The synergistic cooperation of $\mathrm{NH} \cdots \mathrm{O}$ and $\mathrm{CH} \cdots \mathrm{O}$ hydrogen bonds in the structures of three new phosphoric triamides

Anahid Saneei ${ }^{\text {a }}$, Mehrdad Pourayoubi ${ }^{\text {a, } \text {, } \text {, Jerry P. Jasinski }{ }^{\text {b }} \text {, Titus A. Jenny }{ }^{\text {c }} \text {, Aurelien }}$ Crochet ${ }^{\text {d }}$, Katharina M. Fromm ${ }^{\text {d }}$, Amanda C. Keeley ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran, Tel: +985138805535, Fax: +985138807153, P.O. Box: 9177948974
${ }^{\mathrm{b}}$ Department of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
${ }^{\text {c }}$ Department of Chemistry, University of Fribourg, Rte du Musée 9 Ch-1700 Fribourg, Switzerland
${ }^{\text {d Fribourg Centre for Nanomaterial’s, FriMat, University of Fribourg, Chemin du Musée 3, CH-1700 Fribourg, }}$ Switzerland

Email: pourayoubi@um.ac.ir

Supplemental Materials

Background of the Hirshfeld surface analysis

Historically, the Hirshfeld surface (HS) emerged from an effort to define the space occupied by a molecule in a crystal for the purpose of partitioning crystalline electron density into molecular fragments. ${ }^{\text {ES1 }}$ Such a surface was named in honor of F. L. Hirshfeld, who introduced the "stockholder partitioning" scheme. ${ }^{\text {ES2 }}$ Afterwards, it was realized that the Hirshfeld surfaces possessed a number of attributes that make them attractive for identification of intermolecular interactions in the context of crystal packing. ${ }^{\text {ES3 }}$ In a Hirshfeld surface, the parameters d_{e} and d_{i} describe the distances from a point on the surface to the nearest nucleus outside and inside the
surface, respectively. The $d_{\text {norm }}$ value is the sum of the normalised quantities of d_{i} and d_{e} by considering the van der Waals radius of atoms involved. This value graphically highlights the regions of the surface involved in a specific type of intermolecular contact by a colored scheme: red regions represent contacts shorter than the sum of van der Waals radii; white regions represent intermolecular distances close to van der Waals contacts and blue regions represent contacts longer than the sum of van der Waals radii. ${ }^{\text {ES4 }}$ The fingerprint plots (FPs) are introduced as the two-dimensional representations of the information provided by the generated HSs. The FPs are plotted on an $X Y$-grid formed by $d_{\mathrm{e}}, d_{\mathrm{i}}$ pairs $\left(\mathrm{X}=d_{\mathrm{i}}\right.$ and $\mathrm{Y}=d_{\mathrm{e}}$), where the frequencies of occurrence of interactions (the number of points with a given $d_{\mathrm{e}}, d_{\mathrm{i}}$ pair) are represented by different colours. Moreover, the complementary regions are visible in the FPs where one molecule acts as a donor ($d_{\mathrm{e}}>d_{\mathrm{i}}$) and the other as an acceptor $\left(d_{\mathrm{e}}<d_{\mathrm{i}}\right) .{ }^{\text {ES5 }}$

Study of intermolecular interactions of compounds 1, 2 and 3 by Hirshfeld surface analysis

The Hirshfeld surfaces mapped with $d_{\text {norm }}$ of $\mathbf{1 - 3}$ are given in Fig. 1a-c, in which the classical and weak hydrogen bonds are identified with labels.

The features labeled 1 (a deep red area) in Fig. 1a-c are indicative of important interactions in all three structures, i.e. $\mathrm{N}_{\mathrm{CP}}-\mathrm{H} \cdots \mathrm{OP}$ between one phosphoric triamide molecule and its symmetry-related adjacent molecule. It is worth noting that in all three structures only the O atom of $\mathrm{P}=\mathrm{O}$ group takes part in $\mathrm{NH} \cdots \mathrm{O}$ hydrogen bonding.

As mentioned in the section on X-ray crystallography, all three compounds contain weak CH $\cdots \mathrm{O}$ intermolecular interactions with neighbouring molecules, which are monitored in the
related HS's, as well. In this regard, the red spot marked with label 2 indicates the one remarkable $\mathrm{CH} \cdots \mathrm{O}$ interaction in the structure 1 (Fig. 1a), while such highlighted $\mathrm{CH} \cdots \mathrm{O}$ interactions in structures 2 and $\mathbf{3}$ are introduced by labels 3 and 4 in Fig. 1b and labels 2 and 3 in Fig. 1c. However, the $\mathrm{CH} \cdots \mathrm{O}$ contacts with lower degrees of importance also appear in the noted HS's maps: labels 3 and 4 in Fig. 1a for $\mathbf{1}$ and label 4 in Fig. 1c for 3.

In structure 2, the very light red spot in Fig. 1b (label 2) is related to the only significant $H \cdots H$ contact which takes place between an H atom of an aromatic ring $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$ and an H atom of an aliphatic ring $\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)$. The two other structures do not show such a highlighted $\mathrm{H} \cdots \mathrm{H}$ interaction. Structure 1, with the most unsaturated systems with respect to two other structures, reveals weak $\mathrm{C} \cdots \mathrm{H}$ contacts shown as four small red regions (labels $5-8$ in Fig. 1a), formed between the C and H atoms of unsaturated aromatic rings. The other structures do not show such highlighted C $\cdots \mathrm{H}$ contacts in related Hirshfeld surfaces.

The full fingerprint plots of compounds $\mathbf{1 - 3}$ are illustrated in Figure S 2. These plots represent the total interactions which are also divided into the different types of interactions to show the contribution portion of each contact in the total Hirshfeld surface.

For 1-3, the H $\cdots \mathrm{H}$ interactions, which cover the most surface area of the 2D fingerprint plot, exhibit the most significant contribution to the total Hirshfeld surface with respect to the other contacts (62.6%, 82.2% and 76.6%, respectively in Figs. S3a, S4a and S5a). The very high percentage of $\mathrm{H} \cdots \mathrm{H}$ interactions in $\mathbf{2}$ is due to the high number of hydrogen atoms and the bulk groups including hydrogen. A comparison of the $\mathrm{H} \cdots \mathrm{H}$ contacts in the structure 3 with the previously reported structure $\left[2,6-\mathrm{F}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{C}(\mathrm{O}) \mathrm{NH}\right] \mathrm{P}(\mathrm{O})\left[\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]_{2}$, ${ }^{\text {ES6 }}$ which is different by two H atoms in $\mathbf{3}$ instead of two F atoms in the reported structure, reveals that the absence of stronger
$H \cdots F$ interactions allows for a more contributed portion of weaker $H \cdots H$ interactions in the crystal packing of 3 (more about 20\%).

Fingerprint plots of S3b, S4b and S5b show $\mathrm{O} \cdots \mathrm{H}$ contacts in structures $\mathbf{1}$ to 3, with two sharp spikes in the regions of the lower and upper sections of the figures. The $\mathrm{O} \cdots \mathrm{H}$ contacts include both $\mathrm{NH} \cdots \mathrm{O}$ and $\mathrm{CH} \cdots \mathrm{O}$ interactions and the highest percentage of $\mathrm{O} \cdots \mathrm{H}$ contacts was found for the structure 3 ($9.4 \% \mathbf{1}, 9.5 \% 2$ and $11.5 \% \mathbf{3}$). The structure 1 with the highest numbers of unsaturated C atoms indicates the highest percentage of weak $\mathrm{C} \cdots \mathrm{H}$ contacts $(26.5 \%$, Figure S 3c). Besides these, there are also contacts with negligible contribution portions in all three structures, such as $\mathrm{C} \cdots \mathrm{C}$ and $\mathrm{O} \cdots \mathrm{C}$, which are not shown in the related fingerprint plots.

IR and NMR Study

Stretching frequencies of the N-H units occur at 3087, 3077 and $3068 \mathrm{~cm}^{-1}$ for compounds $\mathbf{1}, 2$ and 3, respectively. The phosphorus chemical shifts of compounds $\mathbf{1}, \mathbf{2}$ and $\mathbf{3}$ are 14.76, 13.77 and 13.09 ppm , respectively.

Table 4 lists the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR assignments of both compounds, with the assignments achieved by 2D experiments. In the ${ }^{1} \mathrm{HNMR}$ spectra of $\mathbf{1}, 2$ and $\mathbf{3}$, the broad signals at $9.37,8.89$ and 8.98 ppm , respectively, are related to the corresponding $\mathrm{C}(\mathrm{O}) \mathrm{NHP}(\mathrm{O})$ protons.

The aromatic protons of the $\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})$ segment in $\mathbf{1 - 3}$ are revealed as two doublet signals in the range of $7.78-7.86 \mathrm{ppm}$ for H 2 and H 6 and $7.26-7.29 \mathrm{ppm}$ for H 3 and H 5 .

In the ${ }^{1} \mathrm{HNMR}$ spectrum of $\mathbf{1}$, the two benzylic protons of the $\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$ section are observed as two dd signals at $\delta=4.24$ and 4.16 ppm . This pattern is a result of geminal ${ }^{2} J_{\mathrm{HCH}}$ plus vicinal
${ }^{3} J_{\text {PNCH }}$ couplings. The doublet signal at $2.54 \mathrm{ppm}\left({ }^{3} J_{\mathrm{PNCH}}=10.1 \mathrm{~Hz}\right)$ is assigned to the $\mathrm{N}-\mathrm{CH}_{3}$ protons.

The $\mathrm{H}_{\text {axial }}$ and $\mathrm{H}_{\text {equatorial }}$ signals of the cyclohexyl group in 2 are distinguished by their different splitting patterns. Supported by the Karplus equation ${ }^{\mathrm{ES7}}$ and the different $\mathrm{P}-\mathrm{N}-\mathrm{C}-\mathrm{H}_{\text {axial }}$ and $\mathrm{P}-\mathrm{N}-\mathrm{C}-\mathrm{H}_{\text {equatorial }}$ torsion angles, the doublet of multiplets at $\delta=1.74,1.72,1.62,1.59$ and 1.55 ppm are assigned to $\mathrm{H}_{\text {equatorial }}$ and two $q d$ signals at $\delta=1.50$ and 1.46 ppm and three $q t$ at δ $=1.22,1.18$ and 1.02 ppm can be attributed to the $\mathrm{H}_{\text {axial }}$. The $t d t$ pattern observed at $\delta=3.31 \mathrm{ppm}$ is due to the spin coupling between $\mathrm{H} 1{ }^{\prime}$ with $\mathrm{H}_{\text {equatorial }}\left({ }^{3} J_{\mathrm{HCCHeq}}=11.9 \mathrm{~Hz}\right), \mathrm{H}_{\text {axial }}\left({ }^{3} J_{\mathrm{HCCHax}}=3.5\right.$ $\mathrm{Hz})$ and the phosphorous nuclei $\left({ }^{3} J_{\mathrm{PNCH}}=9.3 \mathrm{~Hz}\right)$.

In compound 3, the $q d$ at 3.07 ppm belongs to the CH_{2}-protons of the $\mathrm{N}-\mathrm{Et}$ group. This splitting pattern is expected since the distance to ${ }^{31} \mathrm{P}$ would yield a doublet signal with ${ }^{3} \mathrm{~J}_{\mathrm{PNCH}}=$ 11.1 Hz and also, two mutually quartets which are expected from the splitting by the methyl group $\left({ }^{3} J_{\mathrm{HCCH}}=7.1 \mathrm{~Hz}\right)$.

For compounds 1-3, the doublet signals in the ${ }^{13} \mathrm{CNMR}$ spectra at $\delta=168.31,167.81,167.82$ ppm (with ${ }^{2} J_{\mathrm{PC}}=2.2,2.2,2.1 \mathrm{~Hz}$, respectively) resulting from the coupling with P nuclei, correspond to the $\mathrm{C}(\mathrm{O})$ groups. In all three molecules, the doublet signals at $\delta=130.89$ to 131.28 $\left({ }^{3} J_{\mathrm{PC}}\right.$ in the range of $8.6-8.9 \mathrm{~Hz}$) are assigned to the corresponding C 1 atom of $\mathrm{CH}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$ segment. It should be noted that each carbon atom of $\mathrm{N}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), \mathrm{N}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)$ and $\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$ moieties with two or three bond separations from the corresponding P atom are observed as a doublet signal due to the $\mathrm{P}-\mathrm{C}$ coupling.

References

ES1. Spackman, M. A.; Byrom, P. G. Chem. Phys. Lett. 1997, 267, 215-220.

ES2. Hirshfeld, F. L. Theor. Chim. Acta 1977, 44, 129-138.
ES3. McKinnon, J. J.; Spackman, M. A.; Mitchell, A. S. Acta Cryst. B 2004, 60, 627-668.
ES4. Spackman, M. A.; Jayatilaka, D. CrystEngComm 2009, 11, 19-32.
ES5. Spackman, M. A.; McKinnon, J. J. CrystEngComm 2002, 4, 378-392.
ES6. Tarahhomi, A.; Pourayoubi, M.; Golen, J. A.; Zargaran, P.; Elahi, B.; Rheingold, A. L.; Leyva Ramírez, M. A.; Mancilla Percino, T. Acta Cryst. B 2013, 69, 260-270.

ES7. Drago, R. S. Physical Methods for Chemists, second ed., Saunders College Publishing, Florida, 1992.

Figure S 1: Two orientations of the Hirshfeld surfaces for molecules 1-3. Labels on HS's are:
(a): $\mathrm{NH} \cdots \mathrm{O}$ (1), $\mathrm{CH} \cdots \mathrm{O}(2-4), \mathrm{CH} \cdots \mathrm{C}$ (5-8); (b): $\mathrm{NH} \cdots \mathrm{O}(1), \mathrm{H} \cdots \mathrm{H}(2), \mathrm{CH} \cdots \mathrm{O}(3,4) ;(\mathrm{c}):$ $\mathrm{NH} \cdots \mathrm{O}(1), \mathrm{CH} \cdots \mathrm{O}(2-4)$.

Figure S 2: The full fingerprint plots of compounds 1-3.

Figure S 3: Divided fingerprint plots for 1. Close contacts are as follows: (a) $\mathrm{H} \cdots \mathrm{H}$ (62.6\%), (b) $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ (9.4\%) and (c) $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ (26.5\%).

Figure S 4: Divided fingerprint plots for 2. Close contacts are as follows: (a) $\mathrm{H} \cdots \mathrm{H}$ (82.2\%), (b) $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}$ (9.5\%) and (c) C $\cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}$ (6.4\%).

Figure S 5: Divided fingerprint plots for 3. Close contacts are as follows: (a) $\mathrm{H} \cdots \mathrm{H}$ (76.6\%), (b) $\mathrm{O} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{O}(11.5 \%)$ and (c) $\mathrm{C} \cdots \mathrm{H} / \mathrm{H} \cdots \mathrm{C}(11.8 \%)$.

Figure S 6: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $\mathbf{1}\left(\right.$ DMSO- $\left._{6}\right)$.

Figure S 7: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $1\left(\right.$ DMSO- $\left.d_{6}\right)$.

Figure S 8: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1}$ (DMSO- d_{6}).

Figure S 9: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound $2\left(\right.$ DMSO- d_{6}).

Figure S 10: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 2 (DMSO- d_{6}).

Figure S 11: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $2\left(\right.$ DMSO- d_{6}).

Figure S 12: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of compound 3 (DMSO- d_{6}).

Figure S 13: ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 (DMSO- d_{6}).

Figure S 14: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{3}$ (DMSO- d_{6}).

