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Electrical spin manipulation in graphene nanostructures
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We propose a mechanism to drive singlet-triplet spin transitions electrically in a wide class of graphene
nanostructures that present pairs of in-gap zero modes, localized at opposite sublattices. Examples are rectangular
nanographenes with short zigzag edges, armchair ribbon heterojunctions with topological in-gap states, and
graphene islands with sp3 functionalization. The interplay between the hybridization of zero modes and the
Coulomb repulsion leads to symmetric exchange interaction that favors a singlet ground state. Application of an
off-plane electric field to the graphene nanostructure generates an additional Rashba spin-orbit coupling, which
results in antisymmetric exchange interaction that mixes S = 0 and S = 1 manifolds. We show that modulation
in time of either the off-plane electric field or the applied magnetic field permits performing electrically driven
spin resonance in a system with very long spin-relaxation times.
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I. INTRODUCTION

Spin 1/2 systems provide the simplest physical realization
of a quantum bit [1,2]. Unsurprisingly, localized spins, both
electronic [3–5] and nuclear [6], were early on proposed as
physical platforms to store and manipulate quantum infor-
mation taking advantage from the enormous know-how in
magnetic resonance techniques. Despite several remarkable
experimental breakthroughs, using both phosphorous donors in
silicon [7] as well as III-V semiconductor quantum dots [8,9],
the fabrication of a spin-based quantum computer in solid-
state platforms, going beyond a few quantum bits, remains a
daunting challenge. One of the main problems is the upper
limit for spin coherence lifetimes T2 due to hyperfine coupling
to the nuclear spins [10].

Strategies to mitigate this problem come from two fronts.
First, using materials with a small or even null density of
nuclear spins, such as graphene [11], carbon nanotube-based
quantum dots [12], or isotopically pure silicon [13]. Second,
using a different degree of freedom to store quantum infor-
mation, such as the singlet-triplet Sz = 0 states that arise for
pairs of exchange-coupled spins [14]. However, this approach
requires the use of two electron spins per qubit with the
resulting fabrication overhead, and decoherence is reduced but
not eliminated [15,16].

Interestingly, a class of graphene nanostructures that can
be synthesized with bottom-up techniques [17,18] provides
naturally, without the need of electrical control of the number
of carriers, exchange-coupled unpaired spin electron duets
in an environment with a low density of carbon nuclear
spins. In Fig. 1 we show two such graphene nanostructures:
graphene rectangular ribbons with short zigzag edges (in the
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following ribbons) and armchair ribbon heterojunctions with
topological in-gap states (in the following heterojunctions).
Our paper also applies to sp3 functionalized gapped graphene
nanostructures. These systems form a class with the following
common properties:

(1) On account of their finite size, they have a gapped
spectrum, except for two single-particle in-gap states, that we
label ψ±. These in-gap states host two electrons [see Fig. 2(b)].

(2) The wave function of these in-gap states turns out to be
a linear combination of two zero mode states that are mostly
localized in one of the sublattices, labeled A and B that form
the honeycomb lattice [Figs. 2(d)–2(g)]. We refer to these zero
mode states as ψA and ψB .

(3) The overlap of ψA and ψB and thereby the bonding-
antibonding splitting (δ ≡ ε+ − ε−) of the single-particle spec-
trum depends on the geometrical properties of the graphene
structure and is therefore an important design parameter
[Fig. 2(c)].

(4) The electronic ground state is a singlet with S = 0, the
first excited state is a triplet S = 1, and their energy separation
JH is proportional to δ2/Ũ , where Ũ is the Coulomb energy
overhead of adding a second electron in the localized states
(ψA,B).

In this paper two things are performed. First, we provide
a quantum theory beyond mean-field approximation for the
spin states and the exchange JH in this class of graphene
nanostructures. Second, we study how the application of an off-
plane electric field generates a Dzyaloshinsky-Moriya (DM)
antisymmetric exchange [19,20] that could be used to enable
spin transitions between the ground-state singlet and the states
with Sz = ±1 in the triplet. Importantly, these transitions are
strictly forbidden in the absence of DM interaction in con-
ventional electron-paramagnetic resonance experiments where
both spins interact with a dc-field B0 and a perpendicular ac-
field Bac and only transitions that conserve S may be induced.
Therefore, our results pave the way towards electrically driven
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FIG. 1. Two types of graphene nanostructures that host pairs of
zero modes localized in opposite sublattices. (a) Rectangular graphene
nanoribbons with short zigzag edges that host one unpaired electron
each. (b) Armchair graphene heterojunctions hosting one zero mode
at each interface [39]. In both cases, the green arrows represent the
magnetization calculated with a mean-field Hubbard model.

spin resonance in graphene nanostructures, complementing
recent experiments on electrically detected spin resonance in
graphene [21,22].

Graphene zero modes with a wave function localized in
a single sublattice were predicted to occur in zigzag graphene
edges [23,24] and around carbon atoms with sp3 functionaliza-
tion [25–28]. Their direct experimental observation by means
of scanning tunneling microscopy (STM) has been reported
both for the edge states of rectangular nanographenes with
short zigzag edges [17] as well as for the individual and for
pairs of chemisorbed hydrogen atoms in graphene [29,30].
These sublattice polarized zero modes are expected to host
unpaired spin electrons, giving rise to the formation of local
moments [24,28,31–38]. Sublattice polarized zero modes have
recently been predicted [39] to exist as in-gap topological
states at the interface of certain graphene ribbons with armchair
edges, shown in Fig. 1(b). Recent progress in the fabrication of
graphene ribbon heterojunctions [18,40] shows that fabrication
of this type of structure is not out of reach of the state of the
art in nanographene synthesis.

The exploration with STM of some of the graphene nanos-
tructures studied here has been demonstrated [17,18,30]. With
this approach, the application of an off-plane electric field
significantly larger than in conventional field effect transistor
geometries is possible. On the other hand, STM can be used
to carry out electrically driven spin paramagnetic resonance
of individual atoms [41–43] and coupled spin 1/2 atoms [44].
Therefore, the electrical manipulation of localized spin states
in graphene seems within reach with state-of-the-art surface
scanning probes.

II. SINGLE-PARTICLE IN-GAP STATES

We model the single-particle states of the graphene nanos-
tructures with the standard one-orbital tight-binding (TB)
model with first-neighbor hopping t = 2.7 eV. For a given
nanostructure with N carbon sites, this defines a N × N

FIG. 2. (a) Graphene nanoribbon with W = 7. (b) Sketch of
the single-particle energy spectrum for the graphene nanostructures
shown in Fig. 1. A gap, separating the doubly occupied states from
the empty states, contains two in-gap states ψ± split by δ = ε+ − ε−.
(c) Dependence of δ on the spatial separation W of the zero modes.
For zero-dimensional (0D) ribbons, W stands for the width of the
ribbon. For the heterojunctions, W stands for the distance between
the interfaces. The splitting arises from the hybridization of the zero
modes ψA and ψB . These are shown (d) and (e) both for the ribbons
and (f) and (g) the heterojunctions [see Eq. (2)].

Hamiltonian matrixH0, whose properties are briefly described
below.

Electron-electron interactions are treated with the Hubbard
model, both at the mean-field approximation, including all
the single-particle states, or exactly for the subspace of two
electrons and two orbitals that controls the spin properties of
the studied systems. In the case of graphene nanostructures,
it is well known that mean-field Hubbard model calcula-
tions and density functional calculations give very similar
results [34,45]. The spin-orbit coupling effect considered in the
following will be of Rashba type [46–48] that can be externally
modulated with an electric field.

The noninteracting spectrum. A scheme of the single-
particle spectrum characteristic of the gaped graphene with
two in-gap states is shown in Fig. 2(b). The energies and
wave functions of the in-gap states are denoted by ε± and ψ±,
respectively. It is always possible [49] to write down the wave
function of a couple of conjugate states with single-particle
energies E and −E in terms of the same sublattice polarized
states ψA and ψB . Therefore, we write

ψA(i) ≡ 1√
2

[ψ+(i) + ψ−(i)],

ψB(i) ≡ 1√
2

[ψ+(i) − ψ−(i)], (1)
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where ψ±(i)’s are the probability amplitude at site i of the
eigenstates of H0 closest to E = 0. In the case of the in-gap
states, the peculiar property of the resulting ψA and ψB is that
they are spatially separated. As a result, the resulting splitting
that arises from the hybridization of the zero modes,

δ = 2〈ψA|H0|ψB〉 ≡ 2t̃ (2)

turns out to be small. In Fig. 2(c) we plot δ for different
nanographenes as a function of the spatial separation between
the zero modes. It is apparent and well known [23] that this
quantity decays exponentially with W . In the limit where W

is very large [see Fig. 2(c)], δ vanishes, and the energy of
the in-gap states goes to E = 0, showing that these sublattice
polarized states are zero modes [23].

III. THEORY OF LOCAL MOMENTS

A. Mean-field results

Our next task is to demonstrate that in-gap states in these
structures hold local moments. This has been established
using either density functional theory (DFT) and/or mean
field Hubbard model calculations in the case of infinitely
long graphene ribbons with zigzag edges [24,35] as well
as the small nanoribbons considered here [18,40] and for
hydrogenated graphene [26,30,38,50]. The emergence of local
moments in the case of undoped topological junctions is
explored here. We therefore carry out a mean-field Hubbard
model calculation (see Appendix A for details) to address the
emergence of local moments associated with the topological
in-gap states and, for comparison, the well-understood case
of graphene nanoribbons. For the topological in-gap states, we
consider a structure with periodic boundary conditions and two
interfaces that accommodate one in-gap state each. For U =
t = 2.7 eV, we find broken-symmetry solutions with a finite
local magnetization M(i) = 〈Sz(i)〉 that is mostly located in
the region where either ψA or ψB are nonzero for all structures
except those where δ is large (i.e., those where ψA and ψB

are strongly hybridized). This applies both for heterojunctions
and for nanoribbons. In the mean-field approximation, the
transition between nonmagnetic and broken-symmetry tran-
sitions is abrupt. The mean-field broken-symmetry solutions
have lower energies for antiferromagnetic (AF) correlations
between spins in opposite sublattices that result in a total
zero magnetic moment

∑
i M(i) = 0 [see Fig. 1(b)]. Solutions

with a net magnetic moment and ferromagnetic (FM) correla-
tions between opposite sublattices have higher energies and∑

i M(i) = 1 as expected for a S = 1 configuration in two
antiferromagnetically coupled S = 1/2’s.

We study the exchange energy as the difference between
FM and AF solutions JMF = EFM − EAF for several different
nanographenes, both for the edge and for the interface states.
We find that, for the same value of W , the exchange is larger for
ribbons than heterojunctions. This ultimately arises from the
larger hybridization of the edge zero modes, compared with the
topological interface zero modes [see Fig. 2(c)]. We show in
Fig. 3 that JMF can be as large as 40 meV for graphene ribbons
and be made as small as necessary by increasing the distance W

between the zero modes. Importantly, as we show in Fig. 3(d),
we find that, both for ribbons and for heterojunctions, exchange

(a)

(b)

(c) (d)

.

.

FIG. 3. (a) and (b) Magnetization in the FM ferromagnetically
aligned configuration as calculated within the mean-field approx-
imation for a graphene ribbon and a heterojunction, respectively.
(c) Dependence of the exchange energy, calculated within the mean-
field Hubbard model JMF = EFM − EAF on the dimensions of the
graphene nanostructure and (d) scaling of JMF with t̃2

Ũ
, demonstrating

kinetic exchange.

energy scales as

JMF ∝ t̃2

Ũ
, (3)

where

Ũ = U
∑

i

|ψA(i)|4 = U
∑

i

|ψB(i)|4 = Uη (4)

is the average addition energy for these states as computed in
the Hubbard model (see Appendix B) and η is the inverse par-
ticipation ratio of the zero mode states. This scaling provides
a strong indication that the mechanism of antiferromagnetic
interaction is kinetic exchange [20,51], that arises naturally
for half-filled Hubbard dimers. Our calculations show that,
for a given type of structure (ribbon or heterojunction), the
inverse participation ratio η is quite independent of W . Thus,
for the zigzag edge zero modes we find η ≈ 0.1, and for the
topological in-gap states we find η ≈ 0.035. The smaller η for
the heterojunction states can be anticipated as they can spread
at both sides of the junction, in contrast with the edge states.

B. Quantum theory of local moments

All these results, most notably the scaling of Eq. (3),
strongly suggest that magnetic correlations are governed by
the two electrons that occupy the two in-gap states. This is
also the case for graphene ribbons with infinitely long zigzag
edges [35]. In order to go beyond the mean-field picture and
to be able to describe local moments in these nanographenes
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FIG. 4. (a) Scheme of energy levels for the two-site Hubbard model with two electrons. (b) Evolution of four lowest-energy eigenstates of
Eq. (5), including the Zeeman [Eq. (6)] for the ribbon with W = 10, U = t , and Rashba for E = 10 V/nm. The effect of the Rashba interaction
is only apparent in the anticrossing of the Sz = −1 and S = 0 states, shown in the inset. (c) Zoom of the anticrossing. (d) Magnitude of the
singlet-triplet anticrossing energy h̄� as a function of the electric field.

with a full quantum theory without breaking symmetry, we
restrict the Hilbert space to the configurations of two electrons
in the two zero modes. To do so, we represent the Hubbard
interaction in the one-body basis defined by states ψA and ψB .
The Hamiltonian so obtained is a two-site Hubbard model with
renormalized hopping and on-site energy,

Heff = t̃
∑

σ

(a†
σ bσ + b†σ aσ ) + Ũ (nA↑nA↓ + nB↑nB↓), (5)

where a†
σ = ∑

i ψA(i)c†iσ and b†σ = ∑
i ψB(i)c†iσ are the oper-

ators that create an electron in zero modes ψA and ψB with spin
σ , respectively. In turn, nA,σ = a†

σ aσ is the number operator for
the ψA state with spin σ . In addition, we consider the Zeeman
coupling to a magnetic field,

HZ = tgμB

∑
σ,σ ′

�B · �Sσ,σ ′ (a†
σ aσ ′ + b†σ bσ ′), (6)

where �Sσ,σ ′’s are the S = 1/2 spin matrices, g = 2 is the gyro-
magnetic factor, and μB = 57 μeV T−1 is the Bohr magneton.

Hamiltonian (5) is a two-site Hubbard model where the sites
correspond to the zero mode states ψA,B shown in Figs. 2(b)–
2(e). This model can be solved analytically [52] or by a
straightforward numerical diagonalization (see Appendix B).
For the relevant case of two electrons, the dimension of the
Hilbert space is six, and the ground state is always a singlet. We
are interested in the limit t̃ � Ũ . In that case the excited-state
manifold is a triplet, way below two closed-shell singlets that
describe states with double occupation of the zero modes. A
cartoon of the spectrum is shown in Fig. 4(a).

Unlike the mean-field solution, the exact solution of Hamil-
tonian (5) has no abrupt change in behavior from nonmagnetic
to magnetic solutions. However, depending on the ratio t̃

Ũ
, the

physical properties of the system are very different.
This is quantified by the weight on the ground-state wave

function of the states where two electrons occupy one zero
mode, denoted by P2. For U = 0 the ground state is a trivial
singlet formed by two electrons in the lowest-energy in-gap
state and P2 = 0.5. For very small t̃/Ũ , P2 goes to zero. For a
fixed value of t and U , the effective hopping t̃ is controlled
by the dimensions of the nanographene structure. Thus, in
Fig. 5(a), we show P2 for a nanoribbon, assuming U = t as
a function of the ribbon width W . We see that, for W > 7,
the weight of the double occupancy configurations is smaller
than 5% of the state, and the charge fluctuations are effectively

frozen. In that limit, it is well known [20,51] that the four
lowest levels in the model of Eq. (5) can be mapped into the
Heisenberg Hamiltonian,

HHeis = JH
�SA · �SB, (7)

where �SA,B are the spin 1/2 operators describing the electronic
spins localized in states ψA and ψB , respectively and JH 
4t̃2

Ũ
. The Hamiltonian of Eq. (7) has a ground-state singlet

(S = 0) and an excited-state triplet with S = 1, separated in
energy by � = E(S = 1) − E(S = 0) = JH [see Fig. 4(b)].
heterojunctions. Effectively, the upper limit to JH is marked
by the crossover to the un-correlated regime where double
occupancy P2 is not negligible. On the other side, JH can be
made exponentially small when the distance between the two
zero modes is increased.

IV. SPIN-ORBIT COUPLING AND
DZYALOSHINSKY-MORIYA EXCHANGE

We now consider the effect of spin-orbit interactions in-
duced by an off-plane electric-field �E on the spin dynamics
of these four states. These can be described with a Rashba
spin-orbit coupling [46–48],

HR = itR
∑

σ,σ ′,〈i,j〉
�E · ( �di,j × �σσ,σ ′)c†iσ cjσ ′ , (8)

where 〈i,j 〉 labels first neighbors and �dij in the vector link-
ing them. σ = ± labels the eigenstates of the spin matrix

(a) (b)
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FIG. 5. (a) Representation of P2 and the weight of the double
occupancy states on the ground-state wave function for graphene
ribbons as a function of W (for t = 2.7 eV and U = t). (b) P2 as
a function of U/t for the ribbon with W = 10.
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Sz = 1
2σz, �σσ,σ ′ are the Pauli matrices (with eigenvalues ±1),

and c and c† are second quantization fermionic operators.
The extrinsic spin-orbit-coupling constant tR is zero unless
an off-plane electric field is applied E0ẑ to break mirror
symmetry [47],

tR = eEz0

9Vspσ

ξ, (9)

where e is the electron charge, Ez0 is the voltage drop across
atomically thin graphene [47], ξ = 6 meV is the spin-orbit
coupling of carbon, and Vspσ is the hybridization between p

and s orbitals [53].
For an electric-field E = 50 V/300 nm, standard for

graphene field effect transistors [54], we have tR 
3.7 μeV [56]. Importantly, with an STM tip it is possible to
apply a few volts at 1 nm so that tR = 100 μeV could be
reached.

The Rashba spin-orbit Hamiltonian adds a spin-flip hopping
in the two-site model (5),

VR =
∑

σ

[t̃R(σ )a†
σ bσ + t̃R(σ )∗b†σ aσ ], (10)

where σ = −σ and

t̃R(σ ) = σ 〈ψAσ |VR|ψBσ 〉 ≡ σ t̃R. (11)

For the graphene nanostructures considered here, we find that
t̃R is real. Unexpectedly, we find that t̃R

t̃
is always more than

five times larger than tR
t

. The origin of the enhancement of the
Rashba interaction in graphene nanostructures has to do with
a constructive interference between the modulation of the sign
of the in-gap zero mode states and the angle-dependent sign of
the Rashba hopping.

The addition of this spin-flip hopping to the Hubbard model
results in the strong-coupling limit Ũ � t̃ in two types of
additional terms to the effective spin Hamiltonian [20,55],

VDM = JDM
[(

Sx
ASz

B − Sz
ASx

B

) + (
Sz

AS
y

B − S
y

ASz
B

)]
, (12)

Vanis = JzS
z
ASz

B, (13)

with JDM = 8t̃ t̃R
Ũ

and Jz = 4 t̃2−t̃2
R

Ũ
.

The first term [Eq. (12)] is the widely studied anisotropic
exchange postulated by Dzyaloshinsky [19] and derived by
Moriya [20]. It does not conserve Sz. The physical origin
is transparent: Exchange arises from the virtual hopping
of one electron between states ψA and ψB . This hopping
occurs through a spin-conserving channel with amplitude
t̃ and through a spin-flip channel t̃R . Thus, two hoppings
through the same channel, either spin conserving or spin flip,
preserve the spin of the electron. In contrast, the crossed term,
by which only one hopping preserves the spin, results in an
effective interaction that does not conserve Sz. This is the DM
interaction, which is the dominant addition coming from the
Rashba perturbation, given that t̃ � t̃R .

V. ELECTRICALLY DRIVEN SPIN RESONANCE

The DM interaction scales with the kinetic exchange as
JDM = t̃R

t̃
JH . Thus,JH is in the range of meV so thatJDM in this

system is, at most, in the μeV. Whereas this is a small energy
scale, it has a qualitatively important consequence: It permits
otherwise forbidden transitions between singlet and triplet
manifolds. This is shown in Figs. 4(b) and 4(c) where we plot
the spectrum of the two-site Hubbard model as a function of the
off-plane magnetic-field B for a ribbon with W = 10, chosen
so that for a moderate magnetic field the Zeeman splitting of
the triplet manifold offsets the singlet-triplet splitting JH . The
calculation is performed including the effect of the Rashba
interaction. The effect of the small Rashba interaction is only
apparent when the Sz = −1 triplet state gets close in energy
to the S = 0 ground state [Fig. 4(c)]. In the absence of Rashba
interaction, these two spectral lines would cross each other.

We have verified that dipolar interactions (see Appendix C)
are small (for the W = 10 nanoribbon, 10−2 μeV). Impor-
tantly, they produce an anisotropic symmetric exchange that
does not couple S = 0 with the Sz = ±1 states. In addition,
dipole interaction cannot be modulated electrically in this class
of systems.

States Sz = −1 from the triplet and S = 0 define a two-level
system (TLS) with Hamiltonian,

HTLS = 1

2
h̄ω0(τz + 1) + h̄

2
�τx, (14)

where τz and τx are the S = 1/2 Pauli matrices (with eigen-
values ±1), h̄ω0 = J − gμBB is the splitting of the two levels
when the electric field is zero, and

h̄� ∝ t̃

Ũ
t̃R (15)

is the Rabi coupling. As expected from Eqs. (9)–(11) and (15),
we find that h̄� scales linearly with the electric field [Fig. 4(d)].
It must be noted that our TLS is different from the case
of singlet-triplet qubits where both states have Sz = 0. As a
result, the energy difference can be tuned with a magnetic
field, but this also removes the protection against fluctuations
of the magnitude of the external magnetic field that makes
singlet-triplet qubits convenient [9].

The energy scale h̄� defines a Rabi coupling between the
spin split levels. In order to assess its magnitude, we first
compare it with the Rabi coupling achieved by pumping a spin
S = 1/2 system with the ac magnetic field of a microwave.
The magnetic field of a microwave generated in a pulsed
state-of-the-art electron spin-resonance setup is, at most,Bac =
4 mT, leading to a Rabi splitting of gμBBac  0.4 μeV.
Thus, electrical driving can overcome conventional microwave
coupling, showing that it can be used to efficiently drive
singlet-triplet spin transitions in graphene nanostructures.

In order to assess the strength of the system response to the
electrically driven spin resonance, it is important to compare
the Rabi coupling that drives the TLS out of equilibrium
with the spin-relaxation T1 and decoherence T2 times. For
instance, the steady-state solution of the Bloch equation for
a TLS driven with a resonant ac Rabi coupling is fully
determined by the dimensionless constant x2 = �2T1T2 (see
Appendix E). Both T1 and T2 depend a lot on whether the
nanographenes are deposited on top of a conductor or an
insulator. In the former case, exchange interaction with the
electrons in the conductor will be the dominant spin relaxation
and decoherence mechanism [57].

195425-5



R. ORTIZ et al. PHYSICAL REVIEW B 97, 195425 (2018)

We now provide a rough estimate of the contribution to T2

coming from an intrinsic mechanism, namely, the hyperfine
coupling with the nuclear spins of the hydrogen atoms that
passivate the carbon atoms. Given that the natural abundance
of spinless 12C is 99%, hyperfine interaction with carbon is
less important. In addition, isotopically pure graphene could
be used and get rid of 13C completely. In principle, hyperfine
interaction between the graphene unpaired electronic spins and
the edge hydrogens has two components, the contact Fermi
interaction and the dipole-dipole interaction. The former is
stronger, in general, and depends on the probability for the
electrons in the zero mode states to visit the hydrogen 1s

orbital. It can be seen right away that hybridization of the pz

orbitals of carbon with the 1s orbital of hydrogen is zero when
these atoms lie on the same plane. Therefore, Fermi-contact
interaction with edge hydrogen atoms vanishes altogether, and
we are left with the dipolar coupling.

The electronic spins will undergo dephasing due to the
stochastic addition of the magnetic field created by the nuclear
magnetic moments. In order to estimate this effect, we treat the
nuclear moments as classical independent random variables
�mN . The average nuclear magnetic field is zero, but the
standard deviation B2

z is not. We assume that the nuclear spins
undergoes a stochastic motion with a white-noise spectrum
with correlation time τ . Under these assumptions, the T2

dephasing time for the electronic transitions due to their
hyperfine interaction with the edge hydrogen atoms is [57,58]

T −1
2 = ( gμBBz

h̄
)
2
τ . This equation is valid as long as τ is the

shortest time scale in the problem [57,58]. In particular, τ �
ω−1

0 , where h̄ω0 is the electronic Zeeman splitting. Therefore,
in its range of validity, the upper limit for the decoherence rate
is given by T −1

2 < ( gμBBz

h̄
)Bz

B
. In Appendix D we have obtained

Bz  1 mT. This small field produces an electronic Zeeman
splitting of 120 neV. The resulting estimate for the decoherence
rate is T2 > 0.5 ms. Using T1 > T2 we can obtain a lower
limit for x = �2T1T2 > �2T 2

2 . For h̄� = 1 μeV, we obtain
x � 100. So, the intrinsic decoherence mechanism does not
pose an obstacle for the proposed electric manipulation of the
spin states of singlet-triplet states in graphene nanostructures.

VI. DISCUSSION AND CONCLUSIONS

We have identified a class of graphene nanostructures that
host local spin moments in the form of pairs of antiferromag-
netically coupled electrons. We have presented a full quantum
theory for these local moments that goes beyond the broken-
symmetry mean-field and DFT-based calculations. We have
identified a new mechanism to efficiently drive spin transitions
by application of an off-plane electric field. The mechanism,
particularly efficient in graphene nanostructures, relies on the
electrically driven breakdown of mirror symmetry that gener-
ates spin-orbit coupling in the single-particle wave functions.
In turn, this induces an antisymmetric Dzyaloshinsky-Moriya
exchange in the spin Hamiltonian that mixes the S = 0 ground
state with the Sz = ±1 states of the triplet. The strength
of the Rabi coupling is found to exceed the one obtained
for S = 1/2 with state-of-the-art conventional spin resonance
driven with microwaves. Importantly, the proposed mechanism

permits driving transitions that are forbidden in conventional
spin-resonance experiments.

The proposed mechanism is different from other proposals
for electrically driven spin resonance. Some of them rely on
the modulation of the crystal-field Hamiltonian [41,59]. Others
rely on the slanting magnetic [60] or exchange [61] field of
a nearby magnetic electrode. Our findings could be used to
manipulate individual pairs of spins in nanographene struc-
tures. The independent progress both in spin resonance driven
by scanning tunneling microscopes and in the fabrication of
atomically defined graphene nanostructures with bottom-up
techniques [17,18,62,63] could permit exploring their potential
for spin qubits.
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APPENDIX A: MEAN-FIELD HUBBARD MODEL

The exact solution for the Hubbard model is only possible
in some very specific instances, such as a one-dimensional
chain, by means of Bethe ansatz or in small clusters via
numerical diagonalization. For the nanographenes considered
here, we make use of the so-called mean-field approxima-
tion [24,28,34,35,37,38] where the exact four-fermion operator
is replaced by

VMF = U
∑

i

(ni↑〈ni↓〉 + ni↓〈ni↑〉 − 〈ni↓〉〈ni↑〉), (A1)

where 〈niσ 〉 stands for the average number operator, evaluated
with the eigenstates of the mean-field Hamiltonian obtained
from the sum of VMF and the single-particle part. Of course,
this defines a self-consistent problem that is solved by nu-
merical iteration. Depending on the atomic structure of the
nanographene and the ratio U/t , the mean-field self-consistent
solutions can describe broken-symmetry solutions with local
moments or nonmagnetic solutions.

APPENDIX B: EXACT SOLUTION OF THE TWO-SITE
HUBBARD MODEL

The Hilbert space for the two-site Hubbard model with
two electrons (half-filling) has a dimension of six, spanned
by the basis set of Fock states in the site representation
(2,0), (0,2), (↑ , ↑), (↓ , ↓), (↓ , ↑), and (↑ , ↓) with a self-
evident notation so that the first (second) state represents a
doubly occupied A (B) site, the third state denotes the two
sites with single occupation with Sz = +1/2 each, and so on.
In this basis set, the Hamiltonian matrix is readily calculated,
taking into account the sign that arises from the definition of
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the Fock states in terms of the second quantization operator as

H =

⎛
⎜⎜⎜⎜⎜⎝

Ũ 0 −t̃R −t̃R −t̃ t̃

0 Ũ −t̃R −t̃R −t̃ t̃

−t̃R −t̃R gμBBz 0 0 0
−t̃R −t̃R 0 −gμBBz 0 0
−t̃ −t̃ 0 0 0 0
t̃ t̃ 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (B1)

For tR , Bz = 0, and in the relevant limit with t̃ � Ũ , the
eigenvalues are, in increasing order of energy, a singlet, a
triplet, and two more nondegenerate singlets [see Fig. 4(a)].
We define the weight of the (2,0) and (0,2) configurations on
the ground-state singlet P2 = |〈20|�G〉|2 + |〈02|�G〉|2. The
smaller the P2, the better the approximation of the spin model
to describe the singlet and triplet states. The dependence of P2

on W and U/t is shown in Fig. 5 for rectangular graphene
nanoribbons. It is apparent that, except for very small for
U = t and W > 10, P2 is below 0.05. It is also apparent that
there is a smooth crossover from the noninteracting limit for
which P2 = 0.5 and the local moment limit for which charge
fluctuations are frozen.

APPENDIX C: ELECTRONIC DIPOLAR INTERACTION

Here we consider the effect of the dipole-dipole coupling
between the magnetization clouds of state ψA with state ψB .
This leads to an additional term in the spin Hamiltonian,

Hdip =
∑
a,b

DabSa(1)Sb(2), (C1)

where a = x,y,z and

Dab = (gμB)2 μ0

4π
�ab, (C2)

where

�ab =
∑
i,i ′

|ψL(i)|2|ψR(i ′)|2 δa,b − 3na(ii ′)nb(ii ′)
r3
ii ′

, (C3)

where na(ii ′) is the a component of the unit vector �n(ii ′) =
1

|�ri−�ri′ | (|�ri − �ri ′ |). Of course, the carbon positions lie on the
plane z = 0 so that the nz components are zero. Thus, we have
as follows:

�zz =
∑
i,i ′

|ψL(i)|2|ψR(i ′)|2
r3
ii ′

. (C4)

Our numerical calculations confirm that only the diagonal
terms of the tensor are finite as expected from symmetry. We
show them in Fig. 6 for rectangular graphene nanoribbons. The
elongated shape of ribbons accounts for the difference between
Dxx and Dyy . The resulting dipolar Hamiltonian can be written
as

Hdip = −DxxSx(1)Sx(2) + DzzSz(1)Sz(2). (C5)

Importantly, this Hamiltonian does not couple states with
different total Sz’s. Therefore, the dipolar interaction does not
couple the two states in the two-level system formed by the
S = 0 ground state with the Sz = −1 state [Eq. (14)]. The
only effect of the dipolar interaction is to introduce a small
anisotropy splitting in the triplet manifold.

.

.

.

FIG. 6. Dipolar interaction as defined in Eq. (C2) for rectangular
graphene nanoribbons as a function of ribbon size W .

APPENDIX D: HYPERFINE INTERACTION

The hyperfine interaction is the sum of two dominant contri-
butions [58], Fermi-contact interaction, and dipolar coupling.
The first is given by the overlap of the electronic quantum
state with the nuclear species in question. The Fermi-contact
contribution to the hyperfine interaction of the edge electron
A or B on a given hydrogen atom, denoted with the label N ,
is computed by calculating the weight of the wave function
on the s orbital of that atom and multiplying the weight to
the hyperfine interaction of atomic hydrogen 1024 MHz. In
order to estimate the contact interaction we adopt a tight-
binding model that permits computing how the π orbitals of
graphene hybridize with the s orbital of hydrogen. This can be
performed using the TB model with four orbitals per carbon
atom [64,65] and one orbital per hydrogen atom. Within this
model, the midgap states are, in principle, a linear combination
of pz, px, py , and s orbitals of the carbon atoms and the s

orbital of the edge hydrogen atoms. However, for flat structures
with mirror symmetry, the pz orbitals are odd under reflection
and are thereby perfectly decoupled from all the other states of
the basis set that are even. As a result, within this model we find
that the Fermi-contact contribution to the hyperfine interaction
vanishes for the midgap states as well as all the low-energy
states as long as the edge hydrogen atoms remain on the
same plane than the nanographene, which is their equilibrium
position.

We thus are left with hyperfine dipolar coupling, whose
magnitude we estimate here. Since we are interested in the
decoherence induced by the nuclear spins on the electronic
states, we treat the nuclear spins as classical magnetic moments
�mN , whose orientation is completely random. At any given
time they create a magnetic field at a carbon site �ri ,

�Bi[ �mN ] = μ0

4π

∑
N

�mN − 3�nNi(�nNi · �mN )

|�rN − �ri |3 , (D1)

where the index N runs over the edge hydrogen atoms and �nNi

is the unit vector along the direction that joins the nuclear spin
N and the carbon site i. We now write down the electronic
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(a) (b)

(c) (d)

. . . .

. . . .....
.

.

.

. .

FIG. 7. Influence of second-neighbor hopping (top panels) and
edge atom hoppings (bottom panels) for a rectangular graphene
nanoribbon with W = 10 and U = t . The left panels show the relative
variation of the in-gap single-particle splitting. The right panels show
the variation of the exchange energy, computed within mean-field
theory. In both cases, quantities are normalized by the unperturbed
energy scale and expressed in terms of a percentage.

magnetization density as

�me(i) = 1
2 �τσ,σ ′ (|ψA(i)|2a†

σ aσ ′ + |ψB(i)|2b†σ bσ ′), (D2)

where �τσ,σ ′ ’s are the spin 1/2 Pauli matrices with eigenvalues
±1. The dipolar hyperfine interaction reads

VN = −
∑

i

�me(i) · �Bi[ �mN ]. (D3)

It is now convenient to define the average nuclear magnetic
field by the electronic states,

�BA,B =
∑

i

|ψA,B(i)|2 �Bi[ �mN ]. (D4)

This permits writing the interaction of the electronic spins
in states A and B with the nuclear spins as

VN =
∑
σ,σ ′

gμB

( �BA · �SA
σ,σ ′ + �BB · �SB

σ,σ ′
)
, (D5)

where

�SA
σ,σ ′ = 1

2 �τσ,σ ′a†
σ aσ ′ , �SB

σ,σ ′ = 1
2 �τσ,σ ′b†σ bσ ′ . (D6)

In the strong-coupling limit Ũ � t̃ this results in the addition
of the stochastic magnetic field to the Zeeman contribution in
Eq. (6).

The nuclear field component along the z direction modifies
the energy of the Sz = 1 state of the TLS and leaves the energy
of the S = 0 unchanged. Therefore, it induces a shift of the
TLS splitting, defined by Eq. (14), by an amount,

δω0 = gμB

h̄
(Bz,A + Bz,B), (D7)

which is a functional of the nuclear magnetic moments. For
nanoribbons and heterojunctions, the mirror symmetry of the
structures gives Bz,A = Bz,B ≡ Bz,B .

We take the orientation of the nuclear moments as random
variables with a uniform distribution, given that even at
millikelvin temperatures, nuclear Zeeman splitting is much
smaller than kBT ,

〈 �mN 〉 = 0,
〈
ma

Nma′
N ′

〉 = δa,a′δN,N ′
m2

0

3
, (D8)

where m0 is the proton magnetic moment.
As a result, its straightforward to see that the average

over nuclear moment realizations vanishes 〈 �BA.B〉 = 0. The
standard deviation of the components, defined as

B2
a,A = μ2

0

(4π )2

m2
0

3

∑
i,i ′,N

|ψA(i)|2|ψA(i ′)|2
r3
iN r3

i ′N
ηa(N,i,i ′), (D9)

where

ηa(N,i,i ′) ≡ 1 + 9na
Nin

a
Ni ′ �nNi · �nNi ′ − 3

[(
na

Ni

)2 + (
na

Ni ′
)2]

.

(D10)

In the case of the a = z component we have nz = 0 for all N
and i. We can obtain a quick estimate for the edge states in the
graphene nanoribbons if we approximate the wave function as
equally distributed in five edge carbon atoms and only consider
their coupling to the first-neighbor hydrogen. In that case, we
have as follows:

B2
z  μ2

0

(4π )2

m2
0

3

1

d6
HC

≡ 1

3
(b0)2, (D11)

where dHC  1.1 Å is the carbon hydrogen bond length and
b0  1 mT is the magnitude of the magnetic field created by
a proton at a distance dHC . From this, we can estimate the
associated shift h̄δω0  120 neV. Our numerical calculation
of (D9) yields Bz = 0.2 mT for a nanoribbon with W = 10 in
line with the estimate of Eq. (D11).

APPENDIX E: STEADY-STATE SOLUTION OF THE
DRIVEN TWO-LEVEL SYSTEM

The steady-state solution of the Bloch equation for a two-
level system driven by an ac Rabi monochromatic signal with
frequency ω is given by [41]

P0 − P1 = δPeq

(
1 − �2T1T2

1 + (ω − ω0)2T 2
2 + �T1T2

)
, (E1)

where P0 and P1 are the nonequilibrium occupation of the
ground and excited states in Eq. (14) and δPeq ≡ tanh ( h̄ω0

2kBT
)

is the equilibrium population imbalance. Thus, a relevant figure
to assess the merit of the electrical control of the spin on
electrically driven graphene nanostructures is x2 = �2T1T2. In
resonance, we have P0 − P1 = δPeq

1
1+x2 . Thus, the maximal

departure from equilibrium is obtained for very large x.

APPENDIX F: INFLUENCE OF SECOND-NEIGHBOR
HOPPING AND INHOMOGENEOUS STRAIN

In this Appendix we analyze the effect of two different
single-particle contributions we have neglected in the first-
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neighbor tight-binding model. These are the second-neighbor
hopping t2 that is expected [66] to be as large as 0.12t and
the modification of the first-neighbor hopping at the edges that
could arise from the different chemical environments [67]. In
both cases we have analyzed the influence on the main energy
scales of the system, namely, the splitting of the in-gap states
δ and the exchange energy JMF = EFM − EAF , computed
within the mean-field Hubbard model for a graphene ribbon.
The calculation of δ is carried out by exact diagonalization
of the single-particle Hamiltonian that now includes first-
neighbor hopping t and only one of the extra terms, either t2 or
tedge. The exchange energy is obtained performing mean-field
calculations of the resulting Hubbard model. We express our
results in terms of the relative change (variation normalized by
the unperturbed value).

The results, shown in Fig. 7 for the case of a rectangular
graphene nanoribbon with short zigzag edges and W = 10 are
small in both cases. In the case of second-neighbor hopping,
first-order perturbation theory shows that all the energy levels
shift linearly with t2, having no effect on the splitting of the
in-gap states. Our numerical calculation show that the splitting
δ changes quadratically in t2/t . In turn, JMF scales with δ2

so that �JMF ∝ �δ. In the case of variation of the edge
hopping, these affect directly the extension of the edge states,
which affects linearly the zero mode splitting δ. However, the
effect is quantitatively small. Thus, a variation of the edge
hopping of 10% results in a variation of the in-gap splitting δ

of 1%. In conclusion, the simple first-neighbor tight-binding
Hamiltonian with homogeneous hopping is a good starting
point to describe these systems.
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