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Plasmon confinement in fractal quantum systems
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Recent progress in the fabrication of materials has made it possible to create arbitrary non-periodic
two-dimensional structures in the quantum plasmon regime. This paves the way for exploring the
plasmonic properties of electron gases in complex geometries such as fractals. In this work, we study
the plasmonic properties of Sierpinski carpets and gaskets, two prototypical fractals with different
ramification, by fully calculating their dielectric functions. We show that the Sierpinski carpet
has a dispersion comparable to a square lattice, but the Sierpinski gasket features highly localized
plasmon modes with a flat dispersion. This strong plasmon confinement in finitely ramified fractals
can provide a novel setting for manipulating light at the quantum scale.

Nowadays, different experimental techniques allow for
the creation of arbitrary non-periodic two-dimensional
(2D) lattices. For example, artificial lattices [1, 2], sys-
tems consisting of quantum dots that can be arranged in
any custom shape, have attracted a lot of attention lately.
More generally, nanolithography methods can be used to
make high-quality 2D structures of arbitrary shape with
a resolution in the order of tens of nanometers [3]. Other
methods, such as molecular self-assembly [4, 5] have been
used to grow Sierpinski gaskets. This presents an oppor-
tunity to experimentally study complex 2D systems, such
as fractals.

Fractals have no translational invariance, so where a
Bloch description is natural in the case of lattices, here it
is not possible. Still, the Schrödinger equation has been
solved analytically on some simple fractals with finite
ramification [6]. For others, like the Sierpinski carpet, no
analytical expressions for eigenenergies and eigenstates
have been found yet. The latter systems are better tack-
led numerically [7]. It has been shown that the quantum
conductance of Sierpinski carpets exhibits fractal fluc-
tuations [8] and that their optical conductivity features
sharp peaks due to electronic state pairs at characteristic
length scales present within the carpet [9]. However, its
plasmonic properties have not been investigated yet.

Historically, in most plasmonic devices, the Fermi
wavelength of the electrons was much smaller than the
plasmon wavelength which is of the order of the geomet-
ric size of the system for standing waves. In other words,
the characteristic plasmon wave vector q ≪ kF , where
kF is the Fermi wave vector. In this regime, plasmons
can be described classically and there is no need to use a
quantum mechanical approach [15–18].

Recently, due to the progress in nanodevice fabrica-
tion, the quantum regime for plasmons has been reached
[19, 20]. In this regime, localized surface plasmons make
it possible to confine light to scales much smaller than
the scales of conventional optics, and as such provide a
unique way for light manipulation on scales below the
diffraction limit. Surface plasmons have found applica-
tions in surface-enhanced spectroscopy [10, 11], biological

and chemical sensing [12], lithographic fabrication [13],
and photonics [14].

However, the theory of inhomogeneous quantum elec-
tron plasma, even in the simplest random-phase approx-
imation (RPA) [15–18], is quite complicated due to the
essential nonlocality of the dielectric function [17]. Re-
cently, a rigorous scattering theory of plasmons by ob-
stacles was built [21], but finding plasmon eigenmodes
of inhomogeneous quantum systems still remains a chal-
lenge. As a matter of fact, this problem is very old,
starting with the early considerations [22, 23] of “atomic
plasmons” [24–28] which eventually turned out to not
exist [29, 30]. Previous attempts use additional uncon-
trollable approximations such as truncation of quantum
states [28], semi-classical [24, 27, 30] or even classical [26]
approaches.

Here we will present the results of accurate, straight-
forward calculations of plasmon spectra in an inhomoge-
neous quantum system with nontrivial geometry, namely
Sierpinski carpets and gaskets, two prototypic examples
of infinitely and finitely ramified fractals, respectively.
These two types of fractals can have widely different
properties. For example, it has been found that infinitely
ramified fractals exhibit phase transitions not present in
finitely ramified fractals [31].

In this letter first we outline the methods used and
present a numerical method for calculation of plasmonic
properties of systems with no translational invariance
that is applicable to arbitrary geometries. Then, we dis-
cuss the results of these calculations on fractal systems.
We compare the plasmon dispersions of the Sierpinski
carpet and gasket to those of a square and triangle, re-
spectively.

We consider a system described by a tight-binding
Hamiltonian

Ĥ = −t
∑
〈a,b〉

ĉ†aĉb , (1)

where t is the hopping parameter. Here, we have taken
the on-site potential to be zero and only consider nearest-

http://arxiv.org/abs/1801.06439v1


2

neighbor hoppings. The two systems of interest are illus-
trated in Fig. 1.

y

x

(a) (b)

FIG. 1. The fractals considered in this paper. (a) A third it-
eration Sierpinski carpet. The width of the sample is 33 = 27
lattice constants, or approximately 6.6 nm. (b) A fifth itera-
tion Sierpinski gasket. Its width is 25 = 32 lattice constants
(7.9 nm). The previous iterations are indicated in red.

Fractals are made using an iterative process. For ex-
ample, to make the Sierpinski carpet, a previous iteration
(indicated in red in Fig. 1) is copiedN = 8 times to make
a next iteration that is L = 3 times wider. With each
fractal we can associate a Hausdorff dimension, given
by dH = logL N , as a measure for how space-filling its
structure is. For the carpet dH ≈ 1.89, for the gasket
dH ≈ 1.58.

Moreover, for each fractal we can define a ramification
number, giving a measure of how connected it is. The
Sierpinski carpet is infinitely ramified: as a higher iter-
ation is taken, the number of bonds that need to be cut
to separate it from a lower iteration goes to infinity. In
contrast, the Sierpinski gasket is finitely ramified.

We use a hopping parameter t = 2.8 eV and a lattice
constant a = 0.246 nm. These are the parameters for
graphene, and they are representative for 2D systems in
general. Choosing a different lattice constant will lead to
a different plasmon spectrum, but the same qualitative
behaviour.

Using this tight-binding model we obtain the exact
eigenstates |i〉 with corresponding eigenenergies Ei, to
use for the calculation of the dielectric function.

The dielectric function operator ε̂(ω), by definition, re-
lates the external potential V̂ext(ω) to the total potential
V̂ :

〈r|V̂ext(ω)|r〉 =
∫
ddr′ 〈r|ε̂(ω)|r′〉〈r′|V̂ |r′〉 . (2)

d is the dimension of our problem. For the systems con-
sidered here d = 2. Treating V̂ as a perturbation, within
RPA, the dielectric function may be expressed as follows

[17]:

〈r|ε̂(ω)|r′〉 = 〈r|r′〉−
∫
ddr′′〈r|V̂C|r′′〉〈r′′|χ̂(ω)|r′〉 ,

〈r|V̂C|r′′〉 ≡
e2

‖r− r′′‖ ,

〈r′′|χ̂(ω)|r′〉 = gs · lim
η→0+

∑
i,j

〈i|Ĝ|j〉〈j|r′′〉〈r′′|i〉〈i|r′〉〈r′|j〉 ,

〈i|Ĝ|j〉 ≡ ni − nj

Ei − Ej − ~(ω + iη)
.

(3)
|r〉 denotes a position eigenvector; V̂C is the Coulomb
interaction potential; χ̂(ω) is the polarizability function;
η is the inverse relaxation time; gs = 2 is spin degeneracy;
ni is i’th energy level occupational number according to
the Fermi-Dirac distribution

ni =
1

e(Ei−µ)/kT + 1
. (4)

We used room temperature T = 300K and an inverse
relaxation time η = 6meV/~.
Eqs. (3) allow us to exactly calculate the full dielec-

tric function ε̂(ω) of any tight-binding system without
translational invariance. The open source project doc-
umentation [33] lists the computational techniques em-
ployed which, despite the O(N4) algorithmic complexity,
make calculations possible for systems of up to several
thousands of sites.
To visualise the plasmon modes in a quantum me-

chanical system Wang et al [34] introduced the following
method. Consider the dielectric function in its spectral
decomposition:

ε̂(ω) =
∑
n

ǫn(ω)|φn(ω)〉 . (5)

In this method, for each ω we consider only the eigenvalue
ǫn1(ω)(ω) that has the highest value of − Im[1/ǫn(ω)],
which gives us the plasmon eigenmode |φn1(ω)(ω)〉 that
contributes most to the loss function.
However, it is not clear how to access these plasmon

modes experimentally. Currently, the standard way of
probing plasmon properties of small quantum mechani-
cal systems is EELS. The fact that we calculate the full

dielectric function gives us the possibility to calculate
the following Fourier transform, which distinguishes this
study from others:

〈q|ε̂(ω)|q〉 = 1

(2π)d

∫
ddr

∫
ddr′ 〈r|ε̂(ω)|r′〉 e−iq(r−r

′) .

(6)
The loss function − Im[1/〈q|ε̂(ω)|q〉] is then directly
measurable using EELS techniques [15–18, 35].
Formally, there are two ways of identifying plasmons.

A plasmon frequency is either given by a local maximum
of the loss function − Im[1/ǫn1(ω)(ω)], or by a frequency
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FIG. 2. The highest contribution to the loss function
− Im[ǫ−1

n1(ω)
(ω)]. (a) The loss function for the entire range

of frequencies, in the case of (blue) a third iteration Sierpin-
ski carpet and (green) a sixth iteration Sierpinski gasket. (b)
The loss function of a third iteration Sierpinski carpet for a
frequency interval 0.14t < ~ω < 0.24t. Inset: Re[ǫ

n1(ω)(ω)]
for a frequency interval 0.21t < ~ω < 0.24t, showing discon-
tinuities. Red dots indicate pairs of points between which
Re[ǫ

n1(ω)(ω)] crosses zero in a continuous manner.

at which Re[ǫn1(ω)(ω)] = 0. These frequencies are not
exactly equal due to Landau damping, which is quantified
by η [32].

The real-space loss function of the highest contributing
plasmon mode is shown in Fig. 2. It shows that there
is a large number of plasmon frequencies, and that the
associated losses increase with increasing frequency. At
each discontinuity in Re[ǫn1(ω)(ω)] a different mode is
found to be the highest contributor to the loss function.
Such a discontinuity is not associated with a plasmon,
even though Re[ǫn1(ω)(ω)] switches sign.

The real part of the highest contributing plasmon
eigenmodes for both the carpet and gasket are shown
in Fig. 3. For further analysis, the inverse participation
ratio IPR(ω) =

∫
ddr|〈r|φn1(ω)〉|4 can give us a measure

of localization. The average IPR of |φn1(ω)〉 was found
to be an order of magnitude higher for the gasket than
for the carpet. This can be seen as a consequence of
the finite ramification of the gasket, i.e. the fact that
it is less connected, and therefore the electrons are more
confined and exhibit more localized plasmon eigenmodes.
Fig. 3(d) shows an example of such a highly localized
mode.

We now turn to the Fourier transform of the real-space
loss function in order to make a comparison to EELS
experiments. Fig. 4 shows the loss function as function

FIG. 3. The highest contributing plasmon eigenmodes in
real space. A few examples of the real space distribution
Re[〈r|φ

n1(ω)(ω)〉] of plasmon modes for (a,b) a third iteration
Sierpinski carpet and (c,d) a sixth iteration Sierpinski gasket.
Eigenmodes exhibiting different characteristic length scales
are shown.

of both q and ω.

There is a close resemblance between the carpet (Fig.
4(a)) and a square sample (Fig. 4(b)). The dispersion of
the carpet has extra broadening, similar to the broaden-
ing found in systems with disorder [36]. However, gener-
ally speaking, both curves look like a regular ε(ω) ∝ √

q
dispersion relation for surface plasmons [18]. The carpet
exhibits no translational invariance, i.e. q is not actu-
ally a good quantum number, so this behavior is quite
remarkable. The dispersion of the fourth iteration Sier-
pinski carpet is already very close to the third iteration
dispersion. This convergence indicates that the result is
representative for the real fractal at infinite iteration.

For the Sierpinski gasket (Fig. 4(c)), we observe dif-
ferent behavior. This fractal does not closely follow the
dispersion relation of a triangle built out of a triangular
lattice (Fig. 4(d)). Instead, we can clearly see the forma-
tion of multiple localized modes with near flat dispersion.
Again, this result is reasonably converged.

Concluding, in this work we have calculated the plas-
mon dispersion for the Sierpinski carpet and Sierpin-
ski gasket. The Sierpinski carpet has a plasmon dis-
persion comparable to the dispersion of a square lat-
tice, whereas the gasket exhibits highly localized plas-
mon modes. More generally, a finitely ramified frac-
tal can exhibit strong plasmon confinement, providing
a novel setting for the manipulation of light at the quan-
tum scale. With current experimental techniques, these
results can be probed experimentally. Moreover, we have
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FIG. 4. Dispersion relation − Im[1/〈q|ε̂(ω)|q〉], showing the frequency and momentum dependency of the loss function.
Momentum was taken along the x–axis. (a) A square built out of square lattice as compared to (b) the fourth iteration
Sierpinski carpet. Similarly, (c) a triangle built out of triangular lattice as compared to (d) a sixth iteration Sierpinski gasket.
The maximum of the left hand side is plotted as a dashed white line on the right hand side.

presented a rigorous approach for calculating plasmonic
properties of generic tight-binding systems, published as
an open source software project [33]. We believe that
this code can be very useful for future projects relating
to plasmonic properties of non-translationally invariant
systems.
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