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Abstract: 1 

Over the past decade, the use of nanotechnology for fingermark detection has been attracting 2 

a lot of attention. A substantial number of nanoparticle types has thus been studied and 3 

applied with varying success. However, despite all efforts, few publications present clear 4 

supporting evidence of their superiority over standard and commonly used techniques. This 5 

paper focuses on a rarely studied type of nanoparticles that regroups all desired properties for 6 

effective fingermark detection: silicon oxide. These nanoparticles offer optical and surface 7 

properties that can be tuned to provide optimal detection. This study explores their potential 8 

as a new method for fingermark detection. 9 

Detection conditions, outer functionalisations and optical properties were optimised and a 10 

first evaluation of the technique is presented. Dye-doped silicon oxide nanoparticles were 11 

assessed against a one-step luminescent cyanoacrylate. Both techniques were compared on 12 

natural fingermarks from three donors collected on four different non-porous substrates. On 13 

average, the two techniques performed similarly but silicon oxide detected marks with a 14 

better homogeneity and was less affected by donor inter-variability. The technique remains to 15 

be further optimised and yet silicon oxide nanoparticles already show great promises for 16 

effective fingermark detection. 17 

 18 

Keywords: Nanotechnology, luminescence, sensitivity, selectivity, cyanoacrylate, non-19 

porous substrates. 20 
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1. Introduction 22 

Nanoparticles applied for fingermark detection are known to offer several advantages over 23 

traditional methods [1]. First, their small size may lead to detect marks with a high resolution 24 

without risking over-development that can typically arise with conventional techniques such 25 

as powder dusting or cyanoacrylate fuming. Second, some nanoparticles possess interesting 26 

luminescent properties spread over a broad area of the electromagnetic spectrum ranging 27 

from UV to infrared. Conventional luminescence properties, as well as up-conversion can be 28 

used to mitigate substrate interferences. Infrared luminescence is also of great interest for 29 

problematic surfaces since few materials are optically active in this range of wavelengths [2]. 30 

Finally, and more importantly, the surface of nanoparticles can be precisely tuned to offer a 31 

large panel of potential interaction with fingermarks. By grafting molecules or functional 32 

groups onto their surfaces, it becomes possible to specifically target various components of 33 

the fingermark residue, leading to an increased selectivity. Fingermarks left by smokers could 34 

thus be distinguished from the marks left by non-smokers [3]. Altogether, these properties 35 

show great promises for fingermark detection, and can lead to an overall increase of both 36 

sensitivity and selectivity. 37 

Over the past decade, these advantages attracted a lot of attention and a substantial number of 38 

nanoparticle types have been studied and applied with varying success. They can be sorted 39 

into three categories, i.e. metal, metal oxide and semi-conductors. Gold and silver 40 

nanoparticles have been successfully used in techniques such as multi- or single-metal 41 

deposition (gold) [4, 5] or physical developer (silver) [6]. Among metal oxides, we can cite 42 

titanium dioxide (TiO2) [7], aluminium oxide (Al2O3) [8, 9] or zinc oxide (ZnO) [10]. Metal 43 

oxides are generally applied as dried powders, sometimes functionalised with aliphatic chains 44 

to increase and favour hydrophobic interactions with greasy components of the fingermark 45 

residue. Quantum dots are the most studied class of semiconductors. They attracted a lot of 46 

attention mostly for their uncommon optical properties [11, 12]. This paper does not intend to 47 

describe these nanoparticles in extensive details; thorough reviews are available elsewhere 48 

[13, 14]. 49 

However, from a critical viewpoint, none of the nanoparticles studied until now and their 50 

subsequent applications entirely fulfil the criteria described above. Some have a size over 100 51 

nm, and cannot really be classify as nanoparticles according to international [15] and national 52 

[16] organisations. Even if not everyone agrees on the 100 nm limit, sub-micron particles 53 

would be a more appropriate denomination for particles of a size above 200 nm. A similar 54 

comment can be made for nano-sized powder obtained after solvent evaporation. It is not 55 
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obvious that these nanoparticles are not agglomerated into larger clusters once dried. In that 56 

case, properties arising from the nanometric-size such as luminescence may be retained, but 57 

detection with a high resolution related with nanometric material will be lost. Moreover, 58 

among nanoparticles used up-to-now few possess intrinsic luminescent properties. Most 59 

metallic and metal-oxide nanoparticles present weak if no luminescence at all, restricting 60 

their applications to light-coloured substrates only. Some attempts have been made to confer 61 

luminescent properties to those nanoparticles types. For example, zinc oxide layer can be 62 

added around gold nanoparticles to get luminescent fingermark [17]. However, this 63 

application remains limited to non-porous substrates and implies a tedious protocol. Another 64 

option is to coat nanoparticles with a luminescent dye [8, 9, 18]. Among intrinsic luminescent 65 

nanoparticles, quantum dots are the most commonly cited. These semi-conductor 66 

nanoparticles are luminescent under UV excitation with a narrow emission peak. Their 67 

emission colour is directly related to the size of the particles. This particular property is due 68 

to quantum confinement effect [19, 20] and has driven a lot of endeavour towards their use as 69 

a new tool for fingermark detection [21-25, 26 ]. However, despite all efforts, few 70 

publications present clear supporting evidence of their superiority over standard and 71 

commonly used techniques. Cost, toxicity and tedious synthetic procedures set aside, the 72 

main problem with quantum dots is the difficulty to properly functionalise their surface 73 

without altering the structural properties and compromising the luminescence properties. 74 

Very few occurrences of successfully and specifically functionalised particles for fingermark 75 

detection can be found. Some quantum dots have been functionalised with carboxyl or amine 76 

groups [27], but despite the presented results, the real effect of the surface modification on 77 

the detection properties remains unclear. This emphasises the fact that even if particles are 78 

nano-sized and possess interesting optical properties, their surface still has to offer extensive 79 

functionalisation properties in order to be successfully used for fingermark detection. 80 

Hence, despite all the nanoparticle types applied for fingermark detection so far, none of 81 

them really benefit at the same time from the three advantages presented above (i.e. small 82 

size, optical properties and surface modifications). One kind of nanoparticles – yet 83 

underrepresented in the literature – could regroup all the properties in one single entity: the 84 

silicon oxide nanoparticles (SiO2). This paper focuses on them and explores how they can 85 

offer potential as a method for fingermark detection. Silicon oxide nanoparticles consist in a 86 

porous matrix of siloxane bonds, with an external layer of silanol groups that can further react 87 

through hydrolysis and condensation with various alkoxysilanes, leading to a functionalised 88 

layer covalently bound to the main matrix. As a consequence, SiO2 nanoparticles could 89 
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present an almost unlimited range of functional groups. Dye molecules can be entrapped 90 

within the siloxane matrix during the synthesis, providing a wide range of optical properties. 91 

Various synthetic procedures exist, but two of them are most commonly considered: the 92 

Stöber's synthesis and the reversed micro-emulsion. The Stöber’s synthesis [28] leads to bulk 93 

production, but the size and surface controls are limited. On the other end, reversed micro-94 

emulsion [29] enables to accurately control size, optical properties and functionalisation all at 95 

the same time, but with a lower yield. 96 

SiO2 have been studied and successfully applied for fingermark detection on very rare 97 

occasions and with focus mostly put towards optical properties. Theaker et al. investigated 98 

the use of hydrophobic micro- and nanoparticles containing sub-particles as well as 99 

rhodamine 6G among other dyes [30]. Applied as a dried powder or in suspension, these 100 

particles were shown to detect fingermarks on several non-porous substrates such as glass or 101 

stainless steel. Finely grounded xerogel containing either a europium complex [31] or 102 

rhodamine B [32] was used as powder dusting to detect marks. More recently, 700 nm 103 

amphiphilic SiO2 particles were applied on fingermarks on glass microscopic slides but 104 

without any particular dyes embedded in their matrix [33]. 105 

In a recent study SiO2 nanoparticles functionalised with various chemical groups and 106 

dispersed in aqueous solutions were used to specifically study the interaction occurring 107 

between fingermark residues and nanoparticles [34]. It was demonstrated that chemical 108 

interaction between carboxyl and amine groups could be promoted following three different 109 

procedures: by lowering the pH of the solution, by adding sodium chloride (NaCl) to 110 

decrease zeta potential intensity of the nanoparticles or by adding a diimide compound that 111 

activates the amide linkage formation.  112 

 113 

The study was focused on understanding the mechanism involved during the detection rather 114 

than on the quality of the resulting detected mark. We think that gaining a better 115 

understanding of the mechanism is a prerequisite to any work towards optimising the method. 116 

This present study aims at exploring the possibilities offered by SiO2 nanoparticles in terms 117 

of a new tool for fingermark detection, by optimising and comparing various detection 118 

conditions, outer functionalisations and luminescent dyes. More work still needs to be 119 

undertaken in order to provide a new fully operational technique, but the results obtained 120 

during this study showed that SiO2 nanoparticles are very promising and that research effort 121 

should be further pursued.  122 

 123 
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2. Materials and methods  124

2.1 Synthesis and functionalisation of SiO2 nanoparticles  125

SiO2 nanoparticles were synthetised via reversed micro-emulsion where droplets of water 126

containing dye act as microreactors, allowing nanoparticles growth. Even if this method is 127

not the most cost-effective and has a low yield, it allowed synthetising nanoparticles with an 128

acute size control, introducing a dye in the matrix and functionalising nanoparticles surface, 129

all in a single synthetic process. Once nanoparticles were synthesised and functionalised, they 130

were precipitated out of the emulsion, washed and dissolved in water. 131

The same synthetic procedure described in Moret et al. was followed without any 132

modification [34]. Three luminescent dyes (rhodamine 6G, rhodamine B and tris(2,2’-133

bipyridyl)dichlororuthenium (II) hexahydrate (RuBpy)) were tested in order to compare 134

optical properties. The dye concentration of the solution added during the syntheses was 135

100 mM for both rhodamine 6G and rhodamine B, but for stability reasons it was lowered to 136

16.6 mM for RuBpy, as recommended by Bagwe et al. [35]. For the functionalisation step, 137

two different silane coupling agents were used for comparison purposed (Table 1) 138

(carboxyethylsilanetriol sodium salt (CES) and 3-(triethoxysilyl)-propylsuccinic anhydride 139

(TES-PSA)). They both contained carboxyl groups.  140

 141

Name Abbreviation Molecular structure 

carboxyethylsilanetriol sodium salt CES 

 

3-(triethoxysilyl)-propylsuccinic 
anhydride TES-PSA 

  
Table 1: Description of the two silane coupling agents used throughout the study. 142

 143

2.2 Characterisation of the nanoparticles 144

Hydrodynamic diameters and zeta potentials of the synthesized SiO2 nanoparticles were 145

respectively measured by dynamic light scattering and laser Doppler micro-electrophoresis 146

using a Zetasizer Nano ZS (Malvern Instrument Ltd). The procedure described in Moret et al. 147
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was followed (i.e. hydrodynamic diameter was measured five times and zeta potential was 148 

measure three time for each samples) [34]. 149 

An Hitachi F-2500 fluorescence spectrophotometer was used to measure photoluminescence 150 

properties of the nanoparticles in solution. All measurements were performed at room 151 

temperature on samples obtained after redispersing the nanoparticles in water. 152 

 153 

2.3 Fingermark sampling 154 

In order to obtain realistic results, and as recommended in the guidelines published by the 155 

International Fingerprint Research Group [36], only natural marks were collected. These 156 

marks are said to be natural since no enrichment was made on purpose. The only restriction 157 

was that the donors did not wash their hands half an hour prior deposition, but were asked to 158 

behave normally otherwise. Three donors (one female, two males) were asked to deposit 159 

series of marks on four different non-porous substrates (aluminium foils, black polyethylene 160 

(PP), transparent polypropylene (PE) and glass). For the optimisation step, single appositions 161 

were collected from one donor on aluminium foils. For the comparison step, sets of 20 162 

successive depletive marks were collected for each donor and substrates. The samples were 163 

left to age for one week, in an office drawer without specifically controlling the storage 164 

conditions. To further test the technique, older marks on aluminium foils, transparent PP and 165 

PE were processes as well (aged respectively of 18 months, 2 and 7 years). These marks 166 

came from previous researches for which donors’ identity, deposition and storage conditions 167 

were unknown. 168 

 169 

2.4 Fingermark detection 170 

Various parameters were successively assessed during this study. Three detection conditions 171 

were evaluated and compared, as well as two functional groups containing carboxyl functions 172 

and three luminescent dyes (Table 2). 173 

Regardless of the chosen parameters, the overall detection protocol consists in a two-step 174 

immersion procedure. The items are first immersed in a bath containing the nanoparticles 175 

solution 60 min (first two detection condition) or 30 min (third detection condition), then 176 

rinsed with water. The rinsing step is necessary to remove any unwanted nanoparticles 177 

remaining on the substrate, which could lead to background noise. Samples are then left to 178 

air-dry.  179 

 180 

 181 
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Successive 
optimisations Tested parameter 

1. Detection 
conditions 

pH 3 
immersed 60 min 

pH 6 NaCl 0.5 M 
immersed 60 min 

EDC/NHS 
immersed 30 min 

2. 
Functionalisation CES TES-PSA 

3. Luminescent dye rhodamine 6G rhodamine B RuBpy 
 182 

Table 2: Summary of the tested detection conditions and silicon oxide nanoparticles 183 
properties. 184 

 185 

2.5 Results comparison and evaluation 186 

In order to determine if research on SiO2 nanoparticles application was worth pursuing, the 187 

results were compared to a commonly used technique: a one-step luminescent cyanoacrylate 188 

the LumicyanoTM [37]. Each fingermark was cut in half, one half being processed with the 189 

nanoparticles solution and the other half fumed with LumicyanoTM (following the 190 

manufacturer's instructions). For each fuming cycle, 1 g of LumicyanoTM was placed in 191 

MVC1000 fuming cabinet (Foster & Freeman), at 80% of relative humidity. The samples 192 

were exposed to cyanoacrylate fumes until the detection was considered as optimal (about 15 193 

minutes). Since cyanoacrylate fuming results are generally dependent of the substrate type, 194 

each surface was processed in a separate cycle. 195 

Corresponding halves were then paired again before being photographed in luminescence 196 

mode (Note: the luminescence of LumicyanoTM decreasing with time, the pictures were taken 197 

the day of the fuming process). The imaging conditions were identical for LumicyanoTM and 198 

SiO2 nanoparticles, with an excitation at 495 nm (Minicrimescope MCS400) and an 199 

observation at 590 nm (interferential filter with a band pass of 37 nm). 200 

Results were assessed following the procedure described by Moret and Bécue [5]. Three 201 

independent evaluators were presented one half mark at a time, in a random order. Each half 202 

mark was thus assessed independently from its corresponding half. The average scores 203 

obtained from each technique and substrate were then compared. 204 

 205 

3. Results and discussion 206 

3.1 SiO2 nanoparticles synthesis and characterisation 207 

Reversed micro-emulsion allowed obtaining stable solutions. DLS measurements gave an 208 

average hydrodynamic diameter of 84.2 nm and a zeta potential of –36.7 mV at pH 6. These 209 

values were consistent with those obtained previously [34].  210 

Inclusion of dye molecules within the nanoparticles matrix helped obtaining various optical 211 

properties (Figure 1). Rhodamine 6G, rhodamine B and RuBpy were selected because they 212 
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covered three distinct areas of the spectrum. They also have been used in previous studies 213 

[30-32].  214 

 215 
Figure 1: Excitation and emission spectra of silicon oxide nanoparticles solutions synthesised 216 

with three different luminescent dyes (RuBpy, rhodamine 6G and rhodamine B) 217 
 218 

3.2 Detection mode 219 

Several parameters were compared to obtain better detection results. Three application modes 220 

were previously determined to detect mark with success: adjusting the pH of the 221 

nanoparticles solution to 3, adding sodium chloride (NaCl) to lower the zeta potential 222 

intensity and adding a diimide compound to activate the carboxyl groups and favour the 223 

interaction with the amine groups of the secretions [34].  224 

These three detection modes were compared using the same nanoparticles batch containing 225 

rhodamine 6G and functionalised with CES on fingermarks deposited on aluminium foils 226 

(Figure 2). Luminescent results were successfully obtained in each case. It appeared however 227 

that the best results in terms of ridge clarity and luminescence intensity were obtained when 228 

NaCl was added in the solution to a concentration of 0.5 M. pH reduction and diimide 229 

addition (EDC/NHS) led to slightly inferior results. Addition of NaCl was consequently 230 

chosen as the best detection protocol and considered for the rest of the study. 231 

 232 
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 233 
Figure 2: Comparison between three application modes of Rhodamine 6G-doped SiO2 234 
nanoparticles solution (adding EDC/NHS, lowering the pH to 3 and adding NaCl to a 235 

concentration of 0.5 M). Marks are one-week old, deposited on aluminium foil and visualised 236 
in luminescent mode (excitation at 495 nm and emission at 590 nm). 237 

 238 

3.3 Surface functionalisation 239 

The second optimisation consisted in selecting the most appropriate function containing 240 

carboxyl group that can interact with fingermark residue. Two alkoxysilanes were grafted on 241 

the surface of nanoparticles: CES and TES-PSA (Table 1). They both contain carboxyl group, 242 

but the second one doubles the amount of functional groups present on the nanoparticle 243 

surface, due to the opening of the succinic chain in water. Since carboxyl groups drive the 244 

nanoparticles interaction with secretions, TES-PSA could lead to a better detection due to the 245 

larger amount of reactive groups. Comparisons were made between two solutions containing 246 

nanoparticles functionalised respectively with CES and TES-PSA. As determined previously, 247 

NaCl (0.5 M) was added to favour the interaction. A significantly higher background noise 248 

appeared with TES-PSA functionalised nanoparticles and the obtained marks appeared 249 

blurred (Figure 3). With CES, an obvious quality difference was observed. Sharp luminescent 250 

ridges were obtained, with clear level 3 features. Since CES functionalised nanoparticles gave 251 

the best results, they were selected for this study. 252 
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 253 
Figure 3: Comparison between Rhodamine 6G-doped silicon oxide nanoparticles 254 

functionalised with TES-PSA ((triethoxysilyl)-propylsuccinic anhydride – left half) and CES 255 
(carboxyethylsilanetriol – right half), and used to detect fingermarks. The illustrated 256 

fingermark is one-week old, deposited on aluminium foil and visualised in luminescent mode 257 
(excitation at 495 nm and emission at 590 nm). 258 

 259 

 260 

3.4 Luminescence properties 261 

The last optimisation step was about the nanoparticles’ optical properties. As described 262 

above, three dyes were considered: rhodamine 6G used as a reference, rhodamine B and 263 

RuBpy. Each half mark was observed under the luminescent conditions that lead to the best 264 

result. RuBpy was illuminated at 495 nm, whereas both rhodamine 6G and rhodamine B were 265 

excited at 515 nm. All marks were observed at 590 nm. These conditions differed from the 266 

optimal conditions determined by spectrofluorimetry. If the theoretical conditions were to be 267 

respected, the small Stokes shift of rhodamine 6G and B would lead to a background noise 268 

due to the excitation wavelength. Based on the spectrofluorometry results (Figure 1), RuBpy 269 

appeared to be the best choice since it has the larger Stokes shift (100 nm) compared to the 270 

other two dyes (~20nm). These conditions were the one resulting in the best luminescence 271 

intensity with the lowest background. Rhodamine 6G and rhodamine B showed equivalent 272 

results in terms of luminescence intensity (Figure 4). RuBpy presented a much more intense 273 

luminescence, compared to the two other dyes. It led to a light background staining, but since 274 

RuBpy had a larger Stokes shift and the intensity of the final results was stronger, it was 275 

chosen as the most suitable dye for this study. The observed background noise obtained after 276 

immersing the samples was not judged detrimental to fingermark visualisation.  277 

 278 
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 279 
Figure 4: Comparison between SiO2 nanoparticles synthetised with three different 280 

luminescent dyes (rhodamine 6G, rhodamine B and RuBpy). Marks are one-week old, 281 
deposited on aluminium foil and visualised in luminescent mode (excitation at 495 nm and 282 

emission at 590 nm). 283 
 284 

These optimisation experiments led to select the parameters leading to the best detection 285 

quality. Optimal detection was thus obtained with silicon oxide nanoparticles containing 286 

RuBpy, functionalised with CES and applied in a solution at pH 6 containing 0.5 M of 287 

sodium chloride for 60 min. Should this technique be applied on a larger scale, further 288 

improvement would be needed, in order to reduce the immersion time for example. However, 289 

results obtained so far constitute a valid base to conduct a comparison with a benchmark 290 

technique. 291 

 292 

3.5 Comparison with cyanoacrylate fuming 293 

Conventional cyanoacrylate fuming is one of the most commonly used techniques for the 294 

detection of fingermarks on non-porous substrates. However, it cannot be directly compared 295 

to SiO2 nanoparticles since the obtained results are not luminescent. In order to avoid 296 

overestimating results and introducing a bias toward one technique or the other, a 297 

luminescent technique should therefore be used to offer a valid comparison. Luminescent 298 

marks can be obtained using conventional cyanoacrylate by following a two-step procedure 299 

consisting in fumigating the samples first, then dye-staining them with a luminescent dye 300 

dissolved in a solvent [38]. However, to avoid tedious staining procedures and to obtain more 301 

homogeneous results throughout the sample sets, a one-step luminescent cyanoacrylate was 302 

privileged during this study: the LumicyanoTM [37]. The obtained marks offer luminescent 303 
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properties either under UV (326 nm) or at 511 nm and the results can be observed with an 304 

emission band centred at 562 nm. It however appeared that good luminescent marks could be 305 

observed under the same conditions used for RuBpy (i.e. excitation at 495 nm and emission 306 

filter at 590 nm). Using the same visualisation conditions help to image both sides at the 307 

same time and to keep constant parameters for comparison. 308 

Both techniques were applied on sets of 20 depletive marks from 3 donors on 4 different 309 

substrates (a total of 240 marks) as described in the materials and methods section. The 310 

samples were processed and imaged the same day in order to avoid any age inconsistency, or 311 

luminescence intensity loss. Both techniques have been applied according to the established 312 

procedure and led to satisfactory results. Under white light, the results obtained with 313 

LumicyanoTM were similar to those that can be obtained with common cyanoacrylate. 314 

Before discussing the sensibility obtained on depletive marks, the results obtained on the first 315 

finger apposition are presented (Figure 5). Since results quality is related to the nature of the 316 

substrate, they will be described separately. Aluminium foil is generally considered as an 317 

ideal surface allowing good results to be obtained. Luminescent results were obtained for 318 

both techniques, with a stronger intensity for LumicyanoTM (Figure 5 – first column). 319 

However, when ridge details were considered, it can be seen that cyanoacrylate-fumed marks 320 

tended to give dotted marks with ridge-continuity disruption. This was especially the case for 321 

donors A and B, but not for donor C for which very homogenous results were obtained. This 322 

phenomenon was however not observed for the fingermarks detected by SiO2 nanoparticles. 323 

Even if marks from donor B were not fully detected, nanoparticles developed marks with a 324 

higher homogeneity for the three donors. An affinity of nanoparticles for the aluminium foil 325 

was observed, leading to a slight background staining. This phenomenon, already noticed 326 

during the optimisation phase, did not prevent fingermarks observation. The background was 327 

not due to a lack of rinsing since it appears uniformly on the entire surface. It is most likely 328 

due to unwanted interactions with the substrate. This issue could potentially be reduced by a 329 

shorter immersion time in the nanoparticles solutions, and should be further studied. By 330 

comparison, no background apparition was noticed with cyanoacrylate fuming. 331 

Regarding black PE, the previous observations were still valid (Figure 5 – second column). 332 

Cyanoacrylate luminescence was less intense and led again to doted marks. For donor B, the 333 

marks were barely visible. The background noise observed with SiO2 on aluminium foil is 334 

much more pronounced on PE. Sometimes it concealed the marks almost entirely (donors A 335 

and B). It was however not homogeneous and when absent it became possible to observe 336 

luminescent marks of high quality with clear level 3 features (donor C). Nanoparticles were 337 
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thus effectively attracted on the secretions, but the ridges were partially covered by a non-338 

selective deposition onto the surface. That reinforces the needs of further studies on the 339 

interaction with substrates.  340 

Transparent PP provided significantly different results compared to the two previous 341 

substrates (Figure 5 – third column). For the cyanoacrylate, luminescent marks were obtained 342 

for both donor A and C, but the detection was not homogeneous towards the edge of the 343 

donor A‘s mark and almost no ridges were visible for the donor B. The situation was quite 344 

different for the SiO2 nanoparticles; the detection itself was very homogeneous for all three 345 

donors in terms of mark quality, with no background staining observed. .   346 

On glass, the nanoparticles solution has largely washed away the marks (Figure 5 – second 347 

last). Only a weak luminescence and low quality marks were observed. On the other halves, 348 

cyanoacrylate performed well for the three donors, even if a light background staining 349 

appeared. Considering SiO2 nanoparticles, the detection protocol seems not appropriate for 350 

this type of substrate and should thus be further adjusted. Reduction of immersion time or 351 

finding another carrier solvent could be key factors that could lead to better results. 352 

In summary, for the first marks of the depletion series, cyanoacrylate succeeded in detecting 353 

marks on all tested surfaces. However, differences in quality were consistently observed 354 

between donors. These variations can be attributed to the quantity and quality variation 355 

among donors’ secretions. However, this trend was less pronounced with SiO2 nanoparticles 356 

that react not with specific compounds of the secretion, but with specific functional groups. 357 

The results quality was however more tightly related to the substrate type, which indicates 358 

that the detection conditions can be further adjusted. Glass appeared to be a challenging 359 

surface since nanoparticles solution tended to wash the secretion, and thus failing in detecting 360 

any mark. Moreover, background staining appeared on black PE, impinging the detection of 361 

the marks. Future optimisations need to be carried on, especially to decrease the unwanted 362 

background staining and to obtain a more versatile technique that could be applied on a wider 363 

range of substrates. SiO2 nanoparticles application remains promising since the obtained 364 

results are very homogeneous and appeared to be less donor-dependent. This, in itself, 365 

represents a considerable advantage over cyanoacrylate fuming. 366 

 367 
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 368 
Figure 5: Comparison of fingermarks detected with RuBpy-doped silicon oxide nanoparticles 369 

(left halves) and LumicyanoTM (right halves) from three donors on four substrates. 370 
 371 

Results obtained with the depletive series are presented below. On average, by taking into 372 

account every mark from each donor and substrate, comparable scores were obtained for both 373 

techniques (1.3 for LumicyanoTM and 1.5 for SiO2 nanoparticles) (Figure 6). When only the 374 

first five depletions were considered, a general increase of scores was noticed (1.8 for 375 

LumicyanoTM and 2.1 for SiO2 nanoparticles), showing that nanoparticles gave slightly better 376 

results on average (Figure 6). 377 

 378 
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 379 
Figure 6: Comparison of the average results obtained with LumicyanoTM (CA) and RuBpy-380 

doped SiO2 nanoparticles. 381 
 382 

By looking at each substrate separately and considering only the first five depletions, results 383 

can be described in more details (Figure 7). On aluminium foil, equivalent results were 384 

obtained showing that both techniques performed well, but on glass, as described above, SiO2 385 

solution tends to wash the marks, leading to low quality results, cyanoacrylate fuming shows 386 

superior scores. For the black PE, even if background staining was observed, the average 387 

quality was still superior for SiO2 nanoparticles compared to cyanoacrylate. The biggest 388 

difference appeared on transparent PP where cyanoacrylate stopped being effective after just 389 

a few depletions, while SiO2 nanoparticles kept detecting marks. This was not only true for 390 

the first five depletions, good quality results were obtained until the twentieth depletion 391 

(Figure 8).  392 
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 393 
Figure 7: Comparison of the average results obtained with LumicyanoTM (CA) and RuBpy-394 

doped SiO2 nanoparticles on four different substrates. 395 
 396 

 397 
Figure 8: Comparison of depletive fingermarks detected with RuBpdy-doped silicon oxide 398 
nanoparticles (left halves) and luminescent cyanoacrylate (right halves) on transparent PP. 399 

 400 
When average scores were calculated considering each donor individually, SiO2 401 

nanoparticles were less donor dependent that cyanoacrylate (Figure 9). The calculated 402 

variance between donors for cyanoacrylate is 0.41, whereas the one for SiO2 nanoparticles is 403 

only 0.02. 404 

To compare the efficiency of the two techniques over the entire depletion series, marks of a 405 

score above or equal to 2 were added (Figure 10). Cyanoacrylate on aluminium detected the 406 

greatest amount of marks. SiO2 nanoparticles solution, as detailed above, was not efficient on 407 

glass, but detected a comparable amount of marks on the three other substrates. 408 
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 409 
Figure 9: Comparison of the average results obtained from three different donors with 410 

LumicyanoTM (CA) and RuBpy-doped SiO2 nanoparticles. 411 
 412 
 413 

 414 
Figure 10: Comparison between the amount of mark with a score equal or above 2 detected 415 

per substrate for each technique. 416 
 417 

To conclude the comparisons, aged marks on aluminium foils, transparent PP and PE were 418 

process following the same established protocol. Both cyanoacrylate fuming and SiO2 419 

nanoparticles solution were able to detect marks as old as 7 years. On aluminium foils, SiO2 420 

nanoparticles tended to give better ridge details. The reversed situation was observed on 421 

transparent PP. For the 7 years marks, LumicyanoTM was superior on transparent PP, with 422 

much better ridge quality. On PE, more completed marks were detected with SiO2 423 

nanoparticles, despite missing information in the centre, whereas cyanoacrylate presented 424 

good details on the upper part and very few details on the lower part. 425 
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  426 

 427 
Figure 11: Comparison of old fingermarks (18 months to 7 years) detected with RuBpy-428 
doped silicon oxide nanoparticles (left halves) and LumicyanoTM (right halves) on three 429 

substrates. 430 
 431 

 432 

4. Conclusions 433 

This paper investigated an application of luminescent functionalised SiO2 nanoparticles for 434 

fingermark detection. Several optimisations of the detection protocol for considering dye-435 

doped SiO2 nanoparticles as efficient fingermark reagents were presented. Appropriate 436 

detection conditions, outer functionalisations and luminescent dyes were successively studied 437 

and selected, leading to an optimised protocol. A comparison to LumicyanoTM, a one-step 438 

luminescent cyanoacrylate (CA), was then conducted to assess the efficiency of the method. 439 

Both techniques were compared on series of 20 depletive marks from three donors on four 440 

different non-porous substrates. 441 

On average, both techniques performed similarly. However, for LumicyanoTM, quality 442 

variations between donors were observed. Interestingly, that was not observed (or only to a 443 

limited extend) for SiO2 nanoparticles. This might be due to the fact that the technique targets 444 

a specific functional group instead of particular compounds of the secretion. The SiO2 results 445 

quality was instead more related to the substrate type. 446 

Heterogeneous detection results proved that the technique remained to be further optimised. 447 

More work still needs to be undertaken in order to provide a fully operational technique, but 448 

the reported results in this study showed that SiO2 nanoparticles are very promising and that 449 

research effort should be further pursued. 450 

 451 

 452 
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