efficiency and accuracy of the scheme. The
numerical results below confirm the theoretical convergence estimates derived in Sect. 3.2.
Following a suggestion by a referee, we also present results of numerical experiments

with the Runge–Kutta–Gauss method and Pouzet quadrature formula (RKGP) [35], in the
form

Y [m]
i = ym + h

s∑
j=1

ai j f
(

t [m]
j , Y [m]

j , Y [m−q]
j , z[m]

j

)
, i = 1, 2, . . . , s

ym+1 = ym + h
s∑

j=1
b j f

(
t [m]

j , Y [m]
j , Y [m−q]

j , z[m]
j

)
, m ≥ 0.

(15)

Here h = τ/q is the stepsize with q as a given positive integer, t [m]
j := tm + c j h with

tm = t0 + mh are the stage points, and Y [m]
j ,

z[m]
j := h

s∑
r=1

a jr K
(

t [m]
j , t [m]

r , Y [m]
r

)
+ h

q∑
k=1

s∑
r=1

br K
(

t [m]
j , t [m−k]

r , Y [m−k]
r

)

− h
s∑

r=1
a jr K

(
t [m]

j , t [m−q]
r , Y [m−q]

r

)
and ym are approximations to

y
(

t [m]
j

)
, z

(
t [m]

j

)
:=

∫ t [m]
j

t [m−q]
j

K
(

t [m]
j , s, y(s)

)
ds, and y(tm),
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Table 3 Numerical results for example (16) with (n, d) equal to (4, 3) and (6, 4)

q (n, d) = (4, 3) (n, d) = (6, 4)

emax eN ON eI OI emax eN ON eI OI

8 6.62e−05 1.49e−06 5.43e−04 6.15e−05 1.97e−06 7.81e−05
16 4.25e−06 7.54e−08 4.30 3.64e−05 3.90 4.16e−06 8.44e−08 4.54 4.16e−06 4.23

32 2.68e−07 4.31e−09 4.13 2.31e−06 3.98 2.66e−07 4.51e−09 4.23 2.66e−07 3.97

64 1.68e−08 2.58e−10 4.06 1.45e−07 3.99 1.68e−08 2.64e−10 4.09 1.68e−08 3.98

128 1.05e−09 1.58e−11 4.03 9.09e−09 4.00 1.05e−09 1.60e−11 4.04 1.05e−09 4.00

256 6.59e−11 9.75e−13 4.02 5.68e−10 4.00 6.59e−11 9.79e−13 4.03 6.59e−11 3.99

respectively. The method (15) is characterized by the abscissae c j , the coefficients ai j and
the weights b j , which are given for Gauss methods of various orders in [10, p. 232]. The
stability of such methods has been studied in [18].
Let us denote by em the absolute error of the approximation ym , m = 0, 1, . . . , N , and by

emax the maximum of these errors, i.e.,

em := ‖y(tm) − ym‖∞, m = 0, 1, . . . , N ,

emax := max
1≤m≤N

em .

Also, we denote by eI the maximal absolute error of the interpolation (14) of the approxi-
mations ym , m = 0, 1, . . . , N , i.e.,

eI := max
t0≤t≤T

‖rN (t) − y(t)‖∞.

To estimate eI , the maximum was taken over the values |rN (t) − y(t)| at about 3000 equis-
paced t in the interval [t0, T ], with rN (t) evaluated by formula (14). Finally, we denote the
experimental orders in the approximation of y(tN ) by ON and in the interpolation by OI .
As a first example, we considered the DVIDE with partially variable coefficients [34]

y′(t) = −(6+ sin t)y(t) + y
(

t − π

4

)
−

∫ t

t− π
4

sin(s)y(s)ds + 5 exp(cos t), t ≥ 0, (16)

with an initial condition on the interval
[−π

4 , 0
]
such that the exact solution is given by

y(t) = exp(cos t). Here we chose T = 9π .
Table 3 shows the numerical results for (n, d) equal to (4, 3) and (6, 4). In both cases, as

to be expected from the comments following Propositions 1 and 2, the observed order was
four. The interpolation errors decreased with order four as well. The accuracy of the obtained
numerical solutions over the whole interval [t0, T ] is displayed in Fig. 1. Also, the number
of kernel evaluations versus the error with both the method (6) and RKGP are plotted in
Fig. 2, which illustrates that the method (6) is competitive with RKGP of the same order.
Let us recall that the barycentric rational method computes the solution only at equispaced
abscissae and yields, through formula (14), a global infinitely smooth approximation to y
(see the eI –column of our tables), this in contrast to Runge–Kutta methods, which require
quite some thoughts and computation for a dense output [32].
Next we studied the equation

y′(t) = y3(t) + y(t − 1) −
∫ t

t−1
(
10+ 2(t − s)2

)
y2(s)ds + f (t), t ∈ [− 1, 1], (17)
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Fig. 1 Error for example (16) with (n, d) = (7, 5) and q = 16, 64 over the interval [0, 9π ]
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Fig. 2 Comparison of the number of kernel evaluations with the methods of order 4 and order 6 applied to
example (16)

Table 4 Numerical results for example (17) with (n, d) equal to (8, 5) and (13, 6)

q (n, d) = (8, 5) (n, d) = (13, 6)

emax eN ON eI OI emax eN ON eI OI

16 1.62e−02 7.67e−03 1.63e−02 1.84e−02 6.93e−03 2.05e−02
32 1.26e−03 1.38e−04 5.80 1.36e−03 3.58 6.13e−04 3.28e−05 7.72 6.85e−04 4.90

64 3.77e−05 3.61e−06 5.26 3.85e−05 5.14 1.57e−05 2.75e−06 3.58 1.61e−05 5.41

128 7.12e−07 1.21e−07 4.90 7.14e−07 5.75 2.51e−07 3.16e−08 6.44 2.51e−07 6.00

256 1.17e−08 2.23e−09 5.76 1.17e−08 5.93 2.37e−09 1.66e−10 7.57 2.37e−09 6.73

512 1.85e−10 3.63e−11 5.94 1.85e−10 5.98 1.93e−11 3.98e−13 8.70 1.93e−11 6.94

whose exact solution is Runge’s function y(t) = 1/(1 + 25t2). The initial condition on
[− 2,− 1] was the value of that exact solution.
Table 4 shows the numerical results for (n, d) equal to (8, 5) and (13, 6). There is noRunge

phenomenon, as the latter does not occur with this kind of rational interpolants and fixed d
[14]. As to be expected from the comment following Propositions 1 and 2, the observed
order was six and seven, respectively. The corresponding interpolation errors decreased with
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Fig. 3 Error for example (17) with (n, d) = (10, 6) and q = 256, 512 over the interval [−1, 1]

Table 5 Numerical results for example (18) with (n, d) equal to (8, 5) and (10, 6)

q (n, d) = (8, 5) (n, d) = (10, 6)

emax eN ON eI OI emax eN ON eI OI

10 4.55e−09 4.23e−09 4.55e−08 2.29e−09 2.04e−09 3.19e−09
20 7.02e−11 6.98e−11 5.92 6.77e−10 6.07 3.47e−11 3.44e−11 5.89 5.08e−11 5.97

40 1.12e−12 1.12e−12 5.96 1.03e−11 6.04 5.54e−13 5.49e−13 5.97 8.12e−13 5.97

80 6.96e−14 5.87e−14 4.25 3.60e−13 4.84 3.53e−14 1.69e−14 5.02 8.28e−13 −0.03

the same orders. The accuracy of the obtained numerical solutions over the whole interval
[−1, 1] is displayed in Fig. 3.
We also studied the nonlinear two-dimensional system [34]

d

dt

(
y1(t)
y2(t)

)
= −4

(
y1(t)
y2(t)

)
+

(
0 sin t
cos t 0

)
·
(

y1(t − π
5 )

y2(t − π
5 )

)

+ 1√
2

∫ t

t− π
5

⎛
⎜⎝

(1+sin2 s)y21 (s)

1+y21 (s)
(1+cos2 s)y22 (s)

1+y22 (s)

⎞
⎟⎠ ds +

(
f1(t)
f2(t)

)
, t ≥ 0, (18)

where f (t) = ( f1(t), f2(t))T and where the initial condition on [−π
5 , 0] is chosen in such

a way that the solution equals y(t) = (sin t, cos t)T . We considered T = 9π again.
Table 5 shows the numerical results for (n, d) equal to (8, 5) and (10, 6). The errors

decreased with N until about machine precision. As to be expected from the comment fol-
lowing Propositions 1 and 2, the observed order is six in both cases. The interpolation errors
also decreased with order six. They reached machine precision with N = 80, which explains
some smaller experimental orders in the last row of the table. Moreover, in Fig. 4, we have
plotted log(eN ) versus log(h), together with a line of slope d, if n − d is even, and d + 1, if
n−d is odd, for two other choices of (n, d). The accuracy of the obtained numerical solutions
over the whole interval [t0, T ] is displayed in Fig. 5. Also, the number of kernel evaluations
versus the error with the method (6) and RKGP are plotted in Fig. 6, which illustrates that
the method (6) is competitive with RKGP of the same order.
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Fig. 4 Numerical results for example (18) with (n, d) equal to (4, 2) and (7, 4)
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Fig. 5 Error for example (18) with (n, d) = (9, 4) and q = 16, 64 over the interval [0, 9π ]
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Fig. 6 Comparison of the number of kernel evaluations with the methods of order 4 and order 6 applied to
example (18)

To demonstrate the capability and efficiency of the proposed method in solving stiff
problems, we studied the singularly perturbed nonlinear system of DVIDEs [33]
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Fig. 7 Numerical results for example (19) with (n, d) equal to (9, 3) and (6, 5)
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Fig. 8 Error for example (19) with (n, d) = (9, 6) and q = 16, 32 over the interval [0, 6]

d

dt

(
y1(t)
εy2(t)

)
=

(
αy1(t) + 2y22 (t)−(1+ y1(t))y2(t)

)

+
∫ t

t−1

(
y1(s)y2(s)
y1(s) − y2(s)

)
ds +

(
f1(t)
f2(t)

)
, t > 0, (19)

where α and ε are fixed parameters. For this problem, f1(t) and f2(t) and the initial condition
on [−1, 0] are chosen in such a way that the exact solution equals y(t) = (

exp(−0.5t) +
exp(−0.2t),− exp(−0.5t) + exp(−0.2t)

)T .
The authors of [33] have chosen α = −1000 and ε = 10−6. However, with these values

of α and ε, the problem does not seem very stiff: we achieved machine precision already with
small values of q and d. For that reason we have taken α = −10−5 and ε = 10−10. Here we
considered T = 6.
In Fig. 7, we have again plotted log(eN ) versus log(h) together with a line of slope d , if

n − d is even, or d + 1, if n − d is odd, for (n, d) equal to (9, 3) and (6, 5). The accuracy
of the solutions over the whole interval [t0, T ] is displayed in Fig. 8. Moreover, in Table 6,
we present the numerical results of our method with (n, d) = (4, 3) and RKGP of order four
and stage order two. They show that the accuracy of our method with the stiff problem (19)
is higher than that of RKGP and the same order. Also, this table indicates that RKGP suffers
from order reduction [15, p. 225-227], which is not the case of method (6).
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Table 6 Numerical results for example (19) with (n, d) = (4, 3) and RKGP of order four and stage order
two

q 8 16 32 64 128 256

Method (6) with eN 3.23e−05 1.97e−06 1.22e−07 7.56e−09 4.70e−10 2.68e−11
(n, d) = (4, 3) ON 4.04 4.01 4.01 4.01 4.13

RKGP of eN 2.04e−04 5.09e−05 1.32e−05 3.17e−06 7.65e−07 1.58e−07
order 4 ON 2.00 1.95 2.06 2.05 2.28

Table 7 Numerical results for example (20) with (n, d) equal to (3, 2) and (6, 4)

q 30 60 120 240 480 960

Method (6) with eN 1.24e−01 1.67e−02 2.17e−03 2.72e−04 3.09e−05 1.10e−06
(n, d) = (3, 2) ON 2.89 2.94 3.00 3.14 4.81

Method (6) with eN 1.38e−02 9.19e−04 5.88e−05 3.70e−06 2.30e−07 1.38e−08
(n, d) = (6, 4) ON 3.91 3.97 3.99 4.01 4.06

Finally, following a suggestion by the other referee, we considered a realistic example in
the form of a mathematical model of the human immune response with delay [3,25]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
XU (t) = sU − α1XU (t)B(t) − μXU XU (t),

d

dt
X I (t) = α1XU (t)B(t) − α2X I (t)AR(t) − μX I X I (t),

d

dt
B(t) = α20B(t)

(
1− B(t)

σ

)
− α3B(t)IR(t) − α4B(t)AR(t),

d

dt
IR(t) = sIR +

∫ t

t−τ

w(s − t)B(s)ds − μIR IR(t),

d

dt
AR(t) = sAR +

∫ t

t−τ

w(s − t)B(s)ds − μAR AR(t),

(20)

in which the components XU , X I , and B stand for uninfected target cells, infected cells, and
bacteria, and the variables IR and AR denote innate and adaptive responses, respectively. Here
we considered t ∈ [0, 50] with τ = 6 and w(t) = ln 2

6 exp( ln 26 t). For a detailed description
of the model and the selection of parameter values, as well as initial conditions, see [3,25].
We compared our results with the reference solution obtained by solving the equivalent

system of DDEs using the dde23 command from the Matlab DDE suite [29] with the
tolerance 10−12. Table 7 shows the numerical results for (n, d) equal to (3, 2) and (6, 4). We
see from this table that the order of convergence does appear to be three and four, in line with
the orders expected from the theory.

5 Conclusion

Linear barycentric rational interpolation provides a simple yet very efficient way of approx-
imating a function by an infinitely smooth one from a sample at equispaced nodes. In this
paper, we have presented an exemplary application, namely the numerical solution of a
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class of DVIDEs with constant delay. We have analyzed the convergence behavior of the
corresponding method and discussed some numerical experiments, which demonstrate its
efficiency and beautifully agree with the theoretical results. In fact, the accuracy was even
better than that attained in [6] with the original method for classical Volterra integral equa-
tions. This likely is a consequence of the fact that the right–hand side approximates y′, the
derivative of the solution, so that the mathematical problem involves yet another integration.
The method is very elegant in the sense that it is fully based on linear barycentric rational

interpolation with Floater–Hormann weights. The later are the best known today for equi-
spaced nodes [5]. One may program the method with arbitrary weights as variable input:
should in the future weights for equispaced nodes be discovered which are even better than
(3), the user would then just have to introduce them into the existing program.

Acknowledgements The authors would like to thank Georges Klein for his careful reading of a draft of the
manuscript, as well as the unkown referees for comments that have improved this work.
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