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The standardmodel for the dynamics of a fragmented density-dependent population is built from several
local logistic models coupled by migrations. First introduced in the 1970s and used in innumerable
articles, this standard model applied to a two-patch situation has never been fully analyzed. Here, we
complete this analysis and we delineate the conditions under which fragmentation associated with
dispersal is either favorable or unfavorable to total population abundance. We pay special attention to
the case of asymmetric dispersal, i.e., the situation in which the dispersal rate from patch 1 to patch 2 is
not equal to the dispersal rate from patch 2 to patch 1. We show that this asymmetry can have a crucial
quantitative influence on the effect of dispersal.

1. Introduction

We deal here with population dynamics of a fragmented pop-
ulation. This is a problem with potentially very important applied
aspects. For example, in conservation ecology, a standard question
is whether a single large refuge is better or worse than several
small ones, with the objective of maximizing the total popula-
tion abundance of an endangered species (the SLOSS debate; see,
e.g., Hanski, 1999). On the contrary, in the context of pest control,
the question is whether a single large field is better or worse than
several small ones,with the objective ofminimizing the occurrence
of an insect pest or a plant disease. A huge body of theoretical
literature exists around these questions. However, even the sim-
plest and most ancient model still contains unresolved aspects
with unsupported generalizations.

The theoretical paradigm that has beenused to treat these ques-
tions is that of a single population fragmented into two coupled
patches. It is widely accepted to assume that each subpopulation
in each patch follows a local logistic law and that the two patches
are coupled by density-independent migrations. Freedman and
Waltman (1977) were first to propose the following model:⎧⎪⎪⎨
⎪⎪⎩

dN1

dt
= r1N1

(
1− N1

K1

)
+ β (N2 − N1) ,

dN2

dt
= r2N2

(
1− N2

K2

)
+ β (N1 − N2) ,

(1)
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where Ni is the population abundance in patch i. The parameters ri
and Ki are, respectively, the intrinsic growth rate and the carrying
capacity in patch i and β is the migration rate, assumed to be iden-
tical in both directions. All parameters are assumed to be positive.

After Freedman and Waltman (1977), aspects of this model
were later studied by DeAngelis et al. (1979) and Holt (1985), and
a graphical presentation was given by Hanski (1999, pp. 43–46) in
his reference book on metapopulations. More recently, DeAngelis
and Zhang (2014) and DeAngelis et al. (2016) have brought new
developments. We think we were first to publish the full mathe-
matical study of model (1) in Arditi et al. (2015).

A limitation of model (1) is the assumption of symmetric dis-
persal: the single parameter β quantifies the migration rate from
patch 1 to patch 2 and from patch 2 to patch 1. In the present
paper, we will expand our first analysis to the case of asymmetric
dispersal between patches and we will delineate the conditions
under which dispersal can either be favorable or unfavorable to
total population abundance.

We denote by N∗1 and N∗2 the population abundances at equi-
librium. In isolation (β = 0), each population equilibrates at its
local carrying capacity: N∗i = Ki. Freedman and Waltman (1977)
analyzed the model in the case of perfect mixing (β → ∞) and
showed that the total equilibrium population, N∗T = N∗1 + N∗2 , is
generally different from the sum of the carrying capacities K1+K2.
Depending on the parameters, N∗T can either be greater or smaller
than K1 + K2. For instance, if r1/K1 < r2/K2 (with K1 < K2), we
will have N∗T > K1 + K2, which means that dispersal is favorable
with respect to the total equilibrium population. This spectacular
result, somewhat paradoxical, has been widely discussed and has
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led to speculations about the general virtues of patchiness and

dispersal.

Freedman and Waltman (1977) only contrasted the situations

of perfect isolation andperfectmixing; they did not study the effect

of intermediate values of the dispersal parameterβ . This effectwas

studied by DeAngelis and Zhang (2014), but only in the special

case r1/K1 = r2/K2. In our earlier paper (Arditi et al., 2015), we

calculated the full set of parameter conditions for which dispersal

is favorable or not to total population abundance.

In another paper, Arditi et al. (2016) returned to the simpler

case of perfect mixing (i.e., with the migration rate β → ∞) in

order to compare the properties of Verhulst’s and Lotka’s formu-

lations of the logistic model in relation with the paradox outlined

above (the non-additivity of carrying capacities). In a criticism of

this paper, Ramos-Jiliberto and Moisset de Espanés (2017) pro-

posed the following alternative model:

⎧⎪⎪⎨
⎪⎪⎩

dN1

dt
= r1N1

(
1− N1

K1

)
+ β

(
N2

K2
− N1

K1

)
,

dN2

dt
= r2N2

(
1− N2

K2

)
+ β

(
N1

K1
− N2

K2

)
.

(2)

In this model, the dispersal rate is β/Ki. It is different in each

direction: the probability of an individual to leave its patch is

inversely proportional to the local carrying capacity. This is known

as the Balanced Dispersal Model proposed by McPeek and Holt

(1992). Ramos-Jiliberto and Moisset de Espanés (2017) showed

that, in this model, the equality N∗T = K1 + K2 is always true. Thus,

themodel (2) does not present the ‘‘perfectmixing paradox’’: there

is strict additivity of carrying capacities.

In their reply to Ramos-Jiliberto andMoisset de Espanés (2017),

Arditi et al. (2017) moved beyond the polemical opposition of

models (1) and (2) by embedding both of them into the following

more general model with differential dispersal:

⎧⎪⎪⎨
⎪⎪⎩

dN1

dt
= r1N1

(
1− N1

K1

)
+ β

(
N2

γ2
− N1

γ1

)
,

dN2

dt
= r2N2

(
1− N2

K2

)
+ β

(
N1

γ1
− N2

γ2

)
.

(3)

As in model (2), the dispersal rate (β/γi) is generally different

in each direction. However, this model encompasses both (1) and

(2) because model (1) corresponds to the case γ1 = γ2 = 1

and model (2) corresponds to the case γ1 = K1, γ2 = K2.

Note that model (3) is overparameterized in order that it can be

written in a symmetric way. Among the parameters β , γ1, and γ2,

two only are independent. With no loss of generality, the ratio

γ2/γ1 can be considered as a single parameter. Thus, model (3)’s

total number of independent parameters is six, not seven. In this

parameterization, β quantifies the migration intensity and γ2/γ1
quantifies the migration asymmetry.

Assuming perfect mixing (i.e., β → ∞), Arditi et al. (2017)

showed that the paradox exhibited by model (1) is a generic prop-

erty of the more general model (3). They showed that its absence

inmodel (2) corresponds to a very special case in parameter space,

i.e., balanced dispersal. They also showed that a second special case

exists for which carrying capacity additivity is observed.

The purpose of the present paper is to perform the mathemat-

ical analysis of the general model (3) in the full parameter space.

That is, wewill consider all finite positive values of β and no longer

assume perfect mixing as in Arditi et al. (2017).

2. Equilibrium analysis

The equilibria of the dynamic model (3) are the solutions of the
algebraic system:⎧⎪⎪⎨
⎪⎪⎩
0 = r1N1

(
1− N1

K1

)
+ β

(
N2

γ2
− N1

γ1

)
,

0 = r2N2

(
1− N2

K2

)
+ β

(
N2

γ2
− N1

γ1

)
.

(4)

Adding the two equations gives

r1N1

(
1− N1

K1

)
+ r2N2

(
1− N2

K2

)
= 0, (5)

which is the equation of an ellipse (shown in red in Fig. 1 and
the other figures). This ellipse E passes through the points (0, 0),
(K1, 0), (0, K2), and (K1, K2). It does not depend on the migration
intensity β (or on the migration asymmetry γ2/γ1).

Solving the first equation in (4) for N2 yields a parabola Pβ of
equation N2 = Pβ (N1), where the function Pβ is defined by

Pβ (N1) = γ2

(
N1

γ1
− r1

β
N1

(
1− N1

K1

))
. (6)

This parabolaPβ (shown in blue in Fig. 1 and the other figures)
depends on the migration intensity β (and on γ2/γ1). It always
passes through the points 0 andΩ = (K1, K1γ2/γ1).

The equilibria are the nonnegative intersections of the ellipse E

and the parabolaPβ . There are two equilibrium points. The first is
the trivial point (0, 0) and the second is a nontrivial point whose
position depends on β:

Eβ = (N∗1β,N∗2β ).

A straightforward isocline analysis (see Fig. 2) shows that (0, 0)
is always unstable and that Eβ is always stable.

When β → 0, the left branch of the parabola Pβ merges into
the vertical line N1 = 0 and the right branch into the vertical line
N1 = K1 (P0 in Fig. 1). The parabola’s limit for β → ∞ is the
oblique line N2 = (γ2/γ1)N1 (P∞ in Fig. 1).

We denote by A the intersection of the ellipse E with P0 and
by B the intersection of E with P∞. A = (K1, K2) is the perfect-
isolation equilibrium and B is the perfect-mixing equilibrium. It is
easy to calculate that

B = (B1, B2) =
(

(γ1/γ2)r1 + r2

(γ1/γ2)r1/K1 + (γ2/γ1)r2/K2
,

× r1 + (γ2/γ1)r2

(γ1/γ2)r1/K1 + (γ2/γ1)r2/K2

)
. (7)

The slope ofP∞ is B2/B1. With the expressions in (7), this slope
is found to be γ2/γ1. As this ratio can vary from 0 to∞, B can be
anywhere on the ellipse E in the positive quadrant. As β increases
from 0 to∞, the equilibrium point Eβ follows the ellipse arc from A
to B. This change is clockwise if γ2/γ1 < K2/K1 or counterclockwise
if γ2/γ1 > K2/K1 (respectively, left and right panels of Fig. 1).

In the special case γ2/γ1 = K2/K1, the points A and B become
confounded and the equilibrium Eβ does not depend on β; it is
always equal to (K1, K2) and thus N

∗
T = K1 + K2. This is the special

case considered by Ramos-Jiliberto andMoisset de Espanés (2017).
Note that this occurs in wider conditions than those assumed by
these authors: β can have any value, not only β →∞, and it is not
necessary to have the separate equalities γ1 = K1, γ2 = K2; the
condition is only on the ratio: γ2/γ1 = K2/K1. Anyway, this special
case is by no means a representative of the general case.
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Fig. 1. The equilibrium point Eβ is the positive intersection of the ellipse E and the parabola Pβ . The lines P0 and P∞ are the limits of Pβ for β = 0 and for β → ∞.
The slope of P∞ is γ2/γ1. The equilibrium Eβ can only belong to the ellipse arc between A and B. Left: γ2/γ1 < K2/K1. Right: γ2/γ1 > K2/K1.

Fig. 2. The isoclines of (3) are drawn (in red forN1, in blue forN2) for the parameter values r1 = 1, r2 = 2, K1 = 1.4, K2 = 2 and for three different combinations ofmigration
parameters. These three examples are typical of all possible configurations. In all cases the trajectories are attracted by Eβ . (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

3. Influence of dispersal on total population size

In the previous section, we saw that, depending on the values
of the migration parameters β and γ2/γ1, the equilibrium can be
anywhere on the ellipse E in the positive quadrant. In this section,
we will describe how this position affects the total equilibrium
population N∗T of model (3). In particular, we will investigate
whether N∗T is greater or smaller than K1 + K2. The analysis can
largely be done graphically.

On Fig. 3, the straight line Δ is the line of slope −1 passing
through the point A = (K1, K2). It is the set of pointswithN1+N2 =
K1 + K2. For any equilibrium E = (N∗1 ,N

∗
2 ), the total population

N∗T = N∗1 + N∗2 can be read on the intersection with the horizontal
axis of the straight line of slope−1 passing through E. We see very
simply that dispersal is favorable to N∗T if E is aboveΔ, unfavorable
if below Δ. For example, on Fig. 3, dispersal is favorable when the
equilibrium is Eβ1 and unfavorable when the equilibrium is Eβ2 .

Let us consider the slope of the ellipse E at point A = (K1, K2).
By differentiating the ellipse equation (5) with respect to N1, it is
easy to calculate that this slope is equal to−r1/r2.

In the special case r1 = r2, the slope is precisely −1, which
means that the ellipse E is entirely below the straight lineΔ except
for the point A, which is exactly on Δ. This result can be stated as
the following proposition:

Proposition 1. If r1 = r2, dispersal is always unfavorable to N∗T .

When r1 �= r2, we will assume, with no loss of generality, that
r1 < r2 (as in Fig. 3). In this case, the point A is still an intersection

of E withΔ but there exists a second intersection point, which we
denote by C (see Fig. 3).

We denote byΣ the straight line joining the origin to C and by
σ the slope ofΣ . An easy calculation shows that the coordinates of
C are as follows:

C =
(
r2K1(K1 + K2)

r1K2 + r2K1
,

r1K2(K1 + K2)

r1K2 + r2K1

)
, (8)

meaning that the slope σ is

σ = r1

r2

K2

K1
. (9)

The remainder of this section is essentially a comment of Figs. 4
and 5. We saw in Section 2 that the equilibrium Eβ follows the el-
lipse arc ABwhen β varies from 0 to∞, where B is the intersection
of the ellipse E with the oblique lineP∞. Since the slope ofP∞ is
γ2/γ1, we will distinguish the following three cases, as this slope
increases:

(a)
γ2

γ1
<

r1

r2

K2

K1
, (b)

r1

r2

K2

K1
≤ γ2

γ1
<

K2

K1
,

(c)
K2

K1
≤ γ2

γ1
. (10)

Fig. 4 presents the case (a), in whichP∞ is lower thanΣ . Fig. 5
presents the other two cases, with P∞ higher than Σ but lower
than A (case b) and P∞ higher than A (case c). Besides each of the
pictures in the state space N1 ×N2, we show a qualitative graph of
the function β �→ N∗T (β).
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Fig. 3. The straight line Δ is the set of points with N1 + N2 = K1 + K2. Eβ1 is an example equilibrium point for which dispersal is favorable, while Eβ2 is an example of
unfavorable dispersal.

Fig. 4. This illustrates the case (a) of (10). As the migration intensity β increases from 0 to∞, the equilibrium point moves clockwise along the ellipse E from A to B, passing
through C .

Let us first consider the case (a) on Fig. 4. For β = 0, the equi-
librium point starts at A and, as β increases, Eβ moves clockwise
along E and ends atB. The total equilibriumpopulationN∗T (β) starts
with the value K1+K2 at A, then increases, attains amaximumN∗max

for some βmax, decreases to K1 + K2 again at point C for some βC

and decreases further to the limit corresponding to point B. Note
thatN∗max, βmax, βC , and B can all be calculated explicitly but wewill
not give them here because the expressions are heavy and have no
practical interest.

For the other two cases (Fig. 5), descriptions are similar but
simpler becauseN∗T (β) is either always greater than K1+K2 (case b)
or always smaller than K1 + K2 (case c).

This description can be summarized in the following
proposition.

Proposition 2. Assume that r1 < r2. Then:

(a) γ2
γ1

<
r1
r2

K2
K1
�⇒ there exists βC such that

0 ≤ β ≤ βC �⇒ N∗T (β) ≥ K1 + K2,
βC < β �⇒ N∗T (β) < K1 + K2,

(b) r1
r2

K2
K1
≤ γ2

γ1
<

K2
K1
�⇒ N∗T (β) ≥ K1 + K2 for every β ,

(c) K2
K1
≤ γ2

γ1
�⇒ N∗T (β) ≤ K1 + K2 for every β .

4. Discussion

The ecological problem that has motivated this study is to find
the conditions for which fragmentation and dispersal can lead to
higher total equilibrium population abundance N∗T than the sum
K1 + K2. Mathematically, this is the six-parameter problem posed
by model (3) that we have solved in the present paper.
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Fig. 5. Left: case (b) of (10). As the equilibrium pointmoves clockwise from A to Bwith increasing β , it is always greater than K1+K2. Right: case (c) of (10). As the equilibrium
point moves counterclockwise from A to Bwith increasing β , it is always smaller than K1 + K2.

Propositions 1 and 2 contain the full set of results of the present
general model (3). They show that all parameters have an influ-
ence in determining whether N∗T is higher or lower than K1 + K2.
Compared with earlier models, which new results are brought
by dispersal asymmetry? This can be found by investigating the
influence of γ2/γ1 in the two propositions, and by considering the
special value γ2/γ1 = 1 that corresponds to symmetric dispersal.

Proposition 1 does not depend on γ2/γ1 and remains valid in the
case of symmetric dispersal: dispersal is always unfavorable when
r1 = r2.

In Proposition 2 for r1 < r2, the assumption of symmet-
ric dispersal simplifies the conditions for the three cases, which
become

(a) 1 <
r1

r2

K2

K1
, (b)

r1

r2

K2

K1
≤ 1 <

K2

K1
, (c)

K2

K1
≤ 1. (11)

As an example, let us have a closer look at condition (c). If this
condition is satisfied, dispersal always has an unfavorable effect
on total abundance, for any dispersal intensity β . If dispersal is
symmetric, the inequality ((11)c) means that (with r1 < r2), the
total equilibrium abundance N∗T will always be lower than K1 + K2
when K2 ≤ K1. However, in the presence of dispersal asymmetry,
the corresponding condition ((10)c) is not necessarily satisfied: if
the asymmetry is such that γ2/γ1 � 1, dispersal can become
favorable. Conversely, if γ2/γ1 � 1, dispersal remains unfavor-
able in wider conditions of the ratio K2/K1. Similarly, the condi-
tions ((10)a) and ((10)b) are also influenced by the asymmetry
γ2/γ1.

In sum, dispersal asymmetry can play a crucial role. The various
patterns describing the influence of dispersal on total population
abundance (the small graphs in Figs. 4 and 5) remain qualita-
tively the same whether dispersal is symmetric or not. However,
comparing the conditions (10) and (11) shows that dispersal

asymmetry can have a strong quantitative influence, depending on
its magnitude and on its direction. In combination with the other
parameters, it can either amplify or attenuate the favorable or
unfavorable effects of dispersal intensity. Strong asymmetry com-
bined with high dispersal intensity can reverse the predictions of
symmetric dispersal. This is particularly important if the model is
used for applied purposes such as population conservation or pest
control.
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