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Abstract

Telugu is the fifteenth most commonly
spoken language in the world with an
estimated reach of 75 million people in the
Indian subcontinent. At the same time, it is
a severely low resourced language. In this
paper, we present work on English–Telugu
general domain machine translation (MT)
systems using small amounts of parallel
data. The baseline statistical (SMT) and
neural MT (NMT) systems do not yield
acceptable translation quality, mostly due
to limited resources. However, the use
of synthetic parallel data (generated using
back translation, based on an NMT engine)
significantly improves translation quality
and allows NMT to outperform SMT. We
extend back translation and propose a new,
iterative data augmentation (IDA) method.
Filtering of synthetic data and IDA both
further boost translation quality of our
final NMT systems, as measured by BLEU
scores on all test sets and based on state-
of-the-art human evaluation.

1 Introduction

In the past two decades, machine translation (MT)
has shown very promising results, most of which
have been achieved using data-driven techniques.
In recent years, the data-driven paradigm of MT
is largely dominated by neural machine trans-
lation (NMT) and showing significant success
over its predecessor statistical machine translation
(SMT) (Bahdanau et al., 2014; Bojar et al., 2017).

c© 2018 The authors. This article is licensed under a Creative
Commons 3.0 licence, no derivative works, attribution, CC-
BY-ND.

The performance of any data-driven approach to
MT mostly depends on the amount of parallel cor-
pora available to train them. This problem is ex-
acerbated by NMT, which generally needs larger
quantities of parallel data and is less robust to
noisy data. Unfortunately, large amounts of readily
available parallel resources exist only for a small
number of languages, e.g., OPUS (Tiedemann and
Nygaard, 2004) and Europarl (Koehn, 2005), with
only very few sources of Indic language data.

Indic language MT is difficult due to complex
linguistic structure and lack of good quality data.
Most of the Indic languages are leading languages
of the world in terms of number of speakers but
are very poorly resourced (i.e., only very little
machine-readable parallel text exists) so build-
ing a general domain data-driven MT system is
a challenging problem. Also, Indic languages do
not have enough comparable resources to explore
extraction of useful parallel content from the
same (Irvine and Callison-Burch, 2013). Lastly,
due to the usage of multiple fonts and encodings,
a significant portion of the web data cannot be
used to extract parallel data for training. Telugu
is no exception to this. Lack of large, high quality
parallel resources makes the development of gen-
eral purpose MT systems much harder for Telugu
compared to other, resource rich languages, more
specifically when building NMT-based models.

One of the major problems with training an
NMT system on little data, especially when train-
ing an engine for general usage (i.e., not domain
specific), is overfitting. Deep neural networks have
large parameter spaces and need ample amounts of
data in order to generalize adequately; with small
amounts of data they tend not to generalize well.
We address this issue by learning the optimizer
over a smaller number of training steps.
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In this paper, we describe our English–Telugu
(En–Te) general purpose MT system. First, we
describe the baseline SMT-based and NMT-based
systems trained on 750k parallel sentences. Telugu
is a morphologically rich language and, as such,
suffers from a high out-of-vocabulary (OOV) rate
in a low data scenario. We address data sparsity
by augmenting a large amount of synthetic train-
ing data (Sennrich et al., 2015), generated using
back translation, to iteratively improve the NMT
systems. The iterative process uses synthetic data
to improve the MT engine and (implicitly) the
quality of the synthetic data using the improved
MT engine in the reverse direction.

Secondly, we use sub-word representations to
reduce the data sparsity problem. This essentially
handles Telugu’s rich morphology. Furthermore,
as translation quality varies across sentences while
generating synthetic data, we filter poor quality
translation pairs to augment the system only with
high quality synthetic parallel data. We observe
improved translation quality as a result. The main
finding of this work is that the use of iterative data
augmentation and filtering of the synthetic data
help to improve the translation quality.

The rest of the paper is organized as follows.
Section 2 describes the data sets used to build the
systems. In Section 3, we describe the baseline
SMT and NMT models and their quality. Section 4
provides details on improving NMT models using
synthetic data. Section 5 reports the experimental
setup and results. We conclude in Section 6.

2 Data Sets

In this work, we use two types of training data: true
parallel data, and synthetically generated parallel
data using back-translation (Sennrich et al., 2015).
In this section, we describe the true English–
Telugu parallel data used for system training.
The generation of synthetic data is explained in
Section 4.1. The full training data contains 750k
true parallel sentences along with a larger set of
synthetic data (15.4M and 8.2M for En→Te and
Te→En, respectively).

The true parallel data includes automatically
extracted parallel sentences from the web and from
OPUS (Tiedemann and Nygaard, 2004). Many
web pages feature content available in multiple
languages. Such content includes both sentence or
paragraph aligned parallel data (e.g., TED talks’
transcriptions) and comparable or noisy-parallel

corpora (e.g., cross-lingually linked Wikipedia
documents). Once such potential parallel pages
between Telugu and English are extracted from the
web, a sentence aligner is used to extract sentence
aligned parallel text, based on a modified Moore
Sentence Aligner (Moore, 2002).

Test Data To the best of our knowledge, there
are no publicly available test sets for evaluating
Te–En MT systems. Thus, we have created two
different test sets to evaluate our systems. Our first
test set was created by selecting sentences from
news articles. The English source sentences were
manually translated into Telugu and validated by
human experts. We shall refer this test set as News.

In order to understand the performance of our
systems w.r.t. state-of-the-art test sets, we have
created our second test set using a subset of the
WMT 2009 (Callison-Burch et al., 2009) test set
for English–French. 1,000 English sentences were
randomly selected and manually translated into
Telugu by human experts. We call this test set
WMT. Table 1 summarizes the different data used
for training and testing.

Parallel Data #sentences #En #Te
Train 751,609 13.6 10.4
News (test set) 5,000 14.4 10.9
WMT (test set) 1,000 22.8 16.4
Dev 2,500 20.4 14.3
Monoligual Data
English 8.2m 15.7 –
Telugu 15.4m – 8.6

Table 1: Number of sentences (#sentences) and average
sentence lengths (#En, #Te) for data sets used in this work.

Note that we have created our test sets with a
single reference translation. We intend to publicly
release the test sets. Monolingual data mentioned
in Table 1 is used to build the language models
for SMT systems and to generate synthetic parallel
data used to train the NMT systems.

3 Baseline Models

The baseline SMT models use a vanilla
phrasal (Koehn et al., 2003) and a treelet1 (Quirk
et al., 2005; Bach et al., 2009) translation model
for Te→En and En→Te systems, respectively. We
do not use treelet translation system in the Te→En
1Extracts treelet translation pairs using source language de-
pendency parse tree and an unsupervised alignment algo-
rithm. This is used for tree-based reordering.
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direction due to lack of a Telugu parser. For both
phrasal and treelet systems, word alignment is
done using GIZA++ (Och and Ney, 2003). We
use the target side of the parallel corpus along
with additional monolingual target language data
to train a 5-gram language model using modified
Kneser–Ney smoothing (Kneser and Ney, 1995).
Finally, we use MERT (Och, 2003) to estimate the
lambda parameters using the held out Dev data
with a single reference translation.

The baseline NMT model is developed based on
the architecture described in (Devlin, 2017). The
encoder uses a 3-layer bi-directional RNN (con-
sists of 512 LSTM units). The decoder uses an
LSTM layer in the bottom to capture the context
and the attention. The LSTM layer is then fol-
lowed by 5 fully-connected layers applied in each
timestep using a ResNet-style skip connection (He
et al., 2016). The details of the model and equa-
tions are described in (Devlin, 2017). All the mod-
els are trained using ADAM optimizer (Kinga and
Adam, 2015) with a dropout rate of 0.25. The opti-
mizer uses 100k and 500k steps with a batch size of
1024 for En→Te and Te→En baseline NMT sys-
tems, respectively. In the case of Te→En NMT
system, source-side Telugu sentences are repre-
sented using byte-pair encoding (BPE) (Sennrich
et al., 2015) to reduce the data sparsity problem,
which uses 50,000 merging operations.

Table 2 summarizes the baseline accuracy of
the MT systems on different test sets. We use
BLEU (Papineni et al., 2002) score for automatic
evaluation of all the systems. It is interesting to
note that the baseline SMT systems in general
have higher scores for most of the test scenarios
compared to the NMT baselines (except for the
News test set in the Te→En direction). This es-
sentially indicates that 750k parallel data is not
enough to build NMT-based systems with bet-
ter quality translation compared to corresponding
SMT-based systems due to large parameter space
of the NMT-based systems. In addition, the ab-
solute BLEU scores achieved by the baseline sys-
tems (either NMT or SMT) are quite low, espe-
cially in the En→Te direction. We observe that
En→Te has much lower BLEU scores compared
to Te→En, irrespective of the MT techniques used.
This is often the case for morphologically rich, free
word order target languages when using automated
metrics based on single references.

System
Te→En En→Te

News WMT News WMT
SMT 9.12 8.76 4.99 3.98
NMT 9.13 7.59 4.04 3.26

Table 2: BLEU scores of the baseline systems

4 Improved NMT Models

The baseline experiments in the previous section
clearly associate with the fact that NMT models
require massive amount of parallel data in order
to generalize over the large parameter space of
the model (Gu et al., 2018). Researchers have
tried different data augmentation techniques (Gul-
cehre et al., 2015; Cheng et al., 2016) to improve
NMT models. Most of the data augmentation tech-
niques try to leverage the use of monolingual data.
We adopt the back-translation technique proposed
by (Sennrich et al., 2015) to improve the quality of
the MT system, which has shown notable success
in the past. In this direction, we use an iterative
data augmentation and filtering strategy to improve
translation quality.

4.1 Back-Translation
To improve our models, first, we use back-
translation (Sennrich et al., 2015) to increase the
use on parallel data. Back-translation uses a re-
verse translation engine to translate target-side
monolingual data and essentially produced the
synthetic data to train the system in forward di-
rection. For example, let ei be an English sen-
tence, and t′i = MTEn→Te(ei) is the translation
produced by the En → Te MT system. Then the
Te→ En system is trained on {t′i, ei} data.

We use the monolingual data mentioned in Ta-
ble 1 to generate the back-translated data. Table 3
summarizes the detail of the synthetic data used to
train the NMT systems. Note, after adding syn-
thetic data, we train the ADAM optimizer with
200k steps with a batch size of 4,096.

Corpus #sentences #En #Te
Ensynth, Temono 15.4m 11.4 8.6
Tesynth, Enmono 8.2m 15.7 12.6

Table 3: Synthetic data

4.2 Iterative Data Augmentation
A good quality baseline system (i.e., reverse trans-
lation engine) is required to produce good quality
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synthetic data. The quality of the synthetic data af-
fects the quality of the MT system. Due to the low
quality of the baseline systems (cf. Table 2), we
plan to improve the quality of the synthetic data it-
eratively through iterative data augmentation. The
detail of our algorithm is given in Algorithm 1. In
line 1 and 2 of the algorithm, we build the baseline
reverse translation engines (M (0)) using only true
parallel data (Dbi). Line 4 of the algorithm uses
the baseline M (0)

En→Te to produce synthetic parallel
data 〈D′Te, DEn〉 which is further used to improve
the MT quality in the other direction (M (t)

Te→En)
in line 5. Instead of using the baseline engines
(M (0)

Te→En), we use the modified M
(t−1)
Te→en engine

in line 6 to produce synthetic data 〈D′en, DTe〉. Fi-
nally, in line 7, we improve the M

(t)
En→Te system

using the synthetic data produced in line 6. We
continue the process until there is no overall gain
(average over ∆BLEU in Te→ En and Te→ En
directions) in BLEU score. This is ensured in line
8 by measuring the change in BLEU score in the
dev set between two successive iterations.

Algorithm 1 iterativeAugment(DEn, DTe, Dbi)
In: Monolingual English corpus DEn,
Monolingual Telugu corpus DTe,
English–Telugu parallel corpus Dbi

Out: Translation models M (t)
Te→En and M

(t)
En→Te

1: M
(0)
En→Te← baseline En-to-Te NMT system using Dbi

2: M
(0)
Te→En← baseline Te-to-En NMT system using Dbi

3: for t := 1 to T do
4: D′Te← Translate DEn to Telugu using M

(t−1)
En→Te

5: M
(t)
Te→En←Dbi + {D′Te,DEn}

6: D′En← Translate DTe to English using M
(t−1)
Te→En

7: M
(t)
En→Te←Dbi + {D′En,DTe}

8: if 1
2

(∆BLEU (dev,M (t)
Te→En)+∆BLEU (dev,M (t)

En→Te))
≤ 0 then

9: return M
(t−1)
Te→En, M (t−1)

En→Te
10: end if
11: end for

4.3 Data Filtering
Although the quality of the synthetic data improves
through the iterative process in the Algorithm 1,
we found that the back-translation quality varies
widely across sentences. Thus, we filter poor qual-
ity back-translated sentences using a pseudo fuzzy
match (PFS) score (He et al., 2010) to rank all
the back-translated output. For example, in line 6,
once the synthetic parallel data (e.g., 〈D′en, Dte〉)
is produced using reverse translation engine (e.g.,
M

(t)
Te→En), we further translate the back-translated

D′en into Telugu (D′′te) using forward translation
engine M

(t)
En→Te. We measure the PFS between t

(∈ Dte) and t′′ (∈ D′′te) as shown in Equation 1.

PFS = 1− EditDistance(t, t′′)
max(|t|, t′′|) (1)

This essentially helps ranking each pair in
the synthetic parallel data with higher scores
corresponding to better translation quality.

5 Experiments and Results

First, we conducted one experiment to see the ef-
fect of choosing SMT and NMT system as the re-
verse translation engine to produce back-translated
data (line 1 and 2 in Algorithm 1). Note that our
baseline SMT system has better quality compared
to the baseline NMT system (cf. Table 2). How-
ever, we found that the use of NMT as the re-
verse translation engine has better improvement in
translation quality compared to using SMT system
for back-translation. Table 4 shows the effect of
SMT and NMT system as reverse translation en-
gine. In this process we rely on the baseline M (0)

(as shown in line 1 and 2 of the Algorithm 1) and
do not use any iterative augmentation of data.

System
Te→En En→Te

News WMT News WMT
SMT 12.78 12.26 5.29 4.14
NMT 14.21 13.26 5.71 4.55

Table 4: Effect of MT system type on back translation. NMT
achieves higher quality gains compared to SMT.

The accuracies in Table 4 show that the use of
synthetic parallel data significantly improves the
baseline translation quality (cf. Table 2). The use
on SMT as back-translation system gives an aver-
age improvement of 3.58 and 4.16 absolute BLEU
points for Te→En system over the baseline SMT
and NMT system, respectively. Similar observa-
tions are found in En→Te directions with 0.23 and
1.07 absolute BLEU point improvement over the
baseline SMT and NMT system, respectively.

Furthermore, we found an absolute average
BLEU score improvement of 1.22 and 0.41 us-
ing NMT for generating back-translated data com-
pared to the SMT reverse translation system, re-
spectively for Te→En and En→Te systems.

We conduct a second experiment based on the
iterative data augmentation technique described in
Algorithm 1. We shall refer this as IDA. Here
we do not filter any data based on PFS value (i.e
PFS ≥ 0). Figures 1 and 2 shows the effect
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PFS #data Te→ En #data En→ Te
≥0 8.2m 15.05 15.4m 6.49
≥0.3 7.3m 15.14 9.8m 6.66
≥0.5 6.3m 15.22 6.7m 6.77
≥0.7 4.1m 15.20 3.1m 6.57

Table 5: The effect of PFS on News test set

of IDA over the baselines and non-iterative data
augmentation (NMTBT) on different test sets for
En→Te and Te→En. We found that the algorithm
has no improvement after 2nd iteration in both the
directions.

Figure 1: Comparison of BLEU scores for En→ Te. SMT
and NMT are baseline systems, NMTBT refers to NMT sys-
tem with baseline synthetic data.

Figure 2: Comparison of BLEU scores for Te→ En

Finally, in our last experiment we show the ef-
fect of different PFS threshold for data filtering
and their effective impact on BLEU score. Ta-
ble 5 shows the effect of data filtering using PFS
on the News test set. We found that the filtering
of data generally improves the translation quality.
The best accuracy is achieved when the synthetic
data is selected with PFS ≥ 0.5.

System Te→ En En→ Te
SMT 27.9 35.3
NMTIDA,PFS≥0.5 56.7 49.6

Table 6: Human evaluation scores on News test set. Based on
source-based Direct Assessment. Differences are statistically
significant according to Wilcoxon rank sum test with p-level
p ≤ 0.05. Human perceived quality indicates that the NMT
system may be good enough for actual general domain use.

5.1 Human Evaluation

In addition to the above automatic evaluations, we
performed a manual evaluation of the MT out-
put for both language directions to understand the
translation quality from a human perspective. Hu-
man evaluation for this research is based on di-
rect assessment. We follow WMT17 (Bojar et al.,
2017) and use Appraise (Federmann, 2012), mod-
ified to show source sentences instead of reference
translations. This adopts the evaluation strategy
implemented for IWSLT17 (Cettolo et al., 2017).

For each language direction, five independent
annotators evaluated 350 candidate translations on
the News test set, randomly drawn from both the
baseline SMT (cf. Table 4) and the final NMT sys-
tem (using IDA and PFS ≥ 0.5). Following direct
assessment as implemented at IWSLT17, annota-
tors see the source text and a corresponding can-
didate translation and are asked to assign a quality
score x ∈ {0, 100}.

After filtering out annotations used for quality
control, we collected an average number of 402
segment scores for SMT, and 399 for NMT. Table 6
shows the average absolute translation quality of
the two approaches in both directions. The hu-
man evaluation shows statistically significant im-
provement of 103% and 41% in the absolute scale
for Te→En and En→Te NMT systems, respec-
tively, compared to the SMT baseline. We use
Wilcoxon rank sum test (Wilcoxon, 1945) with p-
level p ≤ 0.05 to determine statistical significance.
All collected data points will be released publicly.

6 Conclusion

We have demonstrated that we can build good
quality NMT models with limited resources for a
morphologically rich language pair. Contributions
of this paper are the definition of iterative data
augmentation (IDA) and empirical results show-
ing the effectiveness of back translation and PFS-
based data filtering for English–Telugu NMT. The
proposed IDA method is much more effective than
using baseline back translation by itself.
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