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Abstract.
We present the application of convolutional neural networks to a particular problem in

gamma ray astronomy. Explicitly, we use this method to investigate the origin of an excess
emission of GeV γ rays in the direction of the Galactic Center, reported by several groups
by analyzing Fermi-LAT data. Interpretations of this excess include γ rays created by the
annihilation of dark matter particles and γ rays originating from a collection of unresolved
point sources, such as millisecond pulsars. We train and test convolutional neural networks
with simulated Fermi-LAT images based on point and diffuse emission models of the Galactic
Center tuned to measured γ ray data. Our new method allows precise measurements of
the contribution and properties of an unresolved population of γ ray point sources in the
interstellar diffuse emission model. The current model predicts the fraction of unresolved
point sources with an error of up to 10% and this is expected to decrease with future work.
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1 Introduction

The Fermi Large Area Telescope (LAT) has been observing the γ ray sky for energies & 100
MeV since August 2008 with unprecedented angular resolution and sensitivity [1]. The γ rays
produced by the interaction of cosmic ray (CR) particles with matter and radiation fields
in the interstellar medium (ISM) of the Milky Way dominate the emission detected with the
Fermi-LAT in the Galactic plane [2]. Physical modeling codes, such as GALPROP1, calculate
the propagation of CRs in the ISM and compute diffuse γ ray emission in the same framework
[3, 4]. Each GALPROP run using specific, realistic astrophysical inputs will create a different
interstellar emission model (IEM) in the form of a series of templates, each for a particular
physical emission mechanism. The usual method to compare these IEMs with data is the
so-called template fitting method [5]. A large set of IEMs were compared to Fermi-LAT data
in [6], finding that the IEMs reproduce general features of the interstellar γ ray emission over
the whole sky. However, the template models do not capture all the information contained in
the Fermi-LAT data. The present analysis focuses on an unaccounted component detected in
the region of the inner Galaxy, the so-called Galactic center Excess (GCE), using the template
fitting method [7–16].

The Fermi-LAT collaboration investigated the GCE properties (spectral shape, magni-
tude, and morphology) by using 6.5 years of observations in Refs. [17, 18], with the conclusion
that the GCE is present in the data despite many sources of uncertainties, but its specific
properties are significantly model dependent. The gray band of figure 1 presents the set of
spectral energy distributions of the GCE found in [18], derived from the different systematics
sources investigated. This emission has been interpreted as a possible signal for the annihi-
lation of dark matter (DM) particles or as a signal of unresolved point sources [15, 19–21].
DM-like signatures observed in other regions of the Galactic plane, where such signals are not
expected (control regions), are used to quantify the magnitude of systematic uncertainties
due to diffuse emission modeling in the Galactic center and prevent the interpretation of the
GCE as a signal of DM [18].

Many groups have investigated the possibility that a population of unresolved γ ray
pulsars could be the origin for the GCE emission, see for instance [20, 22–27]. The Galactic
bulge is expected to host a population of pulsars due to the high level of past star formation
activity in that region [28]. In the whole sky, more than 200 pulsars have been identified in
the γ ray band2. Furthermore, using novel statistical methods the authors of [29], [30] and
[31] claim evidence for the existence of an unresolved population of γ ray sources in the inner
20◦ of the Galaxy with spatial distribution and collective flux compatible with the GCE.
Recently the Fermi-LAT collaboration also investigated the pulsar interpretation of the GCE
[32]. Performing a new point source search using 7.5 years of Pass 8 Fermi-LAT data in a
40◦×40◦ box around the Galactic center, they confirm the findings of [29] and [30]. However,
some arguments [33–37] have been raised against this interpretation of the GCE. These works
point out that a hypothetical γ ray millisecond pulsar (MSP) population in the Galactic bulge
with similar properties of extant populations, as in globular clusters and the local Galactic
disc, is not able to reproduce the total GCE emission. However, these argument are based on
the assumption that an MSP population in the Galactic bulge share similarities with MSP
populations elsewhere [38]. Because there are no MSPs detected in the Galactic bulge yet,
this assumption might not be true. Therefore, the debate on the nature of the GCE is not yet

1http://galprop.stanford.edu
2https://confluence.slac.stanford.edu/x/5Jl6Bg
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closed, leaving the possibility of having all or a fraction of the GCE due to DM annihilation
or other diffuse sources.

The image texture of the GCE can help to unveil its nature; to determine if the GCE is
genuinely diffuse or has a granular morphology [29–31]. A completely diffuse GCE would favor
the DM interpretation, whereas cumulative emission of point sources too weak to be detected
individually would produce a granular morphology3. The template fitting approach is not
sensitive to this difference. This work aims to present a new method based on convolutional
neural networks (ConvNets) to determine whether the morphology of the GCE is diffuse or
granular. We apply our approach to the data collected with the Fermi-LAT in the region of
the Galactic center, and we use simulations of this area to train and validate the network.
The present paper is a proof-of-principle work, and we simplify the models for simulations
to a level in which the results on the GCE nature provide valuable information for a more
sophisticated implementation of the method in a future publication.

We organize the paper as follows: We start with an introduction to the GCE. Section 2
presents the basics on ConvNets. This technology needs large amounts of data to work, and
we use realistic simulations for both training and testing the networks; section 3 expands on
the setup to create these images. Section 4 presents the ConvNet designed to make predictions
on the fraction of granularity present in the GCE, i.e., how much of the GCE is due to a
population of unresolved point sources or a truly diffuse source. Results are presented in
section 5, conclusions and foreseen applications are discussed in Section 6.

3If the point sources are too dim or too close to each other, it is tough to distinguish them from diffuse
radiation. Also, Ref. [39] argues that if some fraction of the DM has dissipative interactions, it can form
dense DM clumps resulting in a population of γ ray point sources in the Galactic center region.
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2 Convolutional Neural Networks

ConvNets are a class of deep neural networks (DNNs) that are designed to make predictions
on visual data [40]. Neural networks are used in many areas of research to solve classification
or regression queries and are well suited for high dimensional problems (for example Ref.
[41]). The authors of ref. [42] employed a similar methodology for analyzing gravitational
lensing. In general, a ConvNet takes an N-dimensional input, transforms it using many
linear and nonlinear operations, and produces an M-dimensional output (for example, the
information introduced can be an image and the output a probability that the image belongs
to a particular class) [43]. The result of a ConvNet can be a prediction that a specific input
belongs to a specific type (e.g., object detection) or a projection of a regression problem (e.g.,
this work). The input of a computer vision task is typically an image; a (w, h, c)-tensor can
be a way to represent the data. The w and h in the tensor denote the width and height of the
network and c the number of channels, that can be a color filter or energy band. In this work
the number of channels is 1: A single energy-integrated counts map of the Galactic Center
region, with a specific fraction of the GCE due to a population of unresolved point sources,
free to vary between 0 and 1. We call this fraction the fsrc parameter. fsrc = 0 means that
the GCE is composed of only a diffuse source and fsrc = 1 implies that the GCE is formed
only of the cumulative emission of point sources too dim to be detected individually.

In this work, the ConvNet is trained to predict fsrc from Galactic center images created
with counts in the energy band 1-6 GeV, as this is the band where the GCE is most relevant,
see figure 1 [17, 18]. In Appendix A we provide a more thorough introduction to ConvNets,
in particular training them (Appendix A.2).

3 Images for training and testing the ConvNets

Typically a large dataset is needed to train a ConvNet because they can have up to millions
(or billions) of tunable weights (see Appendix A). To have an extensive training dataset is a
challenge in applying ConvNet technology to the Fermi-LAT Galactic center data, as there
is only one γ ray image of this region (e.g., compared to many different pictures of galaxies
for galaxy classification). However, the advanced knowledge of the Fermi-LAT instrument [1]
and the availability of state-of-the-art interstellar diffuse models [6] make it possible to create
realistic mock Fermi-LAT data for training and testing examples. The goal of the trained
ConvNet is to predict fsrc regardless of flux and location of the unresolved point sources as
well as the IEM. To achieve this goal, we create a set of 1.2 million mock training images of
the Galactic center region based on models fitted to real data4. To determine the optimal
amount of pictures in the training set, we train a ConvNet multiple times using different
training dataset sizes and compare the accuracy of the fsrc predictions.

The IEM is a crucial component to generate different realizations of the Fermi-LAT
observation of the Galactic center region. As there is no unique model, we must implement
different IEM versions. We use five of the eight alternatives IEMs created to study the
systematic effects on supernova remnant (SNR) properties caused by the modeling of the
diffuse emission around them [44]. The models selected represent the largest variation in the
input parameters used the set of eight IEMs. The starting point is to create models using
GALPROP, with a variation on the three input parameters that according to Ref. [2] are the

4 For training; we create 1.000 realizations of 1.200 different values of fsrc (1.2 million images). Three
samples of 20.000 other fsrc values were used to test the ConvNets (60.000 images).
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most relevant in modeling the Galactic plane diffuse emission5. The output of GALPROP is
in the form of separated templates for emission associated with gas (atomic and molecular) in
four Galactocentric rings and a single model for the inverse Compton emission. The second
step in the creation of the IEMs is to tune individual scaling factors for these different template
components using all-sky likelihood fit to Fermi-LAT data. Finally, we re-fit the five IEMs
selected leaving free only the scaling factors of the gas related emission in the first innermost
rings. In table 1 we present our selection and use of the five IEMs in this work. We decided
to use the models created in reference [44] as they have more freedom in fitting the diffuse
emission in the Galactic plane than other models, as the standard IEM of the Fermi-LAT
team for point-source analysis [45]. We also included in the model the sources listed in the
3FGL catalog [46]. Finally, we add to the model of the Galactic center area the integrated
γ ray flux at Earth, φs, expected from dark matter annihilation in density distribution, ρ(r),
given by

φs(∆Ω) =
1

4π

〈σv〉
2m2

DM

∫ Emax

Emin

dNγ

dEγ
dEγ︸ ︷︷ ︸

ΦPP

×
∫

∆Ω

{∫
l.o.s.

ρ2(r)dl
}
dΩ′︸ ︷︷ ︸

J−factor

.
(3.1)

Here, the ΦPP term depends on the particle physics properties of dark matter—i.e.,
the thermally-averaged annihilation cross section, 〈σv〉, the particle mass, mDM , and the
differential γ ray yield per annihilation, dNγ/dEγ , integrated over the experimental energy
range from Emin to Emax. The J− factor is the line-of-sight integral through the dark matter
distribution integrated over a solid angle, ∆Ω. Qualitatively, the J− factor encapsulates the
spatial distribution of the dark matter signal, while ΦPP sets its spectral character. Note that
we assume annihilation of Majorana particles.

We use the gNFW density distribution to model the spatial DM distribution [47, 48]:

ρ(r) = ρs
r3
s

rγ(1 + rs)3−γ . (3.2)

Where rs is the scale radius (20 kpc) and ρs a scale density fixed by the requirement that the
local DM density at Galactocentric radius of 8.5 kpc is 0.4 GeV cm−3. To model ΦPP, we
follow the DM interpretation of the GCE considered in ref. [14], and use a mDM = 50 GeV,
and the differential γ ray yield from WIMP annihilating into bb final state.

3.1 Template fitting procedure

In this work, we use the Fermi-LAT data collected between 2008 August 4 and 2015 August
2 (Fermi Mission Elapse Time 239559568 s - 460166404 s). To avoid bias due to residual
backgrounds in all-sky or large scale analysis, we select the events belonging to the Pass
8 UltraCleanVeto class and use the corresponding P8R2_ULTRACLEANVETO_V6 instrument re-
sponse functions; they have the highest purity against contamination from charged particles
misclassified as γ rays. Furthermore, to reduce the contamination of γ rays from interactions
of CRs in the upper Earth’s atmosphere, we select events with a maximum zenith angle of
100◦. We bin the events into 21 energy bins from 500 MeV to 100 GeV for fitting the IEMs
to the real γ ray sky (note that for the ConvNets we use a single energy bin from 1 to 6
GeV). We only use the events converted in the front part of the Fermi-LAT, as this is a

5CR source distribution, the height of the CR propagation halo, and spin temperature of the molecular
gas.
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Figure 1: Spectral energy distribution of the GCE. In blue and red the spectra from fits
performed in this work to the Fermi-LAT photon data using the models Training A and B
in table 1, respectively. Following [18] we select the GCE derived using the Sample Model
as representative of the GCE spectrum (black points). The gray shaded area represents the
variation in the GCE spectra obtained in [18]. The vertical black lines point out the energy
range where the GCE is always present; we use this band to create all ConvNets analyses
images. For comparison the GCE spectrum as found in [14] (green points) is plotted together
with the diagonal of the covariance matrix derived there (light green band).

good compromise between angular resolution and statistics to produce sharp images. Thus
we use the same data in fitting and for ConvNets. For the fitting procedure we use a spatial
resolution of 0.1◦, while for ConvNets we use 0.25◦, this is to reduce the Poissonian noise and
the computing time of generating images. We re-fit the five IEMs listed in table 1, including
a gNFW template, to Fermi-LAT data in the inner 15◦ × 15◦ about the Galactic center.

Standard Fermi tools are used to prepare data and to perform the fits. In this analysis
we fit the following set of parameters:

• The normalization of the inner rings in the IEM.

• The normalization of the brightest 3FGL sources (we neither vary the position nor the
spectral shape of the point sources, as this would increase the freedom significantly
in the fitting). It is worth mentioning that we use a dataset derived with improved
reconstruction algorithms and with more years of exposure than in the derivation of the
3FGL catalog.
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Figure 2: Best fit values for γ using the three different IEMs for training the ConvNet.
TS stands for Test Statistics and is defined as TS = −2ln∆L, where ∆L is the likelihood
ratio between models with and without source, in our case the gNFW component [49]. The
inclusion of a gNFW component always improves the quality of the fit. In this proof-of-
concept work γ = 1.1 as this value provides the larger Test Statistics (TS) over the different
models tested. It is worth noting that TS is not well defined for extended sources, we use this
quantity as an approximated proxy for comparing models, but not to choose the best model,
just to select one of them.

• We model the GCE spatially with a gNFW, spectrally as a WIMP of 50 GeV annihi-
lating into bb quarks. In this way the only free parameter for this component is the
normalization, that we parametrize as the thermally averaged cross section 〈σv〉.

The internal slope of the gNFW template is varied, changing the γ parameter in eq 3.2. For
each value of γ, we run five different fits corresponding to the five IEMs selected. Inspired
by the results of [18] the following values for γ are used: 1.0, 1.1, 1.2, 1.26, and 1.3. In
the simulations used for training and validating the ConvNets, γ is set at 1.1 as we find
a slightly better fit with this configuration, see figure 2. Table 1 presents the likelihood
of the five selected IEMs together with the resulting 〈σv〉 when the IEMs to generate the
training and validation data uses gNFW with γ = 1.1. It is worth noting that all IEMs
were previously fitted to all-sky data and based on different assumptions about the initial
parameter. Therefore the likelihood ratio test can not be used to compare models as they are
not special cases of a null model. However, after inspection of spatial and spectral residuals,
we get enough agreement to the data for this methodology analysis.
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Table 1: Results of fitting the 15o × 15o region around the GC using five different IEMs.
The gNFW template is created with γ = 1.1. All likelihoods and both spatial and spectral
residuals are at the same level, implying that all models provide a similar description of the
data. We assume the sources of CRs are supernova remnants (SNRs) considering two CR
source distributions, one traced by the observed distribution of pulsars, Lorimer [50], and
other tracing SNRs observed [51]. TS stands for spin temperature of the atomic hydrogen for
the derivation of gas column densities from the 21-cm line data.

Usage CR distribution Halo height
z (kpc)

TS (K) LogL 〈σv〉 × 10−27 cm3/s

Training A SNR 10 150 -442855 45.59
Training B Lorimer 10 1× 105 -442304 33.61
Training C Lorimer 4 150 -442357 39.32
Testing A Lorimer 10 150 -442539 39.63
Testing B SNR 4 1× 105 -442664 42.67

Figure 3: Count maps in the 1-6 GeV energy range comparing the granular vs diffuse nature
of the GCE, these templates are indistinguishably for the template method (see section 3.1).
Both maps have the same total emission and follow a gNFW distribution.

3.2 Simulation of Fermi -LAT data

After fitting the five models of the Galactic Center region described above to the Fermi-LAT
observations, we generate simulated data using the gtsrcmap and gtmodel codes of the Fermi
tools, the former for the convolution of models with the Fermi-LAT response, the later to
combine diffuse templates and generate the point source populations. We add Poisson noise
to the final images. In this set of fabricated images, we modify the fraction fsrc between
cumulative emission from point sources and a diffuse component of the GCE model, keeping
its magnitude, spectral shape and distribution as determined by the fits, see figure 3.

The spectral shape of the GCE is highly dependent on the assumptions of the underlying
model, but as can be noted in Figure 1 the excess is always present in the 1-6 GeV band.
We, therefore, choose that band to generate images for training and testing the ConvNets.
The left panel of figure 3 shows an image made with the gNFW template (γ = 1.1) in the

– 8 –



1-6 GeV band. The right-hand side of figure 3 shows the image of a simulated population
of point sources that produce the same amount of total flux as the gNFW template. The
density of sources in the population is also spatially distributed following equation 3.2 with
γ = 1.1. To generate the maps of point source populations which mimic the GCE, we make the
following assumptions: all sources have the same spectral shape and are distributed randomly
following a density distribution specified above (see figure 4 for a sample plot of a randomized
population of point sources). Besides following equation 3.2, we assume a power-law behavior
for the flux distribution in the population,

dNsrc

ds
= Asα. (3.3)

The normalization A is determined by fsrc times the total emission of the GCE as obtained
in the corresponding fit6 and the constraint that all sources are below the 3FGL detection
threshold (1× 10−9 cm−2 s−1 for fluxes above 1 GeV [46]). s represents the source flux and
dNsrc
ds the number of sources for a specific flux interval. The spectral index α determines the

number of point sources per flux below the 3FGL detection threshold. Thus, a high value of
α means most point sources are just below to the 3FGL detection threshold, while a low value
of α means most point sources are far below the 3FGL detection threshold. For example, a
value of α = 1.05 implies that almost all sources have a flux close to the detection threshold.
In this analysis we let α range from -1.05 to 1.057.

In figure 5 we present some of the models for training, focusing on the extreme cases
where the GCE is entirely made by DM annihilation or by a point source population. We
generate training and testing data as follows: first, we convolve the best-fit model with the
instrumental response function of the Fermi LAT (using the gtmodel tool of the Fermi science
tools8) yielding sky images with the expected number of counts. Then we generate Poisson
instances of these pictures.

One of the main concerns of this approach is the quality of the simulations versus the
actual Fermi-LAT image of the Galactic center. If the simulations are not representative of
the real data, the output is unreliable even if the ConvNet’s accuracy is 100%. The ’Reality
Gap’ is the name of this discrepancy between simulated and real data. We use for simulations
state-of-the-art modeling of the diffuse emission to represents the actual data. However, some
model parameters that serve as input for the simulation are not well determined by our best-fit
procedure. These include:

• Which IEM is correct? The computation of IEMs requires input data that are highly
uncertain, the models of our Galaxy represent quite well the whole γ ray sky, but in the
inner region, the complexity of the environment is significantly higher [6]. In particu-
lar, GALPROP-generated templates are ’smoothed’ versions of reality as many smaller
molecular clouds are not present in the GALPROP-input gas maps. For example, the
small-scale structure of the IEM is not present in the training set, see Supplemental
Material, item F, of [30]. Furthermore, the models in reference [44] do not enclose the
complete range of systematics involved in the modeling of Galactic diffuse emission.

6∫
s
Asαds equals to fsrc times total GCE flux. The GCE flux varies with the background used in the fit,

therefore depending on the background and fraction fsrc we determine the parameter A.
7In [32] the best-fit α value found for the Bulge pulsar population is -1.2. We do not extend our α range

to cover that value as we only work with simulations, follow-up work will be devoted to extracting physical
quantities from actual Fermi-LAT images.

8https://fermi.gsfc.nasa.gov/ssc/data/analysis/scitools/overview.html
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Figure 4: 3D distribution of a point source distribution following an gNFW profile with
γ = 1.1. Each time such a population is generated the sources are placed at different positions.
The flux s of each source is also randomly assigned. The (0,0,0) point is the GC, the color
code stands for x axis in kpc.

They only consider one method for creating the IEMs and varied three input param-
eters. For a ConvNet to give accurate results on the real data, the variations of the
input parameters need to be large enough so that it can learn to generalize over those
parameters.

• The list of detected point sources: we used the 3FGL catalog, which was created using
four years of data, while we use about seven years of data to generate the simulations.
As new sources are expected to appear with more data, the results of the network are
going to be biased towards higher fsrc. Therefore, sources that could be detected with
seven-year data, but not present in the four-year catalog, will in the simulations be part
of the signal while they should be included in the background. This miss modeling leads
to a higher predicted fsrc value by the network. The 2FIG catalog presents about 200
more sources detected in the GC region than the 3FGL catalog and used seven years
of data, which will remove this bias. For this initial analysis we only wanted to create
images similar to the GC but in a simple way, newer catalogs will be part of the models
in a follow-up study.

• The positions of point sources part of the unresolved population: we fix only their
distribution in the current simulation.

• The true distribution of the GCE emission: in our work we use gNFW template
parametrized by γ in equation 3.2, which is here fixed to 1.1.
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Figure 5: Images of the Galactic center in the 1-6 GeV γ ray band. Color code in
counts/pixel. Upper left: real data. Upper center: a model of the GC region as result
of the fit to the Training A model. In the upper right the same model but a distribution
of point sources replace the gNFW template. The lower row presents the same models of
the upper row but with Poissonian noise added to make them more realistic. We use the
gtmodel code of Fermi Science Tools version 11-05-00 to create the images. Bckg stands for
background, which is emission except for the GCE. DM for the diffuse component and src the
point source population below the detection threshold.

We take the following action to account for these unknowns:

The network was trained using simulations of three background models (training A, B,
and C in table 1) while validating the ConvNets on models that were generated using two
different background models (testing A and B in table 1). In total five background models
were used. This procedure ensures that the network is sensitive to features common to all
background models instead of training on characteristics of one particular background model
only.

We use many initializations of the sources, and in every model simulation, their actual
positions were different. Therefore the network cannot rely on fixed positions of the point
sources, but only on their distribution which is determined by the parameter α (see section
3).

4 Neural network setup

This section describes the analysis setup of the convolutional neural networks that were used
to make the predictions of fsrc. The input data of the network is a (w, h, c)-tensor, with
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w and h the width and height of the image and c the number of channels (colors in case
of a color image). As the pixels of the image represent photon counts in the band between
1 and 6 GeV, the number of channels is one (meaning the image is monochromatic). The
output of the network is a number between 0 and 1, representing the value of fsrc. In total
five networks were trained with the same network architecture, see table 2. We train one
network on the full image, and other four networks trained on half of the image (left, right,
top and bottom half). After training, the output values of the networks trained on half of
the images can be compared to check if their predictions are in agreement. Also, the output
values of these four networks can be averaged to obtain an averaged prediction of these four
networks. Averaging multiple network results typically improves overall accuracy [52] (also
called ensemble learning).

Table 2: The five different networks trained on the simulations.

Network name Tensor size
Full image (120, 120, 1)
Left half of image (60, 120, 1)
Right half of image (60, 120, 1)
Top half of image (120, 60, 1)
Bottom half of image (120, 60, 1)

We average the predictions of the ConvNets trained on partial images; the result is
labeled ’averaged network’ in what follows. The training data contains images that are
generated using three different background models. The validation data consists of 60.000
images from two background models that are not part of the training data (Training A and B
in table 1, we split the GC pictures evenly) and with randomized α and point source locations.
Therefore, to get high accuracy with the ConvNet recovering fsrc on the 60.000 images in the
validation set, we must account for variations in the locations and fluxes of the individual
unresolved sources, as well as uncertainties in the IEMs.

As a preprocessing step, we normalize the pixel values of the images to values between 0
and 1 to improve the training speed. The last layer of the network architecture (see Appendix
A) has a sigmoid activation function, σ(x) = (1 + e−x)−1. This function goes asymptotically
from 0 to 1, making an fsrc = 1 prediction impossible (the input of the last layer has to be
infinite in this case). To improve network accuracy for very high fsrc predictions, the output
value of a prediction is normalized with a factor of 1

max(fsrc) to map the highest predicted
output to one. Here max(fsrc) is the highest predicted value of the validation data.

4.1 Network architecture

This section explains the architecture of the ConvNet used for this work. For a general high-
level introduction to ConvNets, see Appendix A. The ConvNet architecture is identical for
all five networks and is visualized in figure 6. The activation functions of all inner layers are
ReLU functions [53]: f(x) = x if x > 0 and f(x) = 0 otherwise. The last layer has a sigmoid
activation function.

The loss function of the network is mean square error; the optimizer is chosen to be the
Adam optimizer [54]. We train the ConvNet in two steps: first with a learning rate of 10−5

and then with a learning rate of 10−9, both using 20 epochs [54]. We used the TensorFlow9

9https://www.tensorflow.org
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Figure 6: Visualization of the convolutional neural network. The network consists of an
input layer, 5 convolutional + pooling layers, 2 fully connected layers and finally an output
layer. See Appendix A for an introduction on ConvNets.

library and ran training on two Nvidia GTX1080 cards.
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5 Results

5.1 Neural network results

Figure 7 shows a visualization of the different activations within the ConvNet layers. The
input image on the left. Each column represents a convolutional layer, and the image passes
through the network from left to right. Only four convolutional filters are shown per column
for clarity. In the actual network, the number of filters varies between 64 and 256. Also,
because there is a max pooling layer (see Appendix A.1.1) between the convolutional layers,
the images are smaller in subsequent convolutional layers. We zoomed them to identical
sizes in the visualization. The figure shows that some filters tend to filter out the diffuse
background, while others seem to take the diffuse background into account only. Internally
the network seems to decompose images into its diffuse and point source components. For this
particular simulated sample, the difference between the ConvNet prediction and the actual
value of fsrc of the sample was 0.04.

Figure 7: Example filters of different layers of the full network on a simulation. Each column
of images represents a convolutional layer. The data flows from left to right (from input to
prediction). Each convolutional + pooling layer accepts the image as input and outputs n
smaller images, where n is the number of convolutional filters in that layer (n ranges from 64
to 256, see figure 6). Only four filters per layers are shown for clarity.

In figure 8 we show the results of the ConvNet output on the validation data for three
different networks: the full network, the averaged network and the network trained on the left
half of the image. Note that these are predictions on two different models that were not in the
training data (Testing A and B models in table 1). We compute the accuracy of the network
in 10 equally spaced bins based on this validation set. This is done because the network is
more accurate for low fsrc-predictions than for high fsrc-predictions (see figure 8). The aver-
age network performs slightly better than the full network, meaning an ensemble of different
networks achieves higher accuracy than training one network on the full image (see section 4).
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(a) Prediction of the average network
versus true values.

(b) Prediction of the full network
versus true values.

(c) Prediction of the network trained on the left
half versus true values.

Figure 8: Network results on the validation set. The different colors represent the 1σ, 2σ
and 3σ bands. The diagonal line represents a perfect prediction.

Table 3: Properties of the network trained on the left half at the predicted value on the real
Fermi result.

Name Value
Predicted output 0.887
1σ error 0.105
2σ error 0.210
3σ error 0.324
Maximum error 0.416

To minimize the researcher bias for the future implementation of this method only the
network trained on the left half of the image was used to predict the real Fermi-LAT data.
The output of this ConvNet is 0.887, putting the network value in the bin with the errors
shown in table 3. We reserve the other half and the full picture for the follow-up work.

The predicted value for fsrc is 0.887±0.105. This value favors an interpretation regarding
point sources for the GCE. However, it is worth noticing that we must not use this ConvNet
on real data as the images used for training and testing the ConvNets use the 4-years 3FGL
catalog while we use about seven years of data. The newer Second Fermi Inner Galaxy catalog
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(2FIG) contains about double the sources in the same region [32]. Also, we train the networks
on α values between -1.05 and 1.05, but larger values are physically plausible. This will be
addressed in a follow-up paper.

We use a fixed value of γ in the simulations. To see if changing γ negatively impacts the
predictions few simulations were run with varying γ values. As can be seen in figure 9 this
had a sizable impact on the result. For γ = 1.1 and γ = 1 the network predictions remain
accurate, but for higher values of γ the network under-predicts fsrc. Because a higher value
of γ means that the point sources are closer to the GC, it becomes increasingly difficult to
distinguish the emission from the point-source population from truly diffuse emission. It is
therefore expected that the network under-predicts fsrc for higher values of γ. Since the most
likely value of γ we obtained in our fit is between 1 and 1.1, it is expected that the network
is still accurate on the real Fermi-LAT data. However, the next iteration of the network will
be trained on multiple values of γ to ensure that the fsrc predictions are accurate regardless
of different γ values.
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Figure 9: Predictions of the average network using different values for γ. For γ = 1 and
γ = 1.1 the prediction are still accurate. However for higher values of γ the network starts to
under-predict the true values of fsrc. This shows that the network does not generalize over
higher than γ = 1.1 values, but does for values between 1 and 1.1.
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6 Conclusion

Training a convolutional neural network on simulated data of the Fermi LAT yields promising
results to characterize the contribution of unresolved dim point sources to the diffuse emission.
We find that the ConvNet method gives predictions beyond the classification of either 100%
point sources or diffuse source: it can also predict a mixture. The error on the prediction of
fsrc is usually on the order of 10% for the averaged network. Furthermore, this method is
not limited to predicting fsrc. One can also make predictions on the properties of the source
population, like α and γ, as well as the most likely background model by training networks
on those particular values.

When applied to the real data, the left network prediction of the point source fraction fsrc

of the Galactic center excess is 0.887±0.105. This value disfavors the possibility that the GCE
is solely caused by diffuse emission but rather by a mixture of combined radiation of unresolved
point-sources and genuinely diffuse emission, in agreement with previous studies [29, 30, 32].
The present study only presents a proof of concept, and one should note that the results are
biased towards higher values of fsrc. The reason for this bias is the use of a four-years catalog
of point sources, the 3FGL, whereas in this analysis we use seven years of data. More recent
lists of point sources, such as the 2FIG, already contain twice as many objects in the same
region. Also, to extend the range of the α parameter from ±1.05 to at least ±1.7 to account
for best-fit values found by other studies [32, 55].

Currently, the training data of the network is a value per pixel which represents the
number of photon events between 1 and 6 GeV. However, we can feed more information into
the network to make more accurate predictions and allow for more generalizations. These
improvements include multiple values of γ, as discussed in the previous section. Instead of a
(w, h, 1)-tensor representing the counts of 1-6 GeV photons, the next iteration of this network
will use a (w, h, c)-tensor, where c is the number of energy bins. Each bin will contain the
pixel count of some specific energy bin. With this extra dimension of the data, the network
can learn between correlations in any direction of the tensor. This extra information may
lead to improved performance and will allow more complex architectures. The full analysis
will yield the following improvements:

• Increase sensitivity of α to realistic values from ±1.05 to at least ±1.7

• Generalize over multiple values of γ instead of assuming γ = 1.1

• Use the latest point source catalog instead of the 3FGL

• Use multiple energy bins as channels instead of one channel

– 17 –



Appendices
A ConvNets

Recently the field of deep learning has received a lot of attention because of the predictive
power of deep neural networks. These networks can be used to detect objects in images [43],
create text-to-speech algorithms [56] and many more applications. This novel approach uti-
lizes the many advances in machine learning of the past years and can lead to better predic-
tions using fewer assumptions, as ConvNets typically require the raw data as input. Using
DNNs over conventional data analysis methods has up- and downsides:

• DNNs work with raw data and learn to recognize correlations in the data automatically.
This has two advantages: 1) there is no need to manually prune the data (manually de-
noise, reparametrize or otherwise reduce the dimensionality of the data) and 2) the raw
data contains all possible information. Pruned data does not. A conventional method
that uses preprocessed data cannot access all the information enclosed in the raw data.
The quality of the pruned data is entirely dependent on the human understanding of
the data and it might happen one unknowingly removes correlations when preprocessing
data.

• DNNs are very general. The network architecture changes from problem to problem, but
the layer types and methods can be used in many different problem areas like analyzing
image or video data, regression, speech analysis and many more domains. This property
of DNNs means the advances in one area of research (for example face detection) also
benefit all the other research areas.

• DNNs can generalize over randomness. When a DNN needs to learn magnitudes of stars
in a 2D image, the randomized location of the star carries no information. By using
convolutional layers and enough training samples, the network can learn to ’ignore’ the
location of the star. This generalization is an important feature in the analysis in this
work: the unresolved point sources have a random location in our simulations.

• DNNs are hard to train. The training process tunes many hyperparameters to specific
values for the network to make accurate predictions. These hyperparameters need to be
set before training and require knowledge of the problem, the network, and trial-and-
error.

• DNNs require a lot of data and processing power. This is one of the main reasons DNNs
are only becoming popular in recent years. The hardware required to train networks
that can make accurate predictions on real-world data is only available since the advent
of the GPU. Also, deep neural networks typically require a lot of training examples to
train well.

A.1 ConvNet data pipeline

In general, a ConvNet takes an N-dimensional input, transforms it using different layers, and
produces an M-dimensional output. This can be a prediction that a specific input belongs
to a particular class (e.g., object detection) or a prediction of a regression problem (e.g., this
research). The input of a computer vision problem is typically an image. The image can be
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Figure 10: Visualization of the model construction. The model (that is used as training
data for the ConvNets) is generated by adding a fraction fsrc of point sources and a fraction
of 1− fsrc of the diffuse source to the background. The sum of the diffuse and point source
fraction that is added on top on the background always equals the GC excess.

represented by a (w, h, c)-tensor, where w and h represent the width and height of the network
and c the number of channels. For instance: a 120×120 color image has 120 ·120 ·3 = 43.200
different values embedded into it. In this analysis, the number of channels is one, and it
represents the photon count in the energy bin 1-6 GeV. The input is the first layer of a
neural network and in the example consists of 43.200 neurons. When an image is fed into
the network, each input neuron consists of one color of one-pixel value. In left-hand side of
figure 10 we present an example of an image for training. It is composed of a background
emission, and the GCE, whose granularity is controlled by the fraction of point sources fsrc

parameter, which varies between 0 and 1. A value of fsrc = 0 means the GCE is composed of
only a diffuse source, and fsrc = 1 means the GCE is composed of only point sources. With
ConvNets we transform such images into predictions of the parameter fsrc.

In ConvNets, between the input and output layers, there are so-called hidden layers. In
this work we use the following kinds of hidden layers: fully connected, convolutional, max
pooling and local response normalization. The differences of these layers will be discussed in
the next section.

A.1.1 Layer Architectures

A fully connected layer connects all neurons of a layer to the next one. A weight w is
assigned to each connection (see figure 11). The value ny,j of a particular neuron j in layer y,
is defined as ny,j = f (

∑
i nx,i · wx,i;y,j + bias), where f(x) is called the activation function.

In this research the internal layers have a Rectified Linear Unit (ReLU) activation function
(f(x > 0) = x and f(x ≤ 0) = 0). The output layer has a sigmoid activation function, to
map all input values to the range (0,1), which represents the output range of fsrc parameter.

During training, an image is fed into the network, and an fsrc output value is predicted.
This output can be compared to the actual fsrc used to create the image. The error is
propagated back into the network which adjusts all w and biases [57]. Before training all
weights and biases are set to normal distributed random numbers (the network initialization).

A DNN with only fully connected layers has many parameters (weights and biases) to
train. For instance: a 120x120 color image has 43.200 input neurons. If the neural network
has one hidden layer with 100 neurons and one output neuron, the number of weights in the
ConvNet is 43.200 · 100 + 100 · 1 = 4.320.100. This makes fully connected networks very hard
to train.

A convolutional layer is a layer that has fewer weights than a fully connected layer by
utilizing the fact that there is a correlation between neighboring pixels on an image [40]. Max
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Figure 11: Schematic view of a fully connected layer with 6 input and 4 output neurons.
The 24 lines represent the weights of the connections between the the neurons from the two
layers.

pooling layers take a patch of an image and return the maximum of this value [58]. A max
pooling layer is used to reduce the dimensions of an image during network propagation. After
multiple convolutional and pooling layers, fully connected layers are added to make a final
prediction of the image. A graphical representation of a typical convolutional neural network
can be found in figure 2 of [40].

A.1.2 Choice of activation function

The choice of the activation functions of the neurons is crucial, as this introduces a non-
linearity in the network and the right activation function optimizes the speed and predictive
power of the network. If the activation function would be linear, for example, f(x) = x, the
neural network would just be a linear combination of linear functions. If this is the case, it is
impossible to make predictions about non-linear problems. Popular choices are the sigmoid
and hyperbolic tangent (tanh) function because they are bound between 0 and +1 for the
sigmoid function and -1 and +1 for the tanh function. However, they suffer from the so-called
vanishing gradient problem [59]: the gradient at significant positive or negative values go to
zero. As the gradient of the activation function is a used in the backpropagation algorithm
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to update the weights, the network effectively stops learning when the gradient is (almost)
zero.

The ReLU activation function is currently a popular choice, because it has no vanishing
gradient and is a non-linear function[53]. On top of that, the derivative of the ReLU function
is computationally trivial, while calculating the derivative of a sigmoid or tanh function can
be computationally expensive. However, the ReLU function has no gradient for negative
values, leading to so-called ’dying ReLUs’: if the update of a weight makes the output of
the ReLU negative, the particular neuron is effectively dead as there is no gradient anymore.
This means the weights will not be updated anymore during training. There are many more
activation functions that can be chosen and each of them has advantages and disadvantages.
In this work, the ReLU activation function was chosen because of its speed and non-vanishing
gradient.

A.2 Training a neural network

A neural network has many weights in it, which are initialized randomly according to some
distribution (typically normal distributed). These weights need to be changed from the ran-
dom initialization to particular values, to predict the training dataset accurately. This is done
during the training phase of the network. During training, the network receives an image and
calculates an (incorrect) output. The error is propagated back into the network, and the
weights are set so the error of the prediction is less when the image would go through the
network again. There are many backpropagation algorithms, of which the Adam optimizer is
a popular one and the one used in this research [54].

A typical difficulty of training neural networks is overfitting. In this case, the network
can predict every example in the training data perfectly, while it fails to generalize over the
important features. Instead of learning those, it ’memorized’ the training data and cannot
be used for other cases. To determine whether a network is overfitted to the training data,
one can set aside a part of the dataset and not use it during training. After the network is
trained, the accuracy of the network on this validation set is calculated. It is an excellent
indication that the network has overfitted if the training set accuracy is much higher than
the validation set accuracy [60]. There are a number of methods to prevent overfitting, such
as regularization [61] and dropout layers [62]. In this research, the convolutional layers have
an L2 regularizer to penalize large weights. Adding dropout has been considered as well, but
only using L2 regularizers was enough to prevent overfitting and adding a dropout layer did
not improve the network accuracy.

To force the network not to overfit to particular values that are not known (the actual
positions of the point sources, α, or the specific background model used for example), many
images are generated that span the possible space of values. The network has to generalize over
these values to achieve reasonable accuracy. This means many realizations of the simulations
are needed. As long as the real data is somewhere inside the training box spanned by fsrc,
randomized locations of unresolved point source population and the background model, and
the ConvNet generalizes over all these values, the network output is reliable.
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