## CHEMBIOCHIEM

## Supporting Information

# Amide Neighbouring-Group Effects in Peptides: Phenylalanine as Relay Amino Acid in Long-Distance Electron Transfer 

Joses G. Nathanael, ${ }^{[a]}$ Luke F. Gamon, ${ }^{[a]}$ Meike Cordes, ${ }^{[b]}$ Paul R. Rablen, ${ }^{[c]}$ Thomas Bally, ${ }^{[d]}$
Katharina M. Fromm, ${ }^{[d]}$ Bernd Giese, ${ }^{*[d]}$ and Uta Wille ${ }^{*[a]}$
cbic_201800098_sm_miscellaneous_information.pdf

## Supporting Information

## Contents

1. Supplementary figures and tables ..... S2
2. Peptide synthesis ..... S7
3. Spectroscopic details for synthesised compounds ..... S11
4. Spectra of substrates used in the laser flash photolysis study ..... S20
4.1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra ..... S20
4.2. HPLC spectra ..... S37
5. Laser flash photolysis studies ..... S46
6. Reaction of $\mathrm{NO}_{3}{ }^{\bullet}$ with Ac-Phe-Phe-OMe (28) ..... S49
7. Gaussian archive entries for computational data ..... S50
8. References ..... S58

## 1. Supplementary figures and tables



Figure S1. UV/Vis spectrum (black) 40 ns after the laser flash of a nonapeptide with 2,4,6trimethoxybenzene as functional group at the central amino acid. Subtraction by red line (electron acceptor) leads to blue and green lines (oxidized electron donor and relay amino acid, respectively). Data taken from: M. Cordes, A. Köttgen, C. Jasper, O. Jacques, H. Boudebous, B. Giese, Angew. Chem. 2008, 120, 3511-3513; Angew. Chem. Int. Ed. 2008, 47, 3461-3663.


Figure S2. UV/Vis spectrum (black) 40 ns after the laser flash of 1b. Subtraction by red line (electron acceptor) leads to blue and green lines (oxidized electron donor and relay amino acid, respectively). Data taken from: B. Giese, M. Wang, J. Gao, M. Stoltz, M. Gruber, J. Org. Chem. 2009, 74, 3621-3625.


Figure S3. UV/Vis spectrum (black) 40 ns after the laser flash of $\mathbf{1 c}$ (Met as central amino acid). Subtraction by red line (electron acceptor) leads to blue (oxidized electron donor) and pink lines. The pink absorption corresponds well to the absorption of a thioether radical cation, which is stabilized by a neighbouring pyrrolidine amide (ref. [13] in the paper).


Figure S4. UV/Vis spectrum 40 ns after the laser flash of 1d (Phe as central amino acid). Subtraction by red line (electron acceptor) leads to blue (oxidized electron donor) and pink lines. The pink absorption is blue-shifted compared to the toluene radical cation (ref. [17] in the paper) and could indicate the Phe radical cation 4d, which is stabilized by a neighbouring amide.


Figure S5a. UV/Vis spectra 180 ns after the laser flash of a 0.3 mM CAN solution in the absence (red line) and presence of 10 mM Ac-Phe-OMe (7) (blue line). Black line: blue line and red line difference. Spectra taken at $60 \mathrm{~ns}, 240 \mathrm{~ns}$ and 1400 ns after the laser flash showed a similiar behaviour. It was shown in a separate experiment that the decay of the absorption at 500 nm has the same kinetic behaviour as that of the $\mathrm{NO}_{3}{ }^{\bullet}$ absorption at 630 nm . Because of the strong CAN depletion possible transient formation below 480 nm cannot be detected.


Figure S5b. UV/Vis spectra 180 ns after the laser flash of a 0.3 mM CAN solution in the absence (red line) and presence of $10 \mathrm{mM} \mathrm{Ac-Phe-NHMe} \mathrm{(6)} \mathrm{(blue} \mathrm{line)} .\mathrm{Black} \mathrm{line:} \mathrm{blue} \mathrm{line} \mathrm{and} \mathrm{red} \mathrm{line} \mathrm{difference}$. Spectra taken at $60 \mathrm{~ns}, 240 \mathrm{~ns}$ and 1400 ns showed a similiar behaviour. The decay of the absorption at 500 nm shows the same kinetics as that of the $\mathrm{NO}_{3}{ }^{\bullet}$ absorption at 630 nm . Because of the strong CAN depletion possible transient formation below 480 nm cannot be detected.

Table S1. Calculated peptide backbone dihedral angles for structures shown in Schemes 2 and 4 (M062X/6-31G*).

6. $\mathrm{X}=\mathrm{NH}$

7: $\mathrm{X}=0$

| Compound | $\Phi=C(0) C^{\alpha} N C(0)$ | $\Psi=N C(O) C{ }^{(1)}$ | $\Psi=O C(O) C \alpha^{\prime}$ |
| :---: | :---: | :---: | :---: |
| 6 | -164.9 ${ }^{\circ}$ | $168.3^{\circ}$ |  |
| $6^{\bullet+}$ | -164.9 ${ }^{\circ}$ | $168.3^{\circ}$ |  |
| $6 a^{\bullet+}$ | $60.9{ }^{\circ}$ | $31.7{ }^{\circ}$ |  |
| $6 b^{\bullet+}$ | $56.6{ }^{\circ}$ | $45.7^{\circ}$ |  |
| $6 c^{\bullet+}$ | $145.4^{\circ}$ | $-168.8^{\circ}$ |  |
| 7 | $-164.2^{\circ}$ |  | $175.7^{\circ}$ |
| 7*+ | $-164.2^{\circ}$ |  | $175.7^{\circ}$ |
| $7 a^{\bullet+}$ | $50.4{ }^{\circ}$ |  | $38.4{ }^{\circ}$ |
| $7 b^{\bullet+}$ | $-176.6^{\circ}$ |  | $177.5^{\circ}$ |
| $7 c^{\bullet+}$ | $144.9^{\circ}$ |  | $-169.6^{\circ}$ |

## 2. Peptide synthesis

The $N$-acetyl amino acid methyl esters were prepared by $N$-acetylation of the amino acids, followed by methylation of the C -termini. Dipeptides were obtained by coupling the N protected and $C$-protected amino acids.
Tripeptides were synthesised sequentially either from (i) the $C$-terminus (starting with the $C$ protected methyl ester hydrochloride salt) via N -Boc-protected intermediates (Procedure A, scheme S1), or (ii) the $N$-terminus (starting with the $N$-acetyl amino acid) via $N$-acetyl dipeptides (Procedure B, Scheme S2). Compounds for which no spectroscopic details are provided, were obtained commercially (Sigma Aldrich, AK Scientific).


Scheme S1. Sequential synthesis of tripeptides from the $C$-terminus (Procedure A).
(a) Synthesis of N -acetyl dipeptide methyl esters

(b) Hydrolysis of C-terminal methyl esters

(c) Synthesis of tripeptides


Scheme S2. Sequential synthesis of tripeptides from the $N$-terminus (Procedure B).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on either an Agilent MR 400 MHz NMR spectrometer or an Agilent DD2 500 MHz NMR spectrometer, in either deuterated dimethylsulfoxide (DMSO- $d_{6}$ ), deuterated acetonitrile (Acetonitrile- $d_{3}$ ) or deuterated methanol (Methanol- $d_{4}$ ). Chemical
shifts are reported in ppm ( $\delta$ ) using respective residual solvents as reference (DMSO: $\delta=2.50$ ppm for ${ }^{1} \mathrm{H}$ NMR, $\delta=39.52 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR; Acetonitrile: $\delta=1.94 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR, $\delta=$ 118.26 ppm for ${ }^{13} \mathrm{C}$ NMR; and Methanol: $\delta=3.31 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$ NMR, $\delta=49.00 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ NMR).

High Resolution Mass Spectrometry (HRMS) was conducted by ionising the samples using ESI into a Thermo Scientific Exactive Plus Orbitrap mass spectrometer.
The crude products were purified by silica column chromatography with approximately 30 g of dry silica per 1 g of crude product mixture. The eluting solvent consisted of a mixture of petroleum ether and ethyl acetate or dichloromethane and methanol. Purity was assessed by analytical reversed-phase HPLC on an Alltech Hypersil BDS-C185 $\mu \mathrm{m} 150 \times 4.6 \mathrm{~mm}$ (Gradient: $100 \%$ water buffered with $0.1 \%$ TFA to $100 \%$ acetonitrile buffered with $0.1 \%$ TFA over 25 minutes, $4 \% / \mathrm{min}$, flow rate: $1 \mathrm{~mL} / \mathrm{min}$ ).

### 2.1. General procedure for the $\mathbf{N}$-acetylation of the amino acids

Amino acid ( 53.4 mmol ) was suspended in $5 \%$ aq. $\mathrm{NaHCO}_{3}\left(150 \mathrm{~mL}\right.$ ) and cooled to $0^{\circ} \mathrm{C}$. Acetic anhydride ( $6.1 \mathrm{~mL}, 64.5 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise over a period of 1 hour. The mixture was stirred at room temperature for 2-4 hours and the reaction was monitored by TLC (9:1 ethanol/1 M acetic acid, ninhydrin stain) until consumption of the starting material was observed. The mixture was then acidified to $\mathrm{pH} 2-3$ with 6 M HCl and cooled overnight. The resulting precipitate was filtered off, washed with cold water ( $2 \times 10 \mathrm{~mL}$ ) and dried to give the N -acetylated amino acid as a white solid.

### 2.2. General procedure for the esterification of the amino acids

Amino acid ( 78.8 mmol ) was suspended in methanol ( 250 mL ) and cooled at $0{ }^{\circ} \mathrm{C}$. Thionyl chloride ( $10 \mathrm{~mL}, 138 \mathrm{mmol}, 1.7 \mathrm{eq}$.) was added dropwise. The mixture was stirred overnight at room temperature and the reaction was monitored by TLC (9:1 ethanol/1 M acetic acid, ninhydrin stain) until consumption of the starting material was observed. The solvent was removed under reduced pressure to give the amino acid as the methyl ester hydrochloride salt.

### 2.3. General procedure for the esterification of the $\boldsymbol{N}$-acetylated amino acids

Amino acid ( 12.0 mmol ) was suspended in methanol ( 11 mL ) and cooled to $0{ }^{\circ} \mathrm{C}$. Thionyl chloride ( $1.0 \mathrm{~mL}, 13.8 \mathrm{mmol}, 1.2 \mathrm{eq}$.) was added dropwise. The mixture was stirred for 4 hours and the reaction was monitored by TLC (ethyl acetate, PMA or Hanessian's stain) until consumption of starting material was observed. The solvent was removed under reduced pressure and water ( 20 mL ) was added. The crude product was extracted with dichloromethane ( $3 \times 15 \mathrm{~mL}$ ). The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure to give the N - and C - protected amino acids as white crystals.

### 2.4. General procedure for the peptide coupling

The $N$-protected amino acid ( 10.0 mmol ), amino acid methyl ester salt ( 10.1 mmol ) and (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) ( $3.75 \mathrm{~g}, 9.9$ mmol ) were suspended in anhydrous DMF ( 15 mL ) and cooled to $0^{\circ} \mathrm{C}$. Triethylamine ( 4.2 mL , 30.0 mmol ) was added dropwise and the mixture was stirred overnight at room temperature. The reaction was monitored by TLC (ethyl acetate, PMA or ninhydrin stain) until consumption of starting material was observed. The mixture was then partitioned between $1 \mathrm{M} \mathrm{HCl}(100$ mL ) and ethyl acetate ( 100 mL ). The aqueous phase was extracted with ethyl acetate ( $2 \times 100$ mL ), and the combined extracts were washed with $5 \%$ aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and brine ( 100 mL ). The organic layer was dried over $\mathrm{MgSO}_{4}$ and the solvent was removed under reduced pressure to give a sticky oil or a white solid. The residue was purified by silica column chromatography or by recrystallisation from ethyl acetate.

### 2.5. General procedure for the $\mathbf{N}$-Boc deprotection

The $N$-Boc protected peptide methyl ester ( 10.0 mmol ) was dissolved in dichloromethane ( 8 mL ) and cooled to $0^{\circ} \mathrm{C}$. Trifluoroacetic acid ( $8 \mathrm{~mL}, 104.5 \mathrm{mmol}$ ) was added dropwise. The mixture was stirred overnight and the reaction was monitored by TLC (ethyl acetate, ninhydrin stain) until consumption of the starting material was observed. The solvent was removed under reduced pressure, followed by azeotroping with toluene to remove residual trifluoroacetic acid, to give a white or yellow solid. The crude material was obtained as the trifluoroacetate salt and used without further purification.

### 2.6. General procedure for the hydrolysis of $C$-terminal methyl esters

The $N$-acetyl protected peptide methyl ester ( 1.82 mmol ) was dissolved in tetrahydrofuran $(28 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$. A solution of lithium hydroxide ( $0.60 \mathrm{~g}, 25.2 \mathrm{mmol}$ ) in water ( 28 mL ) was cooled to $0^{\circ} \mathrm{C}$ and then added to the first solution. After stirring overnight, a solution of $3 \mathrm{M} \mathrm{HCl}(10 \mathrm{~mL})$ was added, followed by an addition of brine $(20 \mathrm{~mL})$. The mixture was then extracted with ethyl acetate ( $4 \times 20 \mathrm{~mL}$ ), and the combined organic extracts were washed with brine ( 50 mL ). The organic layer was dried over $\mathrm{MgSO}_{4}$ and the solvent was removed under reduced pressure to give the product as a white solid.

### 2.7. Preparation of N -acetyl-L-phenylalanine amide (Ac-Phe- $\mathrm{NH}_{2}$ (14))

L-Phenylalanine methyl ester hydrochloride ( $2.40 \mathrm{~g}, 11.1 \mathrm{mmol}$ ) was dissolved in $28 \%$ aqueous ammonia solution ( 25 mL ). After stirring overnight, the mixture was concentrated under reduced pressure to give a white-off solid. The solid was dissolved in acetonitrile ( 5 mL ) and acetic anhydride ( $1 \mathrm{~mL}, 10.6 \mathrm{mmol}$ ) was added dropwise. The mixture was stirred for 1 day at room temperature and filtered off to give the product as a white solid.

### 2.8. Preparation of $N$-acetyl-L-phenylalanine methyl amide (Ac-Phe-NHMe (6))

$N$-Methyl morpholine ( $1.2 \mathrm{~mL}, 10.9 \mathrm{mmol}$ ) was added to a solution of N -acetyl-Lphenylalanine ( $2.10 \mathrm{~g}, 10.1 \mathrm{mmol}$ ) in dimethylformamide ( 7 mL ) and tetrahydrofuran ( 7 mL ) at $-10^{\circ} \mathrm{C}$. Trimethylacetyl (pivaloyl) chloride ( $1.25 \mathrm{~mL}, 10.2 \mathrm{mmol}$ ) was added dropwise. After 10 minutes, a solution of methylamine hydrochloride ( $3.36 \mathrm{~g}, 49.8 \mathrm{mmol}$ ) and triethylamine $(7.0 \mathrm{~mL}, 50.2 \mathrm{mmol})$ in water ( 7 mL ) was added. The resulting mixture was stirred for 1.5 hours and the solvent was removed under reduced pressure. The residue was dissolved in chloroform ( 30 mL ) and washed with water ( $2 \times 30 \mathrm{~mL}$ ). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure to give a white solid. The crude product was purified by silica column chromatography to give the pure product.

### 2.9. Preparation of N -acetyl-L-phenylalanine $\boldsymbol{t}$-butyl amide (Ac-Phe-NHtBu (13))

$N$-acetyl-L-phenylalanine ( $3.50 \mathrm{~g}, 16.9 \mathrm{mmol}$ ) and $p$-nitrophenol ( $2.37 \mathrm{~g}, 17.1 \mathrm{mmol}$ ) were dissolved in dichloromethane ( 20 mL ). $N, N^{\prime}$-Dicyclohexylcarbodiimide/DCC ( $3.48 \mathrm{~g}, 16.9$ mmol ) was added in portions. The resulting mixture was heated at $40^{\circ} \mathrm{C}$ for 8 hours and filtered through a bed of celite. The filter cake was washed with dichloromethane and the filtrate was concentrated under reduced pressure. The yellow solid was dissolved in dichloromethane ( 150 mL ) and $t$-butylamine ( $2.0 \mathrm{~mL}, 18.8 \mathrm{mmol}$ ) was added dropwise. The resulting mixture was heated at $40^{\circ} \mathrm{C}$ for 16 hours and filtered through a bed of celite. The filtrate was concentrated under reduced pressure and the crude material was recrystallised from hot ethanol to give a colourless crystal.

## 3. Spectroscopic details for the synthesised compounds

## 3.1. $\quad N$-Acetyl-L-phenylalanine methyl ester (Ac-Phe-OMe (7))

(a) N-Acetyl-L-phenylalanine: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 12.65(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 4.40(\mathrm{ddd}, J=9.6,8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, \mathrm{J}=$ $13.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.83$ (dd, $J=13.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.77 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO$\left.d_{6}\right) \delta 173.15,169.19,137.71,129.03,128.16,126.38,53.48,36.77,22.33 \mathrm{ppm}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{3}\right]^{+}: 208.0978[\mathrm{M}+\mathrm{H}]^{+}$, found 208.0975, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{6}\right]^{+}: 415.1869[2 \mathrm{M}+\mathrm{H}]^{+}$, found 415.1893 .
(b) N-Acetyl-L-phenylalanine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 8.33(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}$, 1H), $7.33-7.23$ (m, 2H), $7.26-7.16$ (m, 3H), 4.44 (ddd, J = 9.1, 7.7, 5.6 Hz, 1H), 3.59 (s, 3H), $3.00(\mathrm{dd}, J=13.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{dd}, J=13.7,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.79 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 $\mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$ ) $\delta 172.19,169.29,137.25,128.99,128.23,126.52,53.60,51.79,36.72,22.23$ ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{3}\right]^{+}: 222.1130[\mathrm{M}+\mathrm{H}]^{+}$, found 222.1137, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{Na}\right]^{+}: 375.2495[\mathrm{M}+\mathrm{Na}]^{+}$, found 375.2517.

## 3.2. $\quad N$-acetyl-L-phenylalanine amide (Ac-Phe- $\mathrm{NH}_{2}(14)$ )

(a) L-Phenylalanine methyl ester hydrochloride: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 8.74(\mathrm{~s}, 3 \mathrm{H})$, $7.38-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 3 \mathrm{H}), 4.23$ (dd, J=7.4, 5.9 Hz, 1H), 3.65 (s, 3H), 3.21 (dd, J $=14.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10 \mathrm{ppm}(\mathrm{dd}, J=14.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 169.34$, 134.69, 129.38, 128.57, 127.24, 53.22, 52.53, 35.83 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{2}\right]^{+}: 180.1019\left[\mathrm{M}-\mathrm{Cl}^{+}\right.$, found 180.1010.
(b) N-Acetyl-L-phenylalanine amide: ${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 8.01(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{td}, \mathrm{J}=9.2,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.98(\mathrm{dd}, J=13.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=13.7,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- $d_{6}$ ) $\delta 173.24,168.97,138.22,129.07,127.99,126.15,53.78,37.65,22.50 \mathrm{ppm}$. HRMS (ESI) $m / z$ calcd. for [ $\left.\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$: 207.1134 [ $\left.\mathrm{M}+\mathrm{H}\right]^{+}$, found 207.1130, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\right]^{+}: 229.0953[\mathrm{M}+\mathrm{Na}]^{+}$, found 229.0949.

## 3.3. $\quad N$-Acetyl-L-phenylalanine methyl amide (Ac-Phe-NHMe (6))

(a) N-Acetyl-L-phenylalanine: see section 2.1(a)
(b) N-Acetyl-L-phenylalanyl methyl amide: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 8.10(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, 1 H ), 7.88 ( $\mathrm{q}, \mathrm{J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.30-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.13,(\mathrm{~m}, 3 \mathrm{H}), 4.40$ (ddd, $J=9.5,8.4$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=13.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=13.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.75 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta 171.58,169.00,138.16,129.03,128.02$, 126.19, 54.07, 37.78, 25.52, 22.50 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}: 221.1290$ $[\mathrm{M}+\mathrm{H}]^{+}$, found 221.1283, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{+}: 441.2502[2 \mathrm{M}+\mathrm{H}]^{+}$, found 441.2495.

## 3.4. $\quad N$-Acetyl-L-phenylalanine $t$-butyl amide (Ac-Phe-NHtBu (13))

(a) N-Acetyl-L-phenylalanine: see section 2.1(a)
(b) N-Acetyl-L-phenylalanyl t-butyl amide: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.96(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}$, 1H), 7.49 (s, 1H), $7.29-7.18$ (m, 4H), 7.22-7.13, (m, 1H), $4.46(\mathrm{td}, J=8.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (dd, $J=13.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.72 (dd, $J=13.5,8.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.75(\mathrm{~s}, 3 \mathrm{H}), 1.19 \mathrm{ppm}(\mathrm{s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO-d ${ }_{6}$ ) $\delta$ 170.47, 168.77, 137.90, 129.25, 127.86, 126.10, 54.07, 50.02, 38.33, 28.38, 22.48 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}: 263.1760[\mathrm{M}+\mathrm{H}]^{+}$, found 263.1752, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~K}\right]^{+}: 301.1318[\mathrm{M}+\mathrm{K}]^{+}$, found 301.1310.

## 3.5. $\quad N$-Acetyl-L-leucyl-L-phenylalanine methyl ester (Ac-Leu-Phe-OMe (15))

(a) L-Phenylalanine methyl ester hydrochloride: see section 2.2(a)
(b) N-Acetyl-L-leucine: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}$ ) $\delta 12.46$ (s, 1H), 8.07 (d, J=7.9 Hz, 1H), 4.19 (ddd, $J=9.1,8.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.83(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.48 \mathrm{ppm}(\mathrm{ddd}, \mathrm{J}=8.5$, $5.5,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 174.26,169.24,50.18,40.00,24.32,22.84,22.33,21.30 \mathrm{ppm}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{NO}_{3}\right]^{+}: 174.1130[\mathrm{M}+\mathrm{H}]^{+}$, found 174.1133, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}\right]^{+}$: $347.2182[2 \mathrm{M}+\mathrm{H}]^{+}$, found 347.2182 .
(c) N-Acetyl-leucyl-L-phenylalanine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 8.30$ (d, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 4.48-4.40(\mathrm{~m}$, $1 \mathrm{H}), 4.32(\mathrm{td}, \mathrm{J}=8.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{dd}, J=13.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=13.9$, $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.82$ ppm (d, J = 6.5 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta 172.30,171.79,168.90,137.12$, 129.04, 128.19, 126.50, 53.45, 51.75, 50.51, 40.85, 36.43, 24.09, 22.93, 22.44, 21.71 ppm. HRMS (ESI) $m / z$ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}: 335.1965[\mathrm{M}+\mathrm{H}]^{+}$, found 335.1976, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\right]^{+}: 357.1785[\mathrm{M}+\mathrm{Na}]^{+}$, found 357.1790.

## 3.6. $\quad$-Acetyl-L-phenylalanyl-L-leucine methyl ester (Ac-Phe-Leu-OMe (16))

(a) L-Leucine methyl ester hydrochloride: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 8.73(\mathrm{~s}, 3 \mathrm{H}), 3.90$ (t, J = 7.0, 1H), $3.73(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 2 \mathrm{H}), 0.88 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $d_{6}$ ) $\delta 170.25,52.69,50.47,39.11,23.71,22.16,21.97 \mathrm{ppm}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{2}\right]^{+}: 146.1181$ [M-CI] ${ }^{+}$, found 146.1182.
(b) N-Acetyl-L-phenylalanine: see section 2.1(a)
(c) N-Acetyl-phenylalanyl-L-leucine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 8.37$ (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.06 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.26 (d, $J=4.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.19(\mathrm{p}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54$ (ddd, $J=10.1,8.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (ddd, $J=9.6,7.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.99$ (dd, $J=13.9,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, \mathrm{J}=13.9,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.44(\mathrm{~m}, 2 \mathrm{H})$, $0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.84 \mathrm{ppm}(\mathrm{d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta 172.78$, 171.68, 169.00, 137.95, 129.12, 127.97, 126.19, 53.55, 51.83, 50.28, 39.68, 37.56, 24.18,
22.74, 22.42, 21.31 ppm. HRMS (ESI) $m / z$ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}: 335.1965[\mathrm{M}+\mathrm{H}]^{+}$, found 335.1975, HRMS (ESI) $m / z$ calcd. for $\left[\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\right]^{+}: 357.1785[\mathrm{M}+\mathrm{Na}]^{+}$, found 357.1784.

## 3.7. $\quad N$-Acetyl-L-valyl-L-phenylalanine methyl ester (Ac-Val-Phe-OMe (17))

(a) L-Phenylalanine methyl ester hydrochloride: see section 2.2(a)
(b) N-Acetyl-valyl-L-phenylalanine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 8.39$ ( $\mathrm{d}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.79(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 3 \mathrm{H}), 4.45(\mathrm{dt}, \mathrm{J}=8.5$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.18 (dd, $J=9.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.01$ (dd, $J=13.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (dd, $J=13.9,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.91$ (hept, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.79 \mathrm{ppm}$ (d, J = 7.0 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ( 101 MHz, DMSO-d ) $\delta$ 171.79, 171.32, 169.04, 137.12, 129.02, 128.19, 126.52, 57.18, 53.53, 51.68, 36.50, 30.56, 22.44, 19.06, 18.08 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}: 321.1814[\mathrm{M}+\mathrm{H}]^{+}$, found 321.1814, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\right]^{+}: 343.1633[\mathrm{M}+\mathrm{Na}]^{+}$, found 343.1638.

## 3.8. $\quad N$-Acetyl-L-phenylalanyl-L-valine methyl ester (Ac-Phe-Val-OMe (18))

(a) L-Valine methyl ester hydrochloride: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 8.66(\mathrm{~s}, 3 \mathrm{H}), 3.83$ (d, $J=4.7,1 \mathrm{H}$ ), $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.19$ (heptd, $J=6.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 0.98 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$ ), $0.93 \mathrm{ppm}(\mathrm{d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}\right) \delta 169.20,57.23,52.23,29.31,18.44,17.56 \mathrm{ppm}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2}\right]^{+}: 132.1019[\mathrm{M}-\mathrm{Cl}]^{+}$, found 132.1021.
(b) N-Acetyl-L-phenylalanine: see section 2.1(a)
(c) N-Acetyl-phenylalanyl-L-valine methyl ester: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 8.24$ (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.07 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.28-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.13(\mathrm{~m}, 1 \mathrm{H}), 4.62$ (ddd, J = $10.0,8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.17 (dd, $J=8.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.96$ (dd, $J=13.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.71(\mathrm{dd}, J=13.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~h}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $0.87 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 171.87,171.81,169.08,137.91$, 129.15, 127.95, 126.18, 57.42, 53.50, 51.68, 37.47, 29.88, 22.40, 18.92, 18.25 ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}: 321.1814[\mathrm{M}+\mathrm{H}]^{+}$, found 321.1809 , HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\right]^{+}: 343.1633[\mathrm{M}+\mathrm{Na}]^{+}$, found 343.1628.

## 3.9. $\quad N$-Acetyl-L-leucyl-L-leucyl-L-phenylalanine methyl ester (Ac-Leu-Leu-Phe-OMe (19))

This tripeptide was synthesised from the C-terminus according to Procedure A, Scheme S1.
(a) L-Phenylalanine methyl ester hydrochloride: see section 2.5(a)
(b) N-Boc-L-leucyl-L-phenylalanine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 8.12$ (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{td}, \mathrm{J}=8.2$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{td}, \mathrm{J}=9.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{dd}, \mathrm{J}=13.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (dd, $J=13.9,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}), 0.81 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 172.54,171.83,155.10$,
137.04, 129.07, 128.17, 126.48, 77.97, 53.25, 52.62, 51.79, 40.78, 36.61, 28.17, 24.12, 22.84, 21.62 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}\right]^{+}: 393.2384[\mathrm{M}+\mathrm{H}]^{+}$, found 393.2383, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}\right]^{+}: 415.2204[\mathrm{M}+\mathrm{Na}]^{+}$, found 415.2203 .
(c) L-Leucyl-L-phenylalanine methyl ester trifluoroacetate: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta$ 8.96 (d, J = $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 3 \mathrm{H}), 7.35-7.26$ (m, 2H), 7.28-7.19 (m, 3H), 4.61-4.49 (m, $1 \mathrm{H}), 3.77$ (dd, $J=8.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.07$ (dd, $J=14.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (dd, J = 14.0, $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{dd}, \mathrm{J}=7.7,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.90(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88 \mathrm{ppm}$ (d, J = 4.7 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta$ 171.30, 169.35, 136.83, 129.02, 128.37, $126.72,53.88,52.00,50.58,40.22,36.32,23.36,22.76,21.71 \mathrm{ppm}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: 293.1865\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}\right]^{+}$, found 293.1860.
(d) N-Acetyl-L-leucine: see section 2.5(b)
(e) N -Acetyl-L-leucyl-L-leucyl-L-phenylalanine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta$ 8.21 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.95 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.83 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.27 (dd, $J=8.0,6.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.20(\mathrm{td}, \mathrm{J}=6.6,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 4.46(\mathrm{td}, \mathrm{J}=8.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dq}, \mathrm{J}=15.0,7.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.56 (s, 3H), 3.01 (dd, J = 13.9, $6.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.94 (dd, J = 14.0, $8.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.82 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.55 (dh, $J=13.5,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 0.86(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.82 \mathrm{ppm}(\mathrm{dd}, J=6.6$, $3.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta 171.96,171.85,171.69,169.12,137.02,128.97$, $128.20,126.50,53.38,51.75,50.91,50.63,40.86,40.71,36.49,24.15,24.03,23.04,22.93$, 22.48, 21.72, 21.59 ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{5}\right]^{+}: 448.2812[\mathrm{M}+\mathrm{H}]^{+}$, found 448.2809, HRMS (ESI) $m / z$ calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~K}\right]^{+}: 486.2370[\mathrm{M}+\mathrm{K}]^{+}$, found 486.2366 .

### 3.10. $N$-Acetyl-L-leucyl-L-phenylalanyl-L-leucine methyl ester (Ac-Leu-Phe-Leu-OMe (20))

This tripeptide was synthesised from the $N$-terminus according to Procedure B, Scheme S2.
(a) N-Acetyl-L-leucyl-L-phenylalanine methyl ester: see section 2.5
(b) N-Acetyl-L-leucyl-L-phenylalanine: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 12.66$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 8.08 (d, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.15(\mathrm{~m}, 3 \mathrm{H}), 4.40(\mathrm{td}, \mathrm{J}=8.2$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.31 (td, $J=8.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.04 (dd, $J=13.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.91 (dd, $J=13.9,8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{dp}, \mathrm{J}=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.82 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 172.73,172.13,168.93,137.49$, 129.12, 128.12, 126.38, 53.27, 50.61, 40.82, 36.51, 24.09, 23.02, 22.46, 21.66 ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}: 321.1814[\mathrm{M}+\mathrm{H}]^{+}$, found 321.1811, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\right]^{+}: 343.1634[\mathrm{M}+\mathrm{Na}]^{+}$, found 343.1630.
(c) L-Leucine methyl ester hydrochloride: see section 2.6(a)
(d) N -Acetyl-L-leucyl-L-phenylalanyl-L-leucine methyl ester: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta$ 8.18 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ (dd, $J=8.3,5.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.29-7.11$ (m, 5H), 4.51 (td, $J=8.9,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.29(\mathrm{td}, J=9.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.03(\mathrm{dd}, \mathrm{J}=14.1$,
$4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, \mathrm{J}=13.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.42(\mathrm{~m}$, $2 \mathrm{H}), 1.30(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.89(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}), 0.79 \mathrm{ppm}(\mathrm{d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$ ) $\delta$ 172.65, 171.87, 171.01, 169.21, 137.67, 129.15, $127.95,126.17,53.31,51.82,51.09,50.23,40.65,39.66,37.05,24.05,24.04,22.90,22.81$, 22.44, 21.67, 21.22 ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{5}\right]^{+}: 448.2812[\mathrm{M}+\mathrm{H}]^{+}$, found 448.2809, HRMS (ESI) $m / z$ calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}\right]^{+}: 470.2631[\mathrm{M}+\mathrm{Na}]^{+}$, found 470.2628.

### 3.11. $N$-Acetyl-L-phenylalanyl-L-leucyl-L-leucine methyl ester (Ac-Phe-Leu-Leu-OMe (21))

This tripeptide was synthesised from the $N$-terminus according to Procedure B, Scheme S2.
(a) $N$-Acetyl-L-phenylalanyl-L-leucine methyl ester: see section 2.6
(b) $\boldsymbol{N}$-Acetyl-L-phenylalanyl-L-leucine: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 12.55$ (s, 1H), 8.23 (d, J $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{ddd}, \mathrm{J}=$ $10.2,8.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.22 (ddd, J=9.2, $7.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.00(\mathrm{dd}, J=14.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ $(\mathrm{dd}, \mathrm{J}=13.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.85 \mathrm{ppm}(\mathrm{d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, Acetonitrile- $d_{3}$ ) $\delta 174.80,172.43$, $171.81,137.84,129.83,128.85,127.14,54.92,51.44,40.55,37.88,25.02,22.74,22.33,21.29$ ppm. HRMS (ESI) $m / z$ calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}: 321.1814[\mathrm{M}+\mathrm{H}]^{+}$, found 321.1810, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\right]^{+}: 343.1634[\mathrm{M}+\mathrm{Na}]^{+}$, found 343.1630.
(c) L-Leucine methyl ester hydrochloride: see section 2.6(a)
(d) N-Acetyl-L-phenylalanyl-L-leucyl-L-leucine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta$ $8.20(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H})$, 4.51 (td, J = 9.8, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $4.39-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.97$ (dd, J = 13.9, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.70(\mathrm{dd}, \mathrm{J}=13.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.41(\mathrm{~m}, 3 \mathrm{H}), 0.90(\mathrm{dd}$, $J=6.3,1.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.85 \mathrm{ppm}(\mathrm{dd}, J=8.5,6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} N \mathrm{NR}\left(101 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta$ 173.89, 173.01, 172.04, 171.47, 138.37, 130.22, 129.29, 127.57, 55.87, 52.58, 52.35, 51.69, 41.48, 40.95, 38.07, 25.43, 25.29, 23.34, 23.17, 22.96, 21.82, 21.67 ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{5}\right]^{+}$: $448.2812[\mathrm{M}+\mathrm{H}]^{+}$, found 448.2809, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}\right]^{+}: 470.2631[\mathrm{M}+\mathrm{Na}]^{+}$, found 470.2629.

### 3.12. $N$-Acetyl-L-valyl-L-valyl-L-phenylalanine methyl ester (Ac-Val-Val-Phe-OMe (22))

This tripeptide was synthesised from the $C$-terminus according to Procedure A, Scheme S1.
(a) L-Phenylalanine methyl ester hydrochloride: see section 2.2(a)
(b) N-Boc-L-valyl-L-phenylalanine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta 8.25$ (d, J= $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 3 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.49$ (ddd, J=9.4, $7.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=9.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{dd}, J=13.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92$
(dd, J = 13.9, $8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 0.77(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.76 \mathrm{ppm}$ (d, J = 6.7 Hz, 3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$ ) $\delta 171.83,171.44,155.24,137.07,129.02$, 128.19, 126.51, 77.99, 59.50, 53.37, 51.74, 36.65, 30.50, 28.17, 19.02, 18.11 ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}\right]^{+}: 379.2233[\mathrm{M}+\mathrm{H}]^{+}$, found 379.2222, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}\right]^{+}: 401.2052[\mathrm{M}+\mathrm{Na}]^{+}$, found 401.2052.
(c) L-Valyl-L-phenylalanine methyl ester trifluoroacetate: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta$ $8.90(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 3 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.19(\mathrm{~m}, 3 \mathrm{H}), 4.55(\mathrm{dt}, \mathrm{J}=7.4$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.07$ (dd, J=14.0, 5.9 Hz, 1H), 2.98 (dd, J= $14.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.04(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) 0.91 \mathrm{ppm}(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$ ) $\delta 171.34,168.22,136.77,129.03,128.36,126.73,57.01,53.90$, 51.94, 36.38, 29.87, 18.25, 17.10 ppm. HRMS (ESI) $m / z$ calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: 279.1709$ [M$\left.\mathrm{CF}_{3} \mathrm{CO}_{2}\right]^{+}$, found 279.1719.
(d) $\boldsymbol{N}$-Acetyl-L-valyl-L-valyl-L-phenylalanine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$ ) $\delta$ $8.34(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.20(d, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.49(\mathrm{ddd}, J=8.7,7.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=8.9,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.55$ (s, 3H), 3.02 (dd, J = 14.0, $5.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.92 (dd, J = 14.0, $8.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.90(\mathrm{dt}, J=13.8,6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.77 \mathrm{ppm}(\mathrm{d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, DMSO-d ${ }_{6}$ ) $\delta 171.70,170.91,169.15,137.01,128.86,128.19,126.49,57.72,57.21,53.29$, 51.70, $36.49,30.75,30.18,22.46,19.20,19.00,18.21,18.07 \mathrm{ppm}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5}\right]^{+}: 420.2499[\mathrm{M}+\mathrm{H}]^{+}$, found 420.2496, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}\right]^{+}$: $442.2318[\mathrm{M}+\mathrm{Na}]^{+}$, found 442.2314.

### 3.13. $N$-Acetyl-L-valyl-L-phenylalanyl-L-valine methyl ester (Ac-Val-Phe-Val-OMe (23))

This tripeptide was synthesised from the $C$-terminus according to Procedure A, Scheme S1.
(a) L-Valine methyl ester hydrochloride: see section 2.8(a)
(b) N-Boc-L-phenylalanyl-L-valine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $d_{6}$ ) $\delta 8.08$ (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ (ddd, $J=$ 23.0, 9.3, $5.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.63 (s, 3H), 2.94 (dd, $J=13.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.73 (dd, J = 13.8, 10.4 Hz , $1 \mathrm{H}), 2.05(\mathrm{~h}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}), 0.89 \mathrm{ppm}(\mathrm{dd}, J=9.0,6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$ ) $\delta 172.09,171.86,155.21,138.06,129.19,127.95,126.14,78.01,57.23,55.44$, 51.71, 37.21, 30.11, 28.10, 18.88, 18.12 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}\right]^{+}$: $379.2233[\mathrm{M}+\mathrm{H}]^{+}$, found 379.2228, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}\right]^{+}: 401.2052$ $[\mathrm{M}+\mathrm{Na}]^{+}$, found 401.2048.
(c) L-Phenylalanyl-L-valine methyl ester trifluoroacetate: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 8.73$ (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.25(\mathrm{~s}, 3 \mathrm{H}), 7.32(\mathrm{dd}, J=7.8,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 3 \mathrm{H}), 4.21(\mathrm{dd}, J=$ $8.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=14.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J$ $=14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.97(\mathrm{~m}, 1 \mathrm{H}), 0.90 \mathrm{ppm}(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-
$d_{6}$ ) $\delta 171.18,168.32,134.73,129.51,128.47,127.13,57.64,53.09,51.87,36.96,30.06,18.84$, 18.18 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: 279.1709\left[\mathrm{M}-\mathrm{CF}_{3} \mathrm{CO}_{2}\right]^{+}$, found 279.1703, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{6}\right]^{+}: 557.3339\left[2 \mathrm{M}-\mathrm{C}_{4} \mathrm{HO}_{4} \mathrm{~F}_{6}\right]^{+}$, found 557.3332 .
(d) N-Acetyl-L-valyl-L-phenylalanyl-L-valine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta$ 8.13 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.09 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.18$ (m, 4H), $7.22-7.13(\mathrm{~m}, 1 \mathrm{H}), 4.60$ (ddd, $J=9.7,8.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16$ (dd, $J=8.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (dd, $J=8.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.99(\mathrm{dd}, J=14.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=13.9,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.04 (hept, J = $6.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.94-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86$ (d, J $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.72 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=2.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO$\left.d_{6}\right) \delta 171.65,171.35,170.93,169.14,137.69,129.16,127.94,126.18,57.75,57.43,53.59$, $51.65,37.31,30.34,29.91,22.47,19.12,18.88,18.18,18.09 \mathrm{ppm}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5}\right]^{+}: 420.2499[\mathrm{M}+\mathrm{H}]^{+}$, found 420.2496, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}\right]^{+}$: $442.2318[\mathrm{M}+\mathrm{Na}]^{+}$, found 442.2315 .

### 3.14. $N$-Acetyl-L-phenylalanyl-L-valyl-L-valine methyl ester (Ac-Phe-Val-Val-OMe (24))

This tripeptide was synthesised from the C-terminus according to Procedure A, Scheme S1.
(a) L-Valine methyl ester hydrochloride: see section 2.8(a)
(b) N-Boc-L-valyl-L-valine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 7.97$ (d, $J=7.9 \mathrm{~Hz}$, 1H), 6.69 (d, J = $9.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.18 (dd, J = 8.0, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.86 (dd, J = 9.2, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.61 ( s , 3 H ), 2.04 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.91 (hept, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.38 (s, 9 H ), $0.91-0.80 \mathrm{ppm}(\mathrm{m}$, $12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 171.83,171.78,155.36,77.96,59.49,57.24,51.58$, 30.32, 29.86, 28.15, 19.12, 18.86, 18.21, 18.17 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{5}\right]^{+}$: $331.2233[\mathrm{M}+\mathrm{H}]^{+}$, found 331.2227, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Na}\right]^{+}: 353.2052$ $[\mathrm{M}+\mathrm{Na}]^{+}$, found 353.2046.
(c) L-Valyl-L-valine methyl ester trifluoroacetate: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta 8.61$ (d, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.14(\mathrm{~d}, \mathrm{~J}=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.20(\mathrm{dd}, J=7.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ ( $\mathrm{s}, 3 \mathrm{H}$ ), 2.17-2.00(m, 2H), 1.00-0.88 ppm (m, 12H). ${ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta$ 171.36, 168.35, 57.77, 56.99, 51.77, 29.94, 29.67, 18.84, 18.20, 18.15, 17.45 ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{+}: 231.1709$ [M-CF3 $\left.\mathrm{CO}_{2}\right]^{+}$, found 231.1706, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{6}\right]^{+}: 461.3339\left[2 \mathrm{M}-\mathrm{C}_{4} \mathrm{HO}_{4} \mathrm{~F}_{6}\right]^{+}$, found 461.3338.
(d) N-Acetyl-L-phenylalanine: see section 2.1(a)
(e) N-Acetyl-L-phenylalanyl-L-valyl-L-valine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) 88.18 (d, J = 7.7 Hz, 1H), 8.13 (d, J=8.4 Hz, 1H), 7.95 (d, J = $8.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.27-7.19$ (m, 4H), $7.21-$ $7.12(\mathrm{~m}, 1 \mathrm{H}), 4.56$ (ddd, $J=10.1,8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=8.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.14$ (dd, $J=$ $7.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{dd}, J=13.9,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=14.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11$ - 1.99 (m, 1H), $2.03-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 0.89$ (dd, J = 9.5, $5.5 \mathrm{~Hz}, 6 \mathrm{H}$ ), $0.85 \mathrm{ppm}(\mathrm{dd}, \mathrm{J}$
$=7.3,5.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta$ 171.76, 171.30, 171.26, 169.15, 138.07, 129.17, 127.96, 126.16, 57.54, 57.33, 53.88, 51.57, 37.32, 30.79, 29.66, 22.43, 19.08, 18.91, 18.30, 18.13 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5}\right]^{+}: 420.2499[\mathrm{M}+\mathrm{H}]^{+}$, found 420.2494, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}\right]^{+}: 442.2318[\mathrm{M}+\mathrm{Na}]^{+}$, found 442.2313 .

### 3.15. $N$-Acetyl-L-phenylalanyl-L-leucyl-L-phenylalanine methyl ester (Ac-Phe-Leu-Phe-OMe (25))

This tripeptide was synthesised from the C-terminus according to Procedure A, Scheme S1.
(a) L-Leucyl-L-phenylalanine methyl ester trifluoroacetate: see section 2.9(a) - (c)
(b) N-Acetyl-L-phenylalanine: see section 2.1(a)
(c) N-Acetyl-L-phenylalanyl-L-leucyl-L-phenylalanine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta 8.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.13(\mathrm{~m}$, $10 \mathrm{H}), 4.54-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.43$ (td, $J=8.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (s, 3H), 3.03 (dd, $J=13.9,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.00-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{dd}, \mathrm{J}=13.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 1 \mathrm{H}), 1.47$ $-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.83 \mathrm{ppm}(\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO$\left.d_{6}\right) \delta 171.94,171.72,171.11,169.10,138.04,137.05,129.09,129.00,128.22,127.95,126.50$, 126.14, 53.74, 53.43, 51.77, $50.75,40.99,37.42,36.48,24.03,22.94,22.43,21.78$ ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{5}\right]^{+}: 482.2655[\mathrm{M}+\mathrm{H}]^{+}$, found 482.2656 , HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}\right]^{+}: 504.2474[\mathrm{M}+\mathrm{Na}]^{+}$, found 504.2469.

### 3.16. $N$-Acetyl-L-phenylalanyl-L-phenylalanyl-L-leucine methyl ester (Ac-Phe-Phe-Leu-OMe (26))

This tripeptide was synthesised from the $N$-terminus according to Procedure B, Scheme S2.
(a) L-Phenylalanine methyl ester hydrochloride: see section 2.5(a)
(b) N-Acetyl-L-phenylalanine: see section 2.1(a)
(c) N -Acetyl-L-phenylalanyl-L-phenylalanine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO- $\mathrm{d}_{6}$ ) $\delta$ $8.44(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.16(\mathrm{~m}, 10 \mathrm{H}), 4.57-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.51$ $-4.45(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{dd}, J=13.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, \mathrm{J}=13.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ (dd, $J=14.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (dd, $J=13.9,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71 \mathrm{ppm}(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz , DMSO-d ${ }_{6}$ ) $\delta 171.71,171.54,168.92,137.89,137.02,129.10,129.06,128.24,127.96,126.55$, 126.18, 53.57, 53.45, 51.82, $37.49,36.55,22.39 \mathrm{ppm}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for [ $\left.\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}$: $369.1814\left[\mathrm{M}+\mathrm{H}^{+}\right.$, found 369.1804, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\right]^{+}: 391.1634$ [M+Na] ${ }^{+}$, found 391.1604.
(d) N-Acetyl-L-phenylalanyl-L-phenylalanine: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO-d ${ }_{6}$ ) $\delta 12.77$ (s, 1H), 8.29 (d, J = 7.8 Hz, 1H), 8.10 (d, J = $8.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.32-7.16$ (m, 9H), $7.20-7.12(\mathrm{~m}, 1 \mathrm{H}), 4.51$ (ddd, $J=10.1,8.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.44 (td, $J=8.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.08 (dd, $J=13.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.97 (dd, $J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=13.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.71 \mathrm{ppm}(\mathrm{s}$,
$3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d 6 ) $\delta 172.68,171.46,168.95,138.03,137.47,129.17,129.14$, 128.16, 127.94, 126.43, 126.14, 53.66, 53.48, 37.44, 36.58, 22.42 ppm . HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{4}\right]^{+}$: $355.1658[\mathrm{M}+\mathrm{H}]^{+}$, found 355.1654 , HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}\right]^{+}: 377.1477[\mathrm{M}+\mathrm{Na}]^{+}$, found 377.1474.
(e) L-Leucine methyl ester hydrochloride: see section 2.6(a)
(f) N-Acetyl-L-phenylalanyl-L-phenylalanyl-L-leucine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO$\left.d_{6}\right) \delta 8.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.23(\mathrm{~m}$, $4 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 6 \mathrm{H}), 4.54(\mathrm{td}, J=8.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{ddd}, J=9.9,8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (ddd, J = 9.7, 7.7, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.61 (s, 3H), 3.04 (dd, J = 14.0, 4.7 Hz, 1H), 2.91 (dd, J = 13.9, 4.2 $\mathrm{Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=13.9,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=13.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.42$ $(\mathrm{m}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.85 \mathrm{ppm}(\mathrm{d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(101 \mathrm{MHz}$, Acetonitrile$\left.d_{3}\right) \delta 173.53,172.16,171.87,171.68,137.27,137.12,129.63,129.39,128.63,128.61,126.95$, 126.93, 55.09, 54.21, 52.36, 51.15, 39.97, 37.41, 37.24, 24.58, 22.38, 21.96, 21.02 ppm. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{5}\right]^{+}: 482.2655[\mathrm{M}+\mathrm{H}]^{+}$, found 482.2655 , HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}\right]^{+}: 504.2474[\mathrm{M}+\mathrm{Na}]^{+}$, found 504.2472.

### 3.17. $N$-Acetyl-L-phenylalanyl-L-phenylalanyl-L-valine methyl ester (Ac-Phe-Phe-Val-OMe (27))

This tripeptide was synthesised from the $C$-terminus according to Procedure A, Scheme S1.
(a) L-Phenylalanyl-L-valine methyl ester trifluoroacetate: see section 2.13(a) - (c)
(b) N-Acetyl-L-phenylalanine: see section 2.1(a)
(c) N-Acetyl-L-phenylalanyl-L-phenylalanyl-L-valine methyl ester: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}-$ $\left.d_{6}\right) \delta 8.20(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}$, $4 \mathrm{H}), 7.25-7.11(\mathrm{~m}, 6 \mathrm{H}), 4.62$ (td, $J=8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{td}, \mathrm{J}=9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.19$ (dd, J $=8.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{dd}, J=14.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=13.9,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.82 (dd, $J=14.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=13.9,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~h}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{~s}$, $3 \mathrm{H}), 0.89 \mathrm{ppm}(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 101 MHz, Methanol- $d_{4}$ ) $\delta 173.29,173.28,173.16$, $173.04,138.43,138.10,130.45,130.18,129.39,129.38,127.73,127.69,59.28,55.89,55.63$, 52.49, $38.89,38.62,31.91,22.36,19.44,18.62 \mathrm{ppm}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{5}\right]^{+}$: $468.2499[\mathrm{M}+\mathrm{H}]^{+}$, found 482.2655, HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{Na}\right]^{+}$: 490.2318 [ $\mathrm{M}+\mathrm{Na}]^{+}$, found 490.2305.
4. Spectra of substrates used in the laser flash photolysis study
4.1. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra
4.1.1. $N$-Acetyl-L-phenylalanine methyl ester (Ac-Phe-OMe (7))



### 4.1.2. N -Acetyl-L-phenylalanine amide (Ac-Phe- $\mathrm{NH}_{2}$ (14))




### 4.1.3. $N$-Acetyl-L-phenylalanine methyl amide (Ac-Phe-NHMe (6))




### 4.1.4. $N$-Acetyl-L-phenylalanine $t$-butyl amide (Ac-Phe-NHtBu (13))




### 4.1.5. $N$-Acetyl-L-leucyl-L-phenylalanine methyl ester (Ac-Leu-Phe-OMe (15))




### 4.1.6. $N$-Acetyl-L-phenylalanyl-L-leucine methyl ester (Ac-Phe-Leu-OMe (16))



4.1.7. $N$-Acetyl-L-valyl-L-phenylalanine methyl ester (Ac-Val-Phe-OMe (17))



### 4.1.8. $N$-Acetyl-L-phenylalanyl-L-valine methyl ester (Ac-Phe-Val-OMe (18))



4.1.9. $N$-Acetyl-L-leucyl-L-leucyl-L-phenylalanine methyl ester (Ac-Leu-Leu-Phe-OMe (19))



### 4.1.10. $N$-Acetyl-L-leucyl-L-phenylalanyl-L-leucine methyl ester (Ac-Leu-Phe-Leu-

 OMe (20))

4.1.11. $N$-Acetyl-L-phenylalanyl-L-leucyl-L-leucine methyl ester (Ac-Phe-Leu-LeuOMe (21))


4.1.12. N -Acetyl-L-valyl-L-valyl-L-phenylalanine methyl ester (Ac-Val-Val-Phe-OMe (22))


4.1.13. $N$-Acetyl-L-valyl-L-phenylalanyl-L-valine methyl ester (Ac-Val-Phe-Val-OMe (23))


4.1.14. $N$-Acetyl-L-phenylalanyl-L-valyl-L-valine methyl ester (Ac-Phe-Val-Val-OMe (24))



### 4.1.15. $N$-Acetyl-L-phenylalanyl-L-leucyl-L-phenylalanine methyl ester (Ac-Phe-Leu-Phe-OMe (25))



4.1.16. $N$-Acetyl-L-phenylalanyl-L-phenylalanyl-L-leucine methyl ester (Ac-Phe-Phe-Leu-OMe (26))


4.1.17. $N$-Acetyl-L-phenylalanyl-L-phenylalanyl-L-valine methyl ester (Ac-Phe-Phe-Val-OMe (27))



### 4.2. HPLC spectra

4.2.1. $N$-Acetyl-L-phenylalanine methyl ester (Ac-Phe-OMe (7))

4.2.2. $N$-Acetyl-L-phenylalanine amide (Ac-Phe- $\mathrm{NH}_{2}$ (14))


### 4.2.3. N -Acetyl-L-phenylalanine methyl amide (Ac-Phe-NHMe (6))


4.2.4. $N$-Acetyl-L-phenylalanine $t$-butyl amide (Ac-Phe-NHtBu (13))


### 4.2.5. $N$-Acetyl-L-leucyl-L-phenylalanine methyl ester (Ac-Leu-Phe-OMe (15))


4.2.6. $N$-Acetyl-L-phenylalanyl-L-leucine methyl ester (Ac-Phe-Leu-OMe (16))


### 4.2.7. $N$-Acetyl-L-valyl-L-phenylalanine methyl ester (Ac-Val-Phe-OMe (17))


4.2.8. $N$-Acetyl-L-phenylalanyl-L-valine methyl ester (Ac-Phe-Val-OMe (18))


### 4.2.9. $N$-Acetyl-L-leucyl-L-leucyl-L-phenylalanine methyl ester (Ac-Leu-Leu-Phe-OMe (19))


4.2.10. $N$-Acetyl-L-leucyl-L-phenylalanyl-L-leucine methyl ester (Ac-Leu-Phe-LeuOMe (20))

4.2.11. $N$-Acetyl-L-phenylalanyl-L-leucyl-L-leucine methyl ester (Ac-Phe-Leu-LeuOMe (21))

4.2.12. $N$-Acetyl-L-valyl-L-valyl-L-phenylalanine methyl ester (Ac-Val-Val-Phe-OMe (22))

4.2.13. $N$-Acetyl-L-valyl-L-phenylalanyl-L-valine methyl ester (Ac-Val-Phe-Val-OMe (23))

4.2.14. $N$-Acetyl-L-phenylalanyl-L-valyl-L-valine methyl ester (Ac-Phe-Val-Val-OMe (24))


### 4.2.15. N -Acetyl-L-phenylalanyl-L-leucyl-L-phenylalanine methyl ester (Ac-Phe-Leu-Phe-OMe (25))


4.2.16. $N$-Acetyl-L-phenylalanyl-L-phenylalanyl-L-leucine methyl ester (Ac-Phe-Phe-Leu-OMe (26))

4.2.17. $N$-Acetyl-L-phenylalanyl-L-phenylalanyl-L-valine methyl ester (Ac-Phe-Phe-Val-OMe (27))


## 5. Laser flash photolysis studies

All experiments were performed at $298 \pm 1 \mathrm{~K}$ on an Edinburgh Instrument LP920 spectrometer using the third harmonic of a Quantel Brilliant B Nd:YAG laser ( 6 ns pulse, $10-30 \mathrm{~mJ}, \lambda=355 \mathrm{~nm}$ ) to generate the reaction transient. The detection system employed a Hamamatsu R2856 photomultiplier tube (PMT) interfaced with a Tektronix TDS 3012C Digital Phosphor oscilloscope for transient absorption spectra.

Kinetic measurements were carried out under pseudo-first order conditions following the established procedure described in ref [1]. Measurement for each substrate was done three times and the results were reported as the average of the three runs. Due to the very low solubility of tripeptide Ac-Leu-Leu-Phe-OMe (19) and Ac-Val-Val-Phe-OMe (22), some measurements were not carried out under ideal pseudo-first order conditions. Therefore, the values reported in the manuscript were only based on peptide concentrations in the range of pseudo-first order conditions. However, the rate coefficients obtained do not vary dramatically, e.g., Ac-Leu-Leu-Phe-OMe (19) has the rate coefficient of $1.9 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ (Table 2 in the manuscript), compared to $2.2 \times 10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ when all peptide concentrations are included (Figure S3). Because of this, the error for the rate coefficients for these peptides is given as $30 \%$.

Below are the plots of pseudo-first order rate coefficients of all substrates used with respect of substrate concentrations. The intercept is due to the reaction of $\mathrm{NO}_{3}{ }^{\bullet}$ with the solvent (see ref [1]).


Figure S7. Plot of pseudo-first order rate coefficient ( $k_{\text {obs }}$ ) versus [phenylalanine] with different $C$-terminal protecting groups (see Table 1). Error bars shown are $2 \sigma$ statistical uncertainties.


Figure S8. Plot of pseudo-first order rate coefficient ( $k_{\text {obs }}$ ) versus [dipeptides] containing a Phe residue (see Table 2). Error bars shown are $2 \sigma$ statistical uncertainties.


- Ac-Phe-Phe-Leu-OMe
- Ac-Phe-Leu-Phe-OMe
- Ac-Phe-Leu-Leu-OMe
- Ac-Leu-Phe-Leu-OMe
- Ac-Leu-Leu-Phe-OMe

Figure S9. Plot of pseudo-first order rate coefficient ( $k_{\text {obs }}$ ) versus [tripeptides] containing Phe and Leu residues (see Table 2). Error bars shown are $2 \sigma$ statistical uncertainties.


Figure S10. Plot of pseudo-first order rate coefficient ( $k_{\text {obs }}$ ) versus [tripeptides] containing Phe and Val residues (see Table 2). Error bars shown are $2 \sigma$ statistical uncertainties.

## 6. Reaction of $\mathrm{NO}_{3}{ }^{\bullet}$ with Ac-Phe-Phe-OMe (28)

Dipeptide 28 ( 1 mmol ) and CAN ( $1.10 \mathrm{~g}, 2 \mathrm{mmol}$ ) were dissolved in $\mathrm{CH}_{3} \mathrm{CN}(100 \mathrm{~mL})$. The mixture was degassed by sparging with argon under sonication and subsequently irradiated at 350 nm in a Rayonet photoreactor for 4 hours. The reaction mixture was concentrated under reduced pressure, resuspended in $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and extracted with ethyl acetate ( 3 x 100 mL ). The combined organic fractions were dried with $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure. and the residue was purified by preparative HPLC.
$N$-Acetyl-(threo)- $\beta$-nitrate-L-phenylalanyl-L-phenylalanine methyl ester (29): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 8.67(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 8.49(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.41-7.34(\mathrm{~m}, 5 \mathrm{H}$, Ar-H), $7.28-7.17$ (m, 5H, Ar-H), $6.34\left(d, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{HONO}_{2}\right.$ ),* 4.98 (dd, J = $9.4,5.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{ONO}_{2} \mathrm{C}_{\alpha} \mathrm{H}$ ), 4.46 (ddd, J = 8.9, 7.6, 5.7 Hz, $1 \mathrm{H}, \mathrm{C}_{\beta} \mathrm{H}_{2} \mathrm{C}_{\alpha} \mathrm{H}$ ), $3.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.05$ (dd, $\left.J=13.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.91\left(\mathrm{dd}, J=13.9,9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NHCOCH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}$ ( 101 MHz, DMSO-d ${ }_{6}$ ) $\delta 171.32$ (CO), 169.36 (CO), 167.56 (CO), 136.97 (Ar-C), 134.46 (Ar-C), 128.98 ( $\mathrm{Ar}-\mathrm{C}$ ), 128.86 ( $\mathrm{Ar}-\mathrm{C}$ ), 128.36 ( $\mathrm{Ar}-\mathrm{C}$ ), 128.28 ( $\mathrm{Ar}-\mathrm{C}$ ), 126.75 ( $\mathrm{Ar}-\mathrm{C}$ ), 126.60 ( $\mathrm{Ar}-\mathrm{C}$ ), 84.27 $\left(\mathrm{CONO}_{2}\right), 54.42\left(C_{\alpha}\right), 53.65\left(C_{\alpha}\right), 51.89\left(\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 36.34\left(\mathrm{C}_{\beta}\left(\mathrm{C}\right.\right.$-terminal) ), 22.15, $\left(\mathrm{NHCOCH}_{3}\right)$. HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{7}^{+}\right]$: $430.1609\left[\mathrm{M}+\mathrm{H}^{+}\right]$, found 430.1563; HRMS (ESI) $\mathrm{m} / \mathrm{z}$ calcd. for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{Na}^{+}\right]: 452.1428\left[\mathrm{M}+\mathrm{Na}^{+}\right]$, found 452.1368.
*The coupling between the $\alpha$ and $\beta$ protons of ${ }^{3} J=5.7 \mathrm{~Hz}$ is consistent with an anti (threo) configuration of the adjacent stereocentres; see: A. G. Griesbeck, S. Bondock, Can. J. Chem. 2003, 81, 555-559.
The single regioisomer is evidenced by signals showing intact $\alpha$ and $\beta$ protons at $\delta=4.46$ ppm and $\delta=2.91,3.05 \mathrm{ppm}$, where $\mathrm{J}_{\alpha \beta}=5.7$ and 9.0 Hz , respectively.

## 7. Gaussian Archive Entries for Computational Data

The calculations were performed using the Gaussian software package. ${ }^{2}$

## Structure 6:

M062X/6-31G(d) SCRF(solvent=acetonitrile) optimization and frequency calculation:

| Center <br> Number | Atomic Number | Atomic Type | Coordinates (Angstroms) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | X | Y | Z |
| 1 | 7 | 0 | -1.678383 | 0.366646 | -0.431881 |
| 2 | 6 | 0 | -0.805200 | 1.055440 | 0.486526 |
| 3 | 6 | 0 | 0.257232 | 1.768407 | -0.350819 |
| 4 | 8 | 0 | 0.431374 | 1.493819 | -1.534841 |
| 5 | 6 | 0 | -0.139030 | 0.084285 | 1.494973 |
| 6 | 6 | 0 | 0.745015 | -0.929369 | 0.814694 |
| 7 | 6 | 0 | 2.101743 | -0.665522 | 0.599943 |
| 8 | 6 | 0 | 2.907074 | -1.580043 | -0.074299 |
| 9 | 6 | 0 | 2.364333 | -2.774201 | -0.545267 |
| 10 | 6 | 0 | 1.014471 | -3.049177 | -0.334636 |
| 11 | 6 | 0 | 0.212488 | -2.132184 | 0.340887 |
| 12 | 6 | 0 | -2.883953 | -0.111262 | -0.051839 |
| 13 | 6 | 0 | -3.659523 | -0.860839 | -1.113068 |
| 14 | 8 | 0 | -3.314471 | 0.035203 | 1.089901 |
| 15 | 1 | 0 | -1.323254 | 0.241298 | -1.372298 |
| 16 | 1 | 0 | -1.392499 | 1.787157 | 1.053353 |
| 17 | 1 | 0 | 0.435907 | 0.669689 | 2.220506 |
| 18 | 1 | 0 | -0.951473 | -0.408903 | 2.036354 |
| 19 | 1 | 0 | 2.528076 | 0.265785 | 0.967244 |
| 20 | 1 | 0 | 3.959244 | -1.361397 | -0.230215 |
| 21 | 1 | 0 | 2.991271 | -3.488721 | -1.069899 |
| 22 | 1 | 0 | 0.586500 | -3.980256 | -0.694017 |
| 23 | 1 | 0 | -0.838739 | -2.352538 | 0.512447 |
| 24 | 1 | 0 | -4.695649 | -0.517494 | -1.100485 |
| 25 | 1 | 0 | -3.244192 | -0.734339 | -2.114354 |
| 26 | 1 | 0 | -3.656203 | -1.925144 | -0.860203 |
| 27 | 7 | 0 | 1.016741 | 2.662071 | 0.307129 |
| 28 | 6 | 0 | 2.107732 | 3.345896 | -0.363839 |
| 29 | 1 | 0 | 0.791960 | 2.907333 | 1.261179 |
| 30 | 1 | 0 | 2.662355 | 3.925861 | 0.372525 |
| 31 | 1 | 0 | 2.775863 | 2.614416 | -0.825403 |
| 32 | 1 | 0 | 1.732824 | 4.015466 | -1.143504 |
| SCF Don | E (RM062 | -726.6 | 016 A.U | after | cycles |

```
- Thermochemistry -
```

Zero-point correction=
0.271571 (Hartree/Particle)
Thermal correction to Energy=
0.287767
Thermal correction to Enthalpy=
0.288712
Thermal correction to Gibbs Free Energy=
0.226015
Sum of electronic and zero-point Energies=
-726.333337
Sum of electronic and thermal Energies=
-726. 317141
Sum of electronic and thermal Enthalpies=
-726.316196
Sum of electronic and thermal Free Energies=
-726.378893
CBS-QB3 calculation at M062X/6-31G(d) scrf(solvent=acetonitrile) geometry:

| Temperature= | 298.150000 | Pressure= | 1.000000 |
| :---: | :---: | :---: | :---: |
| $\mathrm{E}(\mathrm{ZPE})=$ | 0.268855 | $\mathrm{E}($ Thermal $)=$ | 0.285172 |
| $\mathrm{E}(\mathrm{SCF})=$ | -722.656483 | DE (MP2) = | -2.793234 |
| DE ( CBS ) $=$ | -0.268409 | DE (MP34) = | -0.094069 |
| DE ( CCSD) = | -0.093948 | DE(Int) $=$ | 0.089486 |
| DE(Empirical)= | -0.130094 |  |  |
| CBS-QB3 ( 0 K ) = | -725.677895 | CBS-QB3 Energy= | -725.661578 |
| CBS-QB3 Enthalpy= | -725.660634 | CBS-QB3 Free Energy= | -725.723586 |

Structure 6a:

M062X/6-31G(d) SCRF(solvent=acetonitrile) optimization and frequency calculation:

| ----------------------------------------------------------------------- |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Center | Atomic | Atomic | Coordinates | (Angstroms) |
| Number | Number | Type | $X$ | $Y$ |



- Thermochemistry -

| Zero-point correction= | 0.271532 (Hartree/Particle) |
| :--- | :---: |
| Thermal correction to Energy= | 0.287117 |
| Thermal correction to Enthalpy= | 0.288061 |
| Thermal correction to Gibbs Free Energy= | 0.226683 |
| Sum of electronic and zero-point Energies= | -726.095550 |
| Sum of electronic and thermal Energies $=$ | -726.079966 |
| Sum of electronic and thermal Enthalpies= | -726.079021 |
| Sum of electronic and thermal Free Energies= | -726.140399 |

CBS-QB3 calculation at M062X/6-31G(d) scrf(solvent=acetonitrile) geometry:
0.28
$\mathrm{DE}(\mathrm{CBS})=\quad-0.260060 \mathrm{DE}(\mathrm{MP} 34)=\quad-0.121689$
$\mathrm{DE}(\mathrm{CCSD})=\quad-0.100444 \mathrm{DE}($ Int $)=\quad 0.085106$
DE(Empirical)=
CBS-QB3 ( 0 K ) =
-0.131889
-725.431793 CBS-oB3 Energy=
CBS-QB3 Enthalpy = -725.415139 CBS-QB3 Free Energy= -725.476771

## Structure 6b:

M062X/6-31G(d) SCRF(solvent=acetonitrile) optimization and frequency calculation:

| Center <br> Number | Atomic Number | Atomic Type | Coordinates (Angstroms) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | X | Y | Z |
| 1 | 7 | 0 | 0.921955 | 1.432084 | 0.394622 |
| 2 | 6 | 0 | 1.105524 | -0.011212 | 0.491125 |
| 3 | 6 | 0 | 2.588025 | -0.265672 | 0.166535 |
| 4 | 8 | 0 | 3.372568 | 0.676113 | 0.130766 |
| 5 | 6 | 0 | 0.108108 | -0.684907 | -0.443634 |
| 6 | 6 | 0 | -1.310731 | -0.144147 | -0.205043 |



## Structure 6c:

M062X/6-31G(d) SCRF(solvent=acetonitrile) optimization and frequency calculation:

| Center Number | Atomic Number | Atomic Type | Coordinates (Angstroms) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | x | Y | z |
| 1 | 7 | 0 | -1.715154 | 0.323014 | -0.436128 |
| 2 | 6 | 0 | -0.831297 | 1.001264 | 0.457066 |
| 3 | 6 | 0 | 0.251283 | 1.696206 | -0.373289 |
| 4 | 8 | 0 | 0.426653 | 1.385637 | -1.546650 |
| 5 | 6 | 0 | -0.154823 | 0.026344 | 1.508959 |
| 6 | 6 | 0 | 0.755479 | -0.911288 | 0.827289 |
| 7 | 6 | 0 | 2.155609 | -0.610311 | 0.716067 |
| 8 | 6 | 0 | 2.988969 | -1.456084 | 0.040229 |
| 9 | 6 | 0 | 2.455056 | -2.630321 | -0.556589 |
| 10 | 6 | 0 | 1.069639 | -2.943885 | -0.459620 |
| 11 | 6 | 0 | 0.235083 | -2.097389 | 0.213012 |
| 12 | 6 | 0 | -2.929820 | -0.127397 | -0.016702 |
| 13 | 6 | 0 | -3.784855 | -0.800772 | -1.062577 |



## Structure 7:

M062X/6-31G(d) SCRF(solvent=acetonitrile) optimization and frequency calculation:

| Center | Atomic | Atomic | Coordinates (Angstroms) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Number | Type | X | Y | Z |
| 1 | 7 | 0 | -1.711485 | 0.292520 | -0.438475 |
| 2 | 6 | 0 | -0.855933 | 1.021998 | 0.465718 |
| 3 | 6 | 0 | 0.168508 | 1.768504 | -0.368810 |
| 4 | 8 | 0 | 0.293970 | 1.648670 | -1.565929 |
| 5 | 6 | 0 | -0.140921 | 0.101648 | 1.485555 |
| 6 | 6 | 0 | 0.793292 | -0.869573 | 0.809587 |
| 7 | 6 | 0 | 2.135505 | -0.537468 | 0.597582 |
| 8 | 6 | 0 | 2.985327 | -1.407349 | -0.081933 |
| 9 | 6 | 0 | 2.502251 | -2.624227 | -0.559211 |
| 10 | 6 | 0 | 1.167684 | -2.967234 | -0.349952 |
| 11 | 6 | 0 | 0.320833 | -2.094718 | 0.329225 |
| 12 | 6 | 0 | -2.901422 | -0.211383 | -0.032946 |
| 13 | 6 | 0 | -3.664112 | -1.005590 | -1.069871 |
| 14 | 8 | 0 | -3.313419 | -0.057816 | 1.113197 |
| 15 | 1 | 0 | -1.384155 | 0.171008 | -1.388354 |
| 16 | 1 | 0 | -1.456907 | 1.749151 | 1.023289 |
| 17 | 1 | 0 | 0.402973 | 0.734352 | 2.192853 |
| 18 | 1 | 0 | -0.926670 | -0.425004 | 2.034001 |
| 19 | 1 | 0 | 2.516872 | 0.408197 | 0.977176 |
| 20 | 1 | 0 | 4.025739 | -1.136633 | -0.234933 |



## Structure 7a:

M062X/6-31G(d) SCRF(solvent=acetonitrile) optimization and frequency calculation:

| Center Number | Atomic Number | Atomic Type | Coordinates (Angstroms) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | X | Y | Z |
| 1 | 7 | 0 | 2.122305 | -0.801296 | -0.934606 |
| 2 | 6 | 0 | 0.766629 | -0.331744 | -0.958030 |
| 3 | 6 | 0 | 0.601683 | 0.989181 | -0.198971 |
| 4 | 8 | 0 | -0.410426 | 1.254493 | 0.419935 |
| 5 | 6 | 0 | -0.214771 | -1.366774 | -0.354218 |
| 6 | 6 | 0 | -1.580597 | -0.819590 | -0.138920 |
| 7 | 6 | 0 | -2.340084 | -0.300648 | -1.240532 |
| 8 | 6 | 0 | -3.623780 | 0.126913 | -1.048121 |
| 9 | 6 | 0 | -4.203948 | 0.048343 | 0.244011 |
| 10 | 6 | 0 | -3.480859 | -0.473589 | 1.341231 |
| 11 | 6 | 0 | -2.193781 | -0.899062 | 1.156973 |
| 12 | 6 | 0 | 2.790809 | -0.884846 | 0.251472 |
| 13 | 6 | 0 | 4.190178 | -1.441705 | 0.192128 |
| 14 | 8 | 0 | 2.247636 | -0.539316 | 1.294696 |
| 15 | 1 | 0 | 2.570523 | -1.066695 | -1.800133 |
| 16 | 1 | 0 | 0.507462 | -0.120527 | -2.000466 |
| 17 | 1 | 0 | -0.277473 | -2.205205 | -1.059803 |
| 18 | 1 | 0 | 0.201825 | -1.729919 | 0.586447 |
| 19 | 1 | 0 | -1.886222 | -0.261498 | -2.225690 |
| 20 | 1 | 0 | -4.207030 | 0.519243 | -1.872896 |
| 21 | 1 | 0 | -5.221625 | 0.393295 | 0.390327 |
| 22 | 1 | 0 | -3.949118 | -0.528017 | 2.316869 |
| 23 | 1 | 0 | -1.609139 | -1.294773 | 1.980787 |
| 24 | 1 | 0 | 4.150568 | -2.514944 | 0.401113 |
| 25 | 1 | 0 | 4.657005 | -1.293632 | -0.783100 |
| 26 | 1 | 0 | 4.789912 | -0.963393 | 0.966891 |
| 27 | 8 | 0 | 1.613035 | 1.813543 | -0.365198 |



## Structure 7b:

M062X/6-31G(d) SCRF(solvent=acetonitrile) optimization and frequency calculation:

| Center | Atomic | Atomic | Coordinates (Angstroms) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Number | Type | X | Y | Z |
| 1 | 7 | 0 | 0.941027 | 1.459101 | 0.393859 |
| 2 | 6 | 0 | 1.127477 | 0.016533 | 0.490334 |
| 3 | 6 | 0 | 2.586419 | -0.269257 | 0.154773 |
| 4 | 8 | 0 | 3.424731 | 0.595968 | 0.074198 |
| 5 | 6 | 0 | 0.139157 | -0.672418 | -0.442493 |
| 6 | 6 | 0 | -1.282508 | -0.147583 | -0.204710 |
| 7 | 6 | 0 | -2.203457 | -0.581539 | -1.295263 |
| 8 | 6 | 0 | -3.384511 | -1.203764 | -1.038807 |
| 9 | 6 | 0 | -3.810268 | -1.453606 | 0.289424 |
| 10 | 6 | 0 | -2.995994 | -1.043414 | 1.373804 |
| 11 | 6 | 0 | -1.803788 | -0.421746 | 1.168236 |
| 12 | 6 | 0 | -0.151808 | 2.031407 | -0.032988 |
| 13 | 6 | 0 | -0.247071 | 3.508418 | -0.187175 |
| 14 | 8 | 0 | -1.215723 | 1.366755 | -0.348044 |
| 15 | 1 | 0 | 1.763041 | 2.033790 | 0.571135 |
| 16 | 1 | 0 | 0.969742 | -0.298818 | 1.528436 |
| 17 | 1 | 0 | 0.420887 | -0.488834 | -1.484924 |
| 18 | 1 | 0 | 0.155044 | -1.748935 | -0.265362 |
| 19 | 1 | 0 | -1.872471 | -0.388620 | -2.311311 |
| 20 | 1 | 0 | -4.012424 | -1.515196 | -1.867242 |
| 21 | 1 | 0 | -4.756736 | -1.946366 | 0.474901 |
| 22 | 1 | 0 | -3.329358 | -1.230000 | 2.389602 |
| 23 | 1 | 0 | -1.198213 | -0.104599 | 2.012561 |
| 24 | 1 | 0 | -0.458559 | 3.734172 | -1.235149 |
| 25 | 1 | 0 | -1.085562 | 3.865270 | 0.414927 |
| 26 | 1 | 0 | 0.671758 | 4.003941 | 0.122915 |
| 27 | 8 | 0 | 2.790545 | -1.564617 | 0.002796 |
| 28 | 6 | 0 | 4.149784 | -1.953457 | -0.266336 |
| 29 | 1 | 0 | 4.791120 | -1.643133 | 0.559506 |
| 30 | 1 | 0 | 4.129040 | -3.036499 | -0.356584 |
| 31 | 1 | 0 | 4.488473 | -1.492170 | -1.194812 |
| SCF Don | E (UM062 | -746. | 069 A.U | after | cycles |



## Structure 7c:

M062X/6-31G(d) SCRF(solvent=acetonitrile) optimization and frequency calculation:

| Center | Atomic | Atomic |  | inates (Ang | stroms) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Number | Number | Type | X | Y | Z |
| 1 | 7 | 0 | -1.798389 | 0.142260 | -0.402806 |
| 2 | 6 | 0 | -0.933128 | 0.879461 | 0.467021 |
| 3 | 6 | 0 | 0.023238 | 1.703093 | -0.383468 |
| 4 | 8 | 0 | 0.002818 | 1.721169 | -1.590471 |
| 5 | 6 | 0 | -0.146380 | -0.037029 | 1.479073 |
| 6 | 6 | 0 | 0.879982 | -0.842049 | 0.787070 |
| 7 | 6 | 0 | 2.254976 | -0.428860 | 0.813261 |
| 8 | 6 | 0 | 3.197499 | -1.135178 | 0.121992 |
| 9 | 6 | 0 | 2.802747 | -2.280996 | -0.624493 |
| 10 | 6 | 0 | 1.445032 | -2.709237 | -0.656790 |
| 11 | 6 | 0 | 0.501393 | -2.003451 | 0.033176 |
| 12 | 6 | 0 | -2.977030 | -0.366037 | 0.065369 |
| 13 | 6 | 0 | -3.867726 | -0.993665 | -0.978909 |
| 14 | 8 | 0 | -3.256936 | -0.306715 | 1.255144 |
| 15 | 1 | 0 | -1.606749 | 0.189211 | -1.397545 |
| 16 | 1 | 0 | -1.521135 | 1.551630 | 1.102813 |
| 17 | 1 | 0 | 0.305940 | 0.608364 | 2.233444 |
| 18 | 1 | 0 | -0.910777 | -0.671924 | 1.938333 |
| 19 | 1 | 0 | 2.522932 | 0.447487 | 1.394212 |
| 20 | 1 | 0 | 4.239869 | -0.839709 | 0.133557 |
| 21 | 1 | 0 | 3.550077 | -2.838719 | -1.177723 |
| 22 | 1 | 0 | 1.177963 | -3.588913 | -1.229962 |
| 23 | 1 | 0 | -0.540099 | -2.306355 | 0.028208 |
| 24 | 1 | 0 | -4.688007 | -1.509944 | -0.482191 |
| 25 | 1 | 0 | -4.272949 | -0.217889 | -1.635338 |
| 26 | 1 | 0 | -3.305352 | -1.698856 | -1.596621 |
| 27 | 8 | 0 | 0.891093 | 2.364066 | 0.373281 |
| 28 | 6 | 0 | 1.860857 | 3.151395 | -0.339419 |
| 29 | 1 | 0 | 2.462257 | 3.635336 | 0.426260 |
| 30 | 1 | 0 | 2.476276 | 2.501212 | -0.963774 |
| 31 | 1 | 0 | 1.353914 | 3.890398 | -0.960955 |
| SCF Done: E(UM062X) $=-746.211259854$ |  |  | A.U. after 1 cycles |  |  |
| - Thermochemistry - |  |  |  |  |  |
| Zero-point correction= |  |  |  | 0.257793 | (Hartree/Particle) |
| Thermal correction to Energy= |  |  |  | 0.274159 |  |
| Thermal correction to Enthalpy= |  |  |  | 0.275104 |  |
| Thermal correction to Gibbs Free Energy= |  |  |  | 0.211217 |  |
| Sum of electronic and zero-point Energies= |  |  |  | -745.953467 |  |


| Sum of electronic and thermal Energies $=$ | -745.937100 |
| :--- | :--- |
| Sum of electronic and thermal Enthalpies= | -745.936156 |
| Sum of electronic and thermal Free Energies= | -746.000043 |

CBS-QB3 calculation at M062X/6-31G(d) scrf(solvent=acetonitrile) geometry:

Temperature=
$E(Z P E)=$
E(SCF) $=$
DE (CBS $)=$
DE(CCSD) =
DE(Empirical)=
CBS-QB3 (0 K)=
CBS-QB3 Enthalpy=
298.150000 Pressure=
1.000000
$0.255215 \mathrm{E}($ Thermal $)=$
-742.281037 DE (MP2) =
$-0.264130 \mathrm{DE}(\mathrm{MP} 34)=$ $-0.092588 \mathrm{DE}($ Int $)=$
-0.130254
-745.279571 CBS-QB3 Energy= -745.263086
-745.262142 CBS-QB3 Free Energy=
0.271700
-2.746734
-0.106817
0.086774
$-745.326283$

## 8. References

1. Nathanael, J. G.; Hancock, A. N.; Wille, U. Chem. Asian J. 2016, 11, 3188 - 3195.
2. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
