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SUMMARY

Despite effective treatment, HIV can persist in latent
reservoirs, which represent a major obstacle toward
HIV eradication. Targeting and reactivating latent
cells is challenging due to the heterogeneous nature
of HIV-infected cells. Here, we used a primary model
of HIV latency and single-cell RNA sequencing to
characterize transcriptional heterogeneity during
HIV latency and reactivation. Our analysis identified
transcriptional programs leading to successful reac-
tivation of HIV expression.

INTRODUCTION

Early on during the course of natural infection, HIV establishes a

reservoir of persisting infected cells. Two types of viral reser-

voirs have been described so far: anatomical sanctuaries and

a latent reservoir characterized by the absence of viral particle

production (Chun et al., 2015; Eisele and Siliciano, 2012). These

reservoirs are not eliminated by antiretroviral therapy (ART), as

viruses can rebound upon ART cessation and are thus consid-

ered a major barrier to viral eradication and cure (Davey et al.,

1999; Whitney et al., 2014). Although many cell types can be in-

fected by HIV and may constitute part of the latent reservoir,

most studies have focused on the CD4+ T cell latent reservoir.

Two hypotheses exist for the establishment of the CD4+ T cell

latent reservoir: (1) direct infection of resting cells, and (2) infec-

tion of activated cells that revert to a memory resting phenotype

(Chavez et al., 2015; van der Sluis et al., 2013). Diverse mecha-

nisms have been associated with HIV latency, including tran-

scriptional repression (availability and location of transcription

factors, epigenetic regulation, chromatin environment of the

provirus) and post-transcriptional blocks (nuclear export, trans-

lation) (Abbas and Herbein, 2012; Cary et al., 2016; Ciuffi et al.,

2015; Ciuffi and Telenti, 2013; Huang et al., 2007; Lassen et al.,

2006; Li et al., 2012; Mbonye and Karn, 2017; Mohammadi

et al., 2014). Multiple CD4+ T cell subsets can be infected with

HIV and be present at multiple cellular states, either resting or
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activated (Baxter et al., 2018; Kulpa and Chomont, 2015;

Shan et al., 2017). All these factors contribute to the complexity

and heterogeneity of the HIV latency reservoir (Boritz et al.,

2016; Chun et al., 2015).

One approach toward an HIV cure, the so-called ‘‘shock and

kill’’ strategy, aims at reactivating HIV particle production from

the latent cell so that it will die upon virus-mediated cytotoxicity

or be killed by cytotoxic CD8+ T lymphocytes, thereby purging

the latent reservoirs (Darcis et al., 2017). Multiple latency

reversing agents (LRAs) have been tested for their ability to reac-

tivate HIV expression in latently infected cells albeit with limited

success (Darcis et al., 2015; Ho et al., 2013; Mohammadi

et al., 2014; Spina et al., 2013). Some histone deacetylase inhib-

itors (HDACis), such as vorinostat (SAHA), proved successful in

inducing viral transcription, but failed to induce successful pro-

tein expression and viral particle release (Blazkova et al., 2012;

Bullen et al., 2014; Ho et al., 2014; Mohammadi et al., 2014).

Other stimuli leading to T cell receptor (TCR)-mediated cellular

activation have been shown to induce successful viral particle

production (Darcis et al., 2015; Spina et al., 2013). Despite dis-

playing themost potent phenotype, TCR-mediated HIV reactiva-

tion occurs only in a fraction of cells, i.e., some cells were suc-

cessfully induced while some others remained unresponsive

and thus not induced, confirming cellular heterogeneity of the

latent reservoir (Ho et al., 2013, 2014). The mechanisms respon-

sible for this differential reactivation potential and thus for the

inducible phenotype upon exposure to LRA and TCR have yet

to be elucidated.

The recent advent of single-cell sequencing technologies has

been a major asset for the field of virology, allowing to study the

heterogeneity of cellular response to viral infection (Ciuffi et al.,

2016). Single-cell approaches have opened new perspectives

in HIV research, such as the characterization of HIV replication

cycle delays in individual cells (Holmes et al., 2015), the study

of cellular heterogeneity of the latent reservoir (Baxter et al.,

2016; Yucha et al., 2017), and assessing the heterogeneity of

cellular response to LRAs (Passaes et al., 2017). Although tech-

nical and computational challenges are still abundant in the field

of single-cell sequencing, numerous efforts exist to alleviate the

burden of technical biases, and a multitude of statistical
commons.org/licenses/by/4.0/).
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Figure 1. Latency and Reactivation at the Single-Cell Level

(A) Experimental design overview. Primary CD4+ T cells were first activated by TCR stimulation and infected with a HIVGFP/VSV-G virus. Two days post-infection,

successfully infected GFP+ cells were sorted by FACS and further expanded in culture. Cells were then cultured for 8 weeks on aminimal medium, in presence of

H80 cell culture supernatant to promote cell survival and generate latently infected cells. Cells were then either left untreated or exposed to SAHA or to TCR

treatment before single-cell isolation and single-cell RNA sequencing. After single-cell isolation of TCR-stimulated cells, individual cells were imaged by fluo-

rescence microscopy in order to assess GFP expression. For each condition, bulk and single-cell RNA sequencing were performed.

(B) Principal component analysis (PCA) of single-cell gene expression profiles segregates cells in two major clusters for each condition. Each dot represents the

gene expression profile of a single cell. The colors indicate the various experimental conditions: untreated (orange), SAHA-treated (blue), and TCR-treated

(green). The axis labels indicate the percentages of explained variance corresponding to the represented principal component.

(legend continued on next page)
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methods for the analysis of single-cell data are continuously be-

ing published (Bacher and Kendziorski, 2016; Brennecke et al.,

2013; Buettner et al., 2015; Rato et al., 2017).

In this work, we aimed at exploring the cellular heterogeneity

and characterizing the transcriptomic profile of latent and reac-

tivated HIV-infected cells at the single-cell level. For this pur-

pose, we employed a previously established HIV latency model

that uses human primary CD4+ T cells (Mohammadi et al.,

2014) and exposed them to different reactivation conditions.

Our data revealed that latently infected cells are transcriptionally

heterogeneous, separating in two distinct cell clusters, and tran-

scriptional profiles correlate with the susceptibility to cellular

activation and HIV expression reactivation, thereby allowing to

identify features of the HIV-inducible cell.

RESULTS AND DISCUSSION

Latent and Reactivated Cells Are Heterogeneous,
Separating in Two Distinct Clusters
We used a previously described primary model of HIV latency

that consists in infecting activated human primary CD4+ T cells

with a GFP-based HIV vector, sorting the GFP+ cells by fluores-

cence-activated cell sorting (FACS), and culturing the infected

cells for a long time to allow cell reversion to a resting, latent

phenotype (Mohammadi et al., 2014; Sahu et al., 2006; Tyagi

et al., 2010). Latently infected cells were either left untreated or

exposed to SAHA or to TCR stimulation, followed by single-cell

isolation and single-cell RNA-sequencing (scRNA-seq) analysis

(Figure 1A). Bulk RNA-seq was also performed as control. The

addition of spike-in control sequences allowed calibrating the

abundances of sequencing reads for the single-cell samples

across conditions.

After preprocessing of bulk and single-cell RNA sequencing

data, filtering of low-quality cells (Supplemental Experimental

Procedures; Figures S1A–S1D; Table S1), and normalization,

we assessed the heterogeneity of single-cell host gene expres-

sion profiles for all three experimental conditions with principal

component analysis (PCA). Viral transcripts were not used in

the PCA to avoid any bias in cell clustering. The first two principal

components explained 75% of the total variance and spatially

separated the cells into two major groups, named cluster 1

and cluster 2 (Figure 1B; Table S2). These two clusters were

observed in every condition tested (i.e., untreated, SAHA-

treated, or TCR-treated) and remained stable also with alterna-

tive normalization and dimensionality reduction methods (Sup-

plemental Experimental Procedures; Figure S2).

Cell Clusters Correlate with HIV Reactivation Potential
In order to investigate the correlation between the cellular gene

expression profile (and thus the cell cluster) and the successful

induction of HIV expression at the protein level, we quantified
(C) The two isolated cellular clusters for the TCR-treated condition showdifferent le

for TCR-treated cells, where in addition each cell is color-coded according to its

expression intensity for each cluster are depicted in the lower panel by a violin plo

the interquartile range (black box) and the outlier boundaries defined as beyond

intensity is lower in cluster 1 than in cluster 2 (two-sample t test: p = 6.515*10�5

See also Figures S1 and S2 and Tables S1 and S2.
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virally encoded GFP expression, used as a surrogate of viral pro-

tein expression, at the single-cell level by fluorescence micro-

scopy and performed subsequent image analysis. As previously

shown, SAHA-treated cells did not result in effective GFP

expression, consistent with possible presence of post-transcrip-

tional blocks (Table S2) (Mohammadi et al., 2014). In contrast,

successful GFP expression was observed in a fraction of the

TCR-treated cells. GFP expression intensity was reported for

each TCR-treated cell, revealing different levels of GFP intensity

between the two clusters, with cells from cluster 1 systematically

presenting lower GFP expression than cells from cluster 2 (two-

sample t test: p < 10�4, Figure 1C; Table S2). Altogether, these

results suggest that the TCR-treated cell population is heteroge-

neous and displays different HIV reactivation phenotypes,

induced and non-induced, overlapping with transcriptionally

defined cell clusters. These data are consistent with a model in

which TCR-treated cluster-1 cells are similar to untreated or

SAHA-treated cluster-1 cells, which are poorly responsive and

thus not successfully induced. Conversely, TCR-treated clus-

ter-2 cells correspond to induced cells and could be distin-

guished from cluster 2 of untreated and SAHA-treated cells,

which likely correspond to inducible cells (Figure 1B).

We performed a comparative analysis of HIV transcription and

global gene expression for the two cellular clusters. For the three

tested conditions, HIV transcript levels were consistently higher

in cluster 2 than in cluster 1 (Figure S3A). In TCR-treated cells,

virally encoded GFP protein expression was significantly corre-

lated with the number of viral transcripts per cell (Spearman cor-

relation 0.49, Spearman rank correlation test: p < 10�3). Further-

more, cells in cluster 1 have globally a reduced number of

expressed genes compared to cluster 2 (Figure S3B). All

together, these data are consistent with a cellular model where

latent cells display different degrees of resting depths that corre-

late with their level of global HIV transcription and their response

to extracellular stimuli. In this sense, cells from cluster 1 are in a

deeper resting state, more difficult to activate upon TCR stimu-

lation, and where HIV expression is also more difficult to induce

and reactivate. Cells from cluster 2 are in a less deep resting

state and are more responsive to cellular activation and to HIV

expression reactivation.

A 134-Gene-Specific Transcriptional Signature
Identifies the Inducible Latent Cell
We further compared the two identified cellular subpopulations

for each condition in terms of differential expression (DE) of their

transcriptional profiles (Figure S4). Globally DE genes between

cluster 1 and cluster 2 in the three tested conditions are enriched

in metabolism, gene expression, disease, immune system, and

DNA repair, processes that are consistent with a cellular

state more prone to activation in cluster 2 compared to cluster

1 (Figure S4B; Tables S3 and S4).
vels to HIV reactivation response. The upper panel recapitulates the PCA result

measured GFP expression intensity. The corresponding distributions of GFP

t, showing the frequency of observation (violin shape), the median (white dot),

1.5 of the interquartile range in both directions (vertical bars). GFP expression

).



Figure 2. Analysis of Differentially Expressed Genes between Cluster 1 and Cluster 2

(A) Expression heatmaps for the 134 common differentially expressed (DE) genes across conditions. Each heatmap corresponds to a different treatment con-

dition and displays the log2-transformed expression values of DE genes across cells. Every row of the heatmaps corresponds to a DE gene and each column to a

cell. Heatmap rows and columns are grouped by hierarchical clustering and the columns are color-coded according to the corresponding cluster (gray for cluster

1 and green for cluster 2). Expression intensity is color-coded from low (white) to high (blue) expression.

(B) Enrichment analysis result for the 134 DE genes. Enriched pathways were grouped according to the Reactome hierarchy into categories associated to

biological processes indicated on the left side of the figure. The size of the circles is proportional to the number of enriched pathways in the corresponding

category. The color of each circle corresponds to a significance score equal to the geometric mean of all the corrected p values attributed to the pathways

included in each category. Reactome categories are ranked according to their p value.

(C) Network of functional interactions among DE genes. STRING database network analysis was performed for the 134 DE genes. Each node corresponds to a

gene and only the connected genes are represented. The edges of the networks correspond to existing experimental and database evidence for gene interaction.

See also Figures S3 and S4 and Tables S3 and S4.
Although there aremanyDEgenes in eachcondition tested,we

found overall 134 DE genes differentially expressed between the

distinct two cell clusters across all three conditions (Figure S4A;

Table S3). With the exception of the Metazoa_SRP gene, the
other commonly identified DE genes were upregulated in cluster

2 as compared to cluster 1 (Figure 2A). Enrichment analysis of the

134 common DE genes between cluster 1 and cluster 2 also

confirmed the hypothesis that cluster 1 and cluster 2 reflect two
Cell Reports 23, 942–950, April 24, 2018 945
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distinct cellular states with different impact on cellular activation

potential and HIV reactivation efficiency.With ribosomal proteins

representing over 48.5% of the 134 DE genes, the resulting

enriched pathways corresponded to processes related to the

metabolismofRNAandprotein, electron transport, RNAsplicing,

immune system, HIV infection, and translational regulation

(Figure 2B; Table S4). This further argues that the cells in cluster

2 display a highermetabolic activity (higher activity of cellularma-

chinery and higher gene expression, including viral genes) as

compared to the cells in cluster 1. In contrast, no enrichment in

apoptosis genes was found, discarding the hypothesis that cells

in cluster 1 are apoptotic. An additional analysis using the

STRING database online resource (Szklarczyk et al., 2017),

applied to the 134 common DE genes, revealed a strongly con-

nected network of functional interactions and enrichment of viral

processes, translational regulation, RNA and protein meta-

bolism, as well as cell activation (Figure 2C; Table S4). Thus,

the set of 134 DE genes represents a unique transcriptional

signature, hallmarking cells from cluster 1 opposed to cluster 2,

andavery specific signature for predisposition to successful acti-

vation, hence for the HIV-inducible cell. These 134 genes consti-

tute key players of the cellularmachinery, suggesting that the two

clusters correspond to different cellular activation stages.Onone

hand, the cells in cluster 1 are in a deep resting state, where the

applied stimulation is not able to successfully reactivate them in

the given time window of treatment. On the other hand, the cells

in cluster 2 are more responsive to stimulation, due to the

increased potential of the existing cellular machinery. These

two states of activation also reflect the capability of viral reactiva-

tion, with cells in cluster 2 being inducible, thus able to success-

fully reactivate HIV expression, as opposed to cells in cluster 1.

The gene expression profiling of the 134 gene-specific signature

and the PCA analysis of the TCR-treated cells highlights a subset

of 16 cells in the cluster 1 with an intermediate phenotype, which

is consistent with cells transitioning between the two clusters

(Figures 2B and S4C).

The 134-Gene-Specific Signature Also Identifies Two
Cell Clusters In Vivo

To explore cellular heterogeneity in vivo and to validate the 134-

gene signature identified using the primary HIV latency in vitro

model, we performed a similar analysis using primary CD4+

T cells isolated from HIV+ individuals. As for the in vitro model,

resting cells from HIV+ individuals were either not treated or

TCR-treated before single-cell isolation and single-cell RNA-

seq (Supplemental Experimental Procedures; Figures S1E and
Figure 3. Expression of Selected 134 DE Genes across Untreated and

(A) Principal component analysis and clustering of single cells from the two do

percentages of explained variance by the respective principal component. The fi

component separates the cells from the two donors. The two clusters (except for

hierarchical clustering of the cells using the expression of the 134 DE gene signa

(B) Each heatmap corresponds to a different treatment condition, every row corre

grouped according to hierarchical clustering. For each condition, the 134 DE ge

(C) Distribution of the median gene expression per cell for the two previously i

observation (violin shape), the median (white dot), the interquartile range (black bo

both directions (vertical bars). Cells in cluster 1 display a significantly lower expr

See also Figure S1 and Table S1.
S1F; Tables S1 and S2). Principal component analysis applied

to the genome-wide expression profiles of single cells isolated

from the two HIV+ donors and followed by clustering also identi-

fied two groups of cells for each donor in both the untreated and

TCR-treated condition (Figure 3A). We performed an additional

analysis, using hierarchical clustering and focusing only on the

expression of the 134-gene-specific signature identified in the

HIV latency model. Similar results were obtained for most of

the single cells, suggesting that the 134-gene signature is able

to discriminate cell clusters (Figure 3). As in the in vitro model,

expression of the 134 genes was higher in cluster 2 as compared

to cluster 1 (Figures 3B and 3C). These results confirm the pres-

ence of the previously observed cellular heterogeneity in vivo,

using cells isolated from HIV+ individuals, thereby excluding

the possibility that the two cell clusters identified in vitro are an

artifact of the HIV latency model used.

Working Model
Immune cells are heterogeneous and consist of different cellular

subpopulations such as central memory, effector memory, and

circulating follicular helper cells, each of which are present at

different cell-cycle stages (Banga et al., 2016; Baxter et al.,

2018; Kulpa and Chomont, 2015). Consequently, these cells

may not respond uniformly to stimulation (Mohammadi et al.,

2015). This study used single-cell resolution (single-cell RNA

sequencing) to highlight and characterize the transcriptional het-

erogeneity of HIV-infected cells in the context of latency and re-

activation in a primary HIV latency model, without any a priori

knowledge about the pre-existing cell heterogeneity. We identi-

fied two major cell subpopulations with different HIV reactivation

potential, characterized by a set of 134 markers. These two cell

clusters also display differential levels of global gene expression

and metabolic activity, consistent with one cluster of cells (clus-

ter 2) being more prone to cellular activation and HIV reactivation

(Besnard et al., 2016). Our data suggest a model in which cells

may transition between the two clusters (Figure 1B, untreated

and SAHA-treated cells), alternating between a poorly respon-

sive and a responsive and hence inducible cell state. When cells

are confronted to strong external signals such as TCR-mediated

stimulation, cluster-1 cells will remain non-induced (Figure 1B,

TCR-treated cells in cluster 1) while cluster-2 cells will be suc-

cessfully induced (Figure 1B, TCR-treated cells in cluster 2).

Although HIV integration sites were recently shown to impact

HIV reactivation, our single-cell data suggest that the cellular

environment can also contribute to HIV reactivation success

(Chen et al., 2017; Ciuffi et al., 2017; Mohammadi et al., 2014).
TCR-Treated Primary CD4+ T Cells Isolated from HIV+ Individuals

nors according to their gene expression profiles. The axis labels indicate the

rst principal component separates the cell clusters, while the second principal

the three highlighted cells, black border) are equivalent to clusters identified by

ture.

sponds to a DE gene, and each column represents a cell. Genes and cells are

nes separate the cells in two major groups with contrasting expression.

dentified clusters per condition using a violin plot, showing the frequency of

x), and the outlier boundaries defined as beyond 1.5 of the interquartile range in

ession than cells in cluster 2 (two-sample t test: p < 2.2*10�16).
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The gene signature identified in this study should provide a valu-

able tool to facilitate the identification of successful LRA, able to

stimulate HIV expression in all the resting cells regardless of their

phenotypes, and to help identify potential biomarkers of induc-

ible cells.

EXPERIMENTAL PROCEDURES

Ethics Statement

Blood donors and patients included in the Swiss HIV Cohort Study have all

provided written informed consent forms for research use, which were

approved and validated by local ethics committees.

Primary HIV Latency Model

The latency model was generated as described previously (Mohammadi et al.,

2014) (Figure 1A). Briefly, CD4+ T cells were purified from uninfected donors’

buffy coat (human CD4+ T Cell enrichment kit; Stem Cell Technologies

#17952), resuspended at 106 cells/mL, and activated through TCR-mediated

stimulation (25 mL/mL ImmunoCult Human CD3/CD28 T Cell Activator; Stem

Cell Technologies #10971) and 100 U/mL IL-2 (RD #202-IL). Three days

post-TCR activation, cells (2 million [mio]) were transduced with 1.2 3 105

TU of HIVGFP/VSV-G in presence of 5 mg/mL polybrene by spinoculation

(3 hr, 1,500 3 g, 25�C). After 3 days, cells were sorted by FACS based

on GFP expression and further expanded. Infected GFP+ cells were finally

allowed to revert to a resting phenotype by long-term culture in Latency

Medium (50% R-10/50% H80 feeder cell supernatant supplemented with

40 U/mL IL-2) for 8 weeks. For reactivation, 2 million cells were either left un-

treated or incubated with 0.5 mM SAHA for 24 hr, or exposed to anti-CD3/

CD28/IL-2 for TCR stimulation for 48 hr as described above. Cells were then

washed and collected for bulk or single-cell RNA-seq. On one hand, cells

(1 mio) were resuspended in 400 mL lysis buffer of the ZR-Duet DNA/RNA

miniprep (Zymo Research #D7001) and processed for RNA extraction accord-

ing to manufacturer’s instructions and used for bulk RNA-seq (Illumina HiSeq

Ribo-Zero TruSeq stranded [str] RNA-seq). On the other hand, cells were re-

suspended at 0.5–1 3 106 cells/mL in R-10 (0.45 mm filtered) and processed

for single-cell isolation and cDNA synthesis on a small 5–10 mm fluidigm plate

(fluidigm C1 Single Cell AutoPrep System, Clontech SMARTer Ultra Low RNA

kit for Illumina sequencing), followed by single-cell RNA-seq (Illumina Nextera

XT DNA Sample Preparation). High-throughput sequencing (100 cycles, single

end) was performed on Illumina HiSeq2500 (University of Lausanne, Genomic

Technology Facility).

Quantitative Analysis of GFP Expression in TCR-Treated Cells

After single-cell capture on the Fluidigm C1 IFC plate (5–10 mm), each capture

chamber was visually analyzed by microscopy and pictures were captured

with a Zeiss Axiovert 200 M fluorescence microscope (Plan-Neofluar 20X

lens) equipped with a Roper Scientific CoolSnap HQ camera. Pictures in bright

field and FITC channel were taken with MetaMorph 6.3 software, and analyzed

using ImageJ 1.50b software. The corrected total cell fluorescence was calcu-

lated as previously described (McCloy et al., 2014).

Raw data are freely available in Zenodo repository https://doi.org/105281/

zenodo.1204334.

Cells from HIV-Infected Individuals

Blood was collected from two HIV-infected individuals participating in the

Swiss HIV Cohort Study (http://www.shcs.ch) that were on antiretroviral ther-

apy for more than 3 years, with undetectable viremia and a CD4 cell count

above 300 for more than 1 year. Blood (�25 mL) was directly collected in 4

CPT tubes (BD Vacutainer CPT; BD Biosciences #362753) and processed

for peripheral blood mononuclear cell (PBMC) isolation according to manufac-

turer’s instructions. Resting CD4+ T cells were purified by negative selection

and magnetic separation using the human CD4+ T Cell enrichment kit supple-

mented with anti-HLA-DR, anti-CD25, and anti-CD69 (Stem Cell Technologies

#19052/#17962) and resuspended in R-10 (0.45 mm filtered). Cell samples

were either left untreated (control cells) or were activated by T cell receptor
948 Cell Reports 23, 942–950, April 24, 2018
(TCR)-mediated stimulation for 48 hr in a 48-well plate and used for single-

cell RNA-seq as described above.

Computational Analysis of Bulk and Single-Cell RNA-Seq Data

A standard pipeline for preprocessing RNA-seq data was used to filter and

align the sequencing reads from both single-cell and bulk RNA-seq experi-

ments (Supplemental Experimental Procedures; Zenodo_Data S1 to S3 avail-

able in Zenodo repository https://doi.org/105281/zenodo.1204334).

Based on the Software tools scran (Lun et al., 2016a) and scater (McCarthy

et al., 2017) applied to the gene expression read counts for each single-cell da-

taset, we designed a customized filtering approach to discard low-quality cells

in the single-cell RNA sequencing datasets. The filtering criteria were the total

number of reads associated to genes, the proportion of mitochondrial reads,

and the proportion of ERCC spike-ins reads (Figure S1C).

For the data produced with the experimental latency model, single-cell read

counts were normalized using linear size factors calculated from the ERCC

spike-ins with the package scran (Lun et al., 2016a). In absence of ERCC

spike-ins, single-cell read counts for the single-cell RNA sequencing data

fromHIV+ individuals were normalized using a normalization procedure specif-

ically designed for single-cell data without spike-ins measurements, based on

computing cell-specific size factors by considering random pools of cells (Lun

et al., 2016b). Normalized read counts were log2-transformed.

Principal component analysis (PCA) (Pearson, 1901) was performed on the

normalized single-cell read counts from the latency model, followed by

k-means clustering in order to identify subpopulations of cells. We validated

the two identified cellular subpopulations through a comprehensive study em-

ploying other normalization and dimension reduction methods (Supplemental

Experimental Procedures). For the cells isolated from HIV+ donors, PCA was

performed on the normalized read counts and was followed by model-based

clustering of the cells from each donor and treatment condition by using the

R package mclust (Scrucca et al., 2016). One outlier cell was removed from

the analysis following outlier detection.

Differential expression analysis was performed with the software MAST

(Finak et al., 2015). Only genes expressed in at least one cell (expression level

>0) per cluster were considered. Following the statistical test implemented in

MAST, genes with a Benjamini-Hochberg corrected p value <0.01 were

considered differentially expressed.

Enrichment analysis was conducted on the identified DE genes using the

pathways defined in the Reactome database (Fabregat et al., 2016). For this

purpose, a hypergeometric test was performed using a background list con-

sisting of genes expressed at least in one cell and condition and the resulting

p values were corrected with the Benjamini-Hochberg method.

DATA AND SOFTWARE AVAILABILITY

The accession number for the RNA-seq data reported in this paper is GEO:

GSE111727.

Filtered and normalized gene expression read counts for the single-cell

RNA-seq data from the latency model and from the patient samples are com-

pressed into rdata libraries that can be directly accessed using the statistical

software R and available in Zenodo repository https://doi.org/105281/

zenodo.1204334 (Zenodo_Data_S2 and S3).
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