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Curved momentum spaces associated to the κ-deformation of the (3þ 1) de Sitter and anti–de Sitter
algebras are constructed as orbits of suitable actions of the dual Poisson-Lie group associated to the
κ-deformation with nonvanishing cosmological constant. The κ-de Sitter and κ-anti–de Sitter curved
momentum spaces are separately analyzed, and they turn out to be, respectively, half of the (6þ 1)-
dimensional de Sitter space and half of a space with SOð4; 4Þ invariance. Such spaces are made of the
momenta associated to spacetime translations and the “hyperbolic” momenta associated to boost
transformations. The known κ-Poincaré curved momentum space is smoothly recovered as the vanishing
cosmological constant limit from both of the constructions.
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I. INTRODUCTION

It is now understood that in models of Planck-scale
deformed special relativity (DSR), where the Planck energy
plays the role of a second relativistic invariant besides the
speed of light, momentum space has a nontrivial geometry
[1–5]. In particular, its curvature can be nonvanishing and
governed by the Planck energy [6,7].
This realization recently allowed for a description of

the phenomenological features of DSR as effects
induced by the geometrical properties of momentum
space, dual to the effects we are familiar with in the
context of general relativity. For example, curvature of
momentum space induces an energy dependence in the
distance covered by a free massless particle in a given
time. This can be seen as the dual to the well-known
redshift of energy in curved spacetime [8]. Another
effect that can be ascribed to a nontrivial geometry of
momentum space is the so-called dual-gravity lensing
[9], such that the direction from which a particle
emitted by a given source reaches a faraway detector
is energy dependent.

This kind of phenomenology raised considerable
interest in the last two decades as it became clear that
it could induce observable effects on particles traveling
over cosmological distances [10–14]. However, the
missing link to make the connection between properties
of the momentum space and cosmological observations
more stringent was the definition of momentum space
when spacetime is itself curved. DSR models are in fact
modifications of special relativity, so that they need to
be generalized to a curved-spacetime setting in order to
be applicable to physical frameworks where spacetime
curvature cannot be neglected. Recently several pro-
posals to extend DSR to curved spacetime scenarios
have been put forward [15–20], but it was generally
believed that it would not be possible to look at the
geometrical properties of the momentum space on its
own, because the interplay between curvature of space-
time and of momentum space would make the phase
space too much intertwined [21].
In recent work we demonstrated that in fact it is

possible to define momentum space in the presence of a
cosmological constant [22]. The nontrivial interplay
between curvature of spacetime and of momentum
space is resolved by generalizing the momentum space
so that it contains the hyperbolic momenta associated to
boosts besides the momenta associated to spacetime
translations. Our construction focused on the math-
ematical framework of quantum deformed algebras,
which is known to be very effective in studying features
of DSR models in the flat spacetime case [23–25].
Specifically, we constructed the generalized momentum
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space associated to the κ-deformation of the de Sitter
(dS) algebras in (1þ 1) and (2þ 1) dimensions. We
obtained, respectively, (half of) a (2þ 1)-dimensional
dS manifold and (half of) a (4þ 1)-dimensional dS
manifold. The coordinates of these momentum spaces
are the local group coordinates associated to spacetime
translations and boosts and the two spaces are the
orbits of the corresponding dual Poisson-Lie group. The
construction crucially relied on the observation that
spacetime translations and boosts play a similar role in
the structure of the algebra and coalgebra of κ-dS
in both (1þ 1) and (2þ 1) dimensions. Additionally,
in (2þ 1) dimensions the rotation generator is not
relevant to the construction of the generalized momen-
tum space, since its role is limited to generating the
isotropy subgroup of the origin of the momentum
space.
While this previous work provided a crucial proof of

concept, of course the physically relevant scenario is
that with (3þ 1) spacetime dimensions. This is the
case we focus on in this paper, where we construct the
generalized momentum space of the (3þ 1)-
dimensional κ-dS algebra. Moreover, we also present
the construction of the curved momentum space asso-
ciated to the κ-deformation of the (3þ 1) anti–de Sitter
(AdS) algebra, which follows the same lines and—as it
was conjectured in [22]—leads to a different manifold.
Also the nontrivial features that arise in the (3þ 1)
construction with respect to the (2þ 1) case for both
quantum dS and AdS symmetries are emphasized.
We find it useful to begin in Sec. II with a summary

of the construction of the curved momentum space
associated to the κ-deformed Poincaré algebra in (3þ 1)
dimensions. While this is a repetition of known results,
it allows us to present the framework that is adopted in
the following within a context that should be more
familiar to the reader. Concretely, we construct the dual
Poisson-Lie group associated to the κ-Poincaré algebra
and show that the orbits of this group define a curved
momentum space manifold, which is half of a (3þ 1)-
dimensional dS space.
Section III is devoted to presenting the (3þ 1)-

dimensional κ-(A)dS algebra and its dual Poisson-Lie
group. The two cases with positive and negative
cosmological constant can be treated in a unified
framework, which also admits the κ-Poincaré case as
the vanishing cosmological constant limit of either of
κ-(A)dS. We emphasize that the spacetime translation
sector and the boosts enter in a very similar way in the
structure of the deformed coalgebra. Moreover, the fact
that a momentum space relying only on the spacetime
translations cannot be constructed is made apparent by
the fact that the coalgebra of translations does not close
on its own, but it contains generators of the Lorentz
sector. These two features are analogous to what we

had observed for the lower-dimensional models studied
in our previous paper [the mixing between the trans-
lation sector and the Lorentz sector being somewhat
less invasive in the (1þ 1) case, since it only concerns
the algebra sector]. A new feature that arises in the
(3þ 1)-dimensional scenario is the fact that the rota-
tions sector is no longer undeformed at the coalgebraic
level.
In Secs. IV and V we construct the generalized

momentum spaces associated to, respectively, the κ-
AdS and κ-dS algebra. Again, for each algebra the
momentum space is generated by the orbits of the dual
Poisson-Lie group, and its coordinates are given by the
local group coordinates associated to spacetime trans-
lations and boosts. However, while, as we mentioned,
the two algebras and their dual Poisson-Lie groups
admit a unified description, this is not the case for the
two momentum spaces. This is because one needs to
adapt the construction in order to deal with the
imaginary quantities that arise when dealing with the
two different signs of the cosmological constant. As a
consequence, the generalized momentum spaces that we
find have different geometrical properties. The κ-AdS
algebra has a momentum space that is half of a SOð4; 4Þ
quadric. The κ-dS algebra has a momentum space that
is half of a (6þ 1)-dimensional dS manifold. Similarly
to what we had found in the lower-dimensional models,
rotations do not enter in the construction of the
momentum space, and only generate the isotropy
subgroup of the origin.
The concluding Sec. VI summarizes our findings and

additional insights on the nontrivial properties of
rotations that emerge in (3þ 1) dimensions are included
in an appendix.

II. THE κ-POINCARÉ MOMENTUM SPACE

The aim of this section is to summarize the con-
struction of the curved momentum space corresponding
to the (3þ 1) κ-Poincaré quantum algebra [26–29]. We
follow the presentation of [7], and make use of the
group-theoretical framework recently introduced in
[22]. We show that the κ-Poincaré curved momentum
space can be obtained as a specific orbit of the action of
the dual κ-Poisson-Lie group on a (4þ 1)-dimensional
ambient Minkowski space, and it turns out to be (half
of) the (3þ 1) dS space. The rest of this paper is
devoted to the generalization of this construction to the
κ-deformed spacetime symmetries with nonvanishing
cosmological constant.
The starting point for the construction is the Poisson

version of the (3þ 1) κ-Poincaré algebra in the so-called
bicrossproduct basis [30]. This is given by the Poisson
brackets (the notation P2 ¼ P2

1 þ P2
2 þ P2

3 is used hereafter
for vectors),

A. BALLESTEROS et al. PHYS. REV. D 97, 106024 (2018)

106024-2



fJa; Jbg ¼ ϵabcJc; fJa; Pbg ¼ ϵabcPc;

fJa; Kbg ¼ ϵabcKc; fKa; P0g ¼ Pa;

fKa; Kbg ¼ −ϵabcJc; fP0; Jag ¼ 0;

fP0; Pag ¼ 0; fPa; Pbg ¼ 0;

fKa; Pbg ¼ δab

�
1

2z
ð1 − e−2zP0Þ þ z

2
P2

�
− zPaPb; ð1Þ

together with the compatible (as a Poisson algebra homo-
morphism) coproduct map,

ΔzðP0Þ ¼ P0 ⊗ 1þ 1 ⊗ P0;

ΔzðPaÞ ¼ Pa ⊗ 1þ e−zP0 ⊗ Pa;

ΔzðJaÞ ¼ Ja ⊗ 1þ 1 ⊗ Ja;

ΔzðKaÞ ¼ Ka ⊗ 1þ e−zP0 ⊗ Ka þ zϵabcPb ⊗ Jc: ð2Þ

We define z ¼ 1=κ as the (Planck-scale) quantum defor-
mation parameter, with a, b, c ¼ 1, 2, 3 (sum over repeated
indices is assumed), and ϵabc is the totally antisymmetric
tensor, with ϵ123 ¼ 1. As usual, the generators Pa, Ja, and
Ka denote respectively translations, rotations, and boosts.
This quantum deformation of the Poincaré algebra

induces a deformed Casimir function Cz for the Poisson
algebra (1), given by

Cz ¼
4

z2
sinh2ðzP0=2Þ − ezP0P2

¼ 2

z2
½coshðzP0Þ − 1� − ezP0P2: ð3Þ

This deformed Casimir constitutes the keystone for the
interpretation of the κ-Poincaré algebra (in bicrossproduct
basis) as the modified kinematical symmetry underlying
deformed dispersion relations arising in the quantum
gravity context [2,7].1 It is also worth recalling that a
second invariant Wz does exist for the Poisson structure
(1), which is just a deformed analogue of the square of the
modulus of the Pauli-Lubanski four-vector,

Wz ¼
�
coshðzP0Þ −

z2

4
ezP0P2

�
W2

z;0 −W2
z ;

where the deformed components are

Wz;0 ¼ e
z
2
P0J · P;

Wz;a ¼ −Ja
sinhðzP0Þ

z
þ ezP0ϵabc

�
Kb þ

z
2
ϵbklJkPl

�
Pc:

We stress that all the expressions included in this paper are
analytic in the deformation parameter z, and the non-
deformed limit z → 0 always gives rise to the usual (3þ 1)
relativistic symmetries.
When dealing with Hopf algebra kinematical sym-

metries, the coproduct can be interpreted as the composi-
tion law for observables. In particular, the coproduct (2) is
such that the κ-deformation induces a nonlinear composi-
tion rule for momenta in interaction vertices. As we are
going to show, it is because of this deformed composition
rule that curvature in the κ-Poincaré momentum space
emerges. In more technical terms, the curvature of the
momentum space arises as a consequence of the non-
cocommutativity of the coproduct map for the translation
generators, and such a curved momentum space can be
explicitly constructed as follows.
First, the noncocommutativity of the κ-translations can

be characterized by writing the skew-symmetric part of the
first-order deformation (in z) of the coproduct. Namely, if
wewrite the coproduct (2) for the translation generators as a
power series expansion in terms of the deformation
parameter z we obtain

ΔzðP0Þ ¼ P0 ⊗ 1þ 1 ⊗ P0;

ΔzðPaÞ ¼ Pa ⊗ 1þ 1 ⊗ Pa − zP0 ⊗ Pa þ o½z2�;

and the skew symmetrization of the first-order term in z of
the previous expressions gives rise to the map

δðP0Þ ¼ 0;

δðP1Þ ¼ zðP1 ∧ P0Þ;
δðP2Þ ¼ zðP2 ∧ P0Þ;
δðP3Þ ¼ zðP3 ∧ P0Þ;

which is called the cocommutator map and it endows
the Poincaré algebra g with a Lie bialgebra structure
δ∶ g → g ⊗ g. Moreover, δ characterizes the Hopf algebra
deformation through the first-order information it encodes
(see [31–33] and references therein for details).
Secondly, the dual δ�∶ g� ⊗ g� → g� of the cocommutator

map defines the Lie algebra g� of the so-called dual Poisson-
Lie group G�. In the κ-Poincaré case, if we denote by
fX0; X1; X2; X3g the generators in g� dual to, respectively,
fP0; P1; P2; P3g, their dual Lie brackets are given by

½X0; Xi� ¼ −zXi; ½Xi; Xj� ¼ 0; i; j ¼ 1; 2; 3: ð4Þ

Note that when the deformation parameter vanishes,
z → 0, all the coproducts are cocommutative (Δ0ðYÞ ¼
Y ⊗ 1þ 1 ⊗ Y). As a consequence, δ vanishes and the dual
Lie algebra (and group) is Abelian. It is also worth recalling
that the dual Lie algebra of the translations sector given by (4)
is just the so-called κ-Minkowski spacetime [34–37].

1A different choice of basis for the κ-Poincaré algebra would
result in a different Casimir and thus characterize a different
dispersion relation and associated kinematical symmetries.
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A. Dual Poisson-Lie group and curved momentum space

The dual Poisson-Lie group G� can be explicitly constructed starting from the five-dimensional faithful representation ρ
of the dual Lie algebra g�, given by

ρðX0Þ ¼ z

0
BBBBBB@

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

1
CCCCCCA
; ρðX1Þ ¼ z

0
BBBBBB@

0 1 0 0 0

1 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 −1 0 0 0

1
CCCCCCA
;

ρðX2Þ ¼ z

0
BBBBBB@

0 0 1 0 0

0 0 0 0 0

1 0 0 0 1

0 0 0 0 0

0 0 −1 0 0

1
CCCCCCA
; ρðX3Þ ¼ z

0
BBBBBB@

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 1

0 0 0 −1 0

1
CCCCCCA
: ð5Þ

If fp0; p1; p2; p3g are the local dual group coordinates associated, respectively, to fX0; X1; X2; X3g, then the dual Lie group
element can be constructed through the exponentiation,

G�ðp0; p1; p2; p3Þ ¼ exp ðp1ρðX1ÞÞ exp ðp2ρðX2ÞÞ
× exp ðp3ρðX3ÞÞ exp ðp0ρðX0ÞÞ;

which explicitly reads

G�ðpÞ ¼

0
BBBBBB@

coshðzp0Þ þ 1
2
ezp0z2p̄2 zp1 zp2 zp3 sinhðzp0Þ þ 1

2
ezp0z2p̄2

ezp0zp1 1 0 0 ezp0zp1

ezp0zp2 0 1 0 ezp0zp2

ezp0zp3 0 0 1 ezp0zp3

sinhðzp0Þ − 1
2
ezp0z2p̄2 −zp1 −zp2 −zp3 coshðzp0Þ − 1

2
ezp0z2p̄2

1
CCCCCCA
; ð6Þ

where we have defined p̄2 ¼ p2
1 þ p2

2 þ p2
3.

The significance of the dual Poisson-Lie group relies on
the fact that the coproduct (2) is just the group law for G�
(see [33] for details). In fact, if we multiply two matrices of
the type (6) we get another group element

G�ðp00Þ ¼ G�ðpÞ ·G�ðp0Þ:
It can be straightforwardly checked that the group law p00 ¼
fðp; p0Þ reads

p00
0 ¼ p0 þ p0

0; p00
i ¼ pi þ e−zp0p0

i; ð7Þ
which is consistent with (4) in the sense that X0 generates a
dilation and the Xi generators correspond to (dual)
translations.
Now, by making use of the Poisson version of the

quantum duality principle [38–40], the group multiplica-
tion law (7) can be immediately rewritten in algebraic terms
as a comultiplication map Δz through the identification of
the two copies of the dual group coordinates as

p≡ p ⊗ 1; p0 ≡ 1 ⊗ p: ð8Þ

In this algebraic language, the multiplication law for the
group G� can be written as a coproduct in the form

Δzðp0Þ≡ p00
0 ¼ p0 ⊗ 1þ 1 ⊗ p0;

ΔzðpiÞ≡ p00
i ¼ pi ⊗ 1þ e−zp0 ⊗ pi;

i ¼ 1; 2; 3: ð9Þ
This coproduct is just the one for the translation sector of
the κ-Poincaré algebra in bicrossproduct basis once the
following identification between the dual group coordi-
nates and the generators of the κ-Poincaré algebra is
performed:

p0 ≡ P0; p1 ≡ P1; p2 ≡ P2; p3 ≡ P3:

Note that if a different ordering is chosen for the expo-
nentials, one would recover the coproducts corresponding
to a different basis of the κ-Poincaré algebra. Moreover, the
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unique Poisson-Lie structure on G� that is compatible with
the coproduct (9) and has the undeformed Poincaré Lie
algebra as its linearization is given by the κ-Poincaré
Poisson brackets for the translation sector.
Under this approach, the κ-Poincaré momentum space

admits a straightforward geometric interpretation [7]. The
entries of the fifth column in G� can be rewritten as the
following Si functions:

S0 ¼ sinhðzp0Þ þ
1

2
ezp0z2p̄2;

S1 ¼ zezp0p1;

S2 ¼ zezp0p2;

S3 ¼ zezp0p3;

S4 ¼ coshðzp0Þ −
1

2
ezp0z2p̄2: ð10Þ

Surprisingly enough, these satisfy the defining relation of
the (3þ 1)-dimensional dS space,

−S20 þ S21 þ S22 þ S23 þ S24 ¼ 1:

This means that the κ-Poincaré momentum space para-
metrized by the ambient coordinates ðS0; S1; S2; S3; S4Þ can
be obtained as the orbit arising from a linear action of the
Lie group matrix G�ðpÞ onto a (4þ 1)-dimensional ambi-
ent Minkowski space and passing through the point
(0,0,0,0,1). Namely,

G� · ð0; 0; 0; 0; 1ÞT ¼ ðS0; S1; S2; S3; S4ÞT: ð11Þ
Moreover, the ambient coordinates fulfil the condition

S0 þ S4 ¼ ezp0 > 0;

which means that only half of the (3þ 1)-dimensional dS
space is generated through the action (11). We denote this
manifold as MdS4 . Note that in the limit z → 0 the dual Lie
group G� generated by (4) is Abelian.

III. THE κ-(A)dS ALGEBRA AND ITS DUAL
POISSON-LIE GROUP

The aim of this paper is the generalization of the previous
construction to the case with nonvanishing cosmological
constant, by following the approach presented in [22] for
the (1þ 1)- and (2þ 1)-dimensional dS cases. In this way,
a global picture of the interplay between the cosmological
constant and the Planck-scale deformation parameter z ¼
1=κ can be presented. In our approach the cosmological
constant Λ ¼ −ω is included as an explicit deformation
parameter and all the expressions are analytic both in terms
of Λ and z. The construction of the (3þ 1) κ-(A)dS algebra
was first exposed in [41]. It turns out to be much more
complicated than its κ-Poincaré limit, which is recovered
when Λ → 0.
Before getting into the κ-deformed case, let us briefly

revisit the so-called AdSω algebra as a unified way to

describe the AdS, dS and Poincaré symmetries (see [41]).
In the kinematical basis the AdSω Lie algebra
fP0; Pa; Ka; Jag is defined by the brackets,

½Ja;Jb�¼ ϵabcJc; ½Ja;Pb�¼ ϵabcPc; ½Ja;Kb�¼ ϵabcKc;

½Ka;P0�¼Pa; ½Ka;Pb�¼δabP0; ½Ka;Kb�¼−ϵabcJc;

½P0;Pa�¼ωKa; ½Pa;Pb�¼−ωϵabcJc; ½P0;Ja�¼0:

ð12Þ
As we mentioned, the parameter ω is related to the

cosmological constant via ω ¼ −Λ. Therefore, the one-
parametric AdSω algebra reduces to the AdS Lie algebra
soð3; 2Þ when ω > 0, to the dS Lie algebra soð4; 1Þ when
ω < 0, and to thePoincaré Lie algebra isoð3; 1Þwhenω ¼ 0.
The algebra (12) has two Casimir invariants [42]. The first

one is quadratic and comes from the Killing-Cartan form,

C ¼ P2
0 − P2 þ ωðJ2 −K2Þ:

The second one is a fourth-order invariant,

W ¼ W2
0 −W2 þ ωðJ ·KÞ2;

where W0 ¼ J · P and Wa ¼ −JaP0 þ ϵabcKbPc are the
components of the (A)dS analogue of the Pauli-Lubanski
four-vector. We recall that in the Poincaré case ω ¼ 0 the
invariant W2

0 −W2 provides the square of the spin/helicity
operator, which in the rest frame is proportional to the square
of the angular momentum operator. It is worth emphasizing
that the presence of a nonvanishing ω implies that the
quadratic invariant (the one linked to dispersion relations)
has a new contribution coming from the Lorentz sector of the
AdSω algebra.
Bymaking useof this unified description, the three (3þ 1)

Lorentzian symmetric homogeneous spaces with constant
sectional curvature ω are defined as the coset spaces
AdS3þ1

ω ≡ SOωð3; 2Þ=SOð3; 1Þ, namely, the following:
(i) When ω > 0 (Λ < 0) we have the AdS spacetime

AdS3þ1 ≡ SOð3; 2Þ=SOð3; 1Þ.
(ii) When ω < 0 (Λ > 0) we get the dS spacetime

dS3þ1 ≡ SOð4; 1Þ=SOð3; 1Þ.
(iii) The Minkowski spacetime M3þ1 ≡ ISOð3; 1Þ=

SOð3; 1Þ arises when ω ¼ Λ ¼ 0.
Explicit ambient space coordinates for these three maximally
symmetric Lorentzian spacetimes can be obtained bymaking
use of a suitable realization of the Lie groups obtained by
exponentiation of a faithful representation of the AdSω Lie
algebra [see [43–45] for details in the (2þ 1)-dimensional
case].
In the following sections we summarize the main aspects

of the κ-deformation of the AdSω Poisson algebra bymaking
use of this unified description, and then we construct its
associated dual Poisson-Lie group. The construction and
analysis of the associated curved momentum spaces are
performed separately for the AdS and dS cases, since their
geometric properties turn out to be different.
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A. The κ-deformation of the (3 + 1) AdSω algebra

The generalization of the (3þ 1) Poisson κ-Poincaré algebra to the nonvanishing ω case has been recently presented
explicitly in [41]. In particular, the deformed coproduct for the AdSω algebra reads

ΔzðJ3Þ ¼ J3 ⊗ 1þ 1 ⊗ J3; ΔzðJ1Þ ¼ J1 ⊗ ez
ffiffiffi
ω

p
J3 þ 1 ⊗ J1; ΔzðJ2Þ ¼ J2 ⊗ ez

ffiffiffi
ω

p
J3 þ 1 ⊗ J2; ð13Þ

ΔzðP0Þ ¼ P0 ⊗ 1þ 1 ⊗ P0;

ΔzðP1Þ ¼ P1 ⊗ coshðz ffiffiffiffi
ω

p
J3Þ þ e−zP0 ⊗ P1 −

ffiffiffiffi
ω

p
K2 ⊗ sinhðz ffiffiffiffi

ω
p

J3Þ
− z

ffiffiffiffi
ω

p
P3 ⊗ J1 þ zωK3 ⊗ J2 þ z2ωð ffiffiffiffi

ω
p

K1 − P2Þ ⊗ J1J2e−z
ffiffiffi
ω

p
J3

−
1

2
z2ωð ffiffiffiffi

ω
p

K2 þ P1Þ ⊗ ðJ21 − J22Þe−z
ffiffiffi
ω

p
J3 ;

ΔzðP2Þ ¼ P2 ⊗ coshðz ffiffiffiffi
ω

p
J3Þ þ e−zP0 ⊗ P2 þ

ffiffiffiffi
ω

p
K1 ⊗ sinhðz ffiffiffiffi

ω
p

J3Þ
− z

ffiffiffiffi
ω

p
P3 ⊗ J2 − zωK3 ⊗ J1 − z2ωð ffiffiffiffi

ω
p

K2 þ P1Þ ⊗ J1J2e−z
ffiffiffi
ω

p
J3

−
1

2
z2ωð ffiffiffiffi

ω
p

K1 − P2Þ ⊗ ðJ21 − J22Þe−z
ffiffiffi
ω

p
J3 ;

ΔzðP3Þ ¼ P3 ⊗ 1þ e−zP0 ⊗ P3 þ zðωK2 þ
ffiffiffiffi
ω

p
P1Þ ⊗ J1e−z

ffiffiffi
ω

p
J3 − zðωK1 −

ffiffiffiffi
ω

p
P2Þ ⊗ J2e−z

ffiffiffi
ω

p
J3 ; ð14Þ

ΔzðK1Þ ¼ K1 ⊗ coshðz ffiffiffiffi
ω

p
J3Þ þ e−zP0 ⊗ K1 þ P2 ⊗

sinhðz ffiffiffiffi
ω

p
J3Þffiffiffiffi

ω
p

− zP3 ⊗ J2 − z
ffiffiffiffi
ω

p
K3 ⊗ J1 − z2ðωK2 þ

ffiffiffiffi
ω

p
P1Þ ⊗ J1J2e−z

ffiffiffi
ω

p
J3

−
1

2
z2ðωK1 −

ffiffiffiffi
ω

p
P2Þ ⊗ ðJ21 − J22Þe−z

ffiffiffi
ω

p
J3 ;

ΔzðK2Þ ¼ K2 ⊗ coshðz ffiffiffiffi
ω

p
J3Þ þ e−zP0 ⊗ K2 − P1 ⊗

sinhðz ffiffiffiffi
ω

p
J3Þffiffiffiffi

ω
p

þ zP3 ⊗ J1 − z
ffiffiffiffi
ω

p
K3 ⊗ J2 − z2ðωK1 −

ffiffiffiffi
ω

p
P2Þ ⊗ J1J2e−z

ffiffiffi
ω

p
J3

þ 1

2
z2ðωK2 þ

ffiffiffiffi
ω

p
P1Þ ⊗ ðJ21 − J22Þe−z

ffiffiffi
ω

p
J3 ;

ΔzðK3Þ ¼ K3 ⊗ 1þ e−zP0 ⊗ K3 þ zð ffiffiffiffi
ω

p
K1 − P2Þ ⊗ J1e−z

ffiffiffi
ω

p
J3 þ zð ffiffiffiffi

ω
p

K2 þ P1Þ ⊗ J2e−z
ffiffiffi
ω

p
J3 : ð15Þ

Notice that this coproduct is written in a “bicrossproduct-
type” basis that generalizes the one corresponding to the
(2þ 1) κ-AdSω algebra [44,45].
As it can be easily checked, the κ-Poincaré coproduct

(2) is obtained from the above expressions in the limit
ω → 0. A direct comparison between both sets of
expressions makes it evident that the degree of complex-
ity of the κ-deformation is greatly increased when the
cosmological constant ω is turned on. In fact, the
κ-AdSω algebra can be thought of as a two-parametric
deformation, which is ruled by a quantum deformation
parameter z ¼ 1=κ (the Planck scale) and a “classical”
deformation parameter ω ¼ −Λ (the cosmological con-
stant), which has a well-defined geometrical meaning.
As we show in the following, the roles of the two
deformation parameters are interchanged when the
dual Poisson-Lie group is considered, in the spirit
of the semidualization approach to (2þ 1) quantum
gravity [46,47].

There are several differences between the coproducts
(13)–(15) and (2) that have to be emphasized. First,
ΔzðKÞ and ΔzðPÞ are structurally similar when ω ≠ 0, in
contrast with (2). Second, translations in (14) do not close a
Hopf subalgebra, since when ω ≠ 0 the coproducts ΔzðPÞ
contain boosts and rotations as well. Finally, in the non-
vanishing cosmological constant case the rotation sector (13)
is deformed, while in (2) all of the coproducts for Ja are
primitive. In particular, the rotation generators have no longer
all the same role in the coalgebra, signaling a departure from
standard isotropy. Further comments on this are found below,
as well as in the concluding section.2 These three features are

2Some technical comments on the deformation (13) of the
rotation subalgebra in the (3þ 1)-dimensional κ-AdSω algebra
are presented in the appendix. In fact, this last feature is quite
different from other kinds of deformations that have been studied
in the context of Planck-scale deformed symmetries and—to the
best of our knowledge—has not been appropriately emphasized
in the literature.
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induced by the interplay between the cosmological constant
and the quantum deformation, and the first two are essential
for the construction of the curved momentum space
when ω ≠ 0.
We do not reproduce here the deformed brackets for the

Poisson version of the κ-AdSω algebra that can be explicitly
found in [41], since they are quite involved and strongly
present nonlinear expressions when compared to the AdSω
Lie algebra (12). It is worth stressing that, in contradis-
tinction to (1), the full Lorentz sector has now deformed
Poisson brackets like, for instance,

fJ1; J2g ¼ e2z
ffiffiffi
ω

p
J3 − 1

2z
ffiffiffiffi
ω

p −
z

ffiffiffiffi
ω

p
2

ðJ21 þ J22Þ;

fJ1; K2g ¼ K3 − z
ffiffiffiffi
ω

p
J1K1;

fK2; K3g ¼ −
1

2
J1ð1þ e−2z

ffiffiffi
ω

p
J3 ½1þ z2ωðJ21 þ J22Þ�Þ

− z
ffiffiffiffi
ω

p
K1K3;

which show evident differences with respect to its ω → 0
limit (1), and where the role of the J3 generator is neatly
distinguished with respect to the one played by J1 and J2.

The deformed quadratic Casimir for the κ-AdSω algebra reads

Cz ¼
2

z2
½coshðzP0Þ coshðz

ffiffiffiffi
ω

p
J3Þ − 1� þ ω coshðzP0ÞðJ21 þ J22Þe−z

ffiffiffi
ω

p
J3

− ezP0ðP2 þ ωK2Þ
�
coshðz ffiffiffiffi

ω
p

J3Þ þ
z2ω
2

ðJ21 þ J22Þe−z
ffiffiffi
ω

p
J3

�

þ 2ωezP0

�
sinhðz ffiffiffiffi

ω
p

J3Þffiffiffiffi
ω

p T3 þ z

�
J1T1 þ J2T2 þ

z
ffiffiffiffi
ω

p
2

ðJ21 þ J22ÞT3

�
e−z

ffiffiffi
ω

p
J3

�
; ð16Þ

where Ta ¼ ϵabcKbPc. Again, the ω → 0 limit is
just (3), and comparing (16) to its flat limit (3) gives a
clear idea of the kind of deformation we are dealing
with. This deformed invariant (16) is relevant in what
follows, since it is connected to the deformed dispersion
relation that can be deduced from the curved momentum
space with cosmological constant that we are going to
construct.

B. The dual Poisson-Lie group

Mimicking the procedure used in the previous section, the
first step for the construction of the curvedmomentumspaces
of the κ-(A)dS algebras is to obtain the cocommutator map δ
associated to the κ-deformed coproduct map with non-
vanishing cosmological constant. This can be found by
extracting the first-order deformation in z of the coproduct
(13)–(15), which has a skew-symmetric part given by [41]

δðP0Þ ¼ 0;

δðJ3Þ ¼ 0;

δðJ1Þ ¼ z
ffiffiffiffi
ω

p
J1 ∧ J3;

δðJ2Þ ¼ z
ffiffiffiffi
ω

p
J2 ∧ J3;

δðP1Þ ¼ zðP1 ∧ P0 − ωJ2 ∧ K3 þ ωJ3 ∧ K2 þ
ffiffiffiffi
ω

p
J1 ∧ P3Þ;

δðP2Þ ¼ zðP2 ∧ P0 − ωJ3 ∧ K1 þ ωJ1 ∧ K3 þ
ffiffiffiffi
ω

p
J2 ∧ P3Þ;

δðP3Þ ¼ zðP3 ∧ P0 − ωJ1 ∧ K2 þ ωJ2 ∧ K1 −
ffiffiffiffi
ω

p
J1 ∧ P1 −

ffiffiffiffi
ω

p
J2 ∧ P2Þ;

δðK1Þ ¼ zðK1 ∧ P0 þ J2 ∧ P3 − J3 ∧ P2 þ
ffiffiffiffi
ω

p
J1 ∧ K3Þ;

δðK2Þ ¼ zðK2 ∧ P0 þ J3 ∧ P1 − J1 ∧ P3 þ
ffiffiffiffi
ω

p
J2 ∧ K3Þ;

δðK3Þ ¼ zðK3 ∧ P0 þ J1 ∧ P2 − J2 ∧ P1 −
ffiffiffiffi
ω

p
J1 ∧ K1 −

ffiffiffiffi
ω

p
J2 ∧ K2Þ: ð17Þ

The differences between the (A)dS and Poicaré deformations
that were mentioned in the previous subsection leave their
traces in the δmap. In particular, we stress two main features
of the cocommutator (17): First, that δðPÞ does not close a
sub-Lie bialgebra since it includes the full Lorentz sector in
the definition of the cocommutator; secondly, that δðPÞ and

δðKÞ are structurally similarwhenω ≠ 0. The latter statement
is just the footprint of a general property of classical dS and
AdS symmetries that disappears in the Poincaré limit, since
the AdSω Lie algebra (12) with ω ≠ 0 can be straightfor-
wardly endowed with the following automorphism that
interchanges the Pa and Ka generators:
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P̃0¼P0; P̃a¼
ffiffiffiffi
ω

p
Ka; K̃a¼−

1ffiffiffiffi
ω

p Pa; J̃a¼Ja: ð18Þ

It can directly be checked that the transformed generators
close the commutation rules (12), and that the cocommutator
(17), coproduct (13)–(15), and deformed Poisson brackets
given in [41] remain in the same form, provided that the
deformation parameter z is unchanged. Therefore, when the
cosmological constant does not vanish, translations and boosts
have similar algebraic properties and play complementary
geometric roles (see [45] for a more detailed discussion in the
context of homogeneous spaces of worldlines).
As a consequence, the main idea introduced in [22] for the

construction of curved momentum spaces for the κ-(A)dS
algebras in (2þ 1) dimensions becomes fully applicable:
when ω ≠ 0 the momentum space has to be enlarged by
including the angular momenta associated to the rotation
symmetries and the hyperbolicmomenta associated to boosts.
This means that the momentum space arises as the orbit of an
appropriate action of the dual Poisson-Lie group G�

ω, whose
Lie algebra g�ω is obtained by dualizing δ. Namely,

½R1;R2� ¼ 0; ½R1;R3� ¼ z
ffiffiffiffi
ω

p
R1; ½R2;R3� ¼ z

ffiffiffiffi
ω

p
R2;

½R1;X1� ¼−z
ffiffiffiffi
ω

p
X3; ½R1;X2� ¼ zL3;

½R1;X3� ¼−zðL2−
ffiffiffiffi
ω

p
X1Þ; ½R2;X1� ¼−zL3;

½R2;X2� ¼−z
ffiffiffiffi
ω

p
X3; ½R2;X3� ¼ zðL1þ ffiffiffiffi

ω
p

X2Þ;
½R3;X1� ¼ zL2; ½R3;X2� ¼−zL1; ½R3;X3� ¼ 0;

½R1;L1� ¼−z
ffiffiffiffi
ω

p
L3; ½R1;L2� ¼−zωX3;

½R1;L3� ¼ zð ffiffiffiffi
ω

p
L1þωX2Þ; ½R2;L1� ¼ zωX3;

½R2;L2� ¼−z
ffiffiffiffi
ω

p
L3; ½R2;L3� ¼ zð ffiffiffiffi

ω
p

L2−ωX1Þ;
½R3;L1� ¼−zωX2; ½R3;L2� ¼ zωX1; ½R3;L3� ¼ 0;

½La;X0� ¼ zLa; ½La;Lb� ¼ 0; ½La;Xb� ¼ 0;

½Xa;X0� ¼ zXa; ½Xa;Xb� ¼ 0; ½X0;Ra� ¼ 0; ð19Þ

where fX0; X1; X2; X3; L1; L2; L3; R1; R2; R3g are dual to
fP0; P1; P2; P3; K1; K2; K3; J1; J2; J3g, respectively. Notice
that (18) induces, throughduality andprovided thatω ≠ 0, the

following automorphism for the generators of the dual Lie
algebra g�ω,

X̃0¼X0; X̃a ¼ 1ffiffiffiffi
ω

p La; L̃a ¼−
ffiffiffiffi
ω

p
Xa; R̃a¼Ra;

which leaves the commutation relations (19) invariant and
shows that theXa andLa generators can be also interchanged
at the dual Lie algebra level.
Next from the expressions (19) we deduce that in g�ω

there exists a seven-dimensional solvable Lie subalgebra
generated by

½X0; Xi� ¼ −zXi; ½X0; Li� ¼ −zLi; ½Xi; Lj� ¼ 0;

½Xi; Xj� ¼ 0; ½Li; Lj� ¼ 0; i ¼ 1; 2; 3: ð20Þ
This subalgebra is ω independent, and the dual of the
rotation sector generates a three-dimensional solvable sub-
algebra,

½R1;R2� ¼ 0; ½R1;R3� ¼ z
ffiffiffiffi
ω

p
R1; ½R2;R3� ¼ z

ffiffiffiffi
ω

p
R2:

In the limit ω → 0 this turns out to be Abelian, which is the
dual counterpart of the fact that ΔzðJaÞ ¼ Δ0ðJaÞ when the
quantum deformation disappears.
We stress that the first-order noncommutative κ-AdSω

spacetime is given by the dual of the translations sector,
namely,

½X0; Xi� ¼ −zXi; ½Xi; Xj� ¼ 0; i ¼ 1; 2; 3:

This is indeedω independent but, as it was shown in [44,48],
when the all-orders quantum group is computed, the quan-
tum spacetime with nonvanishing ω is a nonlinear algebra
whose higher-order contributions explicitly depend on the
cosmological constant.

IV. THE κ-AdS CURVED MOMENTUM SPACE

In this section and the following we separately analyze
the κ-AdS and κ-dS dual Poisson-Lie groups and construct
the associated momentum spaces, since their geometric
properties are different. The matrix representation for the
Lie algebra (19) when ω > 0 can be found to be

DðX0Þ ¼ z

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

; DðX1Þ ¼ z

0
BBBBBBBBBBBBB@

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

;
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DðX2Þ ¼ z

0
BBBBBBBBBBBBB@

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

1
CCCCCCCCCCCCCA

; DðX3Þ ¼ z

0
BBBBBBBBBBBBB@

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

1
CCCCCCCCCCCCCA

;

DðL1Þ ¼ z
ffiffiffiffi
ω

p

0
BBBBBBBBBBBBB@

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

1
CCCCCCCCCCCCCA

; DðL2Þ ¼ z
ffiffiffiffi
ω

p

0
BBBBBBBBBBBBB@

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

1
CCCCCCCCCCCCCA

;

DðL3Þ ¼ z
ffiffiffiffi
ω

p

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 −1
0 0 0 0 0 0 −1 0

1
CCCCCCCCCCCCCA

; DðR1Þ ¼ z
ffiffiffiffi
ω

p

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0

0 0 −1 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0

0 1 0 0 0 −1 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

;

DðR2Þ ¼ z
ffiffiffiffi
ω

p

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 −1 0

0 −1 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 1 0 0 0 0

0 0 −1 0 1 0 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

; DðR3Þ ¼ z
ffiffiffiffi
ω

p

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

:

This faithful representation has been found by imposing that its ω → 0 limit should lead to a reducible representation in
which the matrices (5) can be obtained by suppressing appropriate rows and columns. After that, the rest of entries were
found through direct computation by imposing the commutation rules (19) to hold.
If we denote as fp0; p1; p2; p3; χ1; χ2; χ3; θ1; θ2; θ3g the local dual group coordinates that correspond, respectively, to

fX0; X1; X2; X3; L1; L2; L3; R1; R2; R3g, a representation of the Lie group G�
ω can be explicitly obtained as

G�
ωðθ; p; χÞ ¼ eθ3DðR3Þeθ2DðR2Þeθ1DðR1Þep1DðX1Þep2DðX2Þep3DðX3Þeχ1DðL1Þeχ2DðL2Þeχ3DðL3Þep0DðX0Þ: ð21Þ

Moreover, a long but straightforward computation shows that if we multiply two G�
ω elements,
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G�
ωðθ00; p00; χ00Þ ¼ G�

ωðθ; p; χÞ · G�
ωðθ0; p0; χ0Þ;

the group law

θ00 ¼ fðθ; θ0; p; p0; χ; χ0Þ;
p00 ¼ gðθ; θ0; p; p0; χ; χ0Þ;
χ00 ¼ hðθ; θ0; p; p0; χ; χ0Þ;

can be explicitly obtained and it can be exactly written as
the coproduct (13)–(15) for ω > 0, provided the identi-
fication

θa ≡ Ja; p0 ≡ P0; pa ≡ Pa; χa ≡ Ka ð22Þ

is assumed and by following the convention (8). Similarly
to what we observed for the ω ¼ 0 case, the fact that we are
able to recover the coproducts of the algebra in the
bicrosscroduct basis is due to the specific choice of
ordering of the exponential in (21). A different ordering
choice would reflect into a group law compatible with the
coproduct of the algebra in a different basis. We recall that
the ordering (21) was just the one introduced in [41] in
order to obtain the κ-deformation of the (3þ 1) AdS
algebra presented in Sec. III, and this choice guarantees
the self-consistency of all the new results here presented.
Now, the κ-AdS momentum space can be constructed by

considering the left action of the group element G�
ωðθ; p; χÞ

on an eight-dimensional ambient space. The points that can
be reached from the origin O≡ ð0; 0; 0; 0; 0; 0; 0; 1Þ under
such action are thosewith coordinates ðS0; S1; S2; S3; S4; S5;
S6; S7Þ given by

G�
ω · ð0;0;0;0;0;0;0;1ÞT ¼ðS0;S1;S2;S3;S4;S5;S6;S7ÞT:

These can explicitly be written as

S0 ¼ sinhðzp0Þ þ
1

2
ezp0z2ðp̄2 − ωχ̄2Þ;

S1 ¼ Aðp1B
þ
21 þ

ffiffiffiffi
ω

p ðCþ χ2B−
21ÞÞ;

S2 ¼ Aðp2B
þ
12 þ

ffiffiffiffi
ω

p ðD − χ1B−
12ÞÞ;

S3 ¼ zezp0ðp3 − z
ffiffiffiffi
ω

p ðθ1p1 þ θ2p2 þ
ffiffiffiffi
ω

p ðθ1χ2 − θ2χ1ÞÞÞ;
S4 ¼ Að−p2B−

21 þ
ffiffiffiffi
ω

p ðDþ χ1B
þ
21ÞÞ;

S5 ¼ Að−p1B−
12 þ

ffiffiffiffi
ω

p ðC − χ2B
þ
12ÞÞ;

S6 ¼ −z
ffiffiffiffi
ω

p
ezp0ðχ3 − zðθ2p1 − θ1p2 þ

ffiffiffiffi
ω

p ðθ1χ1 þ θ2χ2ÞÞÞ;

S7 ¼ coshðzp0Þ −
1

2
ezp0z2ðp̄2 − ωχ̄2Þ; ð23Þ

where we have defined

p̄2 ¼ p2
1 þ p2

2 þ p2
3;

χ̄2 ¼ χ21 þ χ22 þ χ23;

A ¼ 1

2
zezðp0−θ3

ffiffiffi
ω

p Þ;

B�
ij ¼ ωz2ðθ2i − θ2jÞ þ e2z

ffiffiffi
ω

p
θ3 � 1; i ∈ f1; 2g;

C ¼ 2zðθ2
ffiffiffiffi
ω

p ðzθ1ð−p2 þ
ffiffiffiffi
ω

p
χ1Þ − χ3Þ þ θ1p3Þ;

D ¼ 2zðθ1
ffiffiffiffi
ω

p ðzθ2ð−p1 −
ffiffiffiffi
ω

p
χ2Þ þ χ3Þ þ θ2p3Þ: ð24Þ

Note that, when evaluated at ðθ1; θ2; θ3Þ ¼ ð0; 0; 0Þ, the last
four functions give A → 1

2
zezp0 , Bþ

ij → 2, B−
ij → 0, C → 0,

and D → 0.
We stress that the ω → 0 limit of these expressions

makes S4, S5, and S6 vanish, and for the remaining ambient
coordinates we get exactly the κ-Poincaré curved momen-
tum space (10). In other words, this means that for ω ¼ 0
the matrix (21) is a reducible representation of the dual κ-
Poincaré group, which is consistent with the fact that the
ambient space has been enlarged when the cosmological
constant has been introduced.
From (23) we can deduce the geometrical properties of

the κ-AdS momentum space. In fact, it is straightforward to
check that the following relations hold:

−S20 þ S21 þ S22 þ S23 − S24 − S25 − S26 þ S27 ¼ 1;

S0 þ S7 ¼ ezp0 > 0:

ð25Þ

This means that, if we consider an R4;4 ambient space, the
κ-AdS momentum space is (half of) a SOð4; 4Þ quadric.
From the expressions (23) it is also straightforward to check
that the subgroup of dual rotations,

G0 ¼ eθ3DðR3Þeθ2DðR2Þeθ1DðR1Þ; ð26Þ

leaves the point O invariant. The action of the remaining
seven-parameter subgroup [generated by the Lie subalgebra
(20)] is obtained by evaluating (23) at ðθ1; θ2; θ3Þ ¼
ð0; 0; 0Þ,

S0¼ sinhðzp0Þþ
1

2
ezp0z2ðp̄2−ωχ̄2Þ;

S1¼ zezp0p1; S2¼ zezp0p2; S3¼ zezp0p3;

S4¼ zezp0
ffiffiffiffi
ω

p
χ1; S5¼−zezp0

ffiffiffiffi
ω

p
χ2;

S6¼−zezp0
ffiffiffiffi
ω

p
χ3; S7 ¼ coshðzp0Þ−

1

2
ezp0z2ðp̄2−ωχ̄2Þ:

ð27Þ

These expressions encode the essential information concern-
ing the nonvanishing cosmological constant generalization of
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(10), since dual rotations leave the point O invariant.
Therefore, we can think of the κ-AdS momentum space (25)
as the seven-dimensional orbit in R4;4 that can be para-
metrized through (27) in terms of the dual translation
and boost coordinates, while the dual rotation coordinates θ
do not play any role in the description of the curved
momentum space.
We recall that the deformed Poisson brackets for

the κ-AdS algebra would be the ones in [41] for ω > 0,
and (22) allows them to be interpreted as a Poisson-Lie
structure on the dual Lie group G�

ω for which the multi-
plication onG�

ω [i.e., the coproduct (13)–(15) for the κ-AdS
algebra] is a Poisson map. If we now apply the identi-
fication (22) onto the deformed Casimir function (16) and
afterwards we project it onto the curved momentum space
parametrized by the p and χ coordinates by setting θi → 0,
we obtain

Cz ¼
2

z2
ðcoshðzp0Þ − 1Þ − ezp0ðp̄2 þ ωχ̄2Þ; ð28Þ

which could be considered as the deformed dispersion
relation that corresponds to the (3þ 1) κ-AdS momentum
space.3 The physical interpretation of such a dispersion
relation requires giving a physical meaning to the hyper-
bolic momenta χa. This can be done thanks to the
identification (22), which states that the local group
coordinates have the same Poisson brackets as the
generators of the κ-(A)dS algebra, as discussed in detail
in [22]. It is then possible to represent the local
coordinates of the dual group in terms of the usual
phase space coordinates πμ and xν with fπμ; xνg ¼ δνμ,
following a procedure similar to that found in [8,49]. In
particular, the χa are expected to be given by a combi-
nation of both the components πμ and xν of the phase

space. An explicit example of this is found in [49], where
the (1þ 1) κ-de Sitter algebra is represented on phase
space.4 In that case it is found that the dispersion relation
depends on both momenta and spatial coordinates in a
way that encodes a deformed gravitational redshift. We
would expect something similar to show in this higher-
dimensional model; however we are not yet at the stage
where the explicit dependence of the dispersion relation
on the phase space coordinates can be exposed. In fact,
finding the appropriate phase space realization of the
(3þ 1) κ-(A)dS algebra is a nontrivial task, which is a
work in progress and will be presented in a forthcoming
publication [50], along with a thorough analysis of the
physical implications of the findings presented here.

V. THE κ-dS CURVED MOMENTUM SPACE

As it could be expected, if we apply the construction
presented in the previous section to the case ω < 0 we
obtain the same kind of geometric construction for the κ-dS
momentum space, which should generalize the (2þ 1)
results presented in [22]. The only aspect we have to be
careful about is the appearance of complex quantities when
ω < 0, due to the presence of

ffiffiffiffi
ω

p
in some of the

expressions [for instance, see (17)]. This is not a major
obstacle to the construction of the momentum space, since,
as we are going to show, all the complex contributions are
linked to the dual of the rotation subgroup, which is again
the isotropy subgroup of the origin of the momentum space.
So they disappear when we consider the projection to the
submanifold parametrized by momenta and boost
coordinates.
The matrix representation of the algebra (19) when

ω < 0 can be found to be

DðX0Þ ¼ z

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

; DðX1Þ ¼ z

0
BBBBBBBBBBBBB@

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

;

3As we show in the following section, for ω < 0 this same expression describes the deformed dispersion relation corresponding to the
(3þ 1) κ-dS momentum space.

4Note that the algebra appearing in [49] is written in a different basis than the one used here. While both algebras are of bicrossproduct
type, for z → 0 the algebra in [49] reduces to the de Sitter algebra in the comoving basis, while the one used here reduces to the de Sitter
algebra in the kinematical basis. It is worth stressing that the comoving momenta are defined as a linear superposition of kinematical
translations and boosts, which is again consistent with the mixing of both types of kinematical transformations within (28).
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DðX2Þ ¼ z

0
BBBBBBBBBBBBB@

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

1
CCCCCCCCCCCCCA

; DðX3Þ ¼ z

0
BBBBBBBBBBBBB@

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

1
CCCCCCCCCCCCCA

;

DðL1Þ ¼ z
ffiffiffiffiffiffiffi
−ω

p

0
BBBBBBBBBBBBB@

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 0

1
CCCCCCCCCCCCCA

; DðL2Þ ¼ z
ffiffiffiffiffiffiffi
−ω

p

0
BBBBBBBBBBBBB@

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

1
CCCCCCCCCCCCCA

;

DðL3Þ ¼ z
ffiffiffiffiffiffiffi
−ω

p

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

0 0 0 0 0 0 −1 0

1
CCCCCCCCCCCCCA

; DðR1Þ ¼ z
ffiffiffiffiffiffiffi
−ω

p

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 i 0 0 0 0

0 0 0 0 0 0 −1 0

0 −i 0 0 0 1 0 0

0 0 0 0 0 0 i 0

0 0 0 −1 0 0 0 0

0 0 1 0 −i 0 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

;

DðR2Þ ¼ z
ffiffiffiffiffiffiffi
−ω

p

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 i 0 0 0 0

0 0 −i 0 −1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 i 0

0 −1 0 0 0 −i 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

; DðR3Þ ¼ z
ffiffiffiffiffiffiffi
−ω

p

0
BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1
CCCCCCCCCCCCCA

:

Again, the left linear action of (21) onto the point O ¼ ð0; 0; 0; 0; 0; 0; 0; 1Þ gives rise to an orbit whose points have
ambient coordinates in R1;7 given by
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S0 ¼ sinhðzp0Þ þ
1

2
ezp0z2ðp̄2 − ωχ̄2Þ;

S1 ¼ Aðp1B
þ
21 þ i

ffiffiffiffiffiffiffi
−ω

p ðCþ χ2B−
21ÞÞ;

S2 ¼ Aðp2B
þ
12 þ i

ffiffiffiffiffiffiffi
−ω

p ðD − χ1B−
12ÞÞ;

S3 ¼ zezp0ðp3 − iz
ffiffiffiffiffiffiffi
−ω

p ðθ1p1 þ θ2p2

þ i
ffiffiffiffiffiffiffi
−ω

p ðθ1χ2 − θ2χ1ÞÞÞ;
S4 ¼ Aðip2B−

21 þ
ffiffiffiffiffiffiffi
−ω

p ðDþ χ1B
þ
21ÞÞ;

S5 ¼ Að−ip1B−
12 −

ffiffiffiffiffiffiffi
−ω

p ðC − χ2B
þ
12ÞÞ;

S6 ¼
ffiffiffiffiffiffiffi
−ω

p
zezp0ðχ3 − zðθ2p1 − θ1p2

þ i
ffiffiffiffiffiffiffi
−ω

p ðθ1χ1 þ θ2χ2ÞÞÞ;

S7 ¼ coshðzp0Þ −
1

2
ezp0z2ðp̄2 − ωχ̄2Þ; ð29Þ

where A;B�
ij; C;D are the same functions appearing in (24).

It is straightforward to check that such coordinates obey the
constraints,

−S20 þ S21 þ S22 þ S23 þ S24 þ S25 þ S26 þ S27 ¼ 1;

S0 þ S7 ¼ ezp0 > 0;

so that we obtain (half of) the (6þ 1) dS space as the
curved momentum space for the κ-dS quantum algebra.
Again, the isotropy subgroup for O is generated by the

subgroup of dual rotations (26), and each point of the
curved momentum space can be characterized by the seven
momenta and rapidities by evaluating (29) at
ðθ1; θ2; θ3Þ ¼ ð0; 0; 0Þ,

S0 ¼ sinhðzp0Þ þ
1

2
ezp0z2ðp̄2 − ωχ̄2Þ;

S1 ¼ zezp0p1;

S2 ¼ zezp0p2;

S3 ¼ zezp0p3;

S4 ¼ zezp0
ffiffiffiffiffiffiffi
−ω

p
χ1;

S5 ¼ zezp0
ffiffiffiffiffiffiffi
−ω

p
χ2;

S6 ¼ zezp0
ffiffiffiffiffiffiffi
−ω

p
χ3;

S7 ¼ coshðzp0Þ −
1

2
ezp0z2ðp̄2 − ωχ̄2Þ: ð30Þ

Note that these ambient space coordinates (30) are all
real, since all the complex contributions in (29) are linked
to the action of the dual rotation subgroup.
Finally, the projection of the deformed Casimir onto the

curved momentum space leads to (28), which can again be
interpreted as the dispersion relation for the ω < 0 case.
Also, the ω → 0 Poincaré limit of all of these expressions is
straightforward, and leads to the results presented in Sec. II.

VI. DISCUSSION AND CONCLUDING REMARKS

In [22] we constructed the generalized momentum space
associated to quantum deformed spacetime symmetries in
the presence of a cosmological constant. We focused on the
κ-dS algebra, which can be seen as a deformation of the
standard Poincaré algebra governed by two deformation
parameters: the cosmological constantΛ ¼ −ω is a classical
deformation parameter, controlling the effects of spacetime
curvature, while z ¼ 1=κ is the quantum deformation
parameter, controlling the Planck-scale effects (which in
turn induce curvature in momentum space). The interplay
between these two deformations is nontrivial and intertwines
the coordinates of the whole phase space. So, while it was
known for a while already that in theω → 0 limit (where the
symmetries are described by the κ-Poincaré algebra) the
geometrical properties of the momentum space are those of
half of a dS manifold, it was generally thought that it would
not be possible to make an analogous analysis once ω ≠ 0.
Our recent result was an important breakthrough in this

respect, since it demonstrated that the joint effects of
spacetime curvature and of the quantum deformation can
be taken into account if one constructs the momentum space
by considering not just the momenta linked to spacetime
translations, but also the hyperbolic momenta associated to
boost transformations. Still, [22] focused only on low-
dimensional cases, namely the κ-dS algebras in (1þ 1)
and (2þ 1) dimensions. Of course the physically relevant
model is thatwith (3þ 1) dimensions,which, as explained in
the introduction, allows one to connect to the phenomenol-
ogy of particles propagating over cosmological distances.
Describing the generalized momentum space of both quan-
tum deformed dS and AdS algebras with a cosmological
constant in (3þ 1) dimensions was the goal of the work
presented here.
Going from the (2þ 1)-dimensional case to the one with

(3þ 1) dimensions entails dealing with a deformed rotation
sector, which is still classical in lower-dimensional models.
Specifically, the coalgebra of the rotations is modified in
(3þ 1) dimensions, in such a way that one of the rotation
generators takes a special role compared to the others (see the
appendix). This might raise worries that the model breaks
spatial isotropy. However, just as the deformed boost trans-
formations do not break relativistic invariance, but simply
deform the laws of transformation between inertial frames,
the deformed rotations could imply that the concept of
isotropy has to be adapted to fit within the new trans-
formation rules.What the observational consequences of this
deformed isotropy could be is still a matter of investigation.
Despite these novel features, the analysis of the gener-

alized momentum space of the κ-dS algebra in (3þ 1)
dimensions led to a higher-dimensional version of the
results found in [22]: the momentum space is half of a
(6þ 1)-dimensional dS manifold and the rotations are the
group of isotropy of its origin. The lower-dimensional
results are recovered via canonical projection.
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We expanded our construction to the κ-AdS algebra,
which can be defined starting from the κ-dS algebra and
changing sign to the cosmological constant parameter.
While the difference between the two models is minimal
at the level of the algebra and coalgebra, we found that the
momentum space is characterized by a qualitatively differ-
ent geometry. This is because the change of sign of the
cosmological constant produces the appearance of complex
quantities due to the presence of

ffiffiffiffi
ω

p
factors. This analysis

provides the first example where quantum effects do not
produce a momentum space with dS geometry, but some-
thing different—we found that the κ-AdS algebra has a
momentum manifold with SOð4; 4Þ invariance.
Finally, we comment that the nonrelativistic limit of the

results here presented is indeed worth studying, since it
would give rise to the momentum spaces associated to
quantum deformations of the (3þ 1) Newton-Hooke sym-
metries when ω ≠ 0, and to quantum Galilei symmetries in
the case ω ¼ 0. In this respect, we recall that the Galilean
limit of (2þ 1) quantum gravity based on quantum
deformations of the Galilei and Newton-Hooke algebras
was formerly presented in [51,52], and further studied in
[53]. Work on this line is in progress.
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APPENDIX: ROTATIONS IN THE κ−AdSω
ALGEBRA

Let us recall that since δ in Eq. (17) is a coboundary Lie
bialgebra, there exists a classical r-matrix such that
δðXÞ ¼ ½X ⊗ 1þ 1 ⊗ X; r�. For coboundary deformations
classical r-matrices provide the simplest way to condense
the information of a given quantum algebra. In this case
(see [41,54]) such a classical r-matrix reads

rω ¼ zðK1 ∧ P1 þ K2 ∧ P2 þ K3 ∧ P3 þ
ffiffiffiffi
ω

p
J1 ∧ J2Þ;

ðA1Þ
and its κ-Poincaré limit ω → 0 is the well-known classical
r-matrix

r ¼ zðK1 ∧ P1 þ K2 ∧ P2 þ K3 ∧ P3Þ: ðA2Þ
Note that rotations appear in the r-matrix only in (3þ 1)
dimensions. In fact, the (2þ 1) κ-AdSω deformations are
generated by the classical r-matrix given by (see [43,44])

r ¼ zðK1 ∧ P1 þ K2 ∧ P2Þ; ðA3Þ

which does not depend on ω and is just the projection of
(A1) to the (2þ 1)-dimensional case, obtained by sup-
pressing the J1, J2, P3 and K3 generators. The J1 ∧ J2
term, which does not appear in (A3), is the one responsible
for the nonvanishing δðJÞ in the (3þ 1) case and, therefore,
is the term that induces the deformation (13) of the rotation
subalgebra.
At this point it is natural to wonder whether there could

exist another quantum AdSω algebra in (3þ 1) dimensions
that generalizes the κ-Poincaré algebra and has a non-
deformed rotation subalgebra, δðJ1Þ ¼ δðJ2Þ ¼ δðJ3Þ ¼ 0.
This question can be addressed by recalling that in [43,55]
it was proven that all AdSω deformations in (3þ 1)
dimensions with primitive coproducts for P0 and J3 [i.e.,
with δðP0Þ ¼ δðJ3Þ ¼ 0] are generated by one of the two
(disjoint) families of two-parametric classical r-matrices,

rz1;z3 ¼ z1ðK1 ∧ P1 þ K2 ∧ P2 þ K3 ∧ P3

� ffiffiffiffi
ω

p
J1 ∧ J2Þ þ z3P0 ∧ J3; ðA4Þ

rz2;z3 ¼ z2ðP1 ∧ P2 þ ωK1 ∧ K2 − ωJ1 ∧ J2

� ffiffiffiffi
ω

p
P3 ∧ K3Þ þ z3P0 ∧ J3: ðA5Þ

Therefore, if we impose that the κ-Poincaré algebra has to
be obtained in the limit ω → 0 [which means that the
classical r-matrix that generates the deformation should
still have (A2) as its ω → 0 limit], this implies that the only
viable solution is (A4), that is, (A1) plus an additional twist
generated by z3P0 ∧ J3. We point out that both classical r-
matrices (A4) and (A5) are invariant under the automor-
phism (18) provided that the deformation parameters z1, z2,
and z3 remain unchanged.
It can also be proven [43] that a linear change of basis

X → X̂ in the κ-AdSω algebra transforms the r-matrix (A4)
into

rz1;ẑ3 ¼ z1

�
K̂1 ∧ P̂1 þ K̂2 ∧ P̂2 þ K̂3 ∧ P̂3

�
ffiffiffiffi
ω

p
ffiffiffi
3

p ðĴ1 ∧ Ĵ2 þ Ĵ2 ∧ Ĵ3 þ Ĵ3 ∧ Ĵ1Þ
�

þ ẑ3P̂0 ∧ ðĴ1 þ Ĵ2 þ Ĵ3Þ;

where ẑ3 ¼ z3=
ffiffiffi
3

p
, in such a way that the three rotation

generators seem to play the same role, although now it can
be checked that the primitive generator for the rotation
subalgebra turns out to be Ĵ1 þ Ĵ2 þ Ĵ3. As a consequence,
we can state as a general result that the generalization of the
κ-Poincaré algebra to the nonvanishing cosmological con-
stant case implies a nontrivial Planck-scale deformation of
the rotation sector, unless we are willing to deform the time-
translation sector.
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