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ABSTRACT Endosymbiotic bacteria associated with eukaryotic hosts are omnipres-
ent in nature, particularly in insects. Studying the bacterial side of host-symbiont in-
teractions is, however, often limited by the unculturability and genetic intractability
of the symbionts. Spiroplasma poulsonii is a maternally transmitted bacterial endo-
symbiont that is naturally associated with several Drosophila species. S. poulsonii
strongly affects its host’s physiology, for example by causing male killing or by pro-
tecting it against various parasites. Despite intense work on this model since the
1950s, attempts to cultivate endosymbiotic Spiroplasma in vitro have failed so far.
Here, we developed a method to sustain the in vitro culture of S. poulsonii by opti-
mizing a commercially accessible medium. We also provide a complete genome as-
sembly, including the first sequence of a natural plasmid of an endosymbiotic Spiro-
plasma species. Last, by comparing the transcriptome of the in vitro culture to the
transcriptome of bacteria extracted from the host, we identified genes putatively in-
volved in host-symbiont interactions. This work provides new opportunities to study
the physiology of endosymbiotic Spiroplasma and paves the way to dissect insect-
endosymbiont interactions with two genetically tractable partners.

IMPORTANCE The discovery of insect bacterial endosymbionts (maternally transmit-
ted bacteria) has revolutionized the study of insects, suggesting novel strategies for
their control. Most endosymbionts are strongly dependent on their host to survive,
making them uncultivable in artificial systems and genetically intractable. Spiro-
plasma poulsonii is an endosymbiont of Drosophila that affects host metabolism, re-
production, and defense against parasites. By providing the first reliable culture me-
dium that allows a long-lasting in vitro culture of Spiroplasma and by elucidating its
complete genome, this work lays the foundation for the development of genetic en-
gineering tools to dissect endosymbiosis with two partners amenable to molecular
study. Furthermore, the optimization method that we describe can be used on other
yet uncultivable symbionts, opening new technical opportunities in the field of host-
microbes interactions.
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Insects frequently maintain symbiotic relationships with vertically transmitted bacte-
rial partners that live within their body, called endosymbionts. Some endosymbionts

provide a direct benefit to the host’s development and fertility by complementing its
diet. Others grant their host with a conditional benefit that arises only in given contexts,
for example by providing resistance to heat, parasites, or viruses (1). Deciphering the
molecular dialogue that underlies host-endosymbiont interactions is thus of major
importance to better understand the physiology and evolution of insects. However,
functional studies are often focused on the host side, because nearly all endosymbiotic
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bacteria are uncultivable, and thus genetically intractable. As a consequence, the
bacterial determinants that affect the interaction remain largely unknown. To date, only
four endosymbionts, Sodalis glossidinus (tsetse flies), Arsenophonus arthropodicus (louse
flies), Serratia symbiotica (aphids), and Hamiltonella defensa (aphids), have been culti-
vated in cell-free media (2–5). Systems of coculture with insect cell lines have also been
used successfully for some endosymbionts (6), but such techniques are difficult, and
they do not always allow genetic engineering.

The Spiroplasma genus comprises diverse bacteria, including commensal, patho-
genic, and mutualistic species, most of them being obligate associates with arthropod
or plant partners (7). Spiroplasma cells are long, helical, and devoid of a cell wall.
Extensively studied species include pathogens of crustaceans (8), insects (e.g., the bee
pathogen Spiroplasma melliferum [9]), and plants. Plant pathogens proliferate in
phloem and are vectored by phloem-feeding insects (10–12). Some, notably Spiro-
plasma citri, can be grown in vitro and are amenable to genetic studies. In addition to
strains that are infectious and transmitted horizontally between hosts, many Spiro-
plasma are facultative inherited endosymbionts of insects (i.e., with transovarial trans-
mission).

Along with Wolbachia, Spiroplasma bacteria are the only known inherited symbionts
of Drosophila (13). By far the best-studied species (and strain) is Spiroplasma poulsonii
MSRO (MSRO for melanogaster sex ratio organism), which infects Drosophila melano-
gaster and is the focus of this study. As other facultative endosymbionts, S. poulsonii is
transmitted vertically with high efficiency, causes reproductive manipulation (male
killing), and confers protection to its Drosophila host against parasitoid wasps (14, 15).

Taking advantage of the genetic tools available in Drosophila, current work has
started to investigate the molecular mechanisms underlying Drosophila-Spiroplasma
symbiosis (16–19). The study of the bacterial determinants, however, has been ham-
pered by the fact that the endosymbiont was unculturable. To expand the toolbox with
which to study this endosymbiosis, we designed a method to optimize the Barbour-
Stoenner-Kelly H (BSK-H) medium (21) so it allows a sustainable in vitro culture of
Spiroplasma. We also resequenced the S. poulsonii MSRO genome in order to provide
a complete draft of the chromosome, as well as the first complete sequence of a natural
plasmid in this species. By comparing the transcriptome of the bacterium in vitro and
in the host, we identified genes potentially involved in the interaction with the host.

RESULTS
Design and optimization of a culture medium for S. poulsonii. Unlike pathogenic

Spiroplasma species, S. poulsonii has a partially degenerated genome (20), leading to
poor adaptability to environmental changes. In vitro, it results in the inability of
S. poulsonii to grow in culture media designed for pathogenic Spiroplasma, such as SP4
medium (60). We thus developed a new medium using as a starting point the
commercial medium Barbour-Stoenner-Kelly H (BSK-H). This standardized complex
medium has been designed for the culture of the spirochete Borrelia burgdorferi (21)
and is enriched in nutrients that are predicted to be required by S. poulsonii based on
its genome. The base medium allows for survival of S. poulsonii for several days but
does not sustain its growth. To optimize the medium composition, we elaborated an
experimental design to assess the effects of four factors on growth: pH, partial pressure
in O2 (pO2), fly extract supplementation (FES), and lipid supplementation (LS). Three
levels for each factor were cross-tested against each other following an orthogonal
array of assays in BSK-H medium (Fig. 1A). To penalize factor levels that bring in high
variability, we computed a growth indicator called contribution to reproducible growth
(cRG; mathematical details in Materials and Methods). The analyses of cRG values
predicted the best medium to be BSK-H medium supplemented with 7.5% fly extract
and 5% lipid mix at pH 7.5 and under 10% pO2 (Fig. 1B). Experimental validation of this
predicted best medium, named BSK-H-spiro, yielded sustained growth of S. poulsonii for
6 to 7 days before the bacterial titer reaches a plateau (Fig. 1C). The growth was
confirmed by microscopy observations (Fig. 1D and E). S. poulsonii culture in BSK-H-
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spiro medium could be maintained for more than a year by twofold or threefold
dilutions in fresh medium every week. Repeated greater dilutions progressively lead to
the collapse of the culture (see Fig. S1 in the supplemental material). Interestingly, the
culture can also be frozen at �80°C for more than a year and revived without adding
any cryoprotectant. This singularity is likely due to their lack of a cell wall that makes
them more deformable, thus more resilient to freezing-induced mechanical stress.

The BSK-H-spiro medium allowed a doubling time of around 30 h with no difference
between a 1-month-old culture and a 1-year-old culture. Infection of naive flies with the
culture resulted in a 100% transmission success (24/24 flies) for the 1-month-old culture
and 96% infection success (23/24 flies) for the 1-year-old culture, although the amount
of bacteria injected (102/fly) is lower than the amount usually injected during hemo-
lymph transfer infections (104/fly). All culture-infected flies transmitted the bacteria to
their offspring and displayed a male-killing phenotype, suggesting that prolonged in
vitro culture does not significantly alter the host-interacting abilities of S. poulsonii.

FIG 1 (A) Orthogonal matrix of assays for optimization of the BSK-H-spiro medium. Each assay was independently repeated three times. pO2, partial pressure
in O2; FES, fly extract supplementation; LS, lipid supplementation. (B) cRG values computed from the assays for each factor. (C) Growth curve of S. poulsonii in
BSK-H-spiro medium at 25°C under 10% O2 and 5% CO2. Each point represents one quantitative PCR (qPCR) measurement of Spiroplasma titer in one repetition.
The line represents a one-phase exponential fit computed on three independent repetitions. (D and E) Freshly diluted (D) and 2-week-old (E) cultures stained
with Syto9. Bars, 10 �m.
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S. poulsonii genome sequence update. The S. poulsonii MSRO genome was first
sequenced and annotated in 2015 (20). However, the presence of repeated sequences
complicated the assembly of this draft genome that covered only 93% of the estimated
chromosome size. Furthermore, there was doubt about the nature of two extrachro-
mosomal contigs that could have been either plasmids or misassembly products. To
complete the genome sequence, we took advantage of recent upgrades in PacBio
technology and performed a second sequencing. The new assembly produced eight
contigs, including a large contig of 1.8 Mb corresponding to the full circular chromo-
some of S. poulsonii. A total of 2,217 coding sequences (CDS) were identified, of which
1,865 are identical to those in the first assembly prediction (Fig. 2A). Seven smaller
contigs were also produced, of which one (contig 7) could be circularized. We aligned
this contig to the reference sequences of plasmids from S. citri and Spiroplasma kunkelii,
for which plasmids have been well characterized (Fig. S2). The alignment revealed two
conserved synteny blocks between contig 7 and the references. We also detected a
coding sequence with 87% homology to the plasmid replication protein sequence pE,
proven to code for a plasmid replication protein on S. citri plasmids (22). The presence
of those genes on the circular sequence of contig 7 strongly suggests that it is the first
full sequence of a plasmid in group IV of Spiroplasma, to which S. poulsonii belongs, and
hereafter called pSMSRO (Fig. 2B). The analysis of the remaining extrachromosomal
contigs did not allow circularizing any of the contigs or detecting any conserved genes
with other Spiroplasma plasmids, although we cannot exclude the possibility that other
plasmids were present but not detected in the sequencing data.

This new draft confirmed the metabolic landscape already described by Paredes et
al. (20), with no obvious difference regarding the presence or absence of metabolic
genes. However, the full coverage and extended annotation of the new draft allowed
us to compile a comprehensive list of Spiroplasma poulsonii virulence factors (Table 1).
Five virulence factors were initially reported in the first genome: two spiralins (Spiralin
A and B), a chitinase (ChiD), a cardiolipin synthase (Cls), and a glycerol-3-phosphate
oxidase (GlpO). Spiralin A is found in other Spiroplasma species, including S. citri, while
Spiralin B is found only in S. poulsonii (20). We found a third gene coding for a
spiralin-like protein, Spiralin C, which shares only 15% homology with spiA and spiB but
has a conserved spiralin domain. We also identified a group of five genes coding for
adhesion-related proteins (ARPs) that were present in the first draft but misannotated.
Intriguingly, these genes include one sequence located on pSMSRO, but also four
sequences located on the chromosome, while all S. citri ARPs are extrachromosomal
(23). A sixth chromosomal ARP pseudogenized by an insertion sequence was identified,

FIG 2 (A) Comparison between the first draft genome (version 1 [v1]) of S. poulsonii MSRO (20) and this work (version 2 [v2]). CDS, coding sequence.
(B) Graphic map of contig 7 after circularization (plasmid pSMSRO). Blue unnamed arrows are hypothetical protein-coding sequences without annotation.
Green arrows are annotated genes. The pink arrow indicates a pseudogene, and the gray arrow indicates the coding sequence of the Spiroplasma plasmid
replication protein pE.
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as well as two shorter genes partially homologous to ARPs. We also identified a gene
containing a Clostridium epsilon toxin (Etx) conserved domain. Etx are major toxins of
Clostridium perfringens and cause a variety of symptoms in mammals, including brain
damage (24). The results of our genome analysis confirm the presence of five sequences
coding for ribosome-inactivating proteins (RIPs), that were initially identified by Ham-
ilton et al. (25). Last, the plasmid bears a coding sequence for an ankyrin repeat protein
(Ank). Ank repeats are found in many virulence effector proteins (26). Remarkably, they
are widely found in the genome of Wolbachia, another widespread endosymbiont that
manipulates insect reproduction, and their large number and diversity suggest that
they could play a crucial role in host-symbiont interactions (27).

Transcriptome analysis of S. poulsonii in culture versus in host. To detect genes
involved in S. poulsonii interaction with its host, we compared the transcriptome of
S. poulsonii collected from Drosophila hemolymph to the transcriptome of S. poulsonii
cultured in vitro for 2 months. This reference transcriptome produced by pooling
transcripts detected in both conditions contains 1,491 transcripts. Of the reads, 97.18%
mapped to the chromosome and 1.74% mapped to contig 7, while no significant signal
was detected for any other extrachromosomal contig. This supports the hypothesis that
contig 7 is a plasmid of S. poulsonii, while other extrachromosomal contigs are
misassembly products. The most expressed gene under all conditions is spiB, followed
by housekeeping genes related to cell division, transcription, and translation.

Pairwise comparison between the two experimental conditions identified 465 genes
differentially expressed, 201 of the genes being more transcribed in the host, while 264
were significantly more expressed in culture (Fig. 3A). A total of 258 (55%) of the
differentially expressed genes were annotated only as “hypothetical proteins” and were
not further accounted for in the analysis. Genes that were identified by homology but

TABLE 1 Virulence factors of S. poulsonii

Family and virulence factor GenBank locus tag Contig Coordinates
Signal
peptide

TM
domaina

Predicted
location

Reference
commentb

Spiralins
SpiA SMSRO_SF013140 1 1005468–1004767 Yes No Membrane A
SpiB SMSRO_SF009660 1 753920–754717 Yes No Membrane A
SpiC SMSRO_SF015890 1 1203572–1204045 No No Unknown C

Adhesion-related proteinsc

SpARP1 SMSRO_SF002520 1 205842–206939 Yes 1 Membrane C
SpARP2 SMSRO_SF011850 1 908030–909277 Yes Unsure Membrane C
SpARP3 SMSRO_SF022680 1 1731722–1730625 Yes 1 Membrane C
SpARP4 SMSRO_SF024450 1 1870575–1871513 Yes 1 Membrane C
SpARP5 SMSRO_SFP00390 7 12713–12147 Yes 1 Membrane D

Metabolic genes
Cls SMSRO_SF001010 1 81414–82952 No 3 Membrane A
ChiD1 SMSRO_SF008450 1 671704–672774 Yes No Secreted A
ChiD2 SMSRO_SF013110d 1 1002344–1002357 C
GlpO SMSRO_SF018440 1 1400479–1401657 No No Cytosol A

Toxins
RIP1 SMSRO_SF016530 1 1253115–1254512 Yes No Secreted B
RIP2 SMSRO_SF018820 1 1438476–1439966 Yes No Secreted B
RIP3 SMSRO_SF023880 1 1820456–1821802 Yes No Secreted B
RIP4 SMSRO_SF020720 1 1584448–1585794 Yes No Secreted B
RIP5 SMSRO_SF003660 1 293319–294665 Yes No Secreted B
ETX-like SMSRO_SF021610e 1 C
Ankyrin repeat SMSRO_SFP00290 7 6975–9461 Yes No Secreted D

aThe presence or absence of a transmembrane domain and if present, the number of transmembrane domains.
bReference comments give additional information about genes as follows: A, the gene was detected and annotated by Paredes et al. (20); B, the gene was detected
by Paredes et al. (20) and annotated and discussed by Hamilton et al. (25); C, the gene was detected by Paredes et al. (20) but was not annotated and/or not
discussed; D, the gene was detected and annotated in this work for the first time.

cSpARP1, S. poulsonii ARP1.
dThis gene was pseudogenized.
eThe gene structure of this gene was unclear.
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whose function was very general or unclear were grouped in the category “others.” The
remaining sequences have been manually clustered according to their predicted
function (Fig. 3B). A majority of identified genes that were found differentially ex-
pressed were associated with metabolic pathways and metabolite transport, probably
as a consequence of differences between the composition of the medium and the fly
hemolymph. Aside from this, a large cluster of genes was related to ribosome assembly
and translation, including ribosome structural proteins, tRNA ligases, and translation
regulators. Some members of this cluster were found upregulated in culture, while
others were upregulated in the fly, suggesting that the switch of environment triggers
a qualitative change in the translational activity of the bacterium. The in vitro culture
data set also showed enrichment in transcripts related to DNA replication and cell
division, consistent with a doubling time of around 30 h in vitro versus 170 h in the
adult fly (28). Interestingly, transcripts involved in DNA recombination were also
enriched in S. poulsonii grown in culture, including ruvA, ruvB, recR, and recU, as well as
genes belonging to the comEC family. The comE operon contributes to the natural
competence in Bacillus subtilis, ensuring the binding and uptake of transforming DNA
(29), which suggests that S. poulsonii might be naturally competent.

Last, several differentially expressed sequences were identified as pseudogenes
resulting either from a frameshift mutation or from the insertion of a mobile element
in the coding sequence that causes the protein to be truncated. The active transcrip-
tional regulation of these genes suggests a recent pseudogenization, possibly as a
consequence of S. poulsonii switching from a free-living lifestyle to an endosymbiotic
lifestyle.

Virulence factors could be classified in two clusters depending on their expression
profile (Fig. 3C). spiA, spiB, RIP1, RIP2, ank, etx, glpO, and chiD1 have lower expression
levels in culture than in the host, pointing to their role in host-symbiont interaction.
Other virulence genes do not display a significant change in their expression level and
have low average levels of expression. Such genes include spiC, RIP3, SpARP1, SpARP4,

FIG 3 (A) Volcano plot of differential gene expression of S. poulsonii in host versus in culture. Each point represents the average value of one transcript in three
replicate experiments. The expression difference is considered significant for a log2 fold change of �1 (outer light gray broken vertical lines) and for a P value
of �0.05 [�log(FDR) of �1.3, dark broken horizontal line]. Points are colored according to their average expression in all data sets. Names and outlined points
represent virulence factors. FDR, false-discovery rate. (B) Manual clustering of the transcripts differentially expressed by S. poulsonii in the fly versus in the
culture. The numbers of sequences in the different categories are indicated on the bars or to the right of the bars. (C) Heatmap of S. poulsonii virulence gene
expression. Each column represents the value for one replicate experiment in culture or in the fly. The colors represent the log10 level of expression in the
corresponding experiment. The cluster of genes that are induced when S. poulsonii is in the host (versus in vitro) is shown enclosed in a black box. SpARP5,
S. poulsonii ARP5.
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SpARP5, chiD2, and cls. SpARP2 is the only virulence gene that is expressed at higher
levels in culture than in the fly, and RIP4 and RIP5 as well as SpARP3 are not detected
at all in the transcriptome, implying that they might be pseudogenes, resulting from a
duplication of the coding sequence without the regulatory upstream sequence.

Finally, a gene encoding a ferritin, a protein involved in iron sequestration, was
expressed at a higher level in S. poulsonii extracted from Drosophila than in S. poulsonii
grown in culture, suggesting that iron availability could be a proliferation-limiting
factor along with lipids and glucose availability (17, 20).

DISCUSSION

We developed the first reliable method to culture endosymbiotic S. poulsonii from
Drosophila in a cell-free medium. This is an important step forward because cultivation
is a prerequisite for addressing functional questions on the regulation of this symbiosis
via genetic manipulation of the bacterial partner. While pathogenic Spiroplasma bac-
teria, such as S. citri, can be easily cultivated in standard growth media, no suitable
medium was available to grow any endosymbiotic Spiroplasma outside their hosts. This
was not for a lack of trying: much work was done in the 1980s to attempt to set up a
culture medium for S. poulsonii, until one paper reported in 1986 the successful
cultivation of a Drosophila Spiroplasma in a cell-free medium (30). According to the
authors, the critical factor was to supply Spiroplasma with growing insect cells in the
course of primary isolation, followed by a succession of passages that allowed for
Spiroplasma to adapt to an insect cell-free medium. Unfortunately, this work could not
be repeated despite several attempts from various laboratories. Spiroplasma thus
remained uncultivable in practice.

An important difference between previous attempts and the present work is that
crucial requirements of the symbiont were addressed based on very recent discoveries
about S. poulsonii physiology. The need of S. poulsonii for host lipids to synthesize its
membrane, for example, was demonstrated only a few years ago (17, 20), and lipid
supplementation turned out to be crucial to promote growth in vitro. Another differ-
ence was supplementing the medium with fly extract, which was also not undertaken
in previous works. Since the unsupplemented medium already contains glucose,
essential amino acids, lipids, and vitamins needed by the bacteria, we assume that the
growth improvement observed with fly extract supplementation might come either
from a fly hormone or neurotransmitter or from a nonorganic growth factor available
in the fly. A possible candidate would be iron, as suggested by the overexpression of
a ferritin-like coding gene by S. poulsonii in vitro, or another metallic ion, not present in
sufficient quantities in the BSK-H base medium (31). Importantly, starting with a high
density of bacteria seems to be a key point for the successful establishment of the
culture. Beginning with an amount of infected hemolymph that is too small does not
allow the culture to thrive, and repeated strong dilutions lead to a collapse of the
culture. This suggests the existence of a density threshold below which S. poulsonii
growth is inhibited. The exact mechanism leading to this inhibition remains elusive
however, as the genome analysis did not highlight any quorum-sensing system.

This work also allowed an initial comparison between the in vivo transcriptome and
the in vitro transcriptome of S. poulsonii, identifying genes that are overexpressed when
the bacterium is in contact with its host. Membrane proteins are particularly interesting,
as they are associated with host infection in pathogenic Spiroplasma. S. citri spiralin for
example acts as a lectin and binds to insect host’s glycoproteins to invade cells (32, 33).
Its expression is downregulated when the bacterium is in its plant hosts compared to
in vitro culture, while its expression is not altered in the insect and in culture (34). In
S. poulsonii, spiA, the closest homologue to the S. citri spiralin gene, is only slightly
upregulated in the insects, while spiB, which is found only in S. poulsonii, is strongly
upregulated. This points to a function of SpiB that is specific to endosymbiosis, possibly
related to the bacterial entry in the oocyte during vertical transmission. ARPs are also
major lipoproteins involved in S. citri transmission (35, 36), turning out to be essential
for insect cell invasion but nonessential for transmission from insects to plants (37). In
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S. poulsonii, few predicted ARPs have a complete and functional sequence, and their
expression is not differentially regulated in vitro compared to in the host. S. citri, as a
strictly horizontally transmitted pathogen, could require diverse ARPs to infect new
hosts efficiently. S. poulsonii on the other hand is mostly vertically transmitted, although
horizontal transmission to new host is possible notably via ectoparasite vectors (38, 39).
ARPs in this species could thus be less diverse because of its more limited host range.
The chromosomal location of most S. poulsonii ARPs (rather than extrachromosomal as
in S. citri [23]) also reflects a lower ability of these genes to be horizontally transferred.
This could reflect the fixation of this gene family during the coevolution of vertically
transmitted Spiroplasma with its host.

Several genes coding for toxins are overexpressed in the host compared to in vitro,
including ribosome-inactivating proteins (RIPs) and two yet uncharacterized toxins (Ank
and Etx). RIPs are involved in the protection of Drosophila against nematodes and
parasitoid wasps by selectively inactivating the 28S rRNA of the parasites (25, 40). The
upregulation of RIP1 and RIP2 when S. poulsonii is in the host compared to in vitro
suggests that RIPs could have a function in host-symbiont interactions, regardless of
parasite infections, possibly in male killing. Etx might be involved in the neuronal
symptoms, notably tremors and dopaminergic neuron degeneration observed in
Spiroplasma-infected flies when the flies are old (28). We also cannot exclude the
possibility that it functions as a defensive agent against parasites, which would explain
the transcription increase when S. poulsonii is in the insect compared to in vitro,
although the toxicity of Etx has not yet been investigated in nonmammal models.
Further functional studies will be necessary to assess the exact function of these toxins
in the S. poulsonii-Drosophila interaction.

It is noteworthy that 2 out of 18 identified virulence genes (SpARP5 and ank) are
located on a plasmid, which indicates that extrachromosomal DNA may play an
important role in S. poulsonii-Drosophila interactions. Variability in plasmid presence
and/or copy number in S. poulsonii strains could be accountable for the variability in the
host phenotypes caused by the endosymbiont, including variable male-killing pen-
etrance.

In conclusion, the method described in this work is the first protocol to allow
cultivation of an endosymbiotic Spiroplasma in a cell-free medium in almost 30 years.
The technical approach that was used to design the BSK-H-spiro medium can be
adapted to optimize a medium for other uncultivable bacteria, for which a favorable
physicochemical environment can be partially predicted. The expression of comE
indicates that S. poulsonii might be naturally competent and the transcriptional regu-
lation findings (up- or downregulation) observed with recombination-related genes
suggest that knockout mutants by homologous recombination might be possible
despite recA pseudogenization (20), as in pathogenic Spiroplasma species (41, 42).
Eventually, several bacterial genes were predicted to have a key function in the
interaction between S. poulsonii and its host, including virulence factors. These genes
are thus priority candidates for further investigation upon the development of genetic
tools to modify S. poulsonii in order to unravel their precise function. Coupled with the
powerful genetic tools available on the Drosophila side, the development of genetic
tools to modify S. poulsonii will be a major achievement in the field of symbiosis, as it
will provide the first insect model where both the host and the endosymbiont are
readily transformable.

MATERIALS AND METHODS
Spiroplasma stock. We used a wild-type Oregon-R (ORR) fly stock that has been cured of Wolbachia

by antibiotic treatment and infected by the Spiroplasma poulsonii MSRO strain Uganda (28, 43). The stock
has been maintained in the lab for several years between these treatments and the experiments.

Cell-free culture medium design. The medium basis was the Barbour-Stoenner-Kelly H medium
(BSK-H) without L-glutamine from BioSell (Feucht bei Nürnberg, Germany). BSK-H medium from Sigma
has also been used successfully. The design of an orthogonal array of growth assays was based on the
choice of four factors (pH, partial pressure in oxygen [pO2], fly extract supplementation [FES], and lipid
supplementation [LS]) that were a priori expected to affect Spiroplasma growth significantly. The use of
an orthogonal array allows the extraction of relevant information from a reduced number of factor level
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combinations rather than from all possible combinations. For each factor, three levels were arbitrarily
chosen around an expected optimal value (e.g., pH 7.5 as the expected optimal value, pH 7, 7.5, and 8
as the tested levels). Cultures were started from hemolymph extracted from the thorax of 1-week-old
infected flies by aspiration with a Nanoject II nanoinjector (Drummond Scientific). A preculture was
launched 1 week prior to the experiment by adding 8 �l of hemolymph to 3.2 ml of BSK-H medium plus
5% fly extract (1,000 to 5,000 bacteria/�l) without agitation. Aliquots of 100 �l of preculture were then
frozen at �80°C before use. For each assay, aliquots were centrifuged for 40 min at 2,000 relative
centrifugal force (rcf) at 18°C, and pellets were resuspended in 200 �l of medium. Aliquots (10-�l
aliquots) were taken 1 day and 7 days later for growth assessment by quantitative PCR. A linear
regression on the log-transformed measures between day 1 and day 7 was computed for each level of
each tested factor, and the slope of the regression was used as a growth rate measurement. Three
independent replicates were made for each medium testing. Since some combinations of factors yielded
high variability in growth, we analyzed the data with a statistical approach inspired from the Taguchi
method (44, 45). To penalize factor levels that entail a high variability in growth, a “reproducible growth”

(RG) parameter was computed, RG � 10 � log�S�2� � 10 � log �1 � 3 � ��⁄S��2� where S� is the average slope
with the considered level of the considered factor and � is the standard deviation. The contribution of
one level to the reproducible growth (cRG) was calculated as cRG � RGconsidered level � RGall levels. For each
factor, the level with the highest cRG was selected as the optimal value. An experimental validation was
then performed in a medium bringing together the best levels for each of the four factors, hereafter
designed as BSK-H-spiro, following the same protocol as for the optimization assays. Three independent
replicates were made for the validation assay. Protocols for preparing the fly extract, lipid mix, and
BSK-H-spiro medium are detailed in Text S1 in the supplemental material. The media of freshly started
cultures were completely renewed every three or four passages until at least passage 12, by centrifu-
gation for 20 min at 12,000 rcf at 18°C and replacement of the used medium (supernatant) by an
equivalent amount of fresh medium. These replacements are a necessary adaptation step that becomes
unnecessary for older cultures. Long-lasting cultures were maintained by a weekly threefold dilution in
fresh culture medium. All experiments and cultures were performed at 25°C, which is the temperature
at which Drosophila infected stocks are routinely maintained, and yet close to the 26°C predicted optimal
temperature for S. poulsonii (46).

Culture density measurement. For DNA extraction for quantitative PCR, bacteria were lysed by
osmotic shock by adding 400 �l of distilled water to 10 �l of culture and heated at 95°C for 15 min. This
simple method ensures an efficient yield from a small amount of initial bacterial material. DNA was then
used for quantitative PCR as described before (47) with primers amplifying a 300-bp fragment of the 16S
rRNA gene (primer forward, 5=-TACATGCAAGTCGAACGGGG-3=; primer reverse, 5=-CTACTGCTGCCTCCCG
TAG-3=). Microscopic observation was performed as previously described (28).

Fly infections. One-week-old female Oregon flies were infected from the S. poulsonii culture by an
injection of 23 nl of a dense culture (1 week after the latest dilution with fresh medium) with a Nanoject
II nanoinjector (Drummond Scientific). Flies were allowed to recover from the injection in a tube with
fresh medium in the absence of males for 1 day. Each female fly was then coupled with a male, and each
couple was isolated in a tube in order to monitor the infection status of the progeny of single flies.
Couples were flipped onto fresh medium every 2 or 3 days. The eggs laid for the first week following
mating were discarded. The progeny was screened for S. poulsonii infection 1 week after hatching by
Syto9 staining as previously described (28).

Genome sequencing and analysis. S. poulsonii DNA was extracted from fly hemolymph as previ-
ously described (20). Processing of the samples was performed in the University of Lausanne Genomic
Technologies Facility. The DNA was sheared in a Covaris g-TUBE (Covaris, Woburn, MA, USA) to obtain
20-kb fragments. After the DNA was sheared, the size distribution of the DNA fragments was checked on
a Fragment Analyzer (Advanced Analytical Technologies, Ames, IA, USA). Five micrograms of the sheared
DNA was used to prepare an SMRTbell library with the PacBio SMRTbell template prep kit 1 (Pacific
Biosciences, Menlo Park, CA, USA) according to the manufacturer’s recommendations. The resulting
library was size selected on a BluePippin system (Sage Science, Inc., Beverly, MA, USA) for molecules
larger than 20 kb. The recovered library was sequenced on one SMRT cell with P6/C4 chemistry and
MagBeads on a PacBio RSII system (Pacific Biosciences, Menlo Park, CA, USA) in a 240-min movie.
Assembly was performed with HGAP (hierarchical genome assembly process) version 2 from the PacBio
smrtpipe (v2.3.0). Circularization of main contig 1 was performed using Amos (v3.1.0; Amos Consortium;
http://amos.sourceforge.net). Plasmid contig 7 was refined using the PacBio read data from Paredes et al.
(20) with Quiver version 1. Genome annotation was performed with Prokka v 1.11 (48) using parameters
--addgenes --genus Spiroplasma --species poulsonii --gcode 4 --rawproduct –rfam --rnammer). The
Nucmer tool (Mummer suite v3.23 [49]) was used to align coding sequences (CDS) from the annotated
version (accession no. JTLV01000000) to the new annotation. Some gene product annotations were
refined using NCBI PSI-blast tool. Multiple alignments of Spiroplasma plasmids have been performed
using MAUVE version 2.4.0 (50).

RNA sequencing and analysis. RNA was extracted from (i) the hemolymph of 30 1-week-old
infected flies and (ii) 20 ml of 4-month-old in vitro culture pelleted by 30 min of centrifugation at
16,000 � g by the TRIzol method following the manufacturer’s instructions. Three independent
replicates were prepared for each condition. Libraries were prepared using the Illumina Truseq RNA kit
and sequenced on an Illumina HiSeq 2000 system at the University of Lausanne Genomic Technologies
Facility. Purity-filtered reads were adapters and quality trimmed with Cutadapt v.1.8 (51). Reads matching
to rRNA sequences were removed with fastq_screen v. 0.9.3 (Babraham Bioinformatics; http://www
.bioinformatics.babraham.ac.uk/projects/fastq_screen/). Remaining reads were further filtered for low
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complexity with reaper v. 15-065 (52). Reads were aligned against the Spiroplasma poulsonii MSRO (v2)
genome using STAR v. 2.5.2b (53). The number of read counts per gene locus was summarized with
htseq-count v. 0.6.1 (54) using Spiroplasma poulsonii MSRO (v2) gene annotation. The quality of the
transcriptome sequencing (RNA-seq) data alignment was assessed using RSeQC v. 2.3.7 (55). Statistical
analysis was performed for genes in R version 3.4.1 (56). Genes with low counts were filtered out
according to the rule of one count per million (cpm) in at least one sample. rRNA and tRNA gene counts
were discarded. Library sizes were scaled using TMM normalization with EdgeR package version 3.18.1
(57) and log cpm transformed with limma voom function, limma package version 3.32.5 (58). Differential
expression was computed with limma (59) by fitting the samples into a linear model and performing “in
fly” versus “in culture” comparison. Moderated t test was used, and adjusted P values were computed by
the Benjamini-Hochberg method, controlling for the false-discovery rate.

Accession number(s). The genome with DDBJ/EMBL/GenBank accession no. JTLV00000000 was
updated. The genome version described in this paper has accession no. JTLV02000000. The RNA-seq
differential expression analysis can be found in Data Set S1.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio

.00024-18.
TEXT S1, PDF file, 0.05 MB.
FIG S1, TIF file, 0.4 MB.
FIG S2, PDF file, 0.7 MB.
DATA SET S1, TXT file, 0.4 MB.
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