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Abstract During development, coordinated cell behaviors orchestrate tissue and organ

morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework

to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development,

we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with

multi-view light-sheet microscopy at high spatiotemporal resolution over several days of

embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell

resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses

suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-

ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud

formation is associated with spatial modulation of cell proliferation, while limb elongation is also

driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular

reconstructions were predictive of the expression patterns of limb development genes including

the BMP morphogen Decapentaplegic.

DOI: https://doi.org/10.7554/eLife.34410.001

Introduction
Morphogenesis, or the origin of biological form, is one of the oldest and most enduring problems in

biology. Embryonic tissues change their size and shape during development through patterned cell

activities controlled by intricate physico-chemical mechanisms (Day and Lawrence, 2000;

Heisenberg and Bellaı̈che, 2013; Keller, 2013, 2012; Lecuit and Mahadevan, 2017; LeGoff and

Lecuit, 2015). Developmental processes have been explained traditionally in terms of genes and

gene regulatory networks, and a major challenge is to understand how the genetic and molecular

information is ultimately translated into cellular activities like proliferation, death, change of shape

and movement. Therefore, detailed descriptions of cell lineages and behaviors can provide a firm

ground for studying morphogenesis from a bottom-up cellular perspective (Buckingham and Meil-

hac, 2011; Kretzschmar and Watt, 2012; Schnabel et al., 1997; Spanjaard and Junker, 2017;

Sulston et al., 1983).

We have focused here on the crustacean Parhyale hawaiensis that satisfies a number of appealing

biological and technical requirements for multi-level studies of appendage (limb) morphogenesis
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(Stamataki and Pavlopoulos, 2016). Parhyale is a direct developer; its body plan is specified during

the 10 days of embryogenesis when imaging is readily possible (Browne et al., 2005). Each embryo

develops a variety of specialized appendages along the anterior-posterior axis that differ in size,

shape and pattern (Martin et al., 2016; Pavlopoulos et al., 2009; Wolff and Scholtz, 2008). Par-

hyale eggs have good size and optical properties for microscopic live imaging at cellular resolution;

the eggshell is transparent and embryos are 500 mm long with low autofluorescence and light scat-

tering. Several functional genetic approaches, embryological treatments and genomic resources also

allow diverse experimental manipulations in Parhyale (Kao et al., 2016).

Previous reports have used transmitted light and fluorescence time-lapse microscopy to live

image early processes like gastrulation and germband formation during the first couple days of Par-

hyale development (Alwes et al., 2011; Chaw and Patel, 2012; Hannibal et al., 2012). However,

for a comprehensive coverage of Parhyale limb formation, embryos need to be imaged from multi-

ple angular viewpoints from day 3 to day 8 of embryogenesis (Browne et al., 2005). We demon-

strate here that transgenic embryos with fluorescently labeled nuclei can be imaged routinely for

several consecutive days using Light-sheet Fluorescence Microscopy (LSFM). LSFM is an ideal tech-

nology for studying how cells form tissues and organs in intact developing embryos (Huisken et al.,

2004; Keller et al., 2008; Truong et al., 2011). It enables biologists to capture fast and dynamic

processes at very high spatiotemporal resolution, over long periods of time, and with minimal

bleaching and photo-damage (Combs and Shroff, 2017; Huisken and Stainier, 2009; Khairy and

Keller, 2011; Schmied et al., 2014; Weber et al., 2014). In addition, samples can be optically sec-

tioned from multiple angles (multi-view LSFM) that can be combined computationally to reconstruct

the entire specimen with more isotropic resolution (Chhetri et al., 2015; Krzic et al., 2012;

Schmid et al., 2013; Swoger et al., 2007; Tomer et al., 2012; Wu et al., 2016; Wu et al., 2013).

eLife digest During early life, animals develop from a single fertilized egg cell to hundreds,

millions or even trillions of cells. These cells specialize to do different tasks; forming different tissues

and organs like muscle, skin, lungs and liver. For more than a century, scientists have strived to

understand the details of how animal cells become different and specialize, and have created many

new techniques and technologies to help them achieve this goal.

Limbs – such as arms, legs and wings – form from small lumps of cells called limb buds. Scientists

use the shrimp-like crustacean, Parhyale hawaiensis, to study development, including limb growth.

This species is useful because it is easy to grow, manipulate and observe its developing young in the

laboratory. Understanding how its limbs develop offers important new insights into how limbs

develop in other animals too. Wolff, Tinevez, Pietzsch et al. have now combined advanced

microscopy with custom computer software, called Massive Multi-view Tracker (MaMuT) to

investigate this.

As limbs develop in Parhyale, the MaMuT software tracks how cells behave, and how they are

organized. This analysis revealed that for cells to produce a limb bud, they need to split at an early

stage into separate groups. These groups are organized along two body axes, one that goes from

head to tail, and one that runs from back to belly. The limb grows perpendicular to these main body

axes, along a new ‘proximal-distal’ axis that goes from nearest to furthest from the body. Wolff et al.

found that the cells that contribute to the extremities of the limb divide faster than the ones that

stay closer to the body. Finally, the results show that when cells in a limb divide, they mostly divide

along the proximal-distal axis, producing one cell that is further from the body than the other. These

cell activities may help limbs to get longer as they grow.

Notably, the groups of cells seen by Wolff et al. were expressing genes that had previously been

identified in developing limbs. This helps to validate the new results and to identify which active

genes control the behaviors of the analyzed cells.

These findings reveal new ways to study animal development. This approach could have many

research uses and may help to link the mechanisms of cell biology to their effects. It could also

contribute to new understanding of developmental and genetic conditions that affect human health.

DOI: https://doi.org/10.7554/eLife.34410.002
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Although the amount and type of data generated by multi-view LSFM raise several challenges for

image analysis, many of them have been efficiently addressed. Software solutions exist for registra-

tion of acquired views, fusion of raw views (z-stacks) into a single output z-stack, and visualization of

the raw and fused images (Chhetri et al., 2015; Ingaramo et al., 2014; Pietzsch et al., 2015;

Preibisch et al., 2014; Preibisch et al., 2010; Rubio-Guivernau et al., 2012; Wu et al., 2016).

These processes should be repeated for hundreds or thousands of time-points to generate a 4D

representation of the embryo as it develops over time (Amat et al., 2015; Schmied et al., 2014;

Schmied et al., 2016). Automated approaches for cell segmentation and tracking have also been

developed (Amat et al., 2014; Du et al., 2014; Dufour et al., 2017; Faure et al., 2016;

Schiegg et al., 2015; Stegmaier et al., 2016; Ulman et al., 2017), however they do not yet reach

the precision required for unsupervised extraction of cell lineages. To address this issue, we describe

here the Massive Multi-view Tracker (MaMuT) software that allows visualization, annotation, and

accurate lineage reconstruction of large multi-dimensional microscopy data.

We quantitatively analyzed Parhyale LSFM datasets with MaMuT to understand the cellular basis

of arthropod limb morphogenesis. As revealed by lineage tracing experiments in the leading arthro-

pod model Drosophila melanogaster, the leg and wing primordia become progressively subdivided

into distinct cell populations (called compartments when lineage-restricted) along the anterior-poste-

rior (AP) and dorsal-ventral (DV) axes (Dahmann et al., 2011; Garcia-Bellido et al., 1973;

Steiner, 1976). Tissue subdivisions acquire distinct cell fates driven by domain-specific expression of

patterning genes (called selectors if lineally inherited), as well as by the localized induction of signal-

ing molecules at compartment boundaries (organizers) that control patterning and growth of devel-

oping organs (Garcı́a-Bellido, 1975; Lawrence and Struhl, 1996; Mann and Carroll, 2002;

Restrepo et al., 2014).

Besides regionalization mechanisms, oriented cell divisions have been implicated as a general

mechanism in shaping the Drosophila wing and other growing organs (Baena-López et al., 2005;

Legoff et al., 2013; Mao et al., 2013). Other mechanisms like differential cell proliferation and cell

rearrangement could also play a role in the formation of limb buds and their elongation along the

proximal-distal (PD) axis. So far, these processes have not been possible to live image and quantify

in direct developing arthropod limbs. Our understanding of cell dynamics shaping arthropod limbs

has relied exclusively on studies of the indirectly developing Drosophila limbs (primarily the wing

disc) using clonal analysis and lineage tracing across fixed specimens (Baena-López et al., 2005;

González-Gaitán et al., 1994; Resino et al., 2002; Weigmann and Cohen, 1999; Worley et al.,

2013) and recent improvements in imaging discs in vivo and ex vivo (Dye et al., 2017;

Heemskerk et al., 2014; Legoff et al., 2013; Mao et al., 2013; Strassburger et al., 2017;

Tsao et al., 2016; Zartman et al., 2013).

By tracking all constituent cells in direct developing Parhyale limbs, we identified the lineage

restrictions and morphogenetic cellular behaviors operating during limb bud formation and elonga-

tion, and compared these to Drosophila and other arthropod and vertebrate paradigms. We vali-

dated our cellular models of morphogenesis by studying the expression of developmental

regulatory genes implicated in limb patterning and growth.

Results

Imaging Parhyale embryogenesis with multi-view LSFM
Three-day old transgenic embryos with fluorescently labeled nuclei were mounted for LSFM in low

melting agarose with scattered fluorescent beads. Several parameters were optimized to cover all

stages of Parhyale appendage development at single-cell resolution with adequate temporal sam-

pling for accurate cell tracking (see Materials and methods). A typical 4 to 5 day long recording was

composed of more than 1 million images resulting in >7 TB datasets.

The relatively slow tempo of Parhyale development enabled imaging of each embryo from multi-

ple highly overlapping views with minimal displacement of nuclei between views acquired in each

time-point (Figure 1A). As detailed in Materials and methods, development of the entire embryo

was reconstructed using the Fiji (Fiji Is Just ImageJ) biological image analysis platform

(Schindelin et al., 2012) according to the following steps: (1) image file preprocessing, (2) bead-

based spatial registration of views in each time-point, (3) fusion by multi-view deconvolution, (4)
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Figure 1. Reconstruction of Parhyale embryogenesis with multi-view LSFM (see also Figure 1—video 1 and 2). (A) Transgenic Parhyale embryo with

H2B-mRFPruby-labeled nuclei mounted with fluorescent beads (green dots) for multi-view reconstruction. The embryo was imaged from the indicated 5

views with 45˚ rotation around the AP axis between neighboring views. Panels show renderings of the acquired views with anterior to the left. (B) Raw

views were registered and fused into an output image rendered here in different positions around the DV axis. (C–K) Each panel shows a rendering of

Figure 1 continued on next page
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bead-based temporal registration across time-points, (5) computation of temporally registered fused

volumes, and (6) 4D rendering of the spatiotemporally registered fused data (Preibisch et al., 2014;

Preibisch et al., 2010; Schmied et al., 2014). This processing resulted in almost isotropic resolution

of fused volumes (Figure 1B) and was used for visualization of Parhyale embryogenesis with cellular

resolution (Figure 1C–K and Figure 1—video 1).

Segment formation and maturation in Parhyale occurred sequentially in AP progression (Fig-

ure 1—video 2). Appendage morphogenesis involved patterning, growth and differentiation of

ectodermal cells organized in an epithelial monolayer that gave rise to the appendage epidermis. In

our LSFM recordings, we were particularly interested in imaging the limbs in the anterior thorax of

Parhyale embryos that were specified at about 3.5 days after egg-lay (AEL) at 25˚C. Over the next 4

days, limb buds bulged out ventrally, elongated along their PD axis and became progressively seg-

mented until they acquired their definite morphology at around 8 days AEL (Figure 1C–K and Fig-

ure 1—video 2).

During germband formation, the ectoderm contributing to the posterior head and the trunk

became organized in a stereotyped grid-like pattern with ordered AP rows and DV columns of cells

(Figure 2A–A’’) (Browne et al., 2005; Dohle et al., 2004; Dohle and Scholtz, 1988;

Gerberding et al., 2002; Scholtz, 1990; Wolff and Gerberding, 2015). Each row of cells corre-

sponded to one parasegment, which is the unit of early metameric organization in Parhyale embryos,

like in Drosophila and other arthropods (Hejnol and Scholtz, 2004; Scholtz et al., 1994). Two

rounds of longitudinally-oriented cell divisions in each formed parasegmental row (Figure 2B–D’),

together with the progressive addition of new parasegments at the posterior end, led to embryo

axial elongation (Figure 1C–H). Subsequent divisions of ectodermal cells had a more complex pat-

tern disrupting the regularity of the grid and contributing to the transition from parasegmental to

segmental body organization and the evagination of paired appendages in each segment. Append-

age buds appeared successively from the head region backwards (Figure 1D–H) and started length-

ening (Figure 1F–K) and differentiating along their PD axis (Figure 1G–K). At the end of the

imaging period, morphogenesis appeared nearly complete. Thus, multi-view LSFM imaging captured

the entire gamut of differential appendage morphogenetic events along the body axis of the Par-

hyale embryo in a single time-lapse experiment.

MaMuT: a platform for cell tracking in multi-view and multi-terabyte
datasets
To examine the cellular basis of morphogenesis, we developed a novel Fiji plugin to extract cell line-

ages from multi-view and multi-terabyte datasets. This tool was dubbed MaMuT for Massive Multi-

view Tracker (Figure 3) and is a hybrid and extension of two existing Fiji plugins: the BigDataViewer

visualization engine (Pietzsch et al., 2015) and the TrackMate annotation engine (Tinevez et al.,

2017). MaMuT can be installed through the Fiji updater and is tightly integrated with the other Fiji

Figure 1 continued

the embryo at the indicated developmental stage in hours (h) after egg-lay (AEL) and the corresponding time-point (TP) of the recording. Anterior is to

the left and dorsal to the top. Abbreviations: first antenna (An1), second antenna (An2), mandible (Mn), maxilla 1 (Mx1), maxilla 2 (Mx2), thoracic

appendages 1 to 8 (T1–T8), pleonic (abdominal) appendages 1 to 6 (P1–P6) and telson (Te). Color masks indicate the cells contributing to Mx2 (blue),

T1 (green), T2 and T3 (light and dark yellow) and T4 limb (magenta). (C) Embryo at mid-germband stage S13 according to (Browne et al., 2005). The

ventral midline is denoted with the dotted line. (D) S15 embryo. Germband has extended to the posterior egg pole and the first antennal bud is visible

anteriorly. (E) S18 embryo with posterior flexure. Head and thoracic appendages have bulged out up to T4. (F) S19 embryo with prominent head and

thoracic appendage buds up to T6. (G) S20 embryo continues axial elongation ventrally and anteriorly. Appendage buds are visible up to P3. (H) S21

embryo. Segmentation is complete and all appendages have formed. The Mx2 has split into two branches (blue arrowheads) and the T1 limb has

developed two proximal ventral outgrowths (green arrowheads). (I) Embryo at stage S22, (J) S23, and (K) S24 showing different phases of appendage

segmentation. Dorsal outgrowths at the base of thoracic appendages, namely coxal plates (orange arrowheads) and gills (red arrowheads), are

indicated in T2, T3 and T4. Scale bars are 100 mm.

DOI: https://doi.org/10.7554/eLife.34410.003

The following videos are available for figure 1:

Figure 1—video 1. Imaging Parhyale embryogenesis with multi-view LSFM

DOI: https://doi.org/10.7554/eLife.34410.004

Figure 1—video 2. Imaging Parhyale embryogenesis with multi-view LSFM

DOI: https://doi.org/10.7554/eLife.34410.005
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Figure 2. Grid architecture of the Parhyale germband. (A–A’’) Rendering of a Parhyale embryo at the growing germband stage: (A) Right, (A’) ventral,

and (A’’) left side. Color masks indicate the anterior head region (blue), the bilaterally symmetric midgut precursors (green), the orderly arranged

parasegments E1 to E9 (in alternating cyan and magenta), the posterior end of the germband with ongoing organization of cells into new rows (blue),

and the extra-embryonic tissue (white). (B–D) Ventral views of elongating germband at the indicated hours (h) after egg-lay (AEL). Ectodermal cells of

the E8 parasegment are shown in magenta. (B’) Schematics of tracked E8 abcd cells (blue) in the 1-row-parasegment, (C’) anterior ab cells (orange) and

posterior cd cells (red) after the first longitudinally-oriented division in the 2-row-parasegment, and (D’) a (cyan), b (yellow), c (green) and d cells

(magenta) after the second longitudinally-oriented division in the 4-row-parasegment. Both mitotic waves proceed in medial-to-lateral direction. The

resulting daughter cells sort in clearly defined columns that are identified by ascending index numbers with 0 denoting the ventral midline and 1, 2, 3

etc. the more lateral columns with increasing distance from midline.

DOI: https://doi.org/10.7554/eLife.34410.006
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Figure 3. Cell tracking and lineage reconstruction with MaMuT (see also Figure 3—figure supplement 1). (A) Workflow for image data analysis with

MaMuT. Raw views (colored boxes in Multi-view Dataset) are registered (overlapping boxes in Multi-view Registration) and, optionally, fused into a

single volume (large cube in Multi-view Fusion). The raw (and fused) image data together with the registration parameters are imported into MaMuT

(mammoth logo). In its simplest implementation, all data analysis is done with MaMuT in Fiji workspace. In more advanced implementations, automated

segmentation and tracking annotations (yellow point cloud of tracked cells) can be computed separately and imported into MaMuT. The reconstructed

lineage information can be exported from MaMuT in an xml file for specialized analyses in other platforms. (B–D) The MaMuT Viewer windows display

the raw image data and annotations. All tracked nuclei are marked with magenta circles (in view) or dots (out of view). The active selection is marked in

green in all synced Viewers: (B) xy, (B’) xz, and (B’’) yz plane of first view in cyan; (C) xy plane of second view in yellow; (D) xy plane of third view in blue.

(E) The TrackScheme lineage browser and editor where tracks are arranged horizontally and time-points vertically. Tracked objects can be displayed

simply as spots (left track) or with extra information like their names and thumbnails (right track). Tracks are displayed as vertical links. The TrackScheme

is synced with the Viewer windows; the selected nucleus in panels B–D is also highlighted here in green at the indicated time-point (called frame).

Objects can be tracked between consecutive time-points or in larger steps. (F–H) The 3D Viewer window displays interactive animations of tracked

objects depicted as spheres. Spots and tracks can be color-coded by lineage, position and other numerical parameters extracted from the data. (F)

Figure 3 continued on next page
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plugins for LSFM data processing. The source code for MaMuT is available on GitHub

(Tinevez et al., 2018; copy archived at https://github.com/elifesciences-publications/

MaMuT) and detailed tutorials and training datasets can be found at http://imagej.net/MaMuT.

MaMuT is an interactive, user-friendly tool for visualization, annotation, tracking and lineage

reconstruction of large multi-dimensional microscopy data (Figure 3 and Figure 3—figure supple-

ment 1). It is a versatile platform that can be used either for manual or semi-automated tracking of

selected populations of cells of interest, or for visualization and editing of fully automated computa-

tional predictions for systems-wide lineage reconstructions. MaMuT can handle multiple data sour-

ces but was developed primarily to enable the analysis of LSFM datasets. Its unique feature is the

ability to annotate image volumes synergistically from all available input views (detailed in Materials

and methods). This functionality of MaMuT allowed us to identify and track all constituent cells in

developing limbs continuously from the early germband stages until the later stages of 3D organ

outgrowth, when the information from multiple views was required for full reconstructions.

Single-cell lineage reconstruction of a Parhyale thoracic limb
We deployed the manual version of MaMuT to extract the lineage of one Parhyale thoracic limb. By

convention, Parhyale parasegments are identified by ascending indices E1, E2, E3 etc., the AP rows

of ectodermal cells in each parasegment by the letters a, b, c and d, and the DV columns of cells in

each parasegment by numbers (Figure 2). In accordance with previous studies in malacostracan crus-

taceans and other arthropods, our reconstructions demonstrated that each Parhyale thoracic limb

consisted of cells from two neighboring parasegments (Browne et al., 2005; Dohle et al., 2004;

Dohle and Scholtz, 1988; Hejnol and Scholtz, 2004; Scholtz, 1990; Scholtz et al., 1994;

Wolff and Scholtz, 2008). The T2 limb (referred to as limb#1) that we analyzed in-depth

(Figure 4A–E) developed from rows b, c and d of the E4 parasegment and from rows a and b of the

following E5 parasegment (Figure 4F–J’). Cells that arose from rows c, d and a occupied the entire

length of the limb and body wall parts of the T2 segment, while rows b contributed only to the prox-

imal limb and intersegmental territories (Figure 4—figure supplement 1K–O’). Cells in medial col-

umns 1 and 2 gave rise to the nervous system and sternites and were not considered in this study.

The more lateral columns 3 to 9 gave rise to the forming limb (Figure 4—figure supplement 1F–J).

We fully tracked 34 founder cells constituting the limb#1 primordium over 50 hr of development,

giving rise to a total of 361 epidermal cells (Figure 5 and Figure 5—video 1). We started tracking

each of these 34 cells as they were born during transition from the 2-row to the 4-row-parasegment

(Figure 5A–C), and then continuously during the subsequent rounds of divisions, referred to as dif-

ferential divisions (DDs) (Figure 5D). The number of DDs observed during these 50 hr varied dramat-

ically between cells from just 1 DD in the slowest dividing lateral cells of the primordium (cells E4b8,

E5a9/b9) to 5 DDs in the fastest dividing central cells (cells E4c3-c6 and E4d3-d6). Although the

clonal composition of crustacean appendages had been described previously with lipophilic dye

injections (Wolff and Scholtz, 2008), the reconstruction presented here is the most comprehensive

lineage tree for any developing arthropod limb published to date (Figure 5—figure supplement 1).

Early lineage restrictions along the AP and DV axes
We first asked whether these complete reconstructions could reveal any lineage-based subdivisions

in the developing limb#1. The AP restriction at the border of neighboring parasegments at the 1-

row stage has been revealed in Parhyale and other embryos by embryological descriptions, lineage

tracing and expression studies for the engrailed (en) gene that marks the posterior compartment

Figure 3 continued

Digital clone of a nucleus (shown in green) tracked from the grid stage to the limb bud stage. All other tracked nuclei are shown in magenta. (G) Spots

color-coded by displacement and tracks color-coded by velocity. (H) Tracked nuclei in the limb bud mapped out in different colors based on z-position.

In panels B–E and H, the selected nucleus and the neighboring dividing nucleus are indicated with green and magenta arrowheads, respectively.

DOI: https://doi.org/10.7554/eLife.34410.007

The following figure supplement is available for figure 3:

Figure supplement 1. MaMuT layout.

DOI: https://doi.org/10.7554/eLife.34410.008
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(Browne et al., 2005; Dohle et al., 2004; Dohle and Scholtz, 1988; Hejnol and Scholtz, 2004;

Patel et al., 1989; Scholtz, 1990; Scholtz et al., 1994). In agreement with this AP restriction, during

limb specification and outgrowth there was a straight clonal boundary running between the anterior

cells derived from the E4b, c and d rows and the posterior cells derived from the E5a and b rows

(Figure 4F–J’ and Figure 4—figure supplement 1K–O’).

After the well-known AP boundary, we sought to identify any subdivision along the DV axis. Com-

partments were classically discovered by clonal analysis using mitotic recombination. In our recon-

structions, we could generate clones digitally from arbitrary cells at different stages of development.

Figure 4. Early compartmentalization of the Parhyale thoracic limb (see also Figure 4—figure supplements 1 and 2). (A–E) Lateral views of a Parhyale

embryo rendered at the indicated developmental stages shown in hours (h) after egg-lay (AEL). Yellow masks show the left T2 limb (limb#1). (F–J’)

Tracked cells contributing to limb#1 were color-coded by their compartmental identity: Anterior-Dorsal (dark green), Anterior-Ventral (dark magenta),

Posterior-Dorsal (light green), and Posterior-Ventral (light magenta). (F) Ventral view of limb primordium at 84 hr AEL made up by cells from the E4 and

E5 parasegments. Horizontal lines separate AP rows a to d and vertical lines separate DV columns 3 to 9. (F’) Posterior view, rotated 90˚ relative to F.

(G) Ventral view of the limb during early eversion at 96 hr AEL. (G’) Posterior view, rotated 90˚ relative to G. The cells close to the intersection of the

four compartments (yellow arrows) are the first to rise above the level of the epithelium. (H–J) Dorsal views of (H) limb bud at 103 hr AEL, (I) initial limb

elongation at 114 hr AEL and (J) later elongation phase at 123 hr AEL. (H’) Posterior view, rotated 90˚ relative to H, and (I’–J’) ventral views, rotated 180˚

relative to I-J. The intersection of the AP and DV boundaries (yellow arrows) is located at the tip of the limb.

DOI: https://doi.org/10.7554/eLife.34410.009

The following figure supplements are available for figure 4:

Figure supplement 1. Lineage reconstruction of the Parhyale thoracic limb.

DOI: https://doi.org/10.7554/eLife.34410.010

Figure supplement 2. Independent evidence for early compartmentalization of the Parhyale thoracic limb.

DOI: https://doi.org/10.7554/eLife.34410.011
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We reasoned that we could reveal the timing and position of any heritable DV restriction by piecing

together correctly all founder cells of dorsal or ventral identity in a way that the two polyclones (i.e.

compartments) would stay separate and form a lasting straight interface between them. This analysis

suggested that there is indeed a DV separation that took place at the 4-row-parasegment. The DV

boundary ran between the E4b and c rows anteriorly, between the E5a and b rows posteriorly, and

between cells E4c4-c5, E4d3-d4 and E5a4-a5 medially (Figure 4F). Throughout limb#1 development,

Figure 5. Stereotyped and variable cell behaviors in developing Parhyale thoracic limbs (see also Figure 5—

figure supplement 1, Figure 5—source data 1, and Figure 5—video 1). (A–C) Schematic representations of the

T2 limb primordium at the 4-row-parasegment stage displaying the 34 founder cells as squares color-coded based

on their relative birth times: (A) limb#1, (B) limb#2 and (C) their average. The first forming E4c3/d3 cells are

colored in black (0% birth time difference), the last forming E5a9/b9 cells in light gray (100% birth time difference)

and all other cells in intermediate grayscale shades based on their birth time difference relative to E4c3/d3. (D)

Change in cell number over time in limb#1 (blue line) imaged at 26˚C and in the faster developing limb#2 (orange

lines) imaged at 29–30˚C. The first division of the E4cd3 cell is the starting point for both growth curves. Solid lines

show the raw data for the two limbs, while the dashed orange line shows the temporally registered data for

limb#2. Arrowheads indicate the unscaled and scaled time-point up to which the SIMI˚BioCell reconstruction of

limb#2 was complete. An increasing number of cells in limb#2 were not possible to track after this time-point

resulting in a poor registration with the growth curve of limb#1.

DOI: https://doi.org/10.7554/eLife.34410.012

The following video, source data, and figure supplement are available for figure 5:

Source data 1. Relative birth times of founder cells in Parhyale thoracic limbs.

DOI: https://doi.org/10.7554/eLife.34410.013

Figure supplement 1. Reconstructed lineage tree of a Parhyale T2 limb.

DOI: https://doi.org/10.7554/eLife.34410.014

Figure 5—video 1. Animation of tracked cells forming the Parhyale second thoracic limb

DOI: https://doi.org/10.7554/eLife.34410.015
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the dorsal and ventral cells formed a sharp boundary between themselves extending along the PD

axis (Figure 4F–J’).

To investigate the stereotypy of the AP and DV separation across Parhyale limbs, we analyzed a

second, independently imaged and reconstructed T2 limb (referred to as limb#2) from a different

embryo (Figure 4—figure supplement 2A–D). Four identical compartments (anterior-dorsal, ante-

rior-ventral, posterior-dorsal and posterior-ventral) could be derived in this independent reconstruc-

tion with straight boundaries and no cell mixing between neighboring compartments (Figure 4—

figure supplement 2E–H’). These results suggested that in silico studies of comprehensive and accu-

rate lineages can provide novel insights into clonal subdivisions in species where sophisticated

genetic methodologies for lineage tracing are not implemented yet.

Cellular dynamics underlying limb morphogenesis
The first T2 limb (limb#1) was lineaged with the new MaMuT software from a multi-view acquisition

of an embryo imaged at 26˚C (Figure 4), while the second T2 limb (limb#2) was lineaged with the

previously developed SIMI˚BioCell software (Hejnol and Scholtz, 2004; Schnabel et al., 1997) from

a single-view of another embryo imaged at 29–30˚C (Figure 4—figure supplement 2). Analysis of

the birth sequence of the founder cells in the two reconstructed T2 limbs largely confirmed that the

second mitotic wave creating the 4-row-parasegment propagated from anterior to posterior rows

and from medial to lateral columns (Figure 5A–C and Figure 5—source data 1). For example, divi-

sion of the ab cells in parasegment E4 had already progressed to column 5 or even more laterally

before ab3 divided in the next posterior parasegment E5. However, we also found two notable devi-

ations from this general pattern. First, as previously noted (Scholtz, 1990), division of the posterior

cd cells within the 2-row-parasegment was slightly more advanced temporally compared to their

anterior ab sister cells (Figure 5A–C). Second, the temporal sequence of divisions, which gave rise

to a stereotyped number and spatial arrangement of the 34 founder cells in each primordium, exhib-

ited a certain degree of variability between the two analyzed limbs; for example, division of the

E4cd8/9 cells preceded division of E4cd7 in limb#1 but not in lim#2, whereas division of the E4cd6/7

cells preceded division of E4cd5 in limb#2 but not in limb#1 (Figure 5A–B).

We then examined the increase in cell number over time in the two limbs during the analyzed

stages of limb outgrowth. The embryo with limb#2 imaged at higher temperature exhibited a faster

growth rate compared to the embryo with limb#1 (Figure 5D). Yet, it was possible to register the

two growth curves during the period when all cells were tracked faithfully by applying a linear tem-

poral rescaling factor of 1.6, effectively correcting for the temperature-induced change in growth

(Figure 5D). After this temporal alignment, the increase in cell number was very similar between

developing limbs, up to 35 hr after the first tracked division. The matching curves demonstrated that

cell numbers were highly reproducible between developing limbs after aligning them temporally

and allowed their pairwise quantitative comparison (see next section). Beyond this time-point, it was

not possible to track all cells in the outgrowing limb#2 due to their increasing higher density, the

deterioration of the fluorescence signal along the detection axis and the lack of the multi-view infor-

mation for lineaging this limb.

Limb bud formation entailed the remodeling of the flat epithelium into a 3D bulge (Figure 4A–C

and Figure 4—figure supplement 2A–C). At the cellular level, the first step in this transformation

was the rise of few cells at the intersection of the four compartments above the level of the germ-

band at around 96 hr AEL (Figure 4G,G’ and Figure 4—figure supplement 2F,F’). Within the fol-

lowing 3 hr, this initial phase was followed by a large-scale elevation of most cells in the dorsal

compartment. As this elevation continued, the medial ventral cells folded and became apposed to

the medial dorsal cells forming the convex surface of the limb bud (Figure 4H,H’ and Figure 4—fig-

ure supplement 2G,G’). The intersection of the AP and DV boundaries was at the tip of the limb

bud and persisted in this position throughout subsequent elongation (Figure 4H–J’ and Figure 4—

figure supplement 2G–H’). From 103 hr AEL onwards, a second element appeared bulging distally

off the original bud in limb#1 (Figure 4I,I’). The limb elongated as a convoluted rather than straight

cylinder and acquired progressively an S-shape (Figure 4J,J’).
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Quantification of differential cell behaviors during limb bud formation
and elongation
Two cell behaviors implicated in organ morphogenesis were readily quantifiable in our nuclear track-

ings: the pattern of cell proliferation and the orientation of cell divisions. These cell activities have

been traditionally inferred from the distribution, size and shape of somatic clones induced in devel-

oping tissues (Baena-López et al., 2005; González-Gaitán et al., 1994; Mao et al., 2013;

Resino et al., 2002; Weigmann and Cohen, 1999; Worley et al., 2013). This approach could be

also adapted here by generating in silico clones (Figure 6—figure supplement 1). Yet, the MaMuT

reconstructions enabled us to enrich the lineage information with rigorous quantitative analyses of

the rate and orientation of mitotic divisions for all tracked nuclei.

First, we calculated the cell cycle length (CCL), i.e. the branch length for every constituent cell in

the lineage of limb#1 (Figure 6A–D and Figure 6—figure supplement 2). This quantification

revealed a striking difference in CCL between central cells that were dividing faster than their neigh-

bors in the periphery of the primordium (average CCL 7.1–8.5 hr versus 8.5–16.4 hr, respectively).

This difference started from early primordium specification at the 4-row-parasegment (Figure 6E),

but became most pronounced during the global elevation of the limb bud (Figure 4F), suggesting a

causal association between spatially controlled cell proliferation and initiation of limb outgrowth (see

Discussion). During subsequent elongation stages, a high concentration of fast dividing cells was

located at the intersection of the four presumptive compartments, resembling a growth zone at the

Figure 6. Differential cell proliferation rates in the Parhyale thoracic limb (see also Figure 6—figure supplements 1 and 2). (A–D) Lateral views of the

same Parhyale embryo shown in Figure 4. (E–H’) Tracked cells in limb#1 were color-coded by their average cell cycle length according to the scale (in

hours) shown at the bottom. AP and DV boundaries are indicated by the cyan and green line, respectively. Cells for which measurements are not

applicable are shown in gray. (E) Ventral view of the limb primordium at 84 hr (h) after egg-lay (AEL). Some central c and d cells start dividing faster at

the 4-row-parasegment. (F) Ventral view of the limb during early eversion at 96 hr AEL with the middle cells dividing faster than peripheral cells. (G)

Dorsal view of limb bud at 103 hr AEL. Higher proliferation rates are detected at the tip and in the anterior-dorsal compartment. (H) Dorsal and (H’)

ventral view of elongating limb at 114 hr AEL. Cells at the tip of the limb and anterior cells abutting the AP compartment boundary divide the fastest.

DOI: https://doi.org/10.7554/eLife.34410.016

The following figure supplements are available for figure 6:

Figure supplement 1. Digital clonal analysis in the Parhyale thoracic limb.

DOI: https://doi.org/10.7554/eLife.34410.017

Figure supplement 2. Alternative quantifications of cell proliferation rates in the Parhyale thoracic limb.

DOI: https://doi.org/10.7554/eLife.34410.018
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distal tip of the growing appendage (Figure 6G,H). Another row of faster dividing cells was localized

in the anterior cells abutting the AP boundary (Figure 6H,H’).

To explore the levels of variability in the pattern of cell divisions, we performed a hierarchical clus-

tering of the founder cells within each of the two analyzed T2 limbs based on a lineage distance met-

ric computed from the division patterns exhibited by the 34 cells (see Material and methods). This

analysis revealed very similar profiles in the two limbs, as well as their average, with their cells form-

ing three clusters (Figure 7A–C and Figure 7—source data 1): the first cluster contained cells E4c3-

c7 and E4d3-d7 displaying the fastest proliferation rates and giving rise to most of the limb struc-

tures; the second cluster contained the majority of E4 and E5 b cells corresponding to the slowest

dividing cells of ventral fate and contributing to the proximal limb and intersegmental territories; the

third cluster contained the remaining cells exhibiting mixed division patterns, including most of the

posterior E5a cells and the more lateral E4c and d cells. This clustering suggested that a common

set of patterning mechanisms operates across T2 limbs specifying the distinct properties of these

groups of cells. At the same time, the linkages and distances of cells within each cluster varied from

identical (e.g. E4b3/b4) to very different (e.g. E4d4/d5) between limbs, revealing a certain degree of

flexibility in the behaviors exhibited by homologous cells in a limb-specific manner. Extra support for

this interpretation came from plotting the distribution of the lineage distances between founder cells

across the two limbs. Pairwise comparisons revealed low distances between the 34 homologous cells

in limb#1 and limb#2 with a median difference of 19.3% (Figure 7D). Thus, homologous cells exhib-

ited similar but not identical division patterns across limbs. The distribution of these distances

between homologous cells was significantly shifted towards lower values relative to pairwise

Figure 7. Lineage comparisons within and across Parhyale thoracic limbs (see also Figure 7—source data 1). (A) Hierarchical clustering of the 34

founder cells in the Parhyale T2 limb based on a distance matrix computed from their average division patterns in limb#1 and limb#2. The cluster of

E4c3-c7 and E4d3-d7 cells at the bottom is shown in blue, the middle cluster containing primarily the E4 and E5 b cells is shown in red, and the top

cluster with the remaining cells is shown in magenta. (B,C) Hierarchical clustering of the 34 founder cells in (B) limb#1 and (C) limb#2 based on distance

matrices computed from the division patterns observed in each limb. The cells in the two trees (color-coded as in A) display very similar clustering

profiles. Heat maps show the timing and number of divisions in five time-point-windows. For each founder cell, divisions are represented with

rectangles color-coded according to the number of divisions shown in the color bar. The x-axis shows the unscaled tracking time for each limb starting

from division of the E4cd3 cell and the white line indicates the time-point at which cells were compared. (D) Box plots showing the distribution of

lineage distances in pairwise comparisons between non-homologous (left) and homologous (right) founder cells across the two limbs. The two

distributions differ significantly at p�0.01 based on the Kolmogorov-Smirnov test. The data used for limbs #1 and #2 in panels A and D were at a

comparable stage of their development indicated with the arrowheads in Figure 5D.

DOI: https://doi.org/10.7554/eLife.34410.019

The following source data is available for figure 7:

Source data 1. Lineage distances between founder cells in Parhyale thoracic limbs.

DOI: https://doi.org/10.7554/eLife.34410.020
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comparisons between non-homologous cells across the two limbs (Figure 7D and Figure 7—source

data 1).

Next, we looked for any biases in the orientation of mitotic divisions that could be associated

with limb morphogenesis (Figure 8A–E). All early divisions in the limb#1 primordium were parallel to

the AP axis confirming the strict longitudinal orientation of row divisions (Figure 8F). Cell divisions

acquired a more heterogeneous pattern after the 4-row-parasegment (Figure 8G). An increasing

number of mitotic spindles aligned progressively along the PD axis during limb bud formation

(Figure 8H) and elongation (Figure 8I,J). Collectively, the information extracted from our spatiotem-

porally resolved lineage trees strongly suggested that Parhyale limb outgrowth is driven by at least

two patterned cell behaviors: the differential rates of cell proliferation and the orderly arrangement

of mitotic spindles.

Cellular basis of the elaboration of the limb PD axis
To understand the cellular basis of the establishment of positional values along the PD axis, we fol-

lowed the fate of cells during T2 limb#1 segmentation. Segmentation involved the progressive sub-

division of the elongating PD axis into an increasing number of elements (Figure 9A–L). We tracked

neighboring cells in rows E4c (cells E4c5-c8, not shown) and E5a (cells E5a5-a8, shown in Figure 9A–

F) from 84 to 151 hr AEL. These cells were ideal for reconstructing the PD axis at single-cell resolu-

tion because they mostly divided proximodistally forming elongated thin clones (Figure 6—figure

supplement 1).

Figure 8. Oriented cell divisions in the Parhyale thoracic limb. (A–E) Cells in the T2 limb#1 shown at the indicated hours (h) after egg-lay (AEL) color-

coded by the orientation of mitotic divisions relative to the AP boundary (cyan line). The AP boundary is parallel to and an accurate proxy for the PD

axis during limb outgrowth. The absolute values of the division angle relative to the AP boundary are sorted in 6 bins of 15˚. Gray cells in panel A

indicate non-divided cells. (F–J) Rose diagrams with 15˚ intervals showing the percentage of mitotic events falling in each bin color-coded as in A-E (n

shows the actual number of divisions). (A,F) Only longitudinally-oriented divisions (perpendicular to the AP boundary) are detected in the limb

primordium 73 to 84 hr AEL. (B,G) Most cells still divide longitudinally 84 to 96 hr AEL, but an increasing number of dividing cells align parallel to the

AP boundary during early eversion. (C,H) More than 59% of cells divide 0˚�30˚ relative to the AP boundary in the limb bud from 96 to 103 hr AEL. (D,I)

Early and (E,J) later limb elongation phase from 103 to 123 hr AEL with the large majority of cells (>68%) dividing 0˚�30˚ relative to the AP boundary.

DOI: https://doi.org/10.7554/eLife.34410.021
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This analysis showed that the cells that gave rise to the proximal, medial and distal limb segments

occupied distinct mediolateral positions in the germband grid at the 4-row-parasegment

(Figure 9M) and distinct PD positions in the early limb bud (Figure 9N). When the limb bud split

into two elements, the proximal element gave rise to the proximal limb segments coxa, basis and

ischium, while the distal element gave rise to the distal limb segments merus, carpus, propodus, and

dactylus (Figure 9O–R). The cells forming the distal segments originated as a disc of cells centered

Figure 9. Elaboration of the Parhyale limb PD axis (see also Figure 9—figure supplement 1). (A–F) Rendering of the T2 limb#1 at the indicated hours

(h) after egg-lay (AEL). The cells contributing to the T2 primordium are shown in cyan in panel A. Magenta dots indicate the tracked cells E5a5-a8 and

their descendants. Panel A shows a ventral view of the germband and panels B–F posterior views of the T2 limb. (G–L) Same stages as in A–F with color

masks showing (G) the limb primordium, (H) the early limb bud, (I) the 2-partite limb with the first subdivision between ischium/merus, (J) the 3-partite

limb after the second subdivision between basis/ischium, (K) the 6-partite limb after three more subdivisions between coxa/basis, propodus/dactylus

and carpus/propodus, and (L) the final pattern made of 7 segments after the carpus/merus division. Colored lines indicate the relationships between

limb parts in consecutive stages. (M–R) Schematics of limb subdivisions along the PD axis at the same time-points as in panels G–L. The rectangular

lattice in panel M shows the 9 columns of cells in the 4-row-parasegment. White lines in panels N–R delineate the subdivisions of the T2 limb. The

origin of each of the seven limb segments is shown with discs color-coded by segment.

DOI: https://doi.org/10.7554/eLife.34410.022

The following figure supplement is available for figure 9:

Figure supplement 1. Proximal-distal lineage separation in the growing Parhyale thoracic limb.

DOI: https://doi.org/10.7554/eLife.34410.023
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at the intersection of the four compartments with contributions from the E4c4-c6, E4d3-d6 and

E5a3-a6 sublineages (Figure 9—figure supplement 1). During the subsequent elongation stages,

distal cells kept separate from more proximal cells at the prospective ischium/merus joint, suggest-

ing that limb segments may pose secondary lineage restrictions along the PD axis (Figure 9—figure

supplement 1) (Milán and Cohen, 2000). This first ischium/merus subdivision (Figure 9O) was fol-

lowed by the basis/ischium subdivision (Figure 9P), the propodus/dactylus, carpus/propodus and

coxa/basis subdivisions (Figure 9Q), and the carpus/merus subdivision (Figure 9R).

Expression of limb patterning genes validates cellular models of
Parhyale limb morphogenesis
To test our cellular models and make a first link between expression of limb patterning genes and

morphogenetic cell behaviors, we analyzed by in situ hybridization the expression of the Parhyale

decapentaplegic (Ph-dpp) gene that encodes a Bone Morphogenetic Protein 2/4 signaling molecule

(Figure 10—figure supplement 1G). In Drosophila, Dpp signaling controls dorsal cell fate in the leg

and growth via cell proliferation in the wing (Barrio and Milán, 2017; Bosch et al., 2017; Brook and

Cohen, 1996; Matsuda and Affolter, 2017; Rogulja and Irvine, 2005; Svendsen et al., 2015).

Therefore, probing Ph-dpp expression in Parhyale limb buds could provide a direct test for our cell-

based predictions regarding the DV lineage restriction and the differential cell proliferation rates in

the limb primordium.

Analysis of embryos 84–96 hr AEL revealed alternating regions of high/moderate and low/no Ph-

dpp expression in the anterior thoracic region (Figure 10A,A’and Figure 10—figure supplement

1A,A’). We used MaMuT to annotate both the gene expression and identity of cells in stained T2

limbs at cellular resolution. Acknowledging that the graded Ph-dpp expression obscured the precise

limits of its expression, this analysis suggested that the region of high/moderate Ph-dpp expression

was localized to rows E4c, E4d and E5a that mostly contribute to the presumptive dorsal compart-

ment, while low/no Ph-dpp expression could be detected in the prospective ventral rows E4b

Figure 10. Analysis of developmental regulatory genes corroborates cellular models of limb morphogenesis (see also Figure 10—figure supplement

1). (A–F) Brightfield images of T2, T3 and T4 limbs from S16-S18 embryos (top row, 84–96 hr AEL) and S19 embryos (bottom row, 96–108 hr AEL)

stained by in situ hybridization for Ph-dpp (left columns), Ph-Doc (middle columns) and Ph-H15 (right columns). (A’–F’) Same limbs as in panels A–F with

the nuclear DAPI staining in blue overlaid with the Ph-dpp, Ph-Doc or Ph-H15 pattern false-colored in green. Embryos stained for Ph-Doc were co-

hybridized with Ph-en2 shown in magenta to label the posterior compartment. (A’’–F’’) MaMuT reconstructions of the T2 limbs shown in panels A–F.

The top panels are color-coded by gene expression with Ph-dpp, Ph-Doc or Ph-H15 expressing cells shown in green and non-expressing cells in blue.

Bottom panels indicate the identity of the same cells; cells are color-coded by AP rows, column number is shown at the top and white lines connect

sister cells. All panels show ventral views with anterior to the top and ventral midline to the left. Scale bars are 20 mm.

DOI: https://doi.org/10.7554/eLife.34410.024

The following figure supplement is available for figure 10:

Figure supplement 1. Expression of Ph-dpp, Ph-Doc and Ph-H15 during Parhyale limb bud formation.

DOI: https://doi.org/10.7554/eLife.34410.025
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anteriorly and E5b posteriorly (Figure 10A’’). Furthermore, Ph-dpp expression faded in the medial

(prospective ventral) columns and the border between high/moderate and low/no expressing cells

was located in descendent cells from column 4 as also predicted by our in silico cellular analysis

(Figure 10A–A’’). In embryos 96–108 hr AEL, the domain of strong Ph-dpp expression was more

localized in the row of anterior-dorsal cells abutting the AP boundary (Figure 10D–D’’ and Fig-

ure 10—figure supplement 1D,D’).

To get an insight into the downstream effects of Dpp signaling in the Parhyale limb, we also ana-

lyzed expression of the Tbx6/Dorsocross (Doc) gene (Figure 10—figure supplement 1H) that

responds to high levels of Dpp signaling in the dorsal region of the Drosophila embryo and leg disc

(Svendsen et al., 2015). Expression of the single Doc gene identified in Parhyale (Ph-Doc) was

detected in a subset of the Ph-dpp-expressing cells at 84–96 hr AEL (Figure 10B–B’’ and Fig-

ure 10—figure supplement 1B,B’), while 12 hr later the two genes exhibited essentially identical

strong expression in the cells abutting the AP boundary (Figure 10E–E’’ and Figure 10—figure sup-

plement 1E,E’). In both stages analyzed, cells expressing Ph-dpp and Ph-Doc also exhibited the

highest rates of cell proliferation (compare Figure 10D’’,E’’ with Figure 6G,H) providing strong cor-

relative evidence for a morphogen-dependent control of Parhyale limb growth.

As a last validation of our cellular models, we probed the expression of the Parhyale H15 (Ph-

H15) gene during early limb formation (Figure 10—figure supplement 1H). In Drosophila and other

arthropods studied, the Tbx20 genes H15/midline act antagonistically to dorsal selector genes and

control ventral cell fate in developing legs (Janssen et al., 2008; Svendsen et al., 2015). Our model

for the timing and position of limb DV compartmentalization predicted that Ph-H15 would come up

in the b cells from the 4-row-parasegment stage onwards. In agreement with these predictions, in

situ hybridization analyses detected the Ph-H15 transcripts specifically in the b row cells. Further-

more, expression initiated shortly after the ab cells divided longitudinally into the a and b daughter

cells in each forming 4-row-parasegment (Figure 10C–C’’ and Figure 10—figure supplement 1C,

C’). Although Ph-H15 was first activated in all b cells, during later divisions Ph-H15 expression faded

in the more medial columns (Figure 10C–C’’) and persisted only in the ventral limb cells close to the

body wall (Figure 10F–F’’ and Figure 10—figure supplement 1F,F’).

All these results demonstrated how the reconstruction of cell lineages and behaviors can provide

solid predictions and powerful contexts to study the expression and function of associated genes.

Discussion
We have established an integrated framework to study the cellular and genetic basis of developmen-

tal morphogenesis. By combining light-sheet microscopy with new software for cell tracking in large

multi-dimensional datasets, we have revealed the cellular architecture and dynamics underlying epi-

thelial remodeling and organ morphogenesis in a non-conventional experimental model.

Reconstruction of Parhyale embryogenesis with multi-view LSFM and
MaMuT
The LSFM technology is empowering biologists to image developmental processes with unprece-

dented spatiotemporal resolution. Together with MaMuT-based lineaging and tracking, various

experimental designs can be addressed ranging from analyzing a small subset of objects in the

imaged volume to systems-wide analyses of all constituent parts.

The lineage reconstructions presented in this article were generated manually and required 2 to 3

months for each limb. More generally, manual lineaging efforts can take anything between few days

to several months depending on the number of tracked cells, the complexity of the imaged tissue of

interest, the duration of the tracked process, the quality of the image dataset, and the desired accu-

racy and completeness of the reconstructed lineages. The main advantage of manual tracking by

experts is that the extracted lineage is more likely error-free compared to results of automated

trackers that must be manually proofread before any meaningful analysis can be attempted. In addi-

tion to allowing reliable biological insights, manually generated lineages serve as important ‘ground

truth’ datasets for the application of machine learning based automated tracking solutions

(Ulman et al., 2017).

Acknowledging that fully manual tracking is a laborious and repetitive task that may be impracti-

cal for large-scale comparative lineaging approaches, the latest MaMuT architecture offers, in
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addition to manual tracking, two functionalities for automated tracking: (i) a semi-automated option

where individual nuclei can be selected by the user and tracked computationally over time, and (ii)

the option to import into MaMuT fully automated annotations generated by the Tracking with

Gaussian Mixture Models (TGMM) software (Amat et al., 2014), which is currently one of the most

accurate and computationally efficient methods for segmentation and tracking of fluorescently

labeled nuclei. After the import, MaMuT can be used to manually proofread and correct the results

of the automated tracking pipeline. However, we also note that the graph data structure in MaMuT

can handle efficiently up to about a hundred thousand annotations. This number is well within the

realm of manually generated annotations, but is normally exceeded by large-scale fully automated

lineaging engines like TGMM. As a trade-off until this constraint is addressed in the future, we also

provide users the option to crop the imported TGMM annotations in space and/or in time to make

them compatible with MaMuT.

The crustacean Parhyale is already an attractive new model for developmental genetic and func-

tional genomic studies (Kao et al., 2016; Liubicich et al., 2009; Martin et al., 2016;

Pavlopoulos et al., 2009; Stamataki and Pavlopoulos, 2016). By extending here the experimental

toolkit with multi-view LSFM and cellular reconstructions with MaMuT, it is feasible to study gene

expression and function in the context of single-cell resolution fate maps. Especially when it comes

to appendage development, the Parhyale body plan provides exceptional material to probe the

molecular and cellular basis of tissue patterning, growth and differentiation during normal embryo-

genesis and post-embryonic regeneration (Alwes et al., 2016; Konstantinides and Averof, 2014).

The tempo and mode of development has also important ramifications for Parhyale imaging and

tracking. The relatively slow tempo of development enables us to image embryos at a very high spa-

tial resolution through the acquisition of multiple and highly overlapping views without compromis-

ing the temporal resolution. Parhyale can match the spatiotemporal resolution of Drosophila or

zebrafish LSFM datasets, even when access to highest-speed instruments is not available. Due to the

optical clarity of the embryo and positioning of the appendages on the surface of the developing

embryo, all constituent cells can be followed for quantitative analyses. Finally, the stereotyped and

ordered organization of the Parhyale ectoderm will allow to identify homologous cells and compare

lineages, cell behaviors and associated genes between serially homologous structures in the same

embryo, across embryos and even across malacostracan crustaceans (Browne et al., 2005;

Dohle et al., 2004; Dohle and Scholtz, 1988; Gerberding et al., 2002; Hejnol and Scholtz, 2004;

Scholtz, 1990; Scholtz et al., 1994; Wolff and Gerberding, 2015; Wolff and Scholtz, 2002;

2008).

Cellular basis of arthropod limb morphogenesis: lessons from Parhyale
The combination of multi-view light-sheet imaging and tracking has enabled a detailed analysis of

the dynamics of all constituent cells in an outgrowing and elongating animal limb. So far, these

descriptions have been only partly available for Drosophila limbs that are derived and not represen-

tative for many insects, much less arthropods in general, in two very important respects. First, limb

specification, patterning, growth and differentiation take place at distinct developmental stages dur-

ing embryonic, larval and pupal development. On the contrary, all these processes come about dur-

ing embryogenesis in most other arthropods, including Parhyale. In addition to these heterochronic

shifts, limb patterning mechanisms in Drosophila operate in the flat imaginal disc epithelia, rather

than the 3D epithelial outgrowths observed in Parhyale that are typical for most other arthropod

limbs.

Classical lineaging experiments revealed that tissue compartmentalizations in the Drosophila

wing and leg primordia take place along the AP axis during early embryogenesis and along the DV

axis during larval development (Garcia-Bellido et al., 1973; Steiner, 1976). Our understanding of

the AP and DV organization in other arthropod limbs has relied so far entirely on gene expression

studies. Expression of segment polarity genes, like en and wingless (wg), has demonstrated that the

AP separation is conserved across arthropods and takes place during segmentation (Angelini and

Kaufman, 2005; Damen, 2007). In Parhyale, the AP compartment boundary is established at the 1-

row stage at the interface of neighboring parasegments (Browne et al., 2005; Dohle and Scholtz,

1988; Hejnol and Scholtz, 2004; Scholtz et al., 1994). With the exception of descriptive gene

expression studies (Angelini and Kaufman, 2005; Damen, 2007; Janssen et al., 2008), the mecha-

nism, timing and position of the DV separation in arthropod limbs has remained unexplored at the
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cellular level due to the lack of lineage tracing methodologies. Even in Drosophila, it is not entirely

clear yet whether DV separation in the leg disc relies on heritable or non-heritable subdivisions or a

combination of both mechanisms (Brook and Cohen, 1996; Steiner, 1976; Svendsen et al., 2015).

By analyzing the dynamics of digital clones in reconstructed T2 limbs, we have been able to

explore the cellular basis of limb patterning in Parhyale. This approach first confirmed the position

and timing of the known AP compartment boundary, and then revealed a putative heritable subdivi-

sion along the DV axis from the 4-row-parasegment stage onwards. Interestingly, expression of the

Distal-less gene, which is an early marker of limb specification, is first detected at the 4-row-paraseg-

ment in the d3/d4 cells located at the intersection of the AP and DV boundaries (Browne et al.,

2005; Hejnol and Scholtz, 2004). This intersection also marks the tip of the forming limb through-

out epithelial remodeling and outgrowth. Thus, the Parhyale limb appears to perfectly conform to

Meihardt’s boundary model (Meinhardt, 1983). This model postulates that a secondary develop-

mental field, i.e. the PD axis of a limb that is specified during embryogenesis de novo relative to the

main AP and DV body axes, initiates and is patterned around the intersection of the AP and DV com-

partment boundaries.

The inference of the four constituent compartments provided a powerful framework to interpret

the cell behaviors during limb development both in a qualitative and quantitative manner. This analy-

sis strongly suggested that a combination of cellular mechanisms is at work to remodel the embry-

onic epithelium during limb outgrowth. First, there was a significant difference in cell proliferation

rates between the center (faster dividing) and the periphery (slower dividing) of the limb primordium

from early specification until limb bud formation. Such a growth-based morphogenesis model has

been the dominant hypothesis for almost 50 years to explain the outgrowth of the vertebrate limb

(Ede and Law, 1969; Hornbruch and Wolpert, 1970; Morishita and Iwasa, 2008; Searls and Jan-

ners, 1971) – oriented cell motion and division were also recently involved (Boehm et al., 2010;

Wyngaarden et al., 2010) - but has never been implicated as the driving mechanism behind arthro-

pod limb evagination. Limb bud formation can be reduced by inhibiting cell proliferation pharmaco-

logically, as has been demonstrated in larvae of another crustacean with direct developing limbs, the

brine shrimp Artemia (Freeman et al., 1992). Second, limb elongation was tightly associated - and

presumably effected - by two patterned cell behaviors: i) increased cell proliferation at the tip of the

limb resembling a putative growth zone which generates many of the new cells necessary for limb

outgrowth, and ii) strong bias in the orientation of mitotic divisions parallel to the PD axis of growth.

Third, the different PD domains of the Parhyale limb could be traced back to distinct mediolateral

positions in the early germband stage. During limb bud formation and elongation, there was a tran-

sition and refinement of these positional values along the PD axis. Fourth, besides the early AP and

DV lineage restrictions, we observed a secondary PD separation between neighboring segments

during limb segmentation.

Overall, our approach demonstrates that the comprehensive fine-scale reconstruction of a devel-

opmental process can shed light into functionally interdependent patterning mechanisms operating

across multiple scales.

Reconciling genetic with cellular models of limb morphogenesis
In the Drosophila leg disc, the Dpp and Wg ligands are induced at the AP boundary in the dorsal

and ventral cells, respectively. Dpp and Wg create a concentration gradient with the highest overlap

in their expression in the center of the disc and cooperate in the establishment of concentric

domains of gene expression of a set of limb gap genes that pattern the PD axis (Estella et al.,

2012). Dpp and Wg signaling also act antagonistically to control dorsal and ventral cell fate through

regulation of the downstream selector T-box genes optomotor blind/Doc dorsally and H15/midline

ventrally (Svendsen et al., 2015).

The PD expression of the limb gap genes is conserved in arthropods, including Parhyale

(Angelini and Kaufman, 2005; Browne et al., 2005; Prpic and Telford, 2008). Our analysis of dpp,

Doc and H15 expression in a crustacean species also suggests conserved roles for these genes in

dorsal and ventral cell fate specification, and provides extra independent support for a compart-

ment-based mechanism to pattern the DV axis of arthropod limbs. Wg expression is currently not

known in Parhyale. If it is expressed in a complementary pattern to Ph-dpp in the prospective ventral

territory, it could point to a similar logic for patterning the limb PD axis like in Drosophila. In fact,

our reconstructions have suggested that the distal DV margin (that in this scenario would experience
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the highest levels of Dpp and Wg signaling) is located between descendent cells from columns 4

and 5. These are indeed the cells that contribute to the distal-most limb segments.

Although the function of the Dpp morphogen gradient in patterning the Drosophila limbs is well

understood, its role in promoting growth is still controversial (Akiyama and Gibson, 2015;

Barrio and Milán, 2017; Bosch et al., 2017; Harmansa et al., 2015; Matsuda and Affolter, 2017;

Restrepo et al., 2014; Rogulja and Irvine, 2005). The anterior-dorsal cells expressing Ph-dpp and

Ph-Doc were among the fastest dividing cells in the center of the limb primordium. Later, strong

expression of Ph-dpp and Ph-Doc resolved into a row of cells abutting the AP compartment bound-

ary. Again, these cells displayed some of the highest proliferation rates quantified during limb out-

growth, suggesting a Dpp-dependent control of Parhyale limb growth. We anticipate that the LSFM

imaging and tracking approaches described here, together with the recent application of CRSIPR/

Cas-based methodologies for genome editing (Kao et al., 2016) will provide excellent tools to fur-

ther explore how morphogens like Dpp regulate growth and form at cellular resolution.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(Parhyale hawaiensis)

Wild Type PMID: 15986449

Strain, strain
background
(P. hawaiensis)

PhHS>H2B-mRFPruby This paper

Recombinant DNA
reagent

pMi{3xP3>EGFP; PhHS>H2B-
mRFPruby}

This paper

Software, algorithm MaMuT This paper http://imagej.net/MaMuT

Software, algorithm SIMI˚BioCell PMID: 9133433 http://simi.com/en/products/
cell-research

Gene (P. hawaiensis) Ph-dpp This paper GenBank: KY696711

Gene (P. hawaiensis) Ph-Doc This paper GenBank: KY696712

Gene (P. hawaiensis) Ph-en2 This paper GenBank: KY696713

Gene (P. hawaiensis) Ph-H15 This paper

Generation of transgenic Parhyale labeled with H2B-mRFPruby
Parhyale hawaiensis (Dana, 1853) rearing, embryo collection, microinjection and generation of trans-

genic lines were carried out as previously described (Kontarakis and Pavlopoulos, 2014). To fluo-

rescently label the chromatin in transgenic Parhyale, we fused the coding sequences of the

Drosophila histone H2B and the mRFPruby monomeric Red Fluorescent Protein and placed them

under control of a strong Parhyale heat-inducible promoter (Pavlopoulos et al., 2009). H2B was

amplified from genomic DNA with primers Dmel_H2B_F_NcoI (5’-TTAACCATGGCTCCGAAAAC

TAGTGGAAAG-3’) and Dmel_H2B_R_XhoI (5’-ACTTCTCGAGTTTAGAGCTGGTGTACTTGG-3’), and

mRFPruby was amplified from plasmid pH2B-mRFPruby (Fischer et al., 2006) with primers mRFPru-

by_F_XhoI (5’-ACAACTCGAGATGGGCAAGCTTACC-3’) and mRFPruby_R_PspMOI (5’-TA

TTGGGCCCTTAGGATCCAGCGCCTGTGC-3’). The NcoI/XhoI-digested H2B and XhoI/PspOMI-

digested mRFPruby fragments were cloned in a triple-fragment ligation into NcoI/NotI-digested vec-

tor pSL-PhHS>DsRed, placing H2B-mRFPruby under control of the PhHS promoter

(Pavlopoulos et al., 2009). The PhHS>H2B-mRFPruby-SV40polyA cassette was then excised as an

AscI fragment and cloned into the AscI-digested pMinos{3xP3>EGFP} vector (Pavlopoulos and

Averof, 2005; Pavlopoulos et al., 2004), generating plasmid pMi{3xP3>EGFP; PhHS>H2B-

mRFPruby}. Three independent transgenic lines were established with this construct for heat-induc-

ible expression of H2B-mRFPruby. The most strongly expressing line was selected for all applica-

tions. In this line, nuclear H2B-mRFPruby fluorescence plateaued about 12 hr after heat-shock and
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high levels of fluorescence persisted for at least 24 hr post heat-shock labeling chromatin in all cells

throughout the cell cycle.

Multi-view LSFM imaging of Parhyale embryos
Standard procedures for multi-view LSFM recordings of Parhyale embryogenesis were established

after imaging several dozen embryos individually in pilot experiments, first on a Zeiss prototype and,

later on, on the commercial Zeiss Lightsheet Z.1 microscope. Several parameters described below

were optimized to ensure that the two embryos used for lineage reconstruction (i) survived the

recording process and hatched into juveniles without any morphological abnormalities, and (ii) were

imaged with the appropriate spatiotemporal resolution and signal-to-noise ratio for accurate and

comprehensive cell tracking in developing appendages.

To prepare embryos for LSFM imaging, 2.5 day old transgenic embryos (early germband stage;

S11 according to (Browne et al., 2005)) were heat-shocked for 1 hr at 37˚C. About 12 hr later (stage

S13), they were mounted individually in a cylinder of 1% low melting agarose (SeaPlaque, Lonza)

inside a glass capillary (#701902, Brand GmbH) with their AP axis aligned parallel to the capillary. A

1:4000 dilution of red fluorescent beads (#F-Y050 microspheres, Estapor Merck) were included in

the agarose as fiducial markers for multi-view reconstruction. During imaging, the embedded

embryo was extruded from the capillary into the chamber filled with artificial seawater supplemented

with antibiotics and antimycotics (FASWA; (Kontarakis and Pavlopoulos, 2014)). The FASWA in the

chamber was replaced every 12 hr after each heat shock (see below). The Zeiss Lightsheet Z.1 micro-

scope was equipped with a 20x/1.0 Plan Apochromat immersion detection objective and two 10x/

0.2 air illumination objectives producing two light-sheets 5.1 mm thick at the waist and 10.2 mm thick

at the edges of a 488 mm x 488 mm field of view.

We started imaging Parhyale embryogenesis from three angles/views (the ventral side and the

two ventral-lateral sides 45˚ apart from ventral view) during 3 to 4.5 days AEL to avoid photo-damag-

ing the dorsal thin extra-embryonic tissue, and continued imaging from five views (adding the two

lateral sides 90˚ apart from ventral view) during 4.5 to 8 days AEL. A multi-view acquisition was

made every 7.5 min at 26˚C. The H2B-mRFPruby fluorescence levels were replenished regularly every

12 hr by raising the temperature in the chamber from 26˚C to 37˚C and heat-shocking the embryo

for 1 hr. Each view (z-stack) was composed of 250 16-bit frames with voxel size 0.254 mm x 0.254 mm

x 1 mm. Each 1920x1920 pixel frame was acquired using two pivoting light-sheets to achieve a more

homogeneous illumination and reduced image distortions caused by light scattering and absorption

across the field of view. Each optical slice was acquired with a 561 nm laser and exposure time of 50

msec. With these conditions, Parhyale embryos, like the one bearing the T2 limb#1 analyzed in detail

with MaMuT, were imaged routinely for a minimum of 4 days or even up to hatching. After hatching,

the morphology of imaged specimen was compared between the left and the right side, as well as

to its non-imaged siblings, to confirm that no obvious developmental or morphological abnormali-

ties were detected.

The embryo bearing the T2 limb#2 was imaged on a Zeiss LSFM prototype (Preibisch et al.,

2010) that offered single-sided illumination and single-sided detection with a 40x/0.8 immersion

objective. One side of this embryo was imaged from 3 views 40˚ apart (ventral, ventral-left and left)

every 7.5 min over a period of 66 hr. Each view was composed of 150 frames (1388 � 1080 pixels)

with voxel size 0.366 mm x 0.366 mm x 2 mm. The embryo was imaged at 29–30˚C and was heat-

shocked for 1 hr twice a day by perfusing warm FASWA at 37 ˚C. Cell tracking was carried out with

the SIMI˚BioCell software (Hejnol and Scholtz, 2004; Schnabel et al., 1997) on a single view, the

ventral-left view, of this dataset. Lineage reconstruction of limb#2 with SIMI˚BioCell was complete

up to about 22 hr of imaging time (35 hr when scaled to the growth rate of limb#1). After this time-

point, an increasing number of cells in limb#2, in particular the descendant cells from the medial col-

umns, became intractable.

4d reconstruction of Parhyale embryogenesis from multi-view LSFM
image datasets
Parhyale LSFM acquisitions typically resulted in 192 time-points/240K images/1.7 TB of raw data per

day. Image processing was carried out on a MS Windows 7 Professional 64-bit workstation with 2

Intel Xeon E5-2687W processors, 256 GB RAM (16 X DIMMs 16384 MB 1600 MHz ECC DDR3), 4.8
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TB hard disk space (2 � 480 GB and 6 � 960 GB Crucial M500 SATA 6 Gb/s SSD), 2 NVIDIA Quadro

K4000 graphics cards (3 GB GDDR5). The workstation was connected through a 10 GB network

interface to a MS Windows 2008 Server with 2 Intel Xeon E5-2680 processors, 196 GB RAM (24 X

DIMM 8192 MB 1600 MHz ECC DDR3) and 144 TB hard disk space (36 X Seagate Constellation ES.3

4000 GB 7200 RPM 128 MB Cache SAS 6.0 Gb/s). All major LSFM image data processing steps were

done with software modules available through the Multiview Reconstruction Fiji plugin (http://

imagej.net/Multiview-Reconstruction) according to the following steps:

1. Preprocessing: Image data acquired on Zeiss Lightsheet Z.1 were saved as an array of czi files
labeled with ascending indices, where each file represented one view (z-stack). czi files were
first renamed into the ‘spim_TL{t}_Angle{a}.czi’ filename, where t represented the time-point
(e.g. 1 to 192 for a 1 day recording) and a the angle (e.g. 0 for left view, 45 for ventral-left
view, 90 for ventral view, 135 for ventral-right view and 180 for right view), and then resaved
as tif files.

2. Bead-based spatial multi-view registration: In each time-point, all views were aligned to each-
other and to an arbitrary reference view fixed in 3D space (e.g. views 0, 45, 90, 135 aligned to
180) using the bead-based registration option (Preibisch et al., 2010). In each view, fluores-
cent beads scattered in the agarose were segmented with the Difference-of-Gaussian algo-
rithm using a sigma value of 3 and an intensity threshold of 0.005. Corresponding beads were
identified between views and were used to determine the affine transformation model that
matched the views within each time-point.

3. Fusion by multi-view deconvolution: Spatially registered views were down-sampled twice for
time and memory efficient computations during the image fusion step. Input views were then
fused into a single output 3D image with a more isotropic resolution using the Fiji plugin for
multi-view deconvolution estimated from the point spread function of the fluorescent beads
(Preibisch et al., 2014). The same cropping area containing the entire imaged volume was
selected for all time-points. In each time-point, the deconvolved fused image was calculated
on GPU in blocks of 256 � 256�256 pixels with 7 iterations of the Efficient Bayesian method
regularized with a Tikhonov parameter of 0.0006.

4. Bead-based temporal registration: To correct for small drifts of the embryo over the extended
imaging periods (e.g. due to agarose instabilities), we stabilized the fused volume over time
using the segmented beads (sigma = 1.8 and intensity threshold = 0.005) for temporal regis-
tration with the affine transformation model using an all-to-all matching within a sliding win-
dow of 5 time-points.

5. Computation of spatiotemporally registered fused volumes: Using the temporal registration
parameters, we generated a stabilized time-series of the fused deconvolved 3D images.

6. 4D rendering: The Parhyale embryo was rendered over time from the spatiotemporally regis-
tered fused data using Fiji’s 3D Viewer.

Lineage reconstruction with the Massive Multi-view Tracker (MaMuT)
MaMuT was developed as a tool for cell lineaging in multi-view LSFM image volumes by enabling to

track objects synergistically from all available views. This functionality has a number of advantages.

Raw views do not have to be fused into a single volume, which is computationally by far the most

demanding step (Preibisch et al., 2014). The users also preserve the original redundancy of the

data, which in many cases like in Parhyale allows capturing cells from two or more neighboring views

that can be interpreted independently for a more accurate analysis. Finally, MaMuT allows users to

analyze sub-optimal datasets that cannot be fused properly or may create fusion artifacts. Of course,

combining the raw views with a high-quality fused volume is the best available option, especially

when handling complex datasets with high cell densities.

While offering multi-view tracking, MaMuT delivers also other important functionalities. First, it is

a turnkey software solution with a convenient interface for interactive exploration, annotation and

curation of image data. Any image acquired by any microscopy modality that can be opened in Fiji

can be also imported into MaMuT. Second, MaMuT offers a highly responsive and interactive naviga-

tion through multi-terabyte datasets. Individual z-stacks representing different views, channels and

time-points of a multi-dimensional dataset can be displayed independently or in combinations in

multiple synced Viewer windows. Third, objects of interest like cells and nuclei (spots) can be

selected synergistically from all available Viewers and followed over time to reconstruct their trajec-

tories (tracks) and lineage information. Fourth, the created spots and tracks can be visualized and
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edited interactively in the Viewers and the TrackScheme lineage browser, and animated in the 3D

Viewer. For visual interpretation of the data, annotations can be colored based on the primary line-

age information or derived numerical parameters. Fifth, lineages can be reconstructed in a manual,

semi-automated or fully automated manner followed by manual curation if necessary. Sixth, all spot

and track information can be exported from MaMuT to other interfaces for more specialized analy-

ses. Seventh, decentralized annotation by multiple users has been made possible by also developing

a web service for remote access to large image volumes stored online. Following on the tradition of

the Fiji community for open-source distribution of biological image analysis software, MaMuT is pro-

vided freely and openly to the community, it is extensively documented and can be customized by

other users.

In practical terms, for lineaging purposes, the Parhyale multi-view LSFM raw views were regis-

tered spatiotemporally and the image data together with the registration parameters were con-

verted into the custom HDF5/XML file formats utilized by the BigDataViewer and MaMuT Fiji

plugins. The MaMuT reconstruction of the Parhyale T2 limb described in this article required about

10 weeks of dedicated manual cell tracking by an experienced annotator. The raw image data were

displayed in Viewer windows and each z-stack was visualized in any desired color and brightness,

scale (zoom), translation (position) and rotation (orientation). All Viewer windows were synced based

on the calculated registration parameters and shared a common physical coordinate system; upon

selecting an object of interest (spot) in one Viewer, the same spot was identified and displayed in all

other windows, and its x, y, z position was mapped onto this common physical space. To guarantee

the accuracy of our lineage reconstructions, the center of each tracked nucleus was verified in at

least two neighboring views and by slicing the data orthogonally in separate Viewer windows. The

nuclei contributing to the T2 limb of interest were identified in the first time-point and tracked manu-

ally every five time-points except during mitosis, in which case we also tracked one time-point before

and one after segregation of the daughter chromosomes during anaphase/telophase. The recon-

structed trajectories and lineages were also displayed in two additional synced windows, the Track-

Scheme and the 3D Viewer. The TrackScheme lineage browser and editor displayed the

reconstructed cell lineage tree with tracked nuclei represented as nodes connected by edges over

time and cell divisions depicted as split branches in the tree. The 3D Viewer window displayed inter-

active animations of the spots depicted as spheres and their tracks over time. The spots and the

tracks in the Viewer, TrackScheme and 3D Viewer windows could be color-coded by lineage, posi-

tion and other numerical features to assist visual analysis and interpretation of the data. In addition,

all these windows were synced to simultaneously highlight active spots of interest at the selected

time-point, greatly facilitating the cell lineaging process.

Comparison of reconstructed lineage trees
For comparative purposes, each reconstructed lineage tree was defined as a set of division times.

For example, let’s consider a lineage tree L that starts with cell d. Cell d divides at time t0 giving rise

to the two daughter cells d1 and d2. Then d1 divides at time t1 giving rise to daughter cells

d11 and d12. Finally, d12 divides at time t12 giving the daughter cells d121 and d122. In this scenario, we

define L as L ¼ t0; t1; t12f g.

Let’s now consider two lineage trees Lx andLy, where x and y refer to the founder cells whose

lineage trees are under comparison (e.g. x corresponds to E4c5 cell from limb#1 and y to E5b6 cell

from limb#2). In order to be comparable, these two lineage trees need to be registered temporally.

In our study, we performed a linear rescaling by an empirically determined factor of 1.6 to match the

increase in cell number between limb#1 and limb#2 that were imaged at different temperatures and

exhibited different growth rates.

We then defined D Lx; Lyð Þ as the distance between the two registered lineage trees. This dis-

tance takes into consideration two metrics, the difference in the timing of divisions and the differ-

ence in the number of divisions between the two lineages, and is computed in the following way:

D Lx; Lyð Þ ¼
dt L

x; Lyð Þ=nt þ dn Lx; Lyð Þ=nn
2

In this equation, dt L
x; Lyð Þ is the difference in the timing of divisions and dn Lx; Lyð Þ is the differ-

ence in the number of division between the two lineages. nt and nn are used to normalize the two
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metrics so that their values are comparable. They are defined as the maximum values observed for

dt L
x; Lyð Þ and dn Lx; Lyð Þ in a given run of pairwise comparisons, i.e. they are the maximum values

obtained in the 34 � 34 comparisons to calculate the distances between the 34 founder cells within

limb#1 or within limb#2 or between limb#1 and limb#2.

dn is computed as the absolute value of the difference between the respective numbers of divi-

sions in the two lineage trees:

dn Lx;Lyð Þ ¼ Card Lxð Þ�Card Lyð Þjj

To calculate dt, we first paired the division times between the two lineage trees. For such a pair-

ing P¼ txi ; t
y
j

� �

j txi 2 Lx; t
y
j 2 Ly

n o

the difference in division times dt Pð Þ is computed as follows:

dt Pð Þ ¼
1

Card Pð Þ

X

tx
i
;ty
jð Þ2P

jtxi � t
y
j j

The pairing P$ that minimizes dt is used to compute the temporal distance between the lineage

trees. Let P be the set of all possible pairings, then P$ is defined as followed:

P$ ¼
P2P

argmin dt Pð Þ

We then define dt as dt ¼ dt P
$ð Þ.

Once we computed all the pairwise distances between lineages of the cells under comparison,

hierarchical clustering was performed using Ward’s method. For the hierarchical clustering in the

average Parhyale T2 limb, we combined for each founder cell the information from the two limbs.

The average lineage tree Lx
12

of lineage trees Lx
1
¼ tx

11
; tx

12
; tx

13

� 	

and Lx
2
¼ tx

21
; tx

22
; tx

23
; tx

24

� 	

, where x cor-

responds to the founder cell x with lineage trees Lx
1

in limb#1 and Lx
2

in limb#2, is defined

as Lx
12

¼ Lx
1
[ Lx

2
¼ tx

11
; tx

12
; tx

13
; tx

21
; tx

22
; tx

23
; tx

24

� 	

. The computation of the pairwise distance D between

average lineage trees was then performed as described above.

Analysis of gene expression
Parhyale decapentaplegic (Ph-dpp), Dorsocross (Ph-Doc), engrailed-2 (Ph-en2) and H15 (Ph-H15)

genes were identified by BLAST analysis against the Parhyale transcriptome and genome

(Kao et al., 2016) using the protein sequence of Drosophila orthologs as queries. Sequence acces-

sion numbers are KY696711 for Ph-dpp, KY696712 for Ph-Doc, and KY696713 for Ph-en2. Phyloge-

netic tree construction was performed with RAxML using the WAG + G model from MAFFT multiple

sequence alignments trimmed with trimAl (Stamatakis, 2014). In situ hybridizations were carried out

as previously described (Rehm et al., 2009). Stained samples were imaged on a Zeiss 880 confocal

microscope using the Plan-Apochromat 10x/0.45 and 20x/0.8 objectives. Images were processed

using Fiji and Photoshop CS6 (Adobe Systems Inc). For color overlays, the brightfield image of the

Ph-dpp, Ph-Doc or Ph-H15 BCIP/NBT staining was inverted, false-colored green and merged with

the fluorescent signal of the Ph-en2 FastRed staining in magenta and the nuclear DAPI signal in

blue. In order to map gene expression patterns onto cell lineages, the z-stacks from imaged fixed

specimens were imported into MaMuT and the manually reconstructed nuclei and annotated gene

expression patterns were compared with the corresponding stages of the live imaged and lineaged

embryos. This analysis was performed with single-cell accuracy thanks to the well characterized and

invariant patterns of cell division across Parhyale embryos, the orderly arrangement of cells in the

earlier stages analyzed, and the easily identifiable straight boundary between anterior and posterior

cells in the later stages analyzed.
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