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The availability of genome-wide genetic data on hundreds of thousands of people has led to an equally rapid growth in
methodologies available to analyse these data. While the motivation for undertaking genome-wide association studies
(GWAS) is identification of genetic markers associated with complex traits, once generated these data can be used for
many other analyses. GWAS have demonstrated that complex traits exhibit a highly polygenic genetic architecture,
often with shared genetic risk factors across traits. New methods to analyse data from GWAS are increasingly being
used to address a diverse set of questions about the aetiology of complex traits and diseases, including psychiatric dis-
orders. Here, we give an overview of some of these methods and present examples of how they have contributed to our
understanding of psychiatric disorders. We consider: (i) estimation of the extent of genetic influence on traits, (ii) unco-
vering of shared genetic control between traits, (iii) predictions of genetic risk for individuals, (iv) uncovering of causal
relationships between traits, (v) identifying causal single-nucleotide polymorphisms and genes or (vi) the detection of
genetic heterogeneity. This classification helps organise the large number of recently developed methods, although
some could be placed in more than one category. While some methods require GWAS data on individual people, others
simply use GWAS summary statistics data, allowing novel well-powered analyses to be conducted at a low computa-
tional burden.
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Introduction

The reduction in costs of genotyping technologies in
recent years has led to an explosion of genetic and
phenotypic information collected on large numbers of
people. The primary aim of these studies is to identify
genetic polymorphisms associated with a quantitative
trait or with an increased risk of disease. These
genome-wide association studies (GWAS) have led to
an important increase in understanding of the under-
pinnings of psychiatric and other disorders (Sullivan
et al. 2012; Visscher et al. 2012; Gratten, 2016). They
have provided empirical data demonstrating that com-
mon disorders are polygenic and have allowed interro-
gation of the genetic architecture, in terms of number,
frequency, effect size and interactions of genetic risk
factors. However, the potential use of GWAS data
goes far beyond identification of trait associated loci.

Here, we present an overview of some recently
developed methods utilising genome-wide genotype
and phenotype data on large numbers of individuals

and show how they can be applied to the research of
psychiatric disorders. These new methods serve at
least one of the following purposes: (i) estimation of
the extent of genetic influence on traits (Estimation of
proportion of variance attributable to genome-wide
single-nucleotide polymorphisms (SNPs), SNP-herit-
ability or h2SNP), (ii) uncovering of shared genetic con-
trol between traits (Estimation of genetic correlation
from using genome-wide SNPs), (iii) predictions of
genetic risk for individuals (Polygenic risk prediction),
(iv) uncovering of causal relationships between traits
[Mendelian randomisation (MR)], (v) identifying cau-
sal SNPs and genes (Fine-mapping and gene prioritisa-
tion), or (vi) Detection of genetic heterogeneity. There
is often an overlap between these applications: some
methods can be applied for more than one purpose,
and some of the available software implements more
than one method. In this overview, it is not possible
to be exhaustive, and we apologise to authors whose
methods have not been included.

Most of the methods presented here require genetic
data in either of two formats. One is that of full indi-
vidual level genotype data and phenotypic measure-
ments on each person, where the genetic data can be
represented as a matrix with allele counts for each
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genetic marker for each person. While this offers the
largest range of analytic options, file sizes can be
very large, which can become prohibitive as computa-
tional burden is usually non-linear with increasing
numbers of individuals and markers. Moreover, priv-
acy concerns can prevent this type of data from being
shared across research groups. Summary statistics of
genome-wide association analysis represent the second
data format, for which data sharing has fewer privacy
concerns (Pasaniuc & Price, 2016). GWAS summary
statistics comprise the association test statistic (includ-
ing direction of effect for a reference allele), standard
error, p value of association and allele frequency of
each SNP. While it has been shown that it is possible
to infer whether an individual was part of a cohort
using summary statistics, the power to do so is limited
(Homer et al. 2008; Sankararaman et al. 2009; Visscher
& Hill, 2009), and in any case requires the genome-
wide genotype data of the individual to be identified.
To guard against any privacy concerns GWAS sum-
mary statistics can be provided using allele frequencies
estimated in large independent samples of the same
ethnicity. Methods which require only summary statis-
tic data benefit from shorter analytical run-times, much
reduced computer memory requirements, and applic-
ability to a larger number of traits. These benefits usu-
ally come at the cost of lower precision (larger
standard errors), when compared with methods that
utilise individual level genotype data.

While genetic data in one of these two formats are
required by all methods presented here, some methods
additionally make use of other information, such as
genomic annotation or expression quantitative trait
locus (eQTL) data. Genomic annotation can give
clues about the functional importance of a region in
which a SNP resides, whereas eQTL data are the result
of an association test where the phenotype analysed is
expression of a gene.

Here we review a range of different polygenic meth-
ods and highlight their aims and the input data they
require (Fig. 1). For each method, we provide some
examples of applications relevant to psychiatric genet-
ics research (Table 1).

Estimation of proportion of variance attributable to
genome-wide SNPs

Heritability is the proportion of phenotypic variance
that can be attributed to genetic factors. It is a key
quantity in genetics research as it summarises the
role of causal inherited variation. Trait heritability
can be estimated by comparing the phenotypic resem-
blance among family members to their coefficients of
relationships. However, estimating heritability from
relatives can result in upwards-biased estimates

(Vinkhuyzen et al. 2013) if non-genetic factors shared
by relatives cannot be disentangled from the shared
genetic relationships. This can be circumvented by esti-
mating heritability from genome-wide markers in
unrelated (that is, very distantly related) individuals.
Genomic-restricted maximum-likelihood analysis
(GREML) can be used to estimate the proportion of
phenotypic variance, which is captured by genotyped
SNPs (SNP-heritability), by using genetic data of unre-
lated individuals (Yang et al. 2010). SNP-heritability
estimates are typically lower than those from twin or
family-based heritability estimates, because genotyped
SNPs account only for a subset of all genetic effects
(the remainder includes other types of polymorphisms
and SNPs that are not tagged by genotyped SNPs).
Hence, the parameter estimated by SNP-heritability
analysis depends on the genotype data available in
the data set analysed, and can only converge to the
traditional parameter being estimated from family
data, when the genotypes available are fully represen-
tative of the variation in the genome.

Estimation of SNP-heritability has been of particular
importance for disease traits, especially those of low
lifetime risk (<1% is typical of most common diseases)
for which it is difficult to collect the large samples
needed to calculate heritability from estimates of
increased risk in relatives of those affected. Both
traditional-heritability and SNP-heritability estimates
are presented on the liability scale (and depend on life-
time risk of disease in the population), and empirical
data of the GWAS era (Lee et al. 2012a; Stahl et al.
2012) demonstrates that the polygenic model implied
in these estimates is justified. GWAS case–control sam-
ples for disease traits are usually heavily oversampled
for cases compared with a population sample and so
SNP-heritability estimates are made on this binary
case–control scale and transformed to the liability
scale accounting for this ascertainment (Lee et al.
2011). The SNP-heritability estimates are relatively
robust to choice of lifetime risk for most common dis-
eases (lifetime risk <1%). However, for the very com-
mon diseases such as major depressive disorder
(MDD) (lifetime risk 15%), SNP-heritability estimates
are more sensitive to the choice of lifetime risk esti-
mate, and to screening v. non-screening of controls
(Peyrot et al. 2016).

The GREML method for estimation of SNP-heritabil-
ity is based on a linear mixed model (Meuwissen et al.
2001), where a central component is the genetic rela-
tionship (or similarity) matrix, which captures the gen-
etic relatedness of all pairs of individuals (Hayes et al.
2009). For application to human data, the algorithm is
implemented in GCTA (Yang et al. 2011a). Several
independent studies have confirmed that GREML
results in unbiased estimates of SNP heritability
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when the model assumptions are met, or have investi-
gated how departures from these assumptions can
influence the results (Speed et al. 2012; Zhou &
Stephens, 2014). Potential biases that might influence
heritability estimation are an association between
minor allele frequency (MAF) and SNP effect size,
which does not fit the assumptions of the model, or
an overrepresentation of causal SNPs in regions of
high or low linkage disequilibrium (LD) (Lee et al.
2011; Speed et al. 2012), both of which can be overcome
in GCTA through the use of the GREML–LDMS
approach (Yang et al. 2015a). The runtime of GCTA–
GREML is a function of both the number of markers,
M, and the number of individuals, N. Compute time
is O(N3 +MN2), which includes a component for the
construction of the genetic relationship matrix and a
component for the actual REML algorithm. The steep
increase in runtime with larger N makes it impractical
for data sets with very large numbers of individuals.
The software BOLT-LMM can estimate variance com-
ponents through a stochastic approximation algorithm,
which circumvents the costly calculation of a genetic
relationship matrix and thus reduces the runtime to
only O(MN1.5) (Loh et al. 2015). Note that both GCTA
and BOLT-LMM have other features such as linear

mixed model association analysis (Yang et al. 2014)
and genotype × environment (G × E) analysis, which
are not the topic of this review.

LD score regression (LDSC) (Bulik-Sullivan et al.
2015b) is a method, which requires only summary sta-
tistics to estimate SNP-heritability and has therefore
shorter runtime than the methods discussed so far.
Under polygenic genetic architecture, SNPs which are
highly correlated with many other SNPs (have a high
LD score) are more likely to tag a causal SNP and
are therefore expected, on average, to have a higher
association test statistic than SNPs which are not
highly correlated with many other SNPs. The regres-
sion coefficient of the association test statistics of all
SNPs on their LD score is a function of SNP-heritability
(Yang et al. 2011b; Bulik-Sullivan et al. 2015b). Any fac-
tor that increases the association statistic of a SNP inde-
pendently of its LD score (as might be found in
population stratification, which induces correlations
in test statistics across chromosomes) will increase
the intercept term of this regression (Bulik-Sullivan
et al. 2015b). LDSC estimates SNP-heritability with
vastly reduced computational speed compared with
GREML, but with higher standard error (S.E.) of esti-
mates. The S.E. of GREML SNP-heritability estimates

Fig. 1. Schematic representation of the basic models underlying the polygenic methods reviewed. All models assume that a
phenotype (P) is influenced by genetic (G) and environmental (E) factors (with environmental defined loosely as anything not
captured by G including stochastic variation and measurement error). (a) Model which considers only one phenotype and no
gene expression. (b) Model which considers only one phenotype and gene expression (X). (c) Model which considers two or
more phenotypes and no gene expression. Methods can be grouped into those where the focus lies on individual SNPs, genes
or people (nodes highlighted), and those where the focus lies on aggregate measures affecting the relationship between
genetic and environmental factors and a phenotype (edges highlighted).
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Table 1. Overview of selected polygenic methods

Program/method Data needed URL

Estimation of h2, rG
GCTA (GREML) Individual-level genotype data http://cnsgenomics.com/software/gcta/
BOLT-REML/BOLT-LMM Individual-level genotype data https://data.broadinstitute.org/alkesgroup/BOLT-LMM/
LD score regression Summary statistics + LD scores https://github.com/bulik/ldsc; http://ldsc.broadinstitute.org/
HESS (local heritability) Summary statistics + LD reference panel http://bogdan.bioinformatics.ucla.edu/software/hess

Polygenic risk prediction
PLINK Summary statistics + individual-level data https://www.cog-genomics.org/plink2
PRSice Summary statistics + individual-level data http://prsice.info/
GCTA, MTG2 (GBLUP, MTGBLUP) Individual-level genotype data http://cnsgenomics.com/software/gcta/; https://sites.google.com/site/honglee0707/mtg2
BayesR Individual-level genotype data https://github.com/syntheke/bayesR
LDpred Summary statistics + individual-level data https://github.com/bvilhjal/ldpred

Causality of phenotypes
Mendelian randomisation Individual-level genotype data or summary statistics http://www.mrbase.org/
gwas-pw Summary statistics https://github.com/joepickrell/gwas-pw

Causality of genes (gene prioritisation)
gwas-pw Summary statistics https://github.com/joepickrell/gwas-pw
SMR Summary statistics + eQTL http://cnsgenomics.com/software/smr/
PrediXcan Individual-level genotype data + eQTL https://github.com/hakyimlab/PrediXcan
metaXcan Summary statistics + eQTL https://github.com/hakyimlab/MetaXcan
TWAS/FUSION Summary statistics + eQTL http://gusevlab.org/projects/fusion/
DEPICT Summary statistics https://data.broadinstitute.org/mpg/depict/

Causality of SNPs (fine-mapping)
PICS (Fine-mapping) Summary statistics http://pubs.broadinstitute.org/pubs/finemapping/
GCTA (COJO) Summary statistics http://cnsgenomics.com/software/gcta/
MANTRA Summary statistics Available on request from the author

Detection of genetic heterogeneity
BUHMBOX Summary statistics + individual-level data http://software.broadinstitute.org/mpg/buhmbox/
Subtest Summary statistics https://github.com/jamesliley/subtest
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is accurately approximated as 316/N, where N is the
total sample size (Visscher et al. 2014). For LDSC the
standard errors of the variance component estimates
are typically larger (usually by 50% or more) than
those of a GREML analysis for the same sample size
(Yang et al. 2015b). However, it is typical that LDSC
can be applied to larger data sets (which generate
smaller S.E.) since only summary statistics are needed.
Comparisons of estimates from GREML and LDSC
show that the accuracy of estimates from LDSC are
dependent on LD scores calculated from a population
representative of the population used to estimate
GWAS summary statistics (Yang et al. 2015a; Brown
et al. 2016).

GREML, LDSC and similar methods can also be
used to estimate the SNP-heritability based on gen-
omic partitioning, for example by chromosome,
minor allele frequency, genomic annotations or single
loci (Shi et al. 2016). Analyses partitioning SNP-
heritability by cell type-specific genomic annotations
have shown enrichment of GWAS discoveries in trait
relevant cells (Finucane et al. 2015).

Examples of applications to psychiatric disorders

GREML SNP-heritability estimated for psychiatric dis-
orders usually ranges from 15% to 30%, depending on
the disease, and reported estimates are at most half of
the estimates derived from family studies (Lee et al.
2012a, 2013; Anttila et al. 2016). SNP-heritability esti-
mates of quantitative mental traits tend to be relatively
low (<0.15), for example, a meta-analysis of the Big
Five personality traits reported significant SNP-herit-
ability estimates below 0.2 for all five traits (Lo et al.
2016). This is in line with another study of up to
300 000 people finding SNP-heritability estimates
for subjective well-being, depressive symptoms and
neuroticism in the same range (Okbay et al. 2016).
Partitioning heritability by tissue-specific genomic
annotations has identified the central nervous system
as the most relevant tissue in the aetiology of schizo-
phrenia and bipolar disorder (Finucane et al. 2015).

Estimation of genetic correlation using genome-wide
SNPs

Two traits are genetically correlated, if there is a correl-
ation between the true effect sizes of SNPs affecting the
two traits, or in other words, when, on-average, SNPs
have directionally similar effects on two traits. Genetic
correlation can reflect pleiotropy, which is defined as a
genetic variant affecting both traits. However, while a
non-null genetic correlation can imply pleiotropy is
present at many SNPs, a genetic correlation of zero
could arise when pleiotropy is common, but the

direction of effects are uncorrelated across SNPs.
Genetic correlations (rG) are of interest because they
suggest a shared aetiology. However, misdiagnosis
between two genetically uncorrelated diseases can
generate significant estimates of rG (Kendler, 1987;
Wray et al. 2012). The availability of genetic marker
data on disease case–control samples has allowed the
interrogation of the genetic relationship between dis-
eases, often for the first time, since traditional methods
to estimate genetic correlation based on increased risk
of a disease in relatives of those with another disease
requires often unattainably large samples (Visscher
et al. 2014).

Formally, genetic correlation is defined as genetic
covariance between two traits, scaled by the genetic
standard deviations of the two contributing traits.
Methods used to estimate SNP heritability can be
extended into a bivariate form to estimate rG. In
order to estimate genetic correlation using GREML,
individual-level genetic data and measurements on
two phenotypes are required (from the same or from
different individuals). The power of bivariate GREML
analyses to detect rG departing from 0 or from 1
depends on the population value of rG, the SNP-herit-
ability of both traits, on the sample sizes, on whether
the same or different samples are used for the two
traits, and for disease traits, on the proportion of
cases in the sample (Visscher et al. 2014). For example,
for two diseases with lifetime prevalence of 1%, SNP-h2

of 0.2 and genetic correlation of 0.5, 5000 cases and
5000 controls for each disease are sufficient to have
89% power at type 1 error rate of 5% to detect a genetic
correlation greater than 0, corresponding to a standard
error of 0.06. The BOLT-LMM software is also capable
of calculating rG in a bivariate GREML analysis with
shorter runtime (Loh et al. 2015). In contrast to herit-
ability estimates, rG estimates are scale independent
(approximately) and hence scale transformation is not
needed (Lee et al. 2012b).

If summary statistics on two or more traits are avail-
able, LDSC can be used to estimate rG between them,
albeit with higher standard errors than GREML. To
make the application of LDSC for SNP-heritability
and rG estimation even more user-friendly, the LD
Hub resource has been developed, which provides
access to summary statistics from more than 200 differ-
ent traits. LD Hub then calculates genetic correlation
estimates between each of these traits and any add-
itional traits for which the user provides summary sta-
tistics data (Zheng et al. 2017).

Estimation of rG is most commonly applied to
uncover genetic relationships between two different
traits, but it can also be applied to detect heterogeneity
in genetic effects between two different groups, for
example a trait might be under different genetic control
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in men and in women or in old people and young peo-
ple (i.e. G × E). It has also been applied to two data sets
of the same disease, where rG is expected to be one
(Lee et al. 2013), to infer between-sample heterogeneity
or two data sets of the same disease but of different
ethnicity (De Candia et al. 2013). Calculating rG across
populations using LDSC is not straightforward, how-
ever, due to between population differences in both
allele frequencies and LD structure. The program
Popcorn addresses this problem and allows one to esti-
mate the transethnic genetic correlation based on sum-
mary statistics and LD matrices from two populations
(Brown et al. 2016).

Examples of applications to psychiatric disorders

One of the first applications of the bivariate GREML
method to disease traits was to estimate genetic correla-
tions between psychiatric disorders, presenting evi-
dence that most pairs of disorders result in estimates
that are significantly different from zero (PGC cross dis-
order group (Lee et al. 2013)). From those initial esti-
mates the high correlations between schizophrenia and
bipolar disorder (∼0.6) and between bipolar and MDD
(0.5) were considered plausible given evidence from
family studies; however, the high genetic correlation
between schizophrenia and MDD was more surprising
for the clinical community. In fact, close study of the lit-
erature from family studies (PGC Cross disorder group,
2013) showed that all three genetic correlation estimates
were consistent with published increased risk to rela-
tives (RR) of one disorder for individuals diagnosed
with another. However, for the same genetic correlation
the size of RR involving a very common disorder (∼15%
lifetime risk) such as MDD is much smaller than when
both disorders are less common (<1% lifetime risk
for both schizophrenia and bipolar disorder).

Genetic correlation can arise through misdiagnosis
between two diseases. For example, those first pre-
senting with clinical features consistent with a diagno-
sis of bipolar disorder can in the long-term receive a
diagnosis of schizophrenia (and vice versa) (Joyce,
1984; Meyer & Meyer, 2009). However, it can be
shown analytically that very high misclassification
rate of 20% would be needed under no shared aeti-
ology to result in rG of ∼0.6 estimated between schizo-
phrenia and bipolar disorder (Wray et al. 2012). In
contrast, a high genetic correlation between disorders
would be consistent with some clinical presentations
being difficult to classify.

LDSC has been applied to a full battery of GWAS
summary statistics and report higher estimates of gen-
etic correlations estimates between pairs of psychiatric
disorders than between psychiatric- and non-
psychiatric disorders (Bulik-Sullivan et al. 2015a).

Some notable examples include a positive genetic correl-
ation between schizophrenia and anorexia nervosa, and
a positive genetic correlation between bipolar disorder
and years of education. A study investigating genetic
sharing between neurological and psychiatric traits
found that among neurological disorders significant
genetic correlations are rare, but that there is some over-
lap in genetic risk between migraine and MDD, and
ADHD and Tourette syndrome (Anttila et al. 2016).
On the other hand, genetic correlations between psychi-
atric traits and personality traits are more common.
Figure 2 shows the top genetic correlations for psychi-
atric disorders and traits. Data obtained from LD Hub.

Polygenic risk prediction

Estimates of SNP effects can be used to predict the gen-
etic risk of individuals. Simple risk scores for each indi-
vidual are calculated as the sum over all per SNP
effects, where the per SNP effect is the allele count of
the SNP for the individual multiplied by the effect
size of the SNP (Wray et al. 2007; Purcell et al. 2009).
Here the SNP effects come from a typically large and
well-powered discovery (sometimes called training)
data set. While the ultimate goal of genetic risk predic-
tion is in applications where the phenotype has not yet
been observed, in research applications the risk pre-
dictor is evaluated for individuals in a target (some-
times called validation or testing) data set where the
phenotype has already been recorded, so that the
efficacy of the predictor can be evaluated.

Screening of high-risk individuals for early interven-
tion or prevention programs is a potential clinical appli-
cation of polygenic risk prediction that at present is not
widely used because of the low accuracy of genetic risk
predictors (Chatterjee et al. 2016). However, there are
applications of polygenic risk prediction in research
where low prediction accuracy is less limiting; for
example, it could be a cost-effective strategy to conduct
follow-up studies in samples ascertained to be low or
high for polygenic risk. The genetic predictor is evalu-
ated against ameasured phenotype in the target sample,
which may or may not be the same phenotype from
which the predictor was constructed. Generally, if the
predicted and the measured trait are genetically corre-
lated, then there should be positive prediction accuracy,
given enoughpower in bothdata sets (Dudbridge, 2013).

In the usual implementation of polygenic risk scores,
SNP effect sizes have been estimated from the stand-
ard, one SNP at a time GWAS analysis. The construc-
tion of polygenic risk scores is based on some
decision about the proportion of SNPs to include in
the predictor. As the discovery sample p value thresh-
old becomes more lenient, the increased predictive
power of including estimated effect sizes from more
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Fig. 2. Genetic correlations between psychiatric disorders and traits, and almost 200 other traits. For each trait, the 10 traits with the highest absolute genetic correlations are shown.
Colours indicate whether genetic correlations are positive or negative. One star indicates a genetic correlation p value <0.05. Three starts indicate a p value below the Bonferroni threshold
of 2.81 × 10−6 for 17 766 tested trait pairs. Data obtained from LD Hub (Zheng et al. 2017).
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true positive associated SNPs is balanced by the inclu-
sion of more false positives. The optimum proportion
of SNPs to include depends on the (unknown) genetic
architecture and size of the discovery sample. In the
latest schizophrenia GWAS, the optimum p value
threshold was identified as 0.05 (based on variance
explained in out-of-sample prediction across many
samples), although inclusion of all SNPs did not
lower accuracy drastically (Ripke et al. 2014). Often a
range of different p value thresholds are used to deter-
mine the best predictor, although this approach is
prone to overfitting. Software such as PLINK (Purcell
et al. 2007; Chang et al. 2015) implements basic poly-
genic risk scoring, while PRSice compares polygenic
risk predictors using a large number of p value cutoffs
to find the optimum threshold given the data (Euesden
et al. 2015). In polygenic risk scoring, LD among SNPs
is usually accounted for by applying LD-clumping, i.e.
pruning of SNPs based on LD but with higher prefer-
ence to SNPs with lower p values (usually simply
termed ‘clumping’). Prediction accuracy can be
improved by using methods that provide estimates of
SNP effects that are conditional on all other SNPs,
thereby directly taking SNP LD correlations into
account (de Los Campos et al. 2013), such as Genomic
Best Linear Unbiased Prediction (GBLUP) (Meuwissen
et al. 2001), which is widely used in animal breeding.
In GWAS, there are many more SNPs compared with
individuals so effects sizes of each SNP are not estim-
able in a multiple regression model. In GBLUP, it is
assumed that SNP effect sizes are drawn from a normal
distribution and a shrinkage term, or penalty term, pro-
portional to the trait heritability is introduced in the
model. More complex models are BayesR (Moser et al.
2015) or LASSO (least absolute shrinkage and selection
operator) (Abraham et al. 2013). These methods shrink
the SNP effect estimates (i.e. the effect attributable to
SNPs in LD with each other is shared between the cor-
related SNPs) and will ensure the predicted phenotypes
are more accurate, and in LASSO and BayesR shrink a
proportion of SNPs to zero. The gains in prediction
accuracy are dependent on underlying genetic architec-
ture (Moser et al. 2015).

If individual-level genotype data are not available, it
is still possible to transform marginal SNP effects
(standard GWAS summary statistics) into penalised,
conditional SNP effects, by making use of an LD refer-
ence data set (Yang et al. 2012; Robinson et al. 2017).
This is implemented in GCTA (Yang et al. 2011a) and
in LDpred (Vilhjálmsson et al. 2015), which not only
accounts for LD between SNPs, but also uses a
Bayesian framework to adjust the SNP effects for traits
where an infinitesimal model (all SNPs have some
effect) is not the best fit to the data (e.g. autoimmune
disorders). This is analogous to the selecting SNPs

based on p value in standard polygenic risk prediction
and can further improve accuracy.

Finally, GBLUP approaches can be extended to a
multi-trait model, which can further improve predic-
tion accuracy when phenotypes are genetically corre-
lated, because measurements on each trait provide
information on the genetic values of the other corre-
lated traits. This approach has been implemented in
the program MTG2 and has been shown to improve
prediction accuracy for schizophrenia and bipolar dis-
order (Maier et al. 2015).

Examples of applications to psychiatric disorders

Polygenic risk prediction is widely used in psychiatric
genetics, not to infer an individual’s case control status,
but to gain a better understanding of disease aetiology.
Polygenic risk prediction in applications relevant to
psychiatry has been reviewed previously (Wray et al.
2014). Some more recent examples include schizophre-
nia polygenic risk scores calculated for community
samples of individuals, which explain variation in cre-
ativity (Power et al. 2015) and cannabis use (Power et al.
2014). An association between schizophrenia polygenic
risk scores and negative symptoms and anxiety dis-
order in adolescents gives reason to hope that these
kind of studies can not only lead to a better under-
standing of disease aetiology, but may someday also
contribute to early intervention programmes (Jones
et al. 2016; Kendler, 2016). Polygenic risk prediction
additionally provides a novel approach to studying
gene – environment interactions (G × E). Traditional
G × E studies, which test for an interaction effect
between single genetic variants and an environmental
exposure on disease risk, often suffered from low
power caused by the small amount of variance
explained by individual genetic loci. In contrast, inter-
actions between a polygenic risk score and environ-
mental exposure can be detected more easily, because
polygenic risk scores explain more of the variance in
disease risk than individual loci. This type of G × E
study has been applied to investigate a potential inter-
action between a polygenic risk score for MDD and
childhood trauma on the risk for MDD. Two inde-
pendent studies found that both the polygenic risk
score and exposure to childhood trauma increase the
risk for MDD, but came to different conclusions
about the nature of the interaction between the two:
One study found a positive interaction, meaning that
those with both exposure to childhood trauma and
high polygenic risk scores are at the greatest risk of
developing MDD (Peyrot et al. 2014), while another
study found a negative interaction, where people
with exposure to childhood trauma and low polygenic
risk scores are at the highest risk (Mullins et al. 2016).
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Mendelian randomisation

MR analysis investigates the causal relationships
between traits. It is a specific form of an instrumental
variable analysis (Evans & Davey Smith, 2015),
where the goal is to test the causal effect of an explana-
tory variable (exposure to a risk factor) on a dependent
outcome variable (such as disease risk). In MR, genetic
markers are used as the instrumental variables. The
MR poster child is the application to blood lipid levels
and myocardial infarction (Voight et al. 2012). Together
with a number of randomised controlled trials (Keene
et al. 2014), this application of MR has had major
impact on drug development by providing evidence
against a causal role of HDL and thus helped in the
search for effective ways of preventing myocardial
infarction, and demonstrates how evidence from an
MR analysis could be used to circumvent costly rando-
mised controlled trials.

Despite its great potential, MR is often limited by low
power, and by the fact that it is very difficult to show that
all the assumptions (see Fig. 3) that are necessary to infer
causality are met. However, if MR is applied bidirection-
ally for trait pairs of approximately comparable power,
and evidence for significant causality is detected in
only one direction, then this can help to infer causality
over pleiotropy. The power in MR studies is a function
of the true causal association between exposure and out-
come and of the variance explained by the instrumental
variables (Brion et al. 2013). Since statistically signifi-
cantly associated SNPs often only explain a small pro-
portion of the genetic variance, for many pairs of traits,
very large sample sizes are needed to achieve sufficient
power to detect causal associations [see online calculator
(Brion et al. 2013)].

In recent years, many improvements to the MR
method have been developed. Of particular importance
for polygenic traits is the extension from single-SNP
instrumental variables to instrumental variables that
comprise multiple SNPs (Evans et al. 2013). This may
increase power since in polygenic traits individual
SNPs are likely to be weak instruments. Two-sample
MR is an extension that makes it possible to combine
independent data for genotype – exposure and geno-
type – outcome in an MR experiment, thus allowing to
investigate causal associations among all phenotypes
for which well-powered GWAS data are available
(Burgess et al. 2013). Further developments of MR
include better ways to test some of the assumptions,
modifications which allow the relaxation of the
no-pleiotropy assumption, and improvements which
increase the power to detect causal effects (Evans &
Davey Smith, 2015). The web-based resource MR
BASE has been developed to simplify the application
of MR to test causality between a large number of traits

and to compare different variations of the method
(Hemani et al. 2016). Summary data for more than a
thousand traits have been collected and can be tested
for causal associations with data provided by the user.

Examples of applications to psychiatric disorders

Several MR studies have investigated a potential causal
influence of variables, which are known to be asso-
ciated with psychiatric traits and diseases from obser-
vational studies. One study which looked at BMI as a
potential risk factor concluded that there is no evidence
of BMI being a causal influence on schizophrenia and
bipolar disorder, but weak evidence of BMI conferring
a higher risk of MDD. It was noted, however, that the
BMI association suffers from low power caused by
small sample sizes for MDD (Hartwig et al. 2016).
C-Reactive protein (CRP) is a potential risk factor for
psychiatric disorders with undisputed correlational
association, but unclear causality. A study from 2016
surprisingly found a protective role of genetically ele-
vated CRP levels on the risk for schizophrenia, as
well as weak (nominally significant) evidence for a
risk increasing effect on bipolar disorder as well as a
range of other somatic traits (Prins et al. 2016). This is
in contradiction with another 2016 study, which iden-
tified elevated CRP levels to confer an increased risk of
schizophrenia (Inoshita et al. 2016). There is much
debate on whether cannabis is a risk factor for psych-
osis or schizophrenia, or whether the association is
due to reverse causation or due to a confounding factor
(McGrath et al. 2010; Gage et al. 2016). Recently MR
studies have provided evidence for a causal role of can-
nabis in the development of schizophrenia, but also for

Fig. 3. Causal pathways in an MR experiment. A causal
effect of exposure (X) on outcome (Y) can be inferred if
three core assumptions are met. These assumptions concern
the genetic instrumental variable, Z, and state that: (i) Z has
to be robustly associated with the exposure variable, (ii) Z
cannot be related to any common causal factors of X and
the outcome Y (these are labelled U), and (iii) Z may only
be related to Y through X (Solovieff et al. 2013). The latter
two assumptions can be summarised as the absence of
pleiotropy for the instrumental variable.
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a reverse causation (Gage et al. 2017; Vaucher et al.
2017). Several other risk factors for schizophrenia, anx-
iety and depression have been investigated through
MR with negative results (Bjørngaard et al. 2013;
Gage et al. 2013; Taylor et al. 2016).

In summary, MR studies investigating risk factors for
psychiatric disorders could in a few cases provide evi-
dence for a risk increasing effect. As the power of
GWAS with increasing sample sizes, there will be
more robust SNP associations which can be used as
instrumental variables. This will providemore evidence
for whether the many negative results were just caused
by low power or by the absence of a true causal associ-
ation, but interpretation of causality needs to carefully
consider confounding factors.

Fine-mapping and gene prioritisation

LD between SNPs is both a blessing and a curse for
GWAS. On one hand, it makes it possible to probe
only a subset of all genetic variants yet still detect asso-
ciations for a much larger set, either through tagging of
non-genotyped SNPs by genotyped SNPs or through
LD-based imputation to sequenced reference samples.
On the other hand, it means that a detected association
does not necessarily imply a causal role for the asso-
ciated SNPs. Fine-mapping attempts to identify
which out of a number of associated SNPs in a LD
region have a causal role, and which are merely asso-
ciated because they are in LD with causal SNPs
(Sekar et al. 2016).

To better understand disease aetiology, it may be of
interest to identify causal genes, rather than causal
SNPs. In many cases the causal gene may simply be
the gene closest to the most strongly associated SNP
in a region, but this is not always so (Claussnitzer
et al. 2015).

Identifying causal SNPs

A range of different approaches have been developed
for the fine-mapping of SNPs. Most of them use infor-
mation on functional annotation of the genome and LD
between SNPs, in addition to SNP association statistics
on one or more diseases. An algorithm (PICS) utilising
all these kinds of information has recently been applied
to 21 autoimmune disorders and identified many puta-
tive causal variants by integrating information from
different types of functional annotations, including epi-
genetic marks and gene expression information (Farh
et al. 2015).

Fine-mapping methods can use LD information to
either identify causal SNPs within a region that may
not have the strongest association signal, but are
located in a functional genomic element like an

enhancer, or they can use LD information to identify
multiple independently associated SNPs, by calculating
the association signal conditionally on the association
signal of neighbouring SNPs. Traditionally, this
would require full genotype data on the trait of interest.
However, it has been demonstrated that it is possible to
borrow LD information from a reference genotype data
set for a conditional analysis, making it possible to
apply this approach to traits for which only summary
statistics are available (Yang et al. 2012; GCTA-cojo).
For this to work well, the LD structure in the reference
genotype population should be a good approximation
of the LD structure in the population on which the
GWAS has been performed. Cross-ethnic genetic stud-
ies can aid fine mapping of disease loci, exploiting dif-
ferences in allele frequency and LD (Morris, 2011), but
application to psychiatric disorders has been limited by
the dearth of non-European data sets.

Fine-mapping can benefit from data on multiple
traits. When two traits share regions of significant gen-
etic associations it can be investigated if they share cau-
sal loci at those shared regions, or if different loci drive
the regional association in each trait. This has been
investigated in a Bayesian framework using only sum-
mary statistics and resulted in the identification of 341
loci associated with more than one trait across 42 dif-
ferent phenotypes (Pickrell et al. 2016). SNPs associated
with two traits form the basis of the previously dis-
cussed MR methods.

Identifying causal genes

Genome-wide association studies suffer from a massive
multiple-testing burden, owing to the large number of
association tests between SNPs and phenotype. To min-
imise thenumberof falsepositive results, associationsare
usually required to be significant at a p value of 5 × 10−8

(Bonferroni correction of a million independent tests).
Gene-based tests have a reducedmultiple-testing burden
(∼20 000 independent tests) and give biological meaning
to association results. Ingene-based tests SNPsare aggre-
gated into larger groups (Neale & Sham, 2004) assuming
that SNPs exert their effect through nearby genes, which
is not always true. The PrediXcan method refines this
aggregation step by including external tissue specific
eQTL data to predict gene expression levels based on
SNP data (Gamazon et al. 2015). This has several advan-
tages over conventional gene-based tests as it limits the
multiple-testing burden by only using SNPs, which are
known to affect gene expression, and the direction of
effect of a SNP on expression levels is not lost when
aggregating multiple SNPs. By using tissue-specific
eQTL data, associations can be tested between a pheno-
type and expression changes in tissues relevant to the
phenotype. PrediXcan has been used to identify genes
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which may play causal roles in amyloid deposition and
cognitive changes in Alzheimer’s disease (Hohman
et al. 2017) and genes associated with Asthma (Ferreira
et al. 2017). While PrediXcan requires individual-level
genotype data, the extension MetaXcan requires only
summary statistics and promises similar accuracy, if the
right reference population is used for LD estimation
(Barbeira et al. 2016). Transcriptome-wide association
study (TWAS) is a summary statistics based method
similar to MetaXcan, which differs in the algorithm
used to predict expression (Gusev et al. 2016a). More
recently, TWAS has been applied to detect pairs of traits
with genetic correlations at the level of predicted expres-
sion (Mancuso et al. 2017).A current limiting factor in this
and other expression-based methods is the quality of
tissue-specific eQTL data. The previously mentioned
methods prioritise genes based on predicted effects of
SNPs on expression. This is in contrast to othermethods,
such as DEPICT, which use gene expression data to pre-
dict gene function and prioritise genes at specific loci
based on the predicted function (Pers et al. 2015).

While an association of predicted gene expression
and a phenotype is suggestive of a causal role for
that gene, pleiotropy is an alternative explanation
for this association. That is, the same SNPs could inde-
pendently lead to expression changes in one gene and
via a different route have an effect on the phenotype.
The summary statistics-based MR (SMR) method (Zhu
et al. 2016) attempts to distinguish between these two
scenarios using eQTL SNPs as instrumental variables
and gene expression as exposure variable. This
method also applies a follow-up test (HEIDI), which
identifies and excludes regions where multiple linked
SNPs are independently associated with gene expres-
sion and phenotype, as a strategy to prioritise regions
with evidence of a simple causal mechanism for func-
tional follow-up. The method was applied to several
complex human traits and has identified 126 puta-
tively causal genes, of which 77 were not the closest
gene to their respective top associated GWAS hit.

MetaXcan, TWAS and SMR use the same type of
data to identify genes of interest. However, there are
many subtle differences between the methods, which
will likely lead to unique results for each method. To
date, no systematic comparison of their relative per-
formance has been published.

Examples of applications to psychiatric disorders

PrediXcan has been applied to bipolar disorder, result-
ing in the identification of two genes, PTPRE and BBX,
for which predicted increased expression in whole
blood and the anterior cingulate cortex, respectively,
was associated with increased risk of bipolar disorder
(Shah et al. 2016). SMR has been applied to

schizophrenia, highlighting two genes, SNX19 and
NMRAL1, with a potentially causal influence (Zhu
et al. 2016). The previous two examples have high-
lighted genes by using eQTL data, but the concept
can be extended to account for the fact that chromatin
modifications may mediate the association between
genetic variants and eQTLs, and that splice-QTLs,
rather than eQTLs, may underlie the genetic effect of
a SNP. A TWAS study on schizophrenia has incorpo-
rated these ideas and has highlighted 157 genes,
many of which were identified due to brain specific
splice-QTLs (Gusev et al. 2016b).

Detection of genetic heterogeneity

Most genetic studies are based on the assumption that
individuals who exhibit similar symptoms or who
have beendiagnosedwith the samedisease are represen-
tatives of the sameunderlying biology defined by a com-
mon genetic architecture. Under a polygenic disease
architecture, each individual is likely to have a unique
combination of risk loci, but with each combination
drawn from the pool of risk loci. Genetic heterogeneity
occurswhen individualswith the same clinical presenta-
tion have risk alleles drawn from independent (or per-
haps correlated) sets of risk loci, and the genetic risk
profile of one or more subgroups of cases departs from
that of the rest. This may arise through misclassification
of some cases, or through distinct aetiological pathways
leading to the same diagnosis (Flint & Kendler, 2014;
Jeste & Geschwind, 2014). The inherent phenotypic het-
erogeneity within psychiatry makes detection of genetic
heterogeneity an appealing goal and identification of
distinct pathways holds the promise of shedding light
on disease aetiology. Furthermore, a biological basis
for disease stratification could lead tomore personalised
treatments (Kapur et al. 2012).

Although the concept of identifying genetic sub-
groups is intuitively appealing simulations suggest it
is very difficult to find meaningful genetic groupings
if each sub-group has a genetic architecture of a large
number of loci with small effects. The large number
of combinations of risk loci, their small effect sizes,
the uncertainty about the size or even about the pres-
ence of genetically heterogeneous groups, and the chal-
lenging disentanglement from population stratification
all contribute to the difficulty of this problem. As a
result, even data sets comprising hundreds of thou-
sands of individuals may not provide sufficient
power for naïve approaches to detecting even the sim-
plest scenarios of genetic heterogeneity (Han et al.
2016; Maier et al. unpublished results).

The BUHMBOX method (Han et al. 2016) frames the
question of disease heterogeneity in a different way and
sets out to test if two diseases that share a genetic basis
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(rG > 0) are correlated because the shared genetic risk fac-
tors are present in the whole sample (pleiotropy) or are
confined to only a subgroup of individuals (identifiable
genetic sub-type) (Han et al. 2016). The BUHMBOX
method investigates LD-independent risk loci for disease
B in individuals diagnosed with disease A. If only a sub-
group of individuals has a higher genetic risk for disease
B, this will induce a correlation among the disease B
risk loci, which would support the presence of genetic
heterogeneity and not pleiotropy. This approach can
demonstrate presence of a genetic sub-group without
identifying which specific individuals diagnosed with
disease A are genetically more similar to those with dis-
ease B. The method found evidence for heterogeneity
among seronegative rheumatoid arthritis cases, suggest-
ing that theymay contain a significantproportionof sero-
positive cases. The power of the BUHMBOX method to
detect heterogeneity depends on the number of cases,
number of markers, risk allele frequency, odds ratio
andproportion of diseaseA cases that are genetically dis-
ease B cases (heterogeneity proportion). For example,
with 2000 cases and 2000 controls, a heterogeneity pro-
portion of 0.2 and 50 risk loci, the power to detect hetero-
geneity at a significance threshold of 0.05 is 92%
(Han et al. 2016).

Alternatively, genetic heterogeneity can be studied
by first grouping individuals (for example, disease
cases) based on non-genetic data and then testing for
genetic heterogeneity between these disease subtypes.
A recent method follows this approach by jointly mod-
elling the probability for each SNP of whether its
frequency differentiates cases and controls and/or
differentiates disease subgroups. Applied to type 1 dia-
betes, this method suggests that cases with and without
autoantibodies exhibit a different genetic architecture
for type 1 diabetes disease risk (Liley et al. 2016).

Examples of applications to psychiatric disorders

The BUHMBOX method was used to investigate the
shared genetic basis between MDD and schizophrenia,
and found no evidence that suggested that a subset of
MDD cases was genetically more similar to schizo-
phrenia cases, implying that the genetic correlation
estimated between the disorders reflect pleiotropy
(Han et al. 2016). Application of this method will
become more interesting as sample sizes increase.

Conclusions

For many psychiatric disorders, genetic factors explain
more variation in disease risk in the population than
any other known risk factors (Sullivan et al. 2012), but
only recently has it become possible to resolve the over-
all familial genetic risk into individual risk factors at the

DNA level. The evidence is now conclusive that psychi-
atric disorders, like many other common disease and
disorders are highly polygenic underpinned by thou-
sands of genetic loci, each of which contributes a small
amount to the overall genetic risk. After a period in
whichmany candidate gene studies have reported asso-
ciation results, which failed to replicate (Chanock et al.
2007), the hypothesis-free GWAS approach has estab-
lished itself as the dominating paradigm to find asso-
ciated genetic loci. With ever growing sample sizes,
more and more SNPs surpass the stringent p value
threshold for almost all investigated traits. However, it
is also becoming clear that the bulk of genetic risk factors
remains hidden among those loci that do not achieve
genome-wide significance. Many of the methods pre-
sented in this review leverage the large amount of infor-
mation that is harboured by genetic variants, regardless
of whether or not they achieve significance. While the
focus of some methods is on individual SNPs or genes,
other methods aggregate over a potentially large
number of loci to answer questions such as ‘What is
the combined genetic effect of all measurable SNPs on
phenotypic variance?’, ‘Do these traits have a shared
genetic aetiology?’ or ‘Do these traits causally influence
one another?’. One thing that all of these methods have
in common is that their utility crucially depends on the
power to detect an association, which in turn depends
on sample size. Larger sample sizes lead to ahigher com-
putational burden, but for most analytical questions,
which have been presented here, there are methods
which canutilise summary statistics and thus drastically
reduce runtime and memory requirements.

The literature on new methods is ever-growing and
while we have tried to present an overview of key meth-
ods to help navigation of this complex field, it is difficult
to be fully exhaustive. Inparticular, pathwayanalyses are
important application of GWAS summary statistics, but
these methods have been reviewed recently (Wang et al.
2010) and so were not considered here. We have illu-
strated the methods with some example applications;
however, we expect the full potential of the data will
only be revealed in coming years when studies with
half a million or more people will be widely available.
A key issue for the field is to develop cost-effective strat-
egies to capture larger sample sizes with bothDNA sam-
ples and phenotypic data as these are needed to evaluate
the extent to which genetic data can explain phenotypic
heterogeneity and to fulfil the potential of more persona-
lised medicine.
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