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Abstract
Waddlia chondrophila and Simkania negevensis are emerging Chlamydia-related bacteria. Similar to the pathogenic organisms Chlamydia

pneumoniae and Chlamydia trachomatis, these emerging bacteria are implicated in human genital infections and respiratory diseases. We

used a screening strategy based on a newly developed S. negevensis–specific quantitative real-time PCR (qPCR) and a pan-Chlamydiales

qPCR. We could not detect S. negevensis in 458 respiratory, genitourinary, cardiac and hepatic samples tested. One urethral swab was

positive for W. chondrophila. We observed a low prevalence of Chlamydiales in respiratory samples (1/200, 0.5%), which suggests that

C. pneumoniae is an uncommon respiratory pathogen. Furthermore, we screened 414 human serum samples from Switzerland, England

and Israel and observed a low prevalence (<1%) of exposure to S. negevensis. Conversely, humans were commonly exposed to

W. chondrophila, with seroprevalences ranging from 8.6% to 32.5%. S. negevensis is not a clinically relevant pathogen, but further research

investigating the role of W. chondrophila is needed.
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Introduction
Chlamydiales are strict intracellular bacteria characterized by a

biphasic developmental cycle. Well-known members include
Chlamydia trachomatis and Chlamydia pneumoniae, which are

associated with genital infections and respiratory diseases,
respectively. Over the last decades, several emerging members

have been isolated, such as Waddlia chondrophila, Parachlamydia
acanthamoebae and Simkania negevensis. These may constitute a
This is an open access arti
potential threat to human health: W. chondrophila has been
documented as a potential agent of miscarriage [1,2], and

P. acanthamoebae could be implicated in respiratory diseases
[3]. S. negevensis was discovered in Israel in 1993 [4]. Little is

known about the biology and the clinical importance of this
novel bacterium, but evidence of human exposure has been

reported worldwide [5], with seroprevalence increasing with
age, reaching up to 70% to 80% in some Middle Eastern pop-

ulations [6,7]. Several studies have shown an association of
acute S. negevensis infection with respiratory diseases, in
particular bronchiolitis and pneumonia [5]. Nevertheless, its

true clinical relevance remains controversial as a result of the
low prevalence of confirmed cases and the low reliability of the

diagnostic tools used in most early studies. Furthermore, its
ability to grow in endometrial cells suggest that S. negevensis

could be implicated in genital infections, much like C. trachomatis
[7]. Like other intracellular bacteria, S. negevensis can only be

detected by molecular techniques, such as PCR, or through cell
co-culture. It remains undetectable by routinely used diagnostic
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methods. Its prevalence in clinical settings could thus be

underestimated. Therefore, we sought to further define the
clinical importance of this emerging bacterium.
Materials and methods
Patients and samples
DNA samples. We analysed 458 different clinical samples of
different origins: (a) 91 nasopharyngeal swabs from children

with symptoms compatible with bronchiolitis, among which 11
were positive for respiratory syncytial virus, (b) 200 bron-

choalveolar lavage (BAL) samples from both adults and children
who possibly had lung infections, which were negative for other
common pathogens (samples originated from the internal

medicine ward, emergency room, intensive care unit or pul-
monary service), (c) 22 urethral samples from both men and

women and (d) 135 cervicovaginal swabs. In addition, one
cardiac biopsy (aortic valve) sample and nine hepatic samples

were tested. The study was approved by the ethical committee
of Vaud canton, Switzerland (216-15, approved 13 July 2015).

Human serum samples. We used serum samples that had been

collected during previous seroprevalence studies. These sam-
ples included the following: (a) 101 samples from female pa-

tients, 36 with uneventful pregnancies, 48 with recurrent
miscarriages and 17 with sporadic miscarriage from the
Recurrent Miscarriage Clinic of St Mary’s Hospital (age, 25–39

years) [2]; (b) 132 patients with acute miscarriages from Lau-
sanne University Hospital (mean age, 34 ± 6 years) [1]; and (c)

105 serum samples from asymptomatic young men at the time
of army recruitment (age, 18–26 years) [8–10]. Finally, 76

serum samples taken from adult patients (mean age, 54 ± 16
years) from Rambam Health Care Campus, Haifa, Israel, were

provided by Z. Kra-Oz. The gift was approved by the local ethic
committee.

DNA extraction
DNA was extracted from the samples by the microbiology
diagnostic laboratory of Lausanne University Hospital using the

MagNA Pure 96 automated system (Roche, Rotkreuz,
Switzerland) as previously described [11].

Quantitative real-time PCR
Wedeveloped a specific Simkania negevensis quantitative real-time
PCR (qPCR) using an approach similar to the one routinely used in

the molecular diagnostic laboratory of Lausanne University Hos-
pital [11], and we followed the MIQE Guidelines [12]. Using

Geneious 5.0.3 and primer3Plus software, specific primers and
hydrolyzing probe (TaqMan) targeting the 16S rRNA gene of
© 2018 The Author(s). Published by Elsevier Ltd, NMNI, 23, 1–5
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Simkania negevensis strain Z (ATCC VR1471) were developed.

The following primers were chosen, amplifying a 125 bp fragment:
forward primer, 50-ACC-TCT-TAC-CTG-GGG-ATA-ACG-
GTT-GG-30; reverse primer, 50-CCA-TGA-GCC-TCT-CTA-
CCG-CA-30; and probe, 50-FAM(6-carboxyfluorescein)-GA*G-

AGC-T*GG-GGT-AGC-CTG*-GTT-TCT- BHQ1(Black Hole
Quencher 1)-30. Locked nucleic acids were added in the probe, as
noted by an asterisk, to ensure higher specificity. PCR reactions

were performed with 0.4 μL each of primers and probe (Euro-
gentec, Seraing, Belgium), 10 μL iTaq Supermix with ROX (Bio-

Rad, Reinach, Switzerland) and 5 μL of DNA sample in a final
volume of 20 μL. The cycling conditions were 3 minutes at 95°C,

followed by 45 cycles of 15 seconds at 95°C and 1minute at 60°C.
The PCR products, tested in duplicate, were detected with a

StepOne instrument (Applied Biosystems, Zug, Switzerland) or
QuantStudio instrument (Applied Biosystems) when 96- or 384-
well plates were used, respectively. DNA-free water (PanReac;

AppliChem, Darmstadt, Germany) was used as a negative PCR
control. The specificity of the reaction was evaluated using DNA

extracted from common respiratory and genitourinary bacteria
and viruses as well as from the amoeba Acanthamoeba castellanii

and from several Chlamydia-related bacteria (Supplementary
Table S1). Bacterial DNA was diluted at 1 ng/μL. An inhibition

test was made using 4 μL of the tested species and 1 μL of the
control plasmid at 104/μL copies to ensure the absence of in-

hibitors. Inhibition was considered when <50 copies were
amplified.

The PCR assay’s performance was evaluated in 16 different

runs and exhibited a good interrun reproducibility, with a Cq
value of approximately 20.89 for 105 copies, high repeatability

with a correlation coefficient of 0.9950 and a 95% confidence
interval of 0.74 cycles between duplicates (Supplementary

Fig. S1). The limit of detection was lower than 5 copies.
Mean efficiency of the calibrating experiments was 98.7% ± 2.8.

In clinical experiments, the previously described pan-Chlamy-
diales PCR [13] was used as positive control.

Microimmunofluorescence
Microimmunofluorescence was performed by two different
protocols: firstly using formalin-inactivated bacteria (Elementary

Bodies (EBs) of Simkania negevensis strain Z, W. chondrophila
strain WSU 86-1044 and Parachlamydia acanthamoebae strain

Hall coccus, respectively), as described elsewhere [14], and
secondly using heat-inactivated bacteria (EBs of Simkania nege-
vensis strain Z, W. chondrophila strain WSU 86-1044 and Para-

chlamydia acanthamoebae strain BN9), as described elsewhere
[2]. Serum samples were screened in duplicates for total IgH

at a dilution of 1:32 and 1:64 using a goat anti-human IgH
fluorescein-conjugated antibody (Fluoline H; bioMérieux, Marcy

l’Étoile, France) diluted 1:400. MIFs were read blindly by two
nses/by-nc-nd/4.0/).
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TABLE 1. Organisms identified by novel qPCR analysis.

Samples (n [ 458) were screened using specific S. negevensis

qPCR developed in this study and previously described pan-

Chlamydiales qPCR [13], both based on TaqMan technology

Sample
Simkania
negevensis Chlamydiales

Organisms
identified

Bronchoalveolar lavage 0/200 1/200 ?
Nasopharyngeal aspiratea 0/91 0/91
Cardiac biopsy 0/1 0/1
Hepatic biopsy 0/9 0/9
Cervicovaginal swab 0/135 10/135 Chlamydia trachomatis

(n = 10)
Urethral swab 0/22 5/22 C. trachomatis (n = 4),

Waddlia chondrophila
(n = 1)

qPCR, quantitative real-time PCR.
aIncludes 11 samples positive for respiratory syncytial virus.
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independent readers under an epifluorescence microscope

(Axioplan 2; Zeiss, Feldbach, Switzerland) at a magnification
of ×1000, and was scored 0 if negative, 0.5 if doubtful or 1 if

positive by each reader, as previously described [14]. Scores
from 0 to 0.5 were considered negative, 1 to 1.5 doubtful low, 2
to 2.5 doubtful high and 3 to 4 positive. Cutoff for seropositivity

was set at 1:64 as recommended [15].
Results
Simkania negevensis was detected in none of the 458 DNA

samples using our newly developed qPCR (Table 1). However,
using the pan-Chlamydiales PCR, we identified 15 positive

Chlamydiales samples, all of genitourinary origin; 14 samples
were also positive using a specific C. trachomatis PCR. The

remaining one was confirmed to be positive for W. chondrophila
using the specific W. chondrophila PCR [16]. In addition, 17

samples were considered doubtful (one well out of two posi-
tive). After performing a second test for these 17 samples, only

one of them, from a BAL sample, was considered positive
(three out of four wells positive; mean Cq = 39). Unfortunately,
further identification of the corresponding family-level lineage

could not be achieved because of the lack of remaining material
for subsequent analysis. Inhibition was excluded by an internal

control routinely performed in our diagnostic laboratory.
Nevertheless, six samples exhibited doubtful internal controls

and were therefore retested using 4 μL of the tested species
and 1 μL of the control plasmid at 104/μL. No inhibition was

observed. Our PCR assay appears to be specific for S. negevensis
at the species level, as demonstrated by the absence of ampli-
fication of four DNA samples isolated from ticks and assigned

to the Simkaniaceae family by sequencing of the 16S rRNA gene
region amplified with the pan-Chlamydiales PCR (data not

shown) [17].
This is an open access artic
Congruent with molecular data, we observed an extremely

low seroprevalence of S. negevensis (2/414, <1%) using our
microimmunofluorescence protocol (Table 2). Interestingly,

the two positive serum samples were identified using heat-
inactivated bacteria, a technique suspected to be less specific

than formalin-inactivated bacteria [14].
In contrast, a high seroprevalence of W. chondrophila was

observed, a finding which was in line with previous reports (9/

105–13/40, 8.6–32.5%) (Table 2) [1,8,14]. The seroprevalence
of P. acanthamoebae was low, as previously described (0/105–1/

36, 0–2.8%) (Table 2) [1,8,14].
Discussion
Using a large screening strategy based on both this new and

highly specific qPCR and the broad range pan-Chlamydiales PCR,
we could not detect S. negevensis in nasopharyngeal or BAL

samples of children and adults with suspected respiratory in-
fections, as well as in genitourinary, cardiac and hepatic samples.

Our results contrast with previous PCR-based studies which
suggested an association with acute respiratory tract infections
[18,19]. Indeed, a significant association was shown in children

with bronchiolitis in a study performed in Israel in which both
classical PCR and Vero cell culture approaches were used. As

many as 25% of the children were positive for Simkania in this
study [18]. Similar results were observed in a study performed

in the United Kingdom using nested PCR and cell culture, in
which 100 of 222 nasopharyngeal samples from children with

bronchiolitis were positive by PCR [19]. Conversely, a specific
qPCR could not detect any Simkaniaceae member when applied

to 102 children with respiratory symptoms and 46 controls in
Turkey [20]. Similarly, 531 respiratory samples investigated by
pan-Chlamydiales PCR were negative for Simkania spp. in Finland

[21]. Finally, in the United Kingdom, 847 urine samples from
pregnant women were analysed for the presence of Chlamy-

diales DNA. Despite an overall Chlamydiales prevalence of 4.3%,
including C. trachomatis, no Simkaniaceae were detected [22].

We observed the quasi-absence of human exposure to
S. negevensis in pregnant women and young adults from

Switzerland, pregnant women from England and an adult pop-
ulation from Israel, while previous studies had reported a
seroprevalence of 46% among English pregnant women [19]

and 55% to 80% among adults in Israel [7]. Both studies were
performed using the same previously developed enzyme-linked

immunosorbent assay (ELISA) [24]. This assay was also recently
used in an Italian population and reported a similar high sero-

prevalence, ranging 9% to 30% [24].
These discrepancies may be related to the specificity of the

PCRs and serologic tests used in previous studies. The
© 2018 The Author(s). Published by Elsevier Ltd, NMNI, 23, 1–5
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TABLE 2. Seroprevalence study showing results of microimmunofluorescence assay

Sex and country

Simkania Waddlia Parachlamydia

Total Ig ‡1:32 Total Ig ‡1:64 Total Ig ‡1:32 Total Ig ‡1:64 Total Ig ‡1:32 Total Ig ‡1:64

Women, Switzerland 6/132 (4.5%) 2/132 (1.5%) 59/132 (44.7%)a 36/132 (27.3%) 6/132 (4.5%)a 1/132 (0.8%)
Women, England 0/101 (0%) UD 68/101 (67.3%)b UD 12/101 (11.9%)b UD
Men, Switzerland 2/105 (1.9%) 0/105 (0%) UD 9/105 (8.6%)c UD 0/105 (0%)c

Women, Israel 0/36 (0%) 0/36 (0%) 16/36 (44.4%) 9/36 (25%) 2/36 (5.6%) 1/36 (2.8%)
Men, Israel 0/40 (0%) 0/40 (0%) 18/40 (45%) 13/40 (32.5%) 5/40 (12.5%) 1/40 (2.5%)

Formalin-inactivated bacteria were used to test all samples except those from Swiss women, which were tested using heat-inactivated bacteria.
UD, undetermined.
aDerived from [1], which presents complete results including IgG and IgM analysis.
bDerived from [14]. Complete seroprevalence analysis of total population is available elsewhere [2].
cDerived from [8] and represents IgG.
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previously used PCR assays might have been unreliable because
of contamination with amplicons or S. negevensis genomic DNA

[5]. In particular, nested PCR, a technique highly susceptible to
contamination, has frequently been used in the past [19,25].

The molecular and serologic diagnostic tools used in these
earlier studies were developed before the discovery of several

Chlamydia-related bacteria, so their specificity towards these
new members of the Chlamydiales order are in question.

Further, the previously tested ELISA was only tested for cross-
reactivity against C. pneumoniae [23]. Despite micro-
immunofluorescence being a tedious assay, it remains the

reference standard for Chlamydiales seroprevalence studies
[15]. However, some studies performed using this technique

have also reported high S. negevensis seroprevalences, ranging
from 35% to 50% in adult patients [26] and 11% to 30% in

paediatric patients [27–29]. In these cases, cutoffs of 1:8 or
1:16 for IgG and of 1:10 for IgM seropositivity may have led to

an overestimated prevalence. On the other hand, the lack of
human exposure observed in our study correlates with the low

seroprevalence reported in Japan using a micro-
immunofluorescence assay (4.3%) [30]. In this study, however,
the seroprevalence was probably also overestimated as a result

of the low cutoff of positivity used (1:8) [30], further supporting
a very low human exposure to S. negevensis.

Similar to S. negevensis, W. chondrophila is an emerging Chla-
mydia-related bacterium. Several studies have implicated it in

genital infections [31,32]. Indeed, both serologic evidence and
molecular detection ofW. chondrophila have been associated with

miscarriages [1,2], while high antibody titreswere correlatedwith
tubal infertility [33]. Interestingly, in agreement with previous
studies [8,34], we observed a high seroprevalence of

W. chondrophila in Israel (Table 2), supporting a potential cross-
reaction of the anti-Simkania ELISA with W. chondrophila. In

addition, we were able to detect W. chondrophila from a urinary
tract sample taken from a young woman, highlighting the tropism

for the genitourinary tract of this emerging bacterium.
© 2018 The Author(s). Published by Elsevier Ltd, NMNI, 23, 1–5
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We found only one sample positive for a Chlamydiales bac-
terium (BAL sample) (1/200, 0.5%) and a complete absence of

members of this order in nasopharyngeal aspirates (0/91); in
particular, no C. pneumoniae DNA was detected. This low

prevalence correlates with several other European studies
describing a prevalence of C. pneumoniae infection of <2%

[21,35,36]. The molecular detection rate of this recognized
pathogen in respiratory samples does not significantly differ

from detection rate of Parachlamydiaceae [37–39]. Neverthe-
less, C. pneumoniae remains a well-established agent of respi-
ratory diseases, sometimes causing outbreaks [40,41].

In conclusion, we found strong evidence for low human
exposure to S. negevensis and confirmed that it is not an

important human pathogen. We also observed a low preva-
lence of C. pneumoniae infection. This work further supports

common human exposure to W. chondrophila and encourages
research investigating the role of this emerging pathogen.
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