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A B S T R A C T

Purpose: To investigate how various generations of iterative reconstruction (IR) algorithms impact low-contrast
detectability (LCD) in abdominal computed tomography (CT) for different patient effective diameters, using a
quantitative task-based approach.
Methods: Investigations were performed using an anthropomorphic abdominal phantom with two optional ad-
ditional rings to simulate varying patient effective diameters (25, 30, and 35 cm), and containing multiple
spherical targets (5, 6, and 8mm in diameter) with a 20-HU contrast difference. The phantom was scanned using
routine abdominal protocols (CTDIvol, 5.9–16mGy) on four CT systems from two manufacturers. Images were
reconstructed using both filtered back-projection (FBP) and various IR algorithms: ASiR 50%, SAFIRE 3 (both
statistical IRs), ASiR-V 50%, ADMIRE 3 (both partial model-based IRs), or Veo (full model-based IR). Section
thickness/interval was 2/1mm or 2.5/1.25mm, except 0.625/0.625 mm for Veo. We assessed LCD using a
channelized Hotelling observer with 10 dense differences of Gaussian channels, with the area under the receiver
operating characteristic curve (AUC) as a figure of merit.
Results: For the smallest phantom (25-cm diameter) and smallest lesion size (5-mm diameter), AUC for FBP and
the various IR algorithms did not significantly differ for any of the tested CT systems. For the largest phantom
(35-cm diameter), Veo yielded the highest AUC improvement (8.5%). Statistical and partial model-based IR
algorithms did not significantly improve LCD.
Conclusion: In abdominal CT, switching from FBP to IR algorithms offers limited possibilities for achieving
significant dose reductions while ensuring a constant objective LCD.

1. Introduction

Over the last twenty years, computed tomography (CT) examina-
tions have been performed with increasing frequency in Western
countries, leading to improved patient care. This has, however, sub-
stantially increased the impact of CT on the collective effective radia-
tion dose [1].

Automatic tube current modulation (ATCM) has first been proposed
to reduce radiation exposure by accounting for the patient’s X-ray

attenuation. This is one of the most effective tools for optimizing pa-
tient exposure, particularly for thoracic and abdominal CT examina-
tions. One of the ATCM strategies, developed by Siemens, is to auto-
matically adapt the tube current level depending on the patient body
habitus. Another strategy, used by GE, is to manually set a noise index
(NI) level [2,3]. In all cases, radiologists must tolerate higher noise
levels in larger patients because of the exponential nature of X-ray at-
tenuation [4,5]. To offer further dose reductions, CT manufacturers
have subsequently replaced the traditional filtered back-projection
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(FBP) reconstruction algorithm with iterative reconstruction (IR) al-
gorithms, which can be distinguished into two generations: statistical or
hybrid IR, and model-based IR [6]. Model-based IR algorithms include
the modeling of physical and optical aspects in the reconstruction
process. The modeling complexity impacts the image reconstruction
time, such that manufacturers can propose either a fast partial version
or a longer full version of their model-based IR algorithm.

When aiming at reducing radiation dose, the optimization process of
CT protocols should ensure that the clinical question can still always be
answered, while keeping the radiation exposure as low as reasonably
achievable [7]. Among all clinical data contained in patient images, one
of the most challenging task is the detection of low-contrast lesions,
such as in non-contrast CT scans of the abdomen, particularly in large
patients. Hence, it appears necessary to assess the low-contrast de-
tectability (LCD) performances of various IR algorithms with the rou-
tine clinical CT settings for different patient body habitus before im-
plementing drastic dose reductions with IR [8].

To assess the impact of dose reductions on LCD, one robust and
objective approach involves the use of anthropomorphic CT phantoms
with simulated low-contrast lesions. Previous studies have assessed the
potential improvement of LCD with IR algorithms for one single
phantom size, and often applied subjective and/or objective image
quality parameters based on the technical efficacy (image noise, con-
trast-to-noise ratio (CNR), and spatial resolution) [9–11]. However,
since it is difficult to correlate these image quality metrics with an
accurate assessment of diagnostic performance, it is of paramount im-
portance to use image quality criteria linked to a specific and clinically
relevant task, such as LCD, for different phantom sizes [12,13].

In this study, we used a task-based quantitative image quality as-
sessment approach to investigate how the LCD for various patient ef-
fective diameters was impacted by the use of various generations of IR
algorithms from two CT manufacturers, using routine clinical settings.

2. Materials and methods

2.1. Phantom

A commercially-available tissue equivalent anthropomorphic ab-
dominal phantom (QRM, Moehrendorf, Germany) was used to mimic
data obtained from non-contrast CT scans of patients. The phantom
contains a 10-cm-diameter central hole into which modules can be in-
serted to assess image quality. We used a cylindrical module containing
low-contrast spheres that mimic hypodense abdominal lesions, and a
homogeneous module comprising the same tissue equivalent material
as the phantom. The module with hypodense abdominal lesions con-
tained 24 spheres of 8, 6, 5, 4, and 3mm in diameter, with a 20-HU
contrast difference compared to the background material in a single
axial section. This contrast difference was obtained using plastic ma-
terials of low effective Z numbers and different mass densities. The
effective diameter of this phantom is 25 cm, thus simulating the X-ray
attenuation of a thin patient weighing ∼50 kg (Fig. 1a). To simulate
different patient body habitus, additional rings of soft tissue equivalent

were added around the core of the phantom. Using 2.5- and 5-cm-thick
rings, respectively, we achieved effective diameters of 30 and 35 cm,
thus simulating patients weighing∼75 (Fig. 1b) and∼100 kg (Fig. 1c),
respectively. The correlation between the phantom effective diameter
and patient weight was previously obtained by performing a linear
regression between the effective abdominal diameter and patient
weight for 500 patients.

2.2. CT protocols

We scanned the phantom both with and without its additional rings
using four different CT systems: the SOMATOM Definition Flash and
SOMATOM Definition Edge (Siemens Healthineers, Forchheim,
Germany), and the Discovery CT750 HD and Revolution (GE
Healthcare, Milwaukee, WI, USA). Before data acquisition, we selected
on each CT system the routine protocols used for the following clinical
task: detection of low-contrast liver lesions. The portovenous acquisi-
tion phase was considered. The ATCM settings were those used in
routine clinical practice: the quality reference mAs (with the “average”
curve strength) were 150 and 130mAs for the Flash and Edge Siemens
systems, respectively; while for both GE systems, NI values were set to
20, 26, and 32 HU, for the small, medium, and large phantoms, re-
spectively. The CTDIvol were retrieved directly from the CTDI dose re-
port. With these settings, the CTDIvol for all CT systems varied between
5.9 and 7.8mGy for the small phantom, 8.5 and 11.6mGy for the
medium phantom, and 11.1 and 16mGy for the large phantom. To
further simulate clinical practice, the display FOV was adapted for each
phantom size, thus yielding different pixel sizes. Data acquisition and
image reconstruction parameters are summarized in Table 1:

These settings produced a total of 27 datasets, including three
phantom sizes and two image reconstruction algorithms for three of the
four tested CT systems, and three phantom sizes and three image re-
construction algorithms for one CT scanner.

To achieve statistical robustness with the utilized image quality
metrics, each phantom with the module containing low-contrast
spheres was scanned 15 times without moving the phantom between
acquisitions. Then, the low-contrast module was replaced with its
homogeneous counterpart, and the phantom was scanned three times
using the exact same settings, to provide the required number of
images.

2.3. Task-based image quality assessment

We used a task-based approach to quantitatively assess the image
quality of routine abdominal CT protocols, noting that the detection of
low-contrast lesions is the most challenging task for such protocols. LCD
was assessed for each image reconstruction algorithm and phantom size
for three lesion sizes that were considered as clinically relevant for the
investigated protocols (8, 6, and 5mm in diameter). In clinical practice,
smaller focal liver lesions (< 5mm in diameter) may not be reliably
characterized with the routine CT settings due to the poor low-contrast
resolution of CT [14].

Fig. 1. Axial CT images of the anthropomorphic abdominal phantom simulating patients with weights of 50 (a), 75 (b), and 100 kg (c), respectively.

A. Viry et al. Physica Medica 48 (2018) 111–118

112



From each dataset, because of the different display FOV used de-
pending on the phantom diameter, we extracted square regions of in-
terest (ROIs) containing the low-contrast lesion, which measured
22×22, 18× 18, and 16× 16 pixels for the small, medium, and large
phantoms, respectively. We extracted a total of 60 ROIs per sphere
diameter and for the various acquisition/reconstruction conditions. We
additionally extracted 300 ROIs of noise only from images of the
homogeneous module for each acquisition/reconstruction condition.
Due to the non-stationarity of IR algorithms, we selected ROIs of noise
only at the same position than signal-containing ROIs.

To provide an objective quantitative metric, we used an anthro-
pomorphic mathematical model observer designed to assess the per-
formance of a classification task (signal present/signal absent). This
method is based on a statistical decision theory that aims to mimic the
performance of human observers in the detection of low-contrast
structures within an image [15–17]. We chose to use the channelized
Hotelling observer (CHO) with 10 dense differences of Gaussian chan-
nels as a mathematical model observer [18]. The radial frequency of the
jth channel is given by .Eq. (1):
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In this equation, ρ is the spatial frequency, the multiplicative factor W is
the channel bandwidth, and σj is the standard deviation of the jth
channel with σj defined from a starting value σ0 by =σ σ αj 0

j. In this
study, W=1.67, σ0= 0.005, and α=1.4 [19].

Each vectorized ROI g, containing either a signal or noise only, was
channelized using Eq. (2):

=v U gT (2)

where U is a matrix with columns corresponding to channel vectors.
As a human observer, the mathematical observer attributes a grade

(also called decision variable λ) to each channelized image. Eq. (3) was
used to compute λ:

=λ w vT (3)

And the template w was computed using Eq. (4):

= < > − < >−w K v v( )V s n
1 (4)

In this equation, Kv is the covariance matrix of the 300 channelized
signal-absent ROIs,< vs> is the mean of the 80 channelized ROIs with
signal, and< vn> is the mean of the 300 channelized ROIs with noise
only. Using this method, the model observer was trained to calculate
the template, and was tested for calculating the decision variables using
the same images, which could overestimate the performances (positive
bias). The number of signal-absent ROIs and signal-present ROIs were
chosen to avoid singularity issues when dealing with the estimation of
the covariance matrix inversion and to minimize bias due to the use of a
limited number of images [20].

Higher decision variables corresponded to higher confidence of the
model observer regarding the presence of a low-contrast lesion in the
image. All the decision variables were combined in a histogram, as il-
lustrated as an example in Fig. 2a. Varying a threshold of the decision
variable enabled the plotting of a receiver operating characteristic
(ROC) curve (Fig. 2b), which was the complete outcome of the model
observer. The ROC curve was plotted using 200 thresholds. Next, the
image quality was assessed by computing the area under the ROC curve
(AUC) using a trapezoidal method.

2.4. Statistical analysis

To each dataset, we applied a bootstrapping technique (random
selection with replacement) to estimate the reference range of the re-
sults of the model observer [21]. We performed a total of 1000 different
bootstrapped samplings using 60 signal images and 300 noise-only
images. For each randomization, we calculated the ROC curves and the
corresponding AUC values. To assess the statistical differences between
the two distributions corresponding to FBP and IR outcomes, we cal-
culated the percentage (PC) of IR outcomes superior to FBP, without
making any assumption about the underlying distribution of the data.
The improvement of LCD for the IR algorithm compared to FBP on the
same CT system was considered statistically significant if PC was>
95% (0.95). This level was set arbitrarily, yet in analogy with the
significance levels commonly used for p-values, to be even more spe-
cific in terms of discrimination, considering that AUCs > 0.90 are

Table 1
Summary of the utilized CT data acquisition and image reconstruction parameters.

Siemens Flash Siemens Edge GE Discovery CT750 HD GE Revolution

Data acquisition parameters
Tube potential (kVp) 120 120 120 120
Gantry revolution time (s) 0.5 0.5 0.6 0.5
Beam collimation (mm) 38.4 38.4 40 40
Pitch 0.6 0.8 0.986 0.975
ATCM settings1 Reference mAs= 150mAs Reference mAs=130mAs NI= 20/26/32 HU NI= 20/26/32 HU
Tube charge (mAs)2 100/142/2153 88/125/1823 110/164/225 96/124/160
CTDIvol (mGy)2 6.8/9.6/14.6 5.9/8.5/12.2 7.8/11.6/16 6.7/8.6/11.1

Image reconstruction parameters
Section thickness/interval 2/1mm 2/1mm 2.5/1.25mm

0.625/0.625 mm4
2.5/1.25mm

Pixel size (mm)2 0.625/0.723/0.820 0.625/0.723/0.820 0.625/0.723/0.820 0.625/0.723/0.820
Display FOV (mm)2 320/370/420 320/370/420 320/370/420 320/370/420
Kernel B30f (FBP)/I30f (IR) B30f (FBP)/I30f (IR) Standard Standard

Image reconstruction algorithms
FBP FBP FBP FBP n.a.5

Statistical IR SAFIRE 3 n.a. ASiR 50% n.a.
Partial model-based IR n.a. ADMIRE 3 n.a. ASiR-V 50%
Full model-based IR n.a. n.a. Veo n.a.

1 ATCM settings correspond to quality reference mAs for Siemens systems and noise index (NI) values for GE systems. NI values correspond to the small, medium,
and large phantom, respectively.

2 Tube charge, CTDIvol, pixel size, and display FOV all varied with the phantom size. Values correspond to the small, medium, and large phantom, respectively.
3 The mAs values for the two Siemens systems are effective mAs (mAs/pitch).
4 For the full model-based IR (Veo), 0.625/0.625 mm was the only section thickness/interval reconstruction available at the CT console at the time of the study.
5 Not available, ASiR-V at a level of 0% was used instead.
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rated as excellent [22]. In such cases, we calculated the potential mean
improvement.

3. Results

3.1. Low-contrast detectability using FBP

Fig. 3 presents the AUC for each sphere size (5, 6, and 8mm) ob-
tained using the standard FBP algorithm (except ASiR-V 0% for the
Revolution system) as a function of the phantom size. The vertical error
bars on each data point represent the 95% confidence intervals. As
expected based on the NI settings or ATCM behavior, the AUC de-
creased with increasing phantom size at each sphere diameter. More-
over, this decreasing performance was systematically higher for spheres
of smaller diameter, i.e., with increasing task difficulty. For a sphere
diameter of 5mm, AUC decreased by 18%, 20%, 25%, and 19% for the
Flash, Edge, Discovery CT750 HD, and Revolution systems, respec-
tively.

3.2. Impact of the various IR algorithms on LCD performances as a function
of phantom size

Fig. 4 presents a pairwise comparison of the results of the CHO
model observer for detection of the smallest sphere (5mm in diameter)
using the conventional FBP and available IR algorithms for the three
phantom sizes. Table 2 summarizes the PC of IR outcomes that were
superior to FBP. For the small phantom, the AUC values were nearly 1
for each CT system. In this case, the detection task was very easy, and
LCD was not significantly improved with any of the tested IR algorithms
relative to FBP. For the medium phantom, no significant LCD im-
provement was observed with ASiR 50%, SAFIRE 3, ASiR-V 50%, or
ADMIRE 3 compared to FBP. However, with the Discovery CT750 HD
system, Veo was associated with a significant AUC improvement of
5.8% compared to FBP. Similarly, with the large phantom, only Veo
yielded a significant AUC improvement of 8.5% relative to FBP. When
quantitatively comparing all CT systems using a standard FBP algorithm
and for each phantom size, we found that the AUC values were nearly
equal (differences of± 0.05), indicating comparable objective image
quality despite the dose variations.

3.3. Impact of the various IR algorithms on LCD performances as a function
of lesion size

Fig. 5 presents the results of the CHO model observer as a function
of sphere size with the various IR algorithms. These results were only
obtained for the large phantom, as this was the most discriminating
case. As expected, the AUC values systematically increased with in-
creasing sphere diameter. Table 3 presents a pairwise comparison of the
IR and FBP algorithms for each tested CT system and each sphere
diameter. With the smallest sphere diameter (5 mm), LCD was not
significantly improved with the tested IR algorithms compared to FBP,
except with Veo. With the 6-mm sphere, slight LCD improvements were
noted for ADMIRE 3 (2% mean improvement) and ASiR 50% (2.2%
mean improvement). With the 8-mm sphere, we found that LCD was
slightly improved for SAFIRE 3 (0.9%), ADMIRE 3 (1.1%), and ASiR-V
50% (1.6%). Surprisingly, ASiR 50% showed no benefit with the 8-mm
spheres. The greatest benefit was observed with the full model-based IR
algorithm Veo, which was available on the Discovery CT750 HD
system, with LCD increased by 8.5% with the 5-mm spheres and by
5.2% for the 6-mm spheres, despite the fourfold thinner slices. Notably,
the Veo algorithm achieved a higher relative LCD gain with the more
difficult tasks (i.e., smaller sphere diameter).

4. Discussion

In our study, we used a task-based quantitative image quality as-
sessment approach to investigate how various generations of IR algo-
rithms impacted LCD with different simulated patient effective ab-
dominal diameters. We found that with each tested CT system, LCD
decreased with increasing phantom size. This was expected since, in the
dose optimization process proposed by Siemens, a reduction of LCD in
larger patients is considered acceptable to avoid high-dose exposure.
For GE systems, technical charts have been proposed to adapt NI values
to the individual patient body habitus to avoid non-diagnostic image
quality for thinner patients and overexposure for larger patients [5].
Moreover, the technical limitations of X-ray tube power could also limit
the feasibility of equivalent noise levels for all patient morphotypes.
Using these methodologies, it appears that although dose increased
when the phantom’s diameter increased, the LCD did not remain con-
stant with all phantom sizes. This implies that diagnostic requirements

Fig. 2. a) Example of the distribution of decision variables obtained using the CHO model observer for the two categories of images: images with signal (blue bars)
and images with noise only (green bars). b) Receiver operating characteristic (ROC) curve showing the outcome of decision variable threshold variation. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Low-contrast detectability assessed by means of the area under the receiver operating characteristic curve (AUC) for each computed tomography (CT) system
for the three sphere diameters as a function of the phantom diameter for filtered back-projection images.

Fig. 4. Impact of the image reconstruction algorithms on low-contrast detectability for 5-mm-diameter spheres and the three phantom sizes. Note that each CT
system is reported as a function of the CTDIvol routinely applied in clinical practice.
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should be defined individually based on both the patient-specific body
habitus and clinical task. Thus, an optimization process should account
for the patient’s body habitus and use an objective image quality metric
linked to the clinical task.

Our results further demonstrated that the first and second genera-
tions of IR techniques (statistical IR and partial model-based IR, re-
spectively) had no substantial impact on LCD for each phantom size.
For the small phantom, the examined task was trivial, and thus no
difference was observed between the various image reconstruction al-
gorithms. Notably, the dose levels used enabled a high level of per-
formance (Fig. 4). The use of a lower dose range may have enabled the
detection of differences between reconstruction algorithms. For the
medium and large phantoms, we still observed no substantial im-
provement for 5-mm diameter lesions with ASiR 50%, SAFIRE 3, ASiR-

V 50%, or ADMIRE 3 compared to FBP. However, the effectiveness of IR
algorithms increased with increasing phantom size. Only the full model-
based IR Veo, which includes the physical and optical aspects of the CT
system in the image reconstruction process, had a significant impact on
LCD for the medium and large phantoms. Since Veo further provides a
reduced section thickness in comparison with the other algorithms, we
secondarily investigated the effect of the reduced section thickness on
LCD by averaging thin Veo slices. For the smallest lesion size, no sig-
nificant impact was noted for each phantom size. As a matter of fact,
partial volume effect that may impair LCD should not be significant
when dealing with the detection of a 5mm sphere using a section
thickness of 2.5mm with a reconstruction interval of 1.25mm.
Nevertheless, this reduced section thickness may further improve the
longitudinal spatial resolution and the LCD in the other two

Table 2
Percentage of iterative reconstruction (IR) outcomes that were superior to fil-
tered back-projection (FBP) for the three phantom sizes for the smallest spheres
(5-mm diameter).

Phantom size Small Medium Large

CT Edge (FBP/ADMIRE 3) 76.7% 81.3% 85.0%
CT Flash (FBP/SAFIRE 3) 74.1% 78.4% 93.9%
CT Revolution (ASiR-V 0%/ASiR-V 50%) 9.9% 40.1% 84.6%
CT Discovery CT750 HD (FBP/ASiR 50%) 65.8% 50.1% 94.3%
CT Discovery CT750 HD (FBP/Veo) 64% 100%* 100%*

* Statistically significant improvement between FBP and IR algorithm.

Fig. 5. Low-contrast detectability as a function of lesion size with various image reconstruction algorithms for the large phantom.

Table 3
Percentage of iterative reconstruction (IR) outcomes that were superior to fil-
tered back-projection (FBP) for the three lesion sizes for the large phantom.

Lesion size 5mm 6mm 8mm

CT Edge (FBP/ADMIRE 3) 85.0% 95.8%* 99.7%*

CT Flash (FBP/SAFIRE 3) 93.9% 92.5% 97.2%*

CT Revolution (ASiR-V 0%/ASiR-V 50%) 84.6% 94.3% 99.4%*

CT Discovery CT750 HD (FBP/ASiR 50%) 94.3% 99.4%* 85.3%
CT Discovery CT750 HD (FBP/Veo) 100%* 100%* 96.4%*

* Statistically significant improvement between FBP and IR algorithm.
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reconstruction planes (i.e. coronal and sagittal) when using multiplanar
reformations. However, this point was beyond the scope of the present
investigation. The main limitation of Veo is that the reconstruction time
takes up to 45min for a single acquisition phase. In summary, our
present results clearly demonstrated that, for the selected clinical task,
the improvement in LCD by using statistical IRs or partial model-based
IRs rather than FBP is very limited. Hence, the potential to achieve
substantial dose reduction while maintaining LCD appears to be lim-
ited. The use of full model-based IR rather than FBP had greater po-
tential to improve LCD, particularly for large body sizes.

Other investigators have also used CT phantoms to assess the po-
tential improvement of LCD with various IR algorithms. Subjective
analyses with human readers (ROC, 4AFC experiment) have indicated
that IR techniques (SAFIRE, ASiR, and AIDR) do not statistically im-
prove LCD [9,23–25] or only slightly improve LCD at the same dose
level with various IR algorithms [26–28]. These researchers have also
applied quantitative image quality parameters (noise and CNR) to va-
lidate their use. They report that image noise is significantly reduced
with IR algorithms, leading to major CNR improvements. On the other
hand, the CNR is not correlated with LCD [29], and should no longer be
used as a surrogate of LCD when the noise texture changes, which ty-
pically occurs with IR algorithms. This is the case when comparing
different CT systems, or when comparing various image reconstruction
algorithms on the same CT scanner. Our results confirmed the findings
of previous human subjective analyses of statistical IR (ASiR and SA-
FIRE) [26,27] and partial model-based IR (ASiR-V and ADMIRE)
[25,28] using an objective methodology based on a task-specific con-
cept.

Other studies have also applied task-based image quality metrics to
LCD assessment using Fourier transform metrics (noise power spectrum
and modulation transfer function) to compute a detectability index
[30–32] or by directly computing mathematical model observers
[16,28,33]. To compute Fourier transform metrics, imaging systems
must be linear and shift invariant [34]. However, this is no longer the
case with IR algorithms; thus, this method must be applied with caution
in such contexts. In our study, we applied a mathematical model ob-
server directly in the image space domain. Our results confirmed the
findings of a previous study using Fourier transform metrics for ASiR
and Veo [31]. ASiR did not improve LCD as compared to FBP, whereas
Veo allowed better improvement compared to both FBP and ASiR.

Our study has several limitations. First, the anthropomorphic ab-
dominal phantom comprised soft-tissue-equivalent rings that do not
accurately simulate large patients with fat around their organs in ad-
dition to subcutaneous fat. Rather, the large phantom simulates a pa-
tient with a higher X-ray attenuation, and we presume that LCD im-
provement with IR algorithms would be identical or less significant
using a phantom with fat-equivalent rings. Second, the technological
differences between CT systems and the different ATCM settings, which
are based on different principles between the two manufacturers, led to
the clinical use of various CTDIvol. This was not a problem since the goal
of our study was not to benchmark CT systems but rather to investigate
the impact of IR over FBP using routine clinical protocols and settings.
Despite these differences, we noted that noise levels and LCD of the FBP
acquisitions for a common and clinically relevant task were comparable
for both manufacturers. Third, we did not investigate the impact of the
strength levels of the various IR algorithms on LCD; we only selected
one of the most commonly used strength levels proposed by each
manufacturer for abdominal CT protocols. Finally, the chosen task
(detection of a low-contrast structure at a known position in a homo-
geneous background) is very simple compared to the clinical reality.
However, even in this simple condition, the benefit of IR appears
marginal and we should not expect major improvements when dealing
with textured backgrounds [35]. To go a step further, we may, in the
future, add complexity to the task, and assess the performance of IR
algorithms to correctly locate a signal or estimate the size and shape of
a lesion [36,37].

5. Conclusions

In conclusion, in routinely used abdominal CT protocols, switching
from FBP to IR algorithms does not significantly improve LCD. Dose
optimization should be performed by first defining the diagnostic re-
quirement for a relevant clinical task and the patient’s specific body
habitus, and by subsequently evaluating image quality criteria linked to
this task before drastically reducing dose levels.
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