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A joint view on genetic variants for adiposity
differentiates subtypes with distinct metabolic
implications
Thomas W Winkler 1, Felix Günther1,2, Simon Höllerer1, Martina Zimmermann 1, Ruth JF Loos 3,4,5,

Zoltán Kutalik6,7 & Iris M Heid1

The problem of the genetics of related phenotypes is often addressed by analyzing adjusted-

model traits, but such traits warrant cautious interpretation. Here, we adopt a joint view of

adiposity traits in ~322,154 subjects (GIANT consortium). We classify 159 signals associated

with body mass index (BMI), waist-to-hip ratio (WHR), or WHR adjusted for BMI

(WHRadjBMI) at P < 5 × 10−8, into four classes based on the direction of their effects on BMI

and WHR. Our classes help differentiate adiposity genetics with respect to anthropometry,

fat depots, and metabolic health. Class-specific Mendelian randomization reveals that var-

iants associated with both WHR-decrease and BMI increase are linked to metabolically rather

favorable adiposity through beneficial hip fat. Class-specific enrichment analyses implicate

digestive systems as a pathway in adiposity genetics. Our results demonstrate that

WHRadjBMI variants capture relevant effects of “unexpected fat distribution given the BMI”

and that a joint view of the genetics underlying related phenotypes can inform on important

biology.
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Genome-wide association studies (GWAS) have become a
well-established and very successful approach to under-
stand the genetic background of disease phenotypes.

However, for our understanding of the underlying mechanisms, it
is an important challenge to disentangle the genetics of related
phenotypes. Frequently, this is approached by using an adjusted-
model trait where the trait Y is adjusted for a covariate Z (YadjZ)
in order to separate the genetics of YadjZ from the genetics of Z.
However, these adjusted-model traits warrant cautious inter-
pretation: as Aschard and colleagues pointed out, genome scans
for traits adjusted for heritable covariates reveal not only genetic
factors for the phenotype Y, but also those of the covariate Z to an
extent that depends on their correlation1.

We exemplify this issue on adiposity traits that were also uti-
lized by Aschard and colleagues1: BMI and WHR are correlated
and capture two aspects of adiposity, overall fat mass, and fat
distribution, respectively. Both are independently associated with
type 2 diabetes (T2D), coronary artery disease (CAD), and
mortality2. The phenotypic correlation between BMI and WHR
and the biological mechanisms linking these two measures
hamper the distinction of their genetic make-up3,4. Recently,
meta-analyses by the GIANT consortium highlighted hundreds of
associated loci for BMI, WHR, and WHRadjBMI5,6, whereas BMI
and WHRadjBMI loci were shown to depict different biological
processes (neuronal versus metabolic), a direct comparison of the
loci was lacking.

Aschard and colleagues pointed out that some of the
WHRadjBMI lead variants were not completely independent of
BMI and showed some effect on BMI in the unexpected direction
(WHR increasing allele decreased BMI). This is due to the fact
that the genetic effect estimate for WHRadjBMI, bWHRadjBMI, is
related to the estimate for WHR, bWHR, and the estimate for BMI,
bBMI, by bWHRadjBMI= bWHR – r * bBMI, with r being the obser-
vational correlation between BMI and WHR in the analyzed
study1. A genome-wide scan on WHRadjBMI will thus not only
identify genetic factors for WHR, but will also tend to pick up
variants with an additional opposite effect on BMI, or even an
effect on BMI only when the sample size is large enough. Aschard
and colleagues extended their point by cautioning against
potentially false positive signals and biased genetic effect esti-
mates. They propose to examine the potential of the bias by
investigating the corrected effect bWHRadjBMI+ r * bBMI to ensure
that an established WHRadjBMI-association is not biased by the
BMI-association.

Therefore, the genome screening of adjusted-model traits in
general, and WHRadjBMI in particular, has been criticized1 for
its potential to yield biased estimates and spurious associations.
As a consequence, it is a current concern whether adjusted-model
trait loci like WHRadjBMI loci can reveal meaningful biological
information or whether they represent uninterpretable artefacts.
We thus investigated the genetic variants that are associated
genome-wide with BMI, WHR, or WHRadjBMI in the GIANT
data5,6 with regard to their co-association with BMI and WHR
and the link of this co-association to metabolic health and
pathways. We find that the joint view of the genetic variants
across all three of the adiposity traits helps differentiate adiposity
subtypes with distinct fat depots and distinct metabolic implica-
tions. Furthermore, the joint view helps resolve some of the issues
that derive from conducting GWAS on adjusted-model traits.

Results
Little contribution of the WHR genomic screen. In order to
define a set of adiposity-associated variants as the basis of our
investigation, we selected variants that showed European ancestry
based genome-wide significant association (P < 5 × 10−8) with

any of the three adiposity traits, BMI, WHR, and WHRadjBMI
from the GIANT consortium (up to N= 322,135, see Methods)
5,6. This yielded 159 independent lead variants ( > 500kB or r2 <
0.1): 102, 38, or 53 variants genome-wide significant for BMI,
WHR, or WHRadjBMI, respectively. We found a substantial
overlap of WHR-derived variants (i.e., variants that are genome-
wide significant for WHR) with BMI- or WHRadjBMI-derived
variants (genome-wide significant for BMI or WHRadjBMI,
respectively), with four being exclusive to the WHR-scan, but no
overlap between BMI- and WHRadjBMI-derived variants (Fig. 1,
Supplementary Data 1). Thus, the WHRadjBMI-derived variants
contributed independently from BMI-derived variants in the
GIANT data, whereas the WHR-derived variants contributed
little beyond.

WHRadjBMI captures relevant aspects of fat distribution.
Whether or not a genetic variant has “an expected effect on WHR
given the BMI effect” (i.e., as expected by the phenotypic corre-
lation r, e.g. r= 0.5 in the population-based CoLaus study7) or
“an unexpected effect” can be determined by evaluating the
variant’s co-association with BMI and WHR: the co-association
of the 159 variants is visualized in a plane spanned by the genetic
effects on WHR and BMI, i.e., bWHRvs. bBMI (Fig. 2a). Variants
with a null effect on WHRadjBMI are those with an observed
WHR effect to the extent and direction as expected given the
variant’s BMI effect and the phenotypic correlation r (located on
the line bWHR= r*bBMI, with r= 0.5, gray dashed line); this is in
line with a notion of “an expected change in fat distribution given
the change in BMI”. Variants with a non-null effect on
WHRadjBMI will be those distant from the WHRadjBMI null
line. This includes variants with a WHR effect but no effect on
BMI, variants with a WHR effect into the opposite direction as
their BMI effect, variants with effects on WHR larger than
expected from the BMI effect (“supra-expected”), or even BMI
effects with no effect on WHR. All are in line with a notion that
the observed WHR effect is unexpected given the variant’s BMI
effect. We hypothesized important insights from a detailed view
of these variants’ position on the bWHR−bBMI-plane and the link
of this position to physiology and pathology.

Classifying the 159 adiposity variants. We classified the 159
variants according to their location on the bWHR−bBMI-plane
(Fig. 2a). We considered an effect as a non-null effect for BMI or
WHR, when the effect was nominally significantly different from
zero (PBMI < 0.05, PWHR < 0.05, respectively), corresponding to an
uncertainty of beta-estimates given by a 95% confidence interval,
and as a null effect otherwise. We defined the following four classes:
(1) BMI and WHR effects in the same direction (PBMI < 0.05, PWHR

BMI-derived

94 8 4 26 27

WHR-derived WHRadjBMI-derived

Fig. 1 Identification of 159 signals from three genomic scans. The Venn
diagram shows the number of independent genome-wide significant (P <
5 × 10−8) signals derived from the BMI−, the WHR−, or the WHRadjBMI-
scan, respectively, and their overlap. We found no overlap between BMI-
and WHRadjBMI-derived variants
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< 0.05; BMI+WHR+ ), (2) BMI only effects (PBMI < 0.05, PWHR ≥
0.05; BMIonly+ ), (3) WHR only effects (PWHR < 0.05, PBMI ≥ 0.05;
WHRonly−), (4) BMI and WHR effects into opposite directions
(PBMI < 0.05, PWHR < 0.05; BMI+WHR−). Of note, the WHR
effects that were directionally consistent with the BMI effect, but

larger than expected (“supra-expected”) were classified as BMI+
WHR+ . This classification resulted in 82, 25, 28, or 24 variants for
each of the four classes, respectively (Fig. 2a,b).

We found the following: (i) of the 159 variants, the 53
WHRadjBMI-derived variants were all in the BMI+WHR− or
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Fig. 2 Classification of 159 signals and overlap by scan. The figure visualizes the classification of the 159 independent signals according to the position on
the bWHR-bBMI-plane and their overlap by scan. a The Scatter plot shows the 159 variants on the bWHR-bBMI-plane, where bWHR and bBMI are the variant’s
effect on WHR and BMI, respectively. Coloring indicates the four classes: BMI+WHR+ (blue, nominal significant effects on BMI and WHR with consistent
directions), BMIonly+ (green, nominal significant effects on BMI only), WHRonly− (purple, nominal significant effects on WHR only) and BMI+WHR−
(red, nominal significant effects on BMI and WHR with opposite directions). Symbols indicate a nominal significance purely for BMI (PBMI < 0.05, PWHR≥
0.05, upward triangle), purely for WHR (PBMI≥ 0.05, PWHR < 0.05, downward triangle), or for both (PBMI < 0.05, PWHR < 0.05, stars). The dashed line
indicates a null effect for WHRadjBMI (bWHRadjBMI= 0, estimated as bWHR= r*bBMI, with the correlation between BMI and WHR estimated from the
population-based CoLaus study, r= 0.50). b The diagram shows the number of identified signals per class, illustrates the four classes in directed acyclic
graphs and shows Venn diagrams per class to distinguish whether the signals were derived with genome-wide-significance by the BMI−, the WHR− or the
WHRadjBMI-scan, or by multiple scans. The underlined numbers reflect the 53 genome-wide significant signals identified by the WHRadjBMI-scan
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WHRonly− class (Fig. 2b, Supplementary Fig. 1), except two
variants near ANKRD55 and CALCRL with supra-expected WHR
effect (BMI+WHR+ class). All 53 WHRadjBMI-derived var-
iants were orthogonally distant from the WHRadjBMI null line
and can be considered effects of “unexpected change in fat
distribution given the effect on BMI”. (ii) The 102 BMI-derived
variants were all in the BMI+WHR+ or BMIonly+ class
(Fig. 2b, Supplementary Fig. 1). They scattered closely around
the WHRadjBMI null line with some exceptions in the BMIonly
+ class and are thus, mostly, in line with a notion of a change in
fat distribution that is expected given the effect on BMI. (iii) The
38 WHR-derived variants were spread across the classes BMI+
WHR+ , WHRonly−, or BMI+WHR− (Fig. 2b, Supplementary
Fig. 1); the four variants exclusively identified by the WHR-scan
were BMI+WHR+ or WHRonly−.

We made further important observations regarding the
WHRadjBMI-derived variants: (iv) All 53 WHRadjBMI-derived
variants had nominally significant effects on WHR (PWHR < 0.05,
i.e., no spurious associations, weakest WHR association observed
in GIANT PWHR= 7.5 × 10−3, Supplementary Data 1). (v) Of the
53 WHRadjBMI-derived variants, 27 had no effect on BMI
(PBMI ≥ 0.05), 24 had a nominally significant effect on BMI (PBMI

< 0.05) into the opposite direction. Therefore, WHRadjBMI-
derived variants cannot be considered as “independent of BMI”.

We conducted two types of sensitivity analyses. First, we re-
classified the variants based on different P-value thresholds
instead of the nominal significance level (Supplementary Data 1).
A more stringent threshold at P < 3 × 10−4 (= 0.05/159,
Bonferroni-corrected) resulted in 36 of the 53 WHRadjBMI-
derived variants retaining the class, 11 variants changing from
BMI+WHR− to WHRonly−, and six just missing the PWHR <
3 × 10−4 in the GIANT data (one with BMI effect PBMI < 3 × 10
−4, five without any effect). However, these six variants showed a
significant association with WHR in the independent UK
Biobank data (PWHR < 3 × 10−4, N= 336,107, PWHR ranging
from 9.95 × 10−21 to 6.29 × 10−6, Supplementary Data 2). Of
note, all 53 WHRadjBMI-derived variants showed a significant
WHR association in the UK Biobank data (PWHR < 3 × 10−4,
Supplementary Data 2). This supports the notion that none of the
WHRadjBMI-derived variants from the GIANT data was a
spurious association without effect on WHR.

Second, as WHRadjBMI is known for sexually dimorphic
genetic effects8,9, we also conducted a sensitivity analysis re-
classifying the 53 WHRadjBMI variants based on their sex-
specific effects on WHR and BMI (i.e., women-specific or men-
specific classification). Among those, 11 variants showed
significant sex-difference in the genetic effect on WHRadjBMI
in our data (PSexdiff < 0.05/53). Among those, the 10 variants with
women-specific effects retained class in the women-specific, but
not in the men-specific classification; similarly, the one variant
with men-specific effect retained class in the men-specific, but not
in the women-specific classification. For all other variants there
was no remarkable pattern by the re-classification for sex-specific
effects (Supplementary Data 3).

Generally, with a few exceptions, our classification resulted in
splitting the BMI-derived loci into two groups (BMI+WHR+ ,
BMIonly+ ), and splitting the WHRadjBMI-derived loci into two
groups (BMI+WHR−, WHRonly−).

Computing WHR effect from observed BMI and WHRadjBMI
effects. When bWHRadjBMI and bBMI are given for a variant, bWHR

can be computed as bWHRadjBMI+ r*bBMI (or bWHRadjBMI as
bWHR−r*bBM). We aimed to provide empirical data of how good
this computation works by comparing the bWHR estimates com-
puted as described above with the observed bWHR (Fig. 3). When

conducting this comparison in one study where we could estimate
r directly (interim UK Biobank, N= 116,295, r= 0.44), we found
perfect agreement between computed and observed bWHR

(Spearman correlation coefficient= 0.98). When conducting this
comparison in a meta-analysis setting where r could not be
estimated directly (i.e., in GIANT, using r from UK Biobank as a
reasonable average across GIANT studies), we found still a strong
agreement (Spearman correlation coefficient= 0.88). We were
able to improve this agreement even further by using sex-
stratified correlation estimates (from UK Biobank, r= 0.46 for
women, 0.60 for men, Spearman correlation coefficient > 0.99)
and sex-stratified effect estimates (from GIANT, Spearman cor-
relation coefficient= 0.95). Therefore, the formula bWHR=
bWHRadjBMI+ r*bBMI can very well be used to compute unad-
justed estimates from adjusted estimates and BMI estimates; the
corresponding standard errors are, however, slightly increased
yielding lower power (Supplementary Note 1, Supplementary
Fig. 2). As a consequence, for consortia working with obesity
traits, such as GIANT5,6, the number of genome-wide traits to be
modeled can be limited to two traits as the effect estimate from
the third trait can be re-computed with a small loss in precision.

Anthropometry, fat depots, and cardio-metabolic health. We
were interested in whether the four classes characterized mean-
ingful phenotypes with regard to anthropometry, fat depots, and
cardio-metabolic health. We thus derived genetic effects of our
159 variants for such measures from genetic consortia and UK
Biobank (see Methods, Supplementary Data 4–7). Effects were
aligned for BMI-increasing alleles, where appropriate, and for
WHR-decreasing alleles for WHRonly− consistent with BMI+
WHR− (resulting in an alignment for hip-increasing alleles in all
four classes).

First, when evaluating the 159 variants’ co-associations on the
components of WHR and BMI, waist and hip circumference,
weight, and height (GIANT data, up to N= 253,239), we found a
clear separation of the four classes (Fig. 4a–b, Supplementary
Data 4). This was supported by enrichment and meta-regression
based genetic risk score (GRS) analyses (PBinomial < 3.0 × 10−4,
Table 1, PGRS < 8.3 × 10−4, Supplementary Table 1, see Methods).
Thus, the variants’ two-dimensional co-association with BMI and
WHR effectively summarizes the 2 × 2 co-associations on (height,
weight) and (waist circumference, hip circumference). The class-
specific view on the variants’ co-association on hip and waist
circumference revealed that BMI+WHR+ and BMIonly+
variants were hip and waist-increasing, WHRonly− variants were
enriched for hip increase and waist decrease, and the BMI+
WHR− variants were enriched for hip-increasing effects that
lacked effects on waist circumference (Table 1). Our results
underscore the dual cause for WHR-decreasing effects: decreased
waist or increased hip circumference—the role of hip being
missed when focusing on “central adiposity” (Supplementary
Fig. 3–4; Supplementary Note 2).

Second, we were interested in the variants’ impact on more
elaborate measures of fat depots including centrally stored
visceral adipose tissue (VAT), subcutaneous adipose tissue
(SAT) that is ubiquitously stored with a preference at hip and
thigh10–12, and pericardial adipose tissue (PAT), which is a VAT-
type fat stored in/around the heart13. We evaluated the 159
genetic variants’ association on measures derived by bioelectrical
impedance (body fat, trunk fat, leg fat; UK Biobank, N up to
114,367) or imaging techniques (SAT, VAT, PAT, VAT/SAT
ratio; Ectopic Fat Traits consortium14, N up to 18,312;
Supplementary Data 5, 6). The visualization of the co-
association of VAT and SAT was less conclusive (Fig. 4c),
whereas enrichment and GRS analyses elucidated a distinct
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pattern by class (PBinomial < 3.0 × 10−4, PGRS < 8.3 × 10-4, Table 1,
Supplementary Table 1) linking BMI+WHR+ to VAT and SAT,
BMIonly− and BMI+WHR− only to SAT, and WHRonly− to
VAT/SAT ratio.

Third, we evaluated the effects of the 159 variants on eight
cardio-metabolic traits (DIAGRAM15, GLGC16, MAGIC17,
CARDIoGRAMplusC4D18, up to N= 187,135, Supplementary
Data 7). The co-associations on T2D and CAD (Fig. 4d) showed a
clear pattern for increasing or decreasing disease risk for the two
“extreme” classes BMI+WHR+ or BMI+WHR−, respectively,
but a rather neutral or inconclusive pattern for BMIonly+
(except for the known extreme disease effect of TCF7L2 into the
opposite direction as expected by the BMI effect) and WHRonly
−. This was supported by enrichment and GRS analyses
(PBinomial < 3.0 × 10−4, Table 1, PGRS < 8.3 × 10−4, Supplementary
Table 1). The joint impact of the class-specific variants on T2D
and CAD was substantial and markedly different: the joint BMI
+WHR+ alleles increased T2D or CAD risk 2.5- or 1.5-fold,
respectively; the joint BMI+WHR− alleles decreased T2D risk to
a relative risk of 0.10 and CAD risk to 0.43 (Fig. 5). We found a

consistent pattern for fasting insulin, triglycerides, and HDL-
cholesterol (HDL-C, BMI+WHR+ : adverse, BMI+WHR−:
protective, Fig. 4e, Table 1, Supplementary Table 1). Overall, the
four classes differentiate genetic adiposity effects into metaboli-
cally unfavorable (BMI+WHR+ ), metabolically neutral or
inconclusive (BMI only, WHR only), and metabolically rather
favorable adiposity (BMI+WHR−) with some exceptions.

Evidence of gene expression in digestive system tissue. Finally,
we explored whether our four classes distinguished the under-
lying physiological pathways. For this, we used DEPICT19 to
search for enriched pathways among the genes overlapping
association signals (P < 10−5 for any of BMI, WHR, or
WHRadjBMI, excluding metabochip data as done previously5,6,
to avoid enriching for known metabolic regions by chip design,
see Methods). We applied Data-Driven Expression Prioritized
Integration for Complex Traits (DEPICT) for different sets of
variants: (i) by the scan that a variant was selected for or (ii) by
class. Our scan-specific DEPICT analyses replicated previous
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Fig. 3 Comparison of estimated and computed WHR effect sizes. The figure shows a comparison of effect sizes and standard errors for the 38 genome-
wide significant WHR-derived lead variants. Using data from the UK Biobank (UKBB, N= 116,295) as a single large study, we compare estimated overall
(sex-combined) WHR effects in UKBB data with a computed WHR effects that were calculated from overall BMI and WHRadjBMI effects in UKBB using
the overall correlation between WHR and BMI (r= 0.44, in UKBB); and with b WHR effects that were obtained from meta-analysis of computed sex-
specific WHR effects that were calculated from sex-specific BMI and WHRadjBMI effects in UKBB using sex-specific correlations (rM= 0.60, rF= 0.46 in
UKBB). Using GIANT meta-analysis summary statistics, we compare meta-analyzed overall WHR effects (resulting from meta-analysis of multiple studies)
with c computed WHR effects that were calculated from meta-analyzed overall BMI and WHRadjBMI effects using the overall correlation between WHR
and BMI (r= 0.44, in UKBB), and with d WHR effects that were obtained from meta-analysis of computed sex-specific WHR effects that were calculated
from meta-analyzed sex-specific BMI and WHRadjBMI effects using sex-specific correlations (rM= 0.60, rF= 0.46 in UKBB)
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findings5,6 (highlighting central nervous system, CNS, for BMI-
derived variants and adipose tissue for WHRadjBMI). Previous
work had not investigated the WHR-derived variants and we
found here that they provided an inconclusive pattern without
any significant pathway enrichment (judged at false-discovery
rate, FDR, < 5%, Supplementary Fig. 5, Supplementary Data 8,
Supplementary Note 3). The lack of enriched pathways for WHR-
loci suggests that WHR signals capture less-distinct biology than
WHRadjBMI or BMI.

Our class-specific DEPICT analyses yielded a pattern for CNS
and adipose tissue that was similar to the pattern observed
previously by Locke et al. and Shungin et al. for three of our four
classes5,6 (Supplementary Fig. 6, Supplementary Data 9).
WHRonly− variants were not only significantly enriched (at
FDR < 5%) for adipocyte-related cells and tissues as reported
previously6, but also in physiological systems labeled ‘digestive’
(rectum, cecum, upper GI, esophagus, stomach) and ‘urogenital’
(genitals, uterus, endometrium, myometrium) (Fig. 6a, Supple-
mentary Data 9). This WHRonly- class finding was robust, even
more pronounced, after excluding known height loci (to remove
effects of the known strong height locus around GDF5 and other
height regions), after excluding all five RSPO3 signals (to limit the
strong contribution of multiple RSPO3 signals in this class), or
after using a wider locus definition treating the RSPO3 signals as a
single region in the DEPICT analyses (to limit the contribution of

multiple signals like RSPO3, Supplementary Fig. 7, Supplemen-
tary Data 10-12).

To follow-up this finding, we used FUMA20 to examine data
from GTEx21 for tissue-specific enrichments of expression effects
of genes overlapping our association results (P < 10−5 for any of
BMI, WHR, or WHRadjBMI, excluding metabochip data), again
separating the variants by class. Consistent with the class-specific
DEPICT analyses, genes harboring WHRonly− variants were
significantly enriched (Bonferroni-adjusted P < 0.05) for expres-
sion effects in an adipocyte-related tissue (‘Adipose_Subcuta-
neous’) as well as in digestive tissues (‘Colon_Sigmoid’ and
‘Esophagus_Gastroesophageal_Junction’, Fig. 6b, Supplementary
Data 13, Supplementary Fig. 8). In contrast to DEPICT analyses,
there was no significant enrichment for expression effects in
urogenital tissue in FUMA analyses; there was an additional
significant finding for ‘tibial nerve’ in FUnctional Mapping and
Annotation (FUMA), which is a tissue not included in DEPICT.
We found an overlap of nine genes (BARX1, FOXP2, HOXA13,
LAMB1, PCK1, PPARG, RGMA, RSPO3, and VEGFA) that
contributed to the significant digestive system results in both
DEPICT and FUMA tissue-specificity analyses of WHRonly−
class variants.

In summary, we identified the digestive system as a pathway
for obesity genetics, which highlights an important biology
underlying the WHRonly− class variants.
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A wrap-up of the class-specific adiposity phenotypes. When
summarizing the results of our data and analysis, we are able to
characterize our four adiposity genetics classes with regard to
anthropometry, fat depots, metabolic consequences, and impli-
cated pathways (Supplementary Table 2): (i) BMI+WHR+
alleles increased waist, hip, SAT, VAT as well as T2D and CAD
risk consistent with the observed adverse lipids and insulin pro-
file. This would be in line with a biological model of a CNS-
triggered increase in fat mass and a metabolically unfavorable
genetic pre-disposition to store fat subcutaneously and viscerally
(metabolically unfavorable adiposity, e.g., MC4R and FTO22,23).
(ii) BMIonly+ alleles presented a similar pattern with increased
hip, waist, and SAT, but without VAT storage consistent with an
observed neutrality toward T2D or CAD (except TCF7L2, Fig. 4d,
Fig. 5b). This would be in line with a CNS-triggered increase in
fat mass and a metabolically neutral genetic pre-disposition to
store fat subcutaneously rather than viscerally on both belly and
lower body (metabolically neutral adiposity). (iii) WHRonly−
alleles increased hip, but decreased waist, without any effect on
BMI, total fat mass, VAT or SAT, but a decreased VAT/SAT ratio
and a tendency toward a favorable metabolic profile (e.g., loci
around PPARG, PLXND1, MAP3K1, RSPO3, PLXND1, JUND,
Fig. 4d/e). This would be in line with a mechanism of fat redis-
tribution as described for PPARG or RSPO324–26 (redistributing
adiposity). At least one WHRonly− variant pointed to a different
mechanism of enhanced bone growth: the variant near GDF5-
UQCC is a known height locus11 and got grasped by WHRonly−
due to increased hip probably from bone growth rather than
adiposity. For the genes within WHRonly− signals, we found
enrichment of expression in digestive systems in DEPICT and
FUMA analyses. (iv) BMI+WHR− alleles increased hip and
SAT, but had no effect on waist or VAT, and a markedly

favorable metabolic profile (metabolically rather favorable adip-
osity, e.g., GRB14-COBLL1). Our Mendelian Randomization
approach27 restricting the instruments to the BMI+WHR−
variants showed that their BMI-increasing effect was causally
linked to a favorable metabolic profile, particularly decreased risk
of T2D and CAD. We also showed that the BMI increase of BMI
+WHR− variants was causally linked to increased hip cir-
cumference and SAT, but had no effect on waist circumference or
VAT. This would be in line with a direct beneficial effect of SAT
stored on hip, possibly through adipokines12, for this subtype of
adiposity effects.

Discussion
Our investigation demonstrated that a classification of genetic
adiposity variants based on their co-association with BMI and
WHR characterized distinct anthropometry and different modes
of fat deposition. Importantly, our four classes help distinguish
metabolically unfavorable (BMI+WHR+ ) and metabolically
rather favorable adiposity(BMI+WHR−) at high precision that
prompted the identification of 16 loci for favorable adiposity
including 10 novel compared with previous work24,28. The focus
on one of the four classes (WHRonly−) enabled us to reveal the
digestive systems as a pathway for obesity genetics that extends
upon previous work highlighting neural and adiposite/insulin
pathways5,6. Our work has implications for adiposity research
and GWAS methodology.

With regard to adiposity research, our work links to previous
work that separated between BMI-scan identified and
WHRadjBMI-scan identified adiposity variants and highlighted
differential pathways, neural (BMI) versus adipose/insulin
(WHRadjBMI)5,6. Further work used BMI-derived and
WHRadjBMI-derived variants to demonstrate a causal

Table 1 Results of class-specific enrichment analyses

BMI+WHR+ BMIonly + WHRonly− BMI + WHR−

Increasing Decreasing Increasing Decreasing Increasing Decreasing Increasing Decreasing

Trait N nTested n PBinomial n PBinomial nTested n PBinomial n PBinomial nTested n PBinomial n PBinomial nTested n PBinomial n PBinomial

Anthropometric traits

BMI 322,135 82 82 4.3E-132 0 1 25 25 8.9E-41 0 1 28 0 1 0 1 24 24 3.6E-39 0 1
WHR 212,216 82 82 4.3E-132 0 1 25 0 1 0 1 28 0 1 28 1.4E-45 24 0 1 24 3.6E-39
WC 232,083 82 82 4.3E-132 0 1 25 24 8.7E-38 0 1 28 0 1 14 1.1E-15 24 3 0.02 0 1
HIP 213,028 82 78 1.7E-119 0 1 25 25 8.9E-41 0 1 28 13 3.9E-14 0 1 24 23 3.3E-36 0 1
HT 253,239 82 17 2.0E-11 7 4.5E-03 25 6 2.9E-05 4 3.2E-03 28 4 4.9E-03 7 4.5E-06 24 7 1.5E-06 9 3.5E-09
WT 125,943 82 77 1.1E-116 0 1 25 24 8.7E-38 0 1 28 1 0.51 0 1 24 13 2.9E-15 0 1
Impedance measures

Body
fat

114,178 80 72 1.1E-105 0 1 25 19 5.6E-26 1 0.47 28 4 4.9E-03 2 0.15 24 11 4.4E-12 0 1

Trunk
fat

114,305 80 72 1.1E-105 0 1 25 17 5.2E-22 1 0.47 28 4 4.9E-03 2 0.15 24 10 1.4E-10 0 1

Leg fat 114,367 80 71 3.3E-
103

0 1 25 20 4.3E-28 0 1 28 2 0.15 2 0.15 24 10 1.4E-10 0 1

Ectopic fat traits

VAT 18,312 82 21 9.6E-16 1 0.87 25 1 0.47 0 1 28 2 0.15 4 4.9E-03 24 1 0.46 1 0.46
SAT 18,206 82 24 2.8E-19 0 1 25 7 2.0E-06 0 1 28 3 0.03 0 1 24 6 2.2E-05 0 1
VAT/
SAT

18,205 82 4 0.15 6 0.02 25 0 1 2 0.13 28 3 0.03 11 3.5E-11 24 0 1 11 4.4E-12

PAT 11,616 82 8 1.1E-03 0 1 25 1 0.47 0 1 28 1 0.51 0 1 24 1 0.46 7 1.5E-06
Cardio-metabolic traits and diseases

CAD ~185,000 81 15 1.6E-09 2 0.60 25 4 3.2E-03 3 0.02 28 2 0.15 5 5.9E-04 23 0 1 6 1.7E-05
MI ~170,000 81 9 2.0E-04 3 0.33 25 3 0.02 4 3.2E-03 28 0 1 2 0.15 23 0 1 5 2.3E-04
HDL-C 187,135 81 4 0.15 36 9.1E-36 25 2 0.13 6 2.9E-05 28 12 1.2E-12 2 0.15 24 15 9.8E-19 2 0.12
LDL-C 173,058 81 8 9.7E-04 4 0.15 25 2 0.13 2 0.13 28 1 0.51 9 1.7E-08 24 1 0.46 6 2.2E-05
TG 177,829 81 33 2.2E-31 2 0.60 25 4 3.2E-03 2 0.13 28 0 1 16 5.3E-19 24 0 1 15 9.8E-19
T2D 69,033 82 18 1.8E-12 1 0.87 25 3 0.02 2 0.13 28 0 1 4 4.9E-03 24 1 0.46 10 1.4E-10
FG 46,186 82 7 4.5E-03 2 0.61 25 1 0.47 2 0.13 28 0 1 1 0.51 24 0 1 2 0.12
FI 38,238 82 18 1.8E-12 0 1 25 3 0.02 1 0.47 28 0 1 3 0.03 24 0 1 9 3.5E-09

BMI: Body mass index; WHR: Waist-hip ratio; WC: Waist circumference; HIP: hip circumference; HT: Height; WT: Weight; VAT: Visceral adipose tissue volume; SAT: Subcutaneous adipose tissue
volume; PAT: Pericardial adipose tissue volume; CAD: Coronary Artery Disease; MI: Myocardial Infarction; HDL-C: High-Density-Lipoprotein-Cholesterol; LDL-C: Low-Density-Lipoprotein-Cholesterol;
TG: Triglycerides; T2D: Type 2 Diabetes; FG: Fasting Glucose; FI: Fasting Insulin
The table shows results from binomial tests that were conducted to test the variants of each class for enrichment of nominally significant increasing or decreasing effects on various traits including
anthropometric traits, impedance fat measures, ectopic fat traits and cardio-metabolic traits, and disease. The table shows the number of variants tested (nTested), the number of variants with nominally
significant trait-increasing or decreasing effects (n) and the respective binomial P value (PBinomial). Bold binomial P values indicate significant enrichment (PBinomial <0.05/168, Bonferroni-corrected for
168 binomial tests) of nominally significant trait-increasing or trait-decreasing effects on the respective lookup trait
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relationship of general or central obesity, respectively, with T2D
risk via Mendelian Randomization8,22,29. In our approach, we
define four classes of adiposity genetics based on the variant’s co-
association with BMI and WHR that generally, with some
exceptions, split BMI-derived variants into two groups (BMI+
WHR+ , BMIonly+ ) and WHRadjBMI-derived variants into
two groups (BMI+WHR−, WHRonly−). Our classification
based on nominal significance of BMI and/or WHR association is
straightforward and easy to apply. Certainly, there are other
methodological approaches for clustering or evaluating multi-
variate effects worthwhile to be explored in the future30.

Investigating these four classes separately, we find the following
aspects of adiposity mechanisms: (i) Our classes BMI+WHR+
and BMIonly+ differentiate BMI-derived effects between those
that involve VAT and increased disease risk from those that do
not (with few exceptions). (ii) Our class BMI+WHR− distin-
guishes effects of pure hip increase (without any effect on waist)
from those with altered waist (BMI+WHR+ , BMIonly+ ,
WHRonly−). The BMI-increasing alleles of BMI+WHR− var-
iants are all hip-increasing and jointly show a substantial
reduction of disease risk (T2D OR= 0.10, CAD OR= 0.43). This
finding contributes to the considerable debate on whether the
acknowledged importance of SAT stored on the lower body31

stems from its role as a reservoir to avoid fat storage on more
detrimental places like VAT32 or from a directly beneficial effect
from lower body fat itself33, as the BMI+WHR− variants show
no effect on waist circumference, their metabolically beneficial
effect can only stem from a directly favorable effect from hip

increase, but not from a less-detrimental storage compared with
central body fat (then the other allele would be waist-increasing).
This also emphasizes the role of WHRadjBMI as a relative
measure of lower body fat that is missed when focusing on
WHRadjBMI as a measure of central obesity. (iii) For the
WHRonly− class, which focuses on a subset of WHRadjBMI
variants, significant expression enrichment identifies digestive
systems as a pathway for obesity genetics via two independent
methods utilizing two independent data sets (FUMA and
DEPICT). The fact that this enrichment emerged only when
restricting to WHRonly− loci, but not when analysing all
WHRadjBMI loci together, suggests that WHRonly− loci capture
an adiposity subtype that is diluted in the larger set of
WHRadjBMI loci. Still, further data and experiments will be
necessary to determine the mechanisms through which these
variants can be linked to transcriptional regulation in digestive
systems. Altogether, we conclude that our four classes capture
distinct anthropometry and fat depots and help distinguish
important adiposity mechanisms (Fig. 7) that were missed by the
previous separation into only two groups. Although there are
exceptions within classes and metabolic implications have to be
validated by locus, this differentiation can help prioritize adip-
osity loci for therapy development pipelines34.

There have been different approaches to capture favorable
adiposity. Among the 1124 or 5328 loci previously identified for
insulin resistance and put into context with favorable adiposity, 7
or 13 loci, respectively, capture favorable adiposity effects in the
here utilized data following a definition where the BMI-increasing
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allele (PBMI < 0.05) shows decreased risk of T2D or CAD (PT2D or
PCAD < 0.05, no increased risk in either). To be comparable, we
derived 1Mb regions around our 159 lead variants resulting in
117 distinct regions. Of these 117 regions, excluding TCF7L2
owing to its extreme T2D risk (and potential index event bias in
the BMI-association5,35), 16 regions contained one of our
159 signal variants with a favorable adiposity effect. Of these 16
regions, 10 were novel compared with previous work24,28, 10 were
classified as BMI+WHR− including seven novel (Supplemen-
tary Data 14). We were thus able to increase the number of loci
for favorable adiposity by 50%.

With regard to GWAS methodology, we confirm several points
brought up by Aschard and colleagues1: (1) WHRadjBMI effects

differ from WHR effects by –r*bBMI (with r being the phenotypic
correlation). We provided empirical data that WHR effects can be
effectively computed from WHRadjBMI and BMI effects in a
single study and in a meta-analysis setting (Fig. 3). (2)
WHRadjBMI-derived genetic effects are not necessarily “WHR
effects independent of BMI”, as WHRadjBMI-derived variants
can have effects on BMI as shown in theory (see (1)) and
observed in our data (BMI+WHR−, some in BMI+WHR+ ).
(3) WHRadjBMI GWAS enrich for WHR effects with simulta-
neous effects on BMI into the opposite direction, which are
exactly the effects in the BMI+WHR− class.

However, there might have been some misconceptions about
the implications of these points that we believe our results and
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Fig. 6 Tissue-specific gene expression for WHRonly− variants. Shown are results of DEPICT and FUMA tissue-specificity analyses based on variants that
were selected from GWAS-only meta-analyses of GIANT (P < 10−5) and that were classified as WHRonly−. Significant results within the digestive system
are marked with green arrows. a DEPICT results for WHRonly− with significant enrichments highlighted in blue (FDR < 5%). Results are grouped by type
and ordered alphabetically by MeSH term within a specific system, cell type, or tissue (details in Supplementary Data 9). Results for the other three classes
showed no significance with DEPICT (Supplementary Figure 6). b FUMA results with significant enrichments highlighted in red (adjusted P < 0.05,
Bonferroni-corrected, details in Supplementary Data 13). The -log10(Pvalues) in the graph refer to the probability of the hypergeomteric test. Results for the
other three classes showed only little enrichment with FUMA (Supplementary Figure 8)
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approach can help resolve: (a) whereas WHRadjBMI effects are
not “independent of BMI”, our WHRadjBMI-derived variants are
distinct from BMI-derived variants with regard to their position
on the bWHR−bBMI plane (Fig. 2a). With increasing sample sizes,
WHRadjBMI− and BMI-derived variants cannot be expected to
keep this distinction and several variants will be captured by both
screens, which will result in overlapping biology. However, this
can be resolved by adopting our joint view and classifying the
variants by their position on the bWHR−bBMI plane. (b)
WHRadjBMI-derived variants were suspected to yield spurious
association. When considering spurious association of
WHRadjBMI-derived variants in the sense that such variants end
up having no effect on WHR but only on BMI, we found no such
alleged spurious association: all of our WHRadjBMI-derived
variants showed an effect on WHR in GIANT data (at nominal
significance) and in UKBB data at Bonferroni-corrected sig-
nificance (UKBB N= 336,107, PWHR < 0.05/53, Supplementary
Data 2). Even if there were WHRadjBMI-derived variants with an
effect only on BMI (and such variants will be detected eventually
when GWAS sample size increases), such variants would be part
of “adiposity genetics” in a joint view of BMI- and WHRadjBMI-
derived variants. (c) When considering spurious association of
WHRadjBMI variants in the sense that such variants end up
having no effect, neither on WHR nor on BMI, this would be a
real concern as these would be variants without adiposity effect.
As indicated above (see (b)), there is no such spurious association
in the data (all our WHRadjBMI-derived variants have an effect
on WHR in GIANT and UKBB) and, in theory (Supplementary
Note 4). (d) The “bias-correction” given by Aschard and

colleagues is simply an estimation of the WHR effect from
WHRadjBMI and BMI effect estimates (see (1) above). However,
the term “bias-correction” is misleading as the WHRadjBMI
effect sizes are not a nuisance (as effects with bias usually are), but
capture the extent to which the observed WHR effect differs from
the expected given the variant’s effect on BMI. This is, in the
context of adiposity, a relevant quantity as an unexpected change
in fat distribution given the change in BMI can mark metaboli-
cally relevant conditions (as an extreme, e.g., lipodystrophy) –
WHRadjBMI is thus a meaningful phenotype.

We believe that, possibly due to the misinterpretation of the
work of Aschard and colleagues, WHRadjBMI GWAS was per-
ceived as treacherous and less useful than a WHR GWAS.
However, we have shown that omitting the WHR-scan would
have missed only four variants, whereas an omission of the
WHRadjBMI-scan—out of a fear of bias and spurious association
—would have missed 27 adiposity genetics signals. We have also
shown that WHR-derived variants lack any distinct pathway
pattern, whereas WHRadjBMI-derived variants are health-
relevant (some confer favorable adiposity, some fat redistribu-
tion) and pick up important biology (expression in adipose/
insulin and digestive systems). We conclude that, in this example
of adiposity genetics, the adjusted-model trait GWAS has
advantages over the unadjusted trait GWAS. This does not mean
that each adjusted-model trait GWAS is useful; this has to be
evaluated on a case-by-case basis.

Our recommendations for future GWAS on adiposity genetics
are as follows: (A) if only two GWAS scans (rather than three) are
feasible, stick with the BMI- and the WHRadjBMI GWAS, (B)

All genetic effects alligned for BMI-increasing allele, if appropriate, or for WHR-decreasing in WHRonly
class (for consistency to BMI+WHR–); r = correlation between BMI and WHR (r=0.5 in CoLaus Study);
bBMI and bWHRadjBMI = effect estimates for BMI or WHRadjBMI 
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WHR effects can be computed by WHRadjBMI and BMI effects,
if not available otherwise, (C) a joint view of BMI- and
WHRadjBMI-derived variants on the bBMI−bWHR plane provides
a clearer view on the underlying anthropometry than separating
between BMI- and WHRadjBMI-derived genetics, and (D) a
classification using the variants’ position on the bBMI−bWHR

plane can serve to differentiate adiposity mechanisms and
metabolic health. Particularly, BMI+WHR− variants can be
used effectively to search for favorable adiposity effects. Our
approach of joining WHRadjBMI and BMI-derived variants (with
or without adding WHR-derived variants), rather than disen-
tangling5,622,23, and linking the variants’ positions on the
bBMI−bWHR plane to metabolic implications (Fig. 7) helped
resolve some of the appreciable uncertainty about the utility of
WHRadjBMI variants’ effects. Our approach can be generalized
to a framework for other settings, where two related phenotypes Y
and Z are two correlated measures of a latent heritable entity
(here: adiposity) and where the adjusted-model trait YadjZ is a
meaningful phenotype. An important lesson learned is to view
adjusted-model traits and the co-association of related pheno-
types as a powerful tool to identify important biology, but to
interpret them with great care keeping in mind the underlying
biological models.

In summary, our approach and results provide insights into
adiposity subtypes and an example for a co-analysis of related
phenotypes including adjusted-model traits to help reveal new
biology.

Methods
The GIANT consortium data. Our evaluation was based on genome-wide asso-
ciation meta-analysis results for BMI, WHR and WHRadjBMI (from 2015) that are
publically available from the GIANT consortium website (www.broadinstitute.org/
collaboration/giant)5,6. We used sex-combined, European ancestry meta-analysis
results including up to 322,154 persons (114 studies), 212,248 (101 studies), or
210,088 (101 studies) for BMI, WHR, or WHRadjBMI, respectively. In brief, in
each study, inverse-normal transformed residuals were calculated from regressing
BMI and WHR on age, age2, and other study covariates like principal components
—and on BMI to derive WHRadjBMI. The genetic effect estimates on BMI, WHR,
and WHRadjBMI were obtained from inverse-variance weighted meta-analyses of
study-specific genetic effect estimates on BMI, WHR, or WHRadjBMI, respectively.
Genome-wide association studies were either based on Hapmap-imputed SNPs
(~2.8 M SNPs) or on genotyped Metabochip SNPs (~190 K SNPs). For further
details, see the study descriptive in published literature for BMI5, WHR, and
WHRadjBMI6. Informed consent was obtained from all study participants, and
study protocols were approved by the local ethics committees.

Integrative genome screen on BMI, WHR, and WHRadjBMI. We excluded SNPs
with < 10,000 individuals contributing to the respective meta-analysis and SNPs on
sex chromosomes. For each of the three traits, we first selected all variants at
genome-wide significance (P < 5 × 10−8). We then combined these three sets of
SNPs derived across the three traits yielding a set of 2589 SNPs. We clumped these
into 159 non-overlapping, independent regions using a combined distance- and
linkage disequilibrium-based criterion ( < 500kB to either side; and r2 > 0.1). The
lead SNP of a region was defined as the SNP with the smallest association P-value
within the region (no matter from which trait the SNP was derived). The “traits of
a region” were defined as the union of traits contributing with genome-wide sig-
nificance across the SNPs of the respective region. We used PLINK36 and Easy-
Strata37 for the clumping and for the comparison across traits. Of note, our
clumping strategy will yield a different number of independent signals compared
with the two GIANT studies that applied a distance-only criterion (no r2 threshold,
but consecutive conditional analyses) and used multiple ancestries as well as sex-
specific results to select significantly associated variants.

Adiposity traits from the UK Biobank. We used data from the final release of the
UK Biobank (N up to 336,107) to follow-up our WHRadjBMI-derived
(PWHRadjBMI < 5 × 10−8 in GIANT) for their association with BMI and WHR. The
results for WHR and BMI were downloaded from the GeneAtlas9 website (http://
geneatlas.roslin.ed.ac.uk/downloads/?traits= 92) and from the Neale Lab website
(https://sites.google.com/broadinstitute.org/ukbbgwasresults/), respectively.

For the comparison of estimated and re-computed WHR effects, we used data
from the UK biobank interim release (N up to 116,295). For this, we utilized linear
regression to obtain residuals of BMI or WHR adjusted for age, age2 (for WHR:
additional for BMI), five ancestry principal components, and batch indicators, and

used these residuals to derive genetic association (as in GIANT). This was done by
sex and results meta-analyzed.

Anthropometric trait lookups from the GIANT consortium. To investigate the
identified loci for their effects on waist circumference, hip circumference (HIP),
weight (WT), and height (HT), we utilized the publically available meta-analysis
summary statistics from the GIANT consortium (www.broadinstitute.org/
collaboration/giant): From the 2015 round of meta-analyses, the sex-combined
results for WC6 (up to N= 232,083), HIP6 (up to N= 213,028) and HT38 (up to N
= 253,239) as well as sex-specific results for BMI5 and WHR6; and from the 2013
round of sex-specific meta-analyses, the sex-specific results for WT8. In order to
derive sex-combined meta-analysis results for WT (up to N= 125,943), we con-
ducted a fixed-effect inverse-variance weighted meta-analysis of the two sex-
specific WT results. Again, the GIANT consortium results were based on inverse-
normal transformed (or standardized for HT) phenotypes in the study-specific
analyses.

Fat compartments using impedance measures from UK Biobank. We investi-
gated the effects of the identified variants on impedance-derived measures of body,
leg, and trunk fat mass using data from the UK Biobank. We analyzed up to
114,367 unrelated samples of genetically determined European ancestry. Linear
regression analyses were applied for the 157 available SNPs including the covariates
age, sex, age2, five ancestry principal components, and batch indicators. Sex-
stratified analyses were conducted and subsequently meta-analyzed.

Fat compartments using imaging from ectopic fat consortium. We evaluated
the effects of the identified variants on computed tomography and magnetic
resonance imaging derived measures of ectopic fat volumes as described pre-
viously4. This data from the Ectopic fat consortium is publically available (www.
nhlbi.nih.gov/research/intramural/researchers/ckdgen). We utilized the meta-
analysis summary statistic for (SAT, up to N= 18,206), visceral adipose tissue
(VAT, up to N= 18,312) and pericardial adipose tissue (PAT, up to N= 11,616) as
well as for the ratio of VAT and SAT (VAT/SAT, up to N= 18,205). For com-
parison reasons, we computed beta-estimates (assuming a standardized outcome)
from the publically available Z scores using beta= Z/sqrt(N * 2* eaf * (1-eaf)),
where eaf is the allele frequency of the effect allele, N is the sample size of the meta-
analysis and Z the corresponding (and provided) Z score.

Cardio-metabolic traits and diseases lookups. To investigate the identified
variants for their effects on other metabolic traits, we utilized publically available
meta-analysis summary statistic from several genomic consortia: T2D (up to N=
69,033) from DIAGRAM15 (www.diagram-consortium.org/downloads.html), fast-
ing insulin (FI, up to N= 38,238) and fasting glucose (FG, up to N= 46,186) from
MAGIC17 (www.magicinvestigators.org/downloads/), for triglycerides (TG, up to
N= 177,829), HDL-C (up to N= 187,135) and LDL-cholesterol (up to N=
173,058) from Global Lipids Genetics Consortium16 (csg.sph.umich.edu/abecasis/
public/lipids2013/), and for myocardial infarctions (MI, up to N~170,000) and
CAD (up to N~185,000) from the CARDIoGRAMplusC4D18 (www.
cardiogramplusc4d.org/data-downloads/). Again, if not available from the down-
loaded data, we computed beta-estimates (assuming a standardized outcome) from
the publically available z scores according to the formula provided before.

Enrichment analyses. We applied binomial tests to evaluate whether the variants
in each class were enriched for nominal significant effects on anthropometric,
impedance, ectopic fat, or cardio-metabolic traits. We applied a conservative
Bonferroni-corrected significance level to the binomial tests (PBinomial < 0.05/168,
corrected for four classes × 21 traits × 2 direction of effects).

Mendelian randomization analysis by class. We also conducted class-specific
inverse-variance weighted summary statistic based Mendelian randomization
analysis27, in order to explore the causal implication of BMI increase on 20
traits27,29,39 (including anthropometric, fat depot, and metabolic traits) separately
by each of the adiposity subtypes. This way we estimated the causal effect of the
BMI increase on all 20 traits by restricting the instruments (i.e., the genetic var-
iants) to one class. We excluded the WHRonly− variants, which are no effective
instruments for BMI. We applied a conservative Bonferroni-corrected significance
level to the meta-regression results (PGRS < 0.05/60, corrected for three classes MR
20 traits).

DEPICT analyses. In order to search for enriched pathways among the genes
beneath association signals, there are several tools available, with little evidence,
which one is superior. We utilized DEPICT19 to test whether genes harboring
associated variants were enriched for genes with expression effects in different
tissue, cell type and physiological system. More specifically, DEPICT tests whether
the genes in associated regions are highly expressed in any of the 209 MeSH
annotations for 37,427 microarrays on the Affymetrix U133 Plus 2.0 Array plat-
form. DEPICT version 1 rel194 was downloaded from https://data.broadinstitute.
org and updated using scripts from GitHub (https://github.com/perslab/depict). To
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prevent bias in the enrichment analysis results owing to the customized design of
the Metabochip, we restricted the DEPICT analyses to variants with pronounced
association in the GWAS-only meta-analyses (i.e., excluding Metabochip data) as
done previously5,6. These data were available to us through our collaboration with
GIANT. Our analysis was based on all variants reaching P < 1 × 10−5 in at least one
of the GWAS-only meta-analyses for BMI, WHR, or WHRadjBMI. We clumped
the GWAS-only variants based on linkage disequilibrium of r² > 0.1 from 1000
Genomes40 data and 500 kb flanking regions to obtain lists of independent SNPs.
We conducted DEPICT analyses separately for the loci that were identified with the
BMI-scan, the WHR-scan, or the WHRadjBMI-scan (scan-specific pathway ana-
lyses). We also conducted the enrichment analysis separately for the variants in
each of the four classes BMI+WHR+ , BMI only, WHR only, and BMI+WHR−
(class-specific pathway analyses) using all at P < 10−5 (GWAS-only) and then
classifying variants based on the combined GWAS and Metabochip meta-analysis
results. For each DEPICT analysis, the list of utilized SNPs were merged with
overlapping genes utilizing precomputed gene regions based on 1000 Genomes
project variants. SNPs within the major histocompatibility complex region on
chromosome 6, base pairs 25,000,000–35,000,000, were excluded. DEPICT analyses
were conducted using the following parameters: 100 repetitions to compute FDR
and 1000 permutations based on 500 null GWAS to compute P values adjusted for
bias due to gene length. A total of 10,968 reconstituted gene sets were used for the
enrichment analysis. Tissue/cell type and Physiological system enrichment plots
were generated using R-scripts on the basis of the R-script provided with DEPICT.
Sensitivity analyses for the WHRonly- class were conducted that (1) excluded all
known height-associated loci from (Wood et al. 2014), (2) excluded variants
harboring the RSPO3 gene and (3) utilized a wider locus definition criterion that
was based on distance-only ( ± 500 kb).

FUMA analyses. We utilized the FUMA20 web tool (http://fuma.ctglab.nl/) to
investigate whether gene sets harboring our class-specific association signals were
enriched for genes with expression signals in specific tissues of the GTEx v6 data21.
FUMA applies a two-sided t-test to infer whether gene sets are differently expressed
(up- or downregulated) in any tissue compared to all others tissues. Differentially
expressed gene (DEG) sets are utilized by FUMA that were pre-calculated based on
GTEx v6 expression values. DEGs in specific tissues compared with others reflect
those gene sets with Bonferroni-corrected enrichment P values ≤ 0.05 and absolute
log fold change ≥ 0.58. To prevent from bias through the customized design of the
Metabochip, we selected associated variants (P < 10−5 for BMI, WHR, or
WHRadjBMI) from GWAS-only meta-analyses (excluding Metabochip studies) of
the GIANT consortium. We then utilized GWAS+Metabochip meta-analyses
results for the classification, which comprise a larger sample size and thus higher
accuracy for the classification. The applied input data sets of association results
were identical to the ones that were applied to the DEPICT tissue-specificity
analysis. For each class, genes harboring the respective associated regions were
tested by FUMA against each of the DEG sets using the hypergeometric test,
whereas background genes were those with an average Reads per kilo base per
million mapped reads > 1 in at least one of the 53 GTEx tissues and exist in the list
of background genes. We included all gene types in the prioritization that were
available through FUMA and used default FUMA input values, e.g., r2 < 0.6 to
define locus regions around the associated regions.

Data availability. Summary genetic association results that are used as basis for this
study are available on the GIANT consortium website (http://portals.broadinstitute.
org/collaboration/giant/) for BMI (‘SNP_gwas_mc_merge_nogc.tbl.uniq.gz’)5,
WHR (‘GIANT_2015_WHR_COMBINED_EUR.txt.gz’)6, and WHRadjBMI
(‘GIANT_2015_WHRadjBMI_COMBINED_EUR.txt.gz’)6. All other data that
support the findings of this study are available from the corresponding author upon
reasonable request. Our integrative analysis of publically available GIANT data was
performed with the open-source R package EasyStrata37. EasyStrata-scripts are
available for download from www.genepi-regensburg.de/easystrata.
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