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Highlights

• The paper deals with uncertain convex multiobjective problems.

• We consider ball uncertainty aecting all data.

• We define a radius of highly robust weak e ciency certifying its existence.

• We provide bounds, and an exact formula, for this radius.

• We provide simple formulas for convex quadratic and linear multi-objective programs.

• These formulas are applied to two variants of a test problem due to Ben- Tal and
Nemirovski.
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Guaranteeing highly robust weakly efficient solutions for
uncertain multi-objective convex programs∗

M.A. Goberna†‡ V. Jeyakumar§ G. Li§ J. Vicente-Pérez¶

Second Revised version: March 17, 2018

Abstract

This paper deals with uncertain multi-objective convex programming problems,
where the data of the objective function or the constraints or both are allowed to be
uncertain within specified uncertainty sets. We present sufficient conditions for the
existence of highly robust weakly efficient solutions, that is, robust feasible solutions
which are weakly efficient for any possible instance of the objective function within a
specified uncertainty set. This is done by way of estimating the radius of highly robust
weak efficiency under linearly distributed uncertainty of the objective functions. In
the particular case of robust quadratic multi-objective programs, we show that these
sufficient conditions can be expressed in terms of the original data of the problem,
extending and improving the corresponding results in the literature for robust multi-
objective linear programs under ball uncertainty.

Keywords. Robustness and sensitivity analysis. Multi-objective optimization. Convex opti-

mization. Robust optimization. Robust efficient solutions.

1 Introduction

Many decision-making problems arising in practice can be modelled as multi-objective op-
timization programs where some of the data of the constraint functions or the objective
functions or both are uncertain. The robust optimization approach (see, e.g., [2]) provides a
deterministic framework for studying such uncertain decision-making problems by assuming
that all data depend on parameters ranging on prescribed sets, called uncertainty sets, whose
elements are called scenarios.
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For the sake of simplicity, we assume that the data have independent uncertainty sets,
which are singletons when the data are deterministic. The robust feasible solutions are those
elements of the decision space Rn which are feasible for any conceivable instance (that is,
for any realization of the uncertainty in the given uncertainty sets) and the robust feasible
set is the set of all robust feasible solutions.

A common objection to the robust optimization approach to uncertain decision-making
problems is based on the fact that one may have an empty robust feasible set. For instance, if
the uncertainty set is a ball and if the radius of the uncertainty set is too large then the robust
feasible set may be empty. Recent research has addressed the issue of guaranteeing robust
feasibility by providing formulas for the radius of robust feasibility for uncertain optimization
problems with finitely many linear constraints ([9], [17]), finitely many convex constraints
[15], and infinitely many linear constraints [16].

Computing the radius of robust feasibility, for example, for linearly constrained problems,
is equivalent to computing the distance to ill-posedness in the sense of stability analysis ([7],
[8]), that is, the supremum of the size of those perturbations of the data of a nominal problem
which preserve its structure and feasibility. The formulas for the radius of robust feasibility
are expressed as the distance from certain closed convex subsets of Rn+1 to the origin. As
shown in [9], [15] and [17], these distances can be computed by solving numerically tractable
optimization problems (e.g., linearly constrained convex quadratic programs, second-order
cone programs or semi-definite programs) in particular cases. These results were obtained
assuming that the data uncertainty is only present in the constraints.

On the other hand, robust solutions of uncertain multi-objective linear optimization in
the face of data uncertainty in the objective function in the case of interval uncertainty
sets were studied under the name of necessary efficient solution by Bitran [5], Inuiguchi and
Sakawa [22], Oliveira and Antunes [29], Hlad́ık [19] and other references therein. The related
notion of highly robust solution for multi-objective optimization was introduced by Ide and
Schöbel [21] and further studied by Kuhn, Raith, Schmidt and Schöbel [23], and Dranichak
and Wiecek [32], among others.

Many other concepts of robust solution for uncertain multi-objective optimization prob-
lems have been proposed recently (see the survey papers [21] and [32]). In particular, the
concept of minimax robust solution for multi-objective uncertain optimization was given
by Kuroiwa and Lee [24] in 2012, who defined the robust counterpart of a given uncertain
optimization problem with m objective functions fi, i = 1, . . . ,m, as the deterministic op-
timization problem consisting in the simultaneous minimization of the worst-case functions
supui∈Ui fi(x, ui) on the robust feasible set X, where Ui denotes the uncertainty set of the
objective functions fi, i = 1, . . . ,m. The optimal solutions, in the sense of multi-objective
optimization, of the robust counterpart problem are called minmax robust solutions. Com-
parative studies on robust solutions for uncertain multi-objective optimization can be found
in [11], [20] and [21, Section 3].

As an illustration, consider, for instance, the portfolio management problem under data
uncertainty, where the decision maker may invest C euros in a portfolio comprised of n assets
(shares, stocks, securities). The decision variables are the amount of euros to be invested in
the i-th asset, denoted by xi, i = 1, . . . , n.
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Any portfolio x = (x1, . . . , xn) ∈ Rn must satisfy xi ≥ 0, i = 1, . . . , n,
∑n

i=1 xi ≤ C, and
other (possibly uncertain) linear constraints a>j x+ bj ≤ 0, j ∈ J (where J is some index set,
the superscript > means transpose and so, a>j x expresses the standard inner product 〈aj, x〉
of aj, x ∈ Rn). Let aj ∈ Rn and bj ∈ R be estimations of aj and bj, and let Vj ⊆ Rn+1 with
(aj, bj) ∈ Vj be the uncertainty set for (aj, bj), j ∈ J . Thus, the robust feasible set is

X :=

{
x ∈ Rn :

a>j x+ bj ≤ 0,∀ (aj, bj) ∈ Vj,∀j ∈ J,∑n
i=1 xi ≤ C, xi ≥ 0, i = 1, . . . , n

}
,

which is a polyhedral convex set whenever J is finite and the convex hull of Vj is a polytope
(e.g., when Vj is finite) for all j ∈ J . Assume that X 6= ∅. Let ri be the return per 1 euro
invested in asset i during a period of time. Since these returns are not known in advance,
r = (r1, . . . , rn) is an uncertain vector.

The portfolio problem under uncertainty consists in the simultaneous maximization of the
expected return r>x and minimization of its variance (interpreted as volatility), say x>Ax.
Assume that the vector r ∈ Rn

+ and the positive semi-definite matrix A are the estimated
mean and covariance matrix of the return vector, respectively. Then, the nominal problem
is

(P ) V- min
(
−r>x, x>Ax

)

s.t. a>j x+ bj ≤ 0, j ∈ J,∑n
i=1 xi ≤ C, xi ≥ 0, i = 1, . . . , n,

where V- min stands for vector minimization.

Let U1 ⊆ Rn and U2 (a family of symmetric matrices in Rn×n) be the uncertainty sets
for r and A, respectively. In this case, it is reasonable to assume that the uncertainty is
“objective-wise” in the sense that U := U1 × U2. Then, x ∈ X is a highly robust solution
when it is a solution of

(P(r,A)) V- min
x∈X

(
−r>x, x>Ax

)

for all (r, A) ∈ U , and it is a minmax robust solution when it is an optimal solution of the
robust counterpart

(P̂ ) V- min
x∈X

(
− inf

r∈U1
r>x, sup

A∈U2
x>Ax

)
.

The existence of highly robust solutions is also clearly dependent on the size of the
uncertainty sets for the objective functions, so that it is important to get formulas for the
radius of highly robustness guaranteeing the existence of this class of solutions. This problem
was initially tackled by Georgiev, Luc and Pardalos [12] and by the authors [17] in the linear
setting.

This paper goes further by considering convex (in particular quadratic) multi-objective
uncertain programs. It is worth observing that the results provided in this paper are new
even in the robust scalar optimization setting. We make the following contributions to robust
multi-objective optimization:

• In Section 3, we establish lower and upper estimates for the radius of highly robust weak
efficiency under general case of uncertainty. In the special case where the objective
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functions are affected by the commonly used ball uncertainty, we obtain an exact
formula for the radius. We employ the idea of sharp efficiency [13] and its corresponding
sharpness modulus to obtain these estimates.

• In Section 4, as an application of the radius estimates, we present sufficient conditions
for the non-emptiness of the set of highly robust weakly efficient solutions. We also
provide conditions characterizing highly robust weakly efficient solutions.

• In Section 5, we demonstrate that, in the particular case of uncertain convex quadratic
multi-objective programs, the obtained sufficient conditions for existence of highly
robust weak efficiency can be expressed in terms of the original data of the problem,
extending and improving results in [16, 17] for robust multi-objective linear programs
under ball uncertainty.

2 Preliminaries: highly robust efficient solutions

In this section, we present the notion of highly robust weak efficiency and its connection with
the known concept of minmax robust efficiency. We begin by recalling some basic definitions
and notation which will be used later on.

By convention, inf ∅ = +∞ and sup ∅ = −∞. We denote by 0n, ‖·‖, ‖·‖1, Rn
+ and Bn,

the vector of zeros, the Euclidean norm, the L1 norm, the non-negative orthant and the
closed unit ball in Rn, respectively. The simplex in the space of criteria Rm is defined by
∆m := {λ ∈ Rm

+ :
∑m

i=1 λi = 1}. Given Z ⊆ Rn, intZ, bdZ and convZ, denote the interior,
the boundary and the convex hull of Z, respectively, whereas coneZ := R+ convZ denotes
the convex conical hull of Z ∪ {0n}. By convention, the product of the scalar 0 by any set
Z ⊆ Rn is {0n}. The orthogonal complement of a linear subspace Z is denoted by Z⊥.

The negative polar of a convex cone K ⊆ Rn is K◦ := {w ∈ Rn : w>x ≤ 0 ∀x ∈ K}.
Additionally, if Z is a convex subset of Rn and z ∈ Z, the cone of feasible directions of Z at
z is

D(Z, z) := {v ∈ Rn : z + αv ∈ Z for some α > 0} = R+ (Z − z)

while the normal cone of Z at z ∈ Z is the negative polar of D(Z, z), that is,

N(Z, z) := {w ∈ Rn : w>(z − z) ≤ 0 ∀z ∈ Z}.

Moreover, for a convex function f : Rn → R, its subdifferential at x is defined by

∂f(x) := {v ∈ Rn : v>(x− x) ≤ f(x)− f(x) ∀x ∈ Rn}.

In this paper we consider deterministic convex multi-objective programs of the form

(P ) V- min
(
f 1(x), . . . , fm(x)

)

s.t. gj(x) ≤ 0, j = 1, . . . , p,
(1)

where gj : Rn → R∪{+∞} are proper convex lower semicontinuous extended functions for all

j ∈ J := {1, . . . , p}, and f i : Rn → R are convex functions for all i ∈ I := {1, . . . ,m}. Note
that we confine ourselves with real-valued objective functions so that the space of criteria
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Rm does not need to be completed with a point at infinity and the concepts of solutions
do not have to be replaced by the more involved ones of vector-valued analysis (see, e.g.,
[6, 28] and references therein). The assumptions on the constraint functions guarantee the
closedness and the convexity of the feasible set X of the nominal problem (P ).

In most applications of uncertain multi-objective optimization, conflicting objective func-
tions depend on different uncertainty sets. Thus, we adopt the so-called objective-wise as-
sumption, that is, we assume that the uncertainty set U can be expressed as

∏m
i=1 Ui. This

way, the multi-objective problem (P ) in (1), in the face of data uncertainty in the constraints
and linearly distributed data uncertainty in the objective functions, can be captured by a
parameterized multi-objective problem

(Pu,v)u∈U ,v∈V V- min
(
f 1(x) + 〈u1, x〉 , . . . , fm(x) + 〈um, x〉

)

s.t. gj(x, vj) ≤ 0, j ∈ J, (2)

referred to simply as (Pu,v), where gj(·, vj) is a proper convex lower semicontinuous extended
real-valued function for all vj ∈ Vj, j ∈ J , and the parameters u = (u1, . . . , um) and
v = (v1, . . . , vp) lie in the uncertainty sets U :=

∏m
i=1 Ui and V :=

∏p
j=1 Vj.

Following the robust optimization approach, by enforcing the constraints for all possible
uncertainties within Vj, j ∈ J , (Pu,v) is replaced then by the single parametric problem

(Pu)u∈U V- min
(
f 1(x) + 〈u1, x〉 , . . . , fm(x) + 〈um, x〉

)

s.t. gj(x, vj) ≤ 0, ∀vj ∈ Vj, j ∈ J,
whose feasible set,

X := {x ∈ Rn : gj(x, vj) ≤ 0, ∀vj ∈ Vj, j ∈ J} (3)

is called robust feasible set of (Pu,v) because its elements are feasible solutions of (Pu,v) for
any conceivable scenario. In short, we shall denote fi(x, ui) := f i(x) + 〈ui, x〉 for all ui ∈ Ui,
i ∈ I. Observe that X is independent of u ∈ U . From now on we assume that the robust
feasible set X is non-empty.

In this paper, we examine the concept of highly robust weakly efficient solution (see
Definition 1 below) in the framework of uncertain multi-objective convex programming. It is
easy to see from the definition that the set of highly robust weakly efficient solutions may be
empty. The non-emptiness of this solution set depends on the size of the uncertainty sets for
the objectives (see also Example 11 below for a specific instance). So, developing conditions
that guarantee the existence of highly robust weakly efficient solutions has emerged as a
critical question in the area of robust multi-objective optimization.

Definition 1 (Highly robust weakly efficient solution) We say that x ∈ X is a highly
robust weakly efficient solution for (Pu,v) if, for each u ∈ U , x is a weakly efficient solution
to (Pu), that is, if, for each u ∈ U , there exists no x ∈ X such that fi(x, ui) < fi(x, ui) for
all i ∈ I.

We denote by Xh the set of highly robust weakly efficient solutions of (Pu,v). According to
the well-known characterization of the weakly efficient solutions of multi-objective programs
via scalarization, the set of highly robust weakly efficient solutions can be expressed as

Xh =
⋂

u∈U

⋃

λ∈∆m

argmin
{
λ>f(x, u) : x ∈ X

}
,

6
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where λ>f(·, u) :=
∑m

i=1 λifi(·, ui) for each λ ∈ ∆m, u ∈ U .

Links to the known notion of minmax robust efficiency. In the literature, a popular
notion of robust efficient solution for convex multi-objective program is the so-called minmax
robust efficient solution [24, 25, 26, 27] which is defined as follows: x ∈ X is called a minmax
robust weakly efficient solution to (Pu,v) if it is a weakly efficient solution to its robust

counterpart (P̂ ) given by

(P̂ ) V- min ϕ(x) := (ϕ1(x), . . . , ϕm(x))
s.t. x ∈ X, (4)

where ϕi(x) := supui∈Ui fi(x, ui), that is, if there is no x ∈ X such that ϕi(x) < ϕi(x) for all
i ∈ I. In other words, a robust feasible solution x ∈ X is a minmax robust solution for (Pu,v)

when it is an optimal solution to the deterministic problem (P̂ ) in (4), which is equivalent
to the convex multi-objective program with linear objectives

V- min (z1, . . . , zm)
s.t. ϕi(x)− zi ≤ 0, i ∈ I,

x ∈ X,
(5)

in the sense that both problems are simultaneously feasible or not and that a point x ∈ X
is a weakly efficient solution to (P̂ ) if and only if (x, ϕ(x)) ∈ Rn × Rm is a weakly efficient
solution to (5). As shown in [21], any highly robust weakly efficient solution to (Pu,v) is also
a minmax robust weakly efficient solution.

3 Bounds for radius of highly robust weak efficiency

In this section, we consider an uncertain multi-objective programming problem with affine
parametrization, that is, a problem as (Pu,v) in (2) where, for each i ∈ I = {1, . . . ,m}, the
objective function f i(·) + 〈ui, ·〉 is the result of perturbing the objective function f i of the
nominal problem (P ) with the linear function 〈ui, ·〉 for each ui ∈ Ui := βWi with β ≥ 0.
Here, for each i ∈ I, the set Wi is assumed to be convex compact with 0n ∈ intWi.

For each fixed β ≥ 0, the uncertain problem can be captured by

(P β
u,v)u∈

∏m
i=1 βWi,v∈

∏p
j=1 Vj V- min

(
f 1(x) + 〈u1, x〉 , . . . , fm(x) + 〈um, x〉

)

s.t. gj(x, vj) ≤ 0, j ∈ J = {1, . . . , p},

and its corresponding single parametric problem has the form

(P β
u )u∈∏m

i=1 βWi
V- min

(
f 1(x) + 〈u1, x〉 , . . . , fm(x) + 〈um, x〉

)

s.t. gj(x, vj) ≤ 0, ∀vj ∈ Vj, j ∈ J.

We denote by Xβ
h the set of highly robust weakly efficient solutions of (P β

u,v). Observe that

Xβ
h shrinks when β is increased.

We also introduce the following deterministic multi-objective problem

(P̃ ) V- min
(
f 1(x), . . . , fm(x)

)

s.t. gj(x, vj) ≤ 0, ∀vj ∈ Vj, j ∈ J,
(6)
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where the constraints are immunized against the data uncertainty, but the objective data
uncertainty has not been taken into account. For this reason, we refer (P̃ ) as the semi-
robust counterpart of (P β

u,v). Notice that (P β
u ) with β = 0 coincides with the semi-robust

counterpart problem (P̃ ).

Definition 2 (Radius of highly robust weak efficiency) We define the radius of highly

robust weak efficiency of problem (P̃ ) in (6) as

δ(P̃ ) := sup
{
β ∈ R+ : Xβ

h 6= ∅
}
.

Note that, in the interest of simplicity, the uncertainty sets Ui, for each i ∈ I, are defined
as Ui = βWi instead of Ui = βiWi. See Remark 6 later in this section for details.

Links to other notions of radius of robustness. Another concept of radius of robustness
has been introduced in [12, Section 3], in the framework of uncertain linear multi-objective
optimization under linear perturbations of the objective function, as the size, r(x), of the
greatest perturbations which preserve the efficiency of a given feasible solution x. So, the
differences between both definitions are that one is local while the other is global and that
one is referred to efficiency and the other one to weak efficiency. Since any efficient solution
is weakly efficient, it is obvious that r(x) ≤ δ(P̃ ) provided the size of the perturbations are
measured in the same way. The formula for r(x) in [12, Theorem 4.3] has been extended to
nonlinear multi-objective optimization, always under linear perturbations, in [33, Theorem
4.2].

Basic properties of the radius of highly robust weak efficiency. We list here some
basic properties for the radius of highly robust efficiency δ(P̃ ).

(i) Obviously, δ(P̃ ) = −∞ if and only if X0
h = ∅, that is, if (P̃ ) has no weakly efficient

solution.

(ii) If X is a singleton, then δ(P̃ ) = +∞. Moreover, the converse statement holds if X is

bounded. To see this, let δ(P̃ ) = +∞ and let the robust feasible set X be bounded.
We proceed by the method of contradiction and assume that X is not a singleton. Fix
any x ∈ X. Hence, there exists x̂ ∈ X such that x 6= x̂. Since each Wi is a compact
convex set with nonempty interior, there exist wi ∈ Wi and ε > 0 such that, for all
i ∈ I,

w>i (x− x̂) = sup{u>(x− x̂) : u ∈ Wi} ≥ ε‖x− x̂‖ > 0.

Then, as X is bounded, there exists L > 0 such that for all x, x′ ∈ X,

max
i∈I

{
f i(x)− f i(x′)

}
≤ L‖x− x′‖.

So, for γ > L
ε
, one has maxi∈I

{
f i(x̂)− f i(x)

}
< γw>i (x− x̂), that is,

f i(x̂) + γw>i x̂ < f i(x) + γw>i x ∀i ∈ I.
So, x /∈ Xγ

h for all γ > L
ε
. As x is any arbitrary element in X, this implies that Xβ

h = ∅
for all β ≥ 0 with β > L

ε
. In particular, we have δ(P̃ ) ≤ L

ε
, which contradicts the fact

that δ(P̃ ) = +∞. So, the conclusion follows.
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(iii) When at least one of the functions f i, i ∈ I, attains its minimum on X (e.g., when
X is bounded or some f i is coercive on X), then there exists a highly robust weakly

efficient solution to (P̃ ), so that δ(P̃ ) ∈ R+ ∪ {+∞}.
Now, we establish bounds for the radius of highly robust efficiency for problems under

general uncertainty sets. To do this, let us introduce the concept of sharp efficient solution
and its corresponding sharpness modulus for a deterministic multi-objective problem. These
concepts will allow us to establish existence results for highly robust weakly efficient solutions
of uncertain problems as well as formulas for computing the radius of highly robust efficiency.

Recall that X is the robust feasible set given as in (3). Let (P̃ ) be the semi-robust
counterpart of (P β

u,v) defined in (6). We say an element x ∈ X is a sharp efficient solution

for (P̃ ) if there exists a constant k > 0 such that

max
i∈I
{f i(x)− f i(x)} ≥ k‖x− x‖, ∀x ∈ X. (7)

The set of all sharp efficient solutions of (P̃ ) is denoted by S(P̃ ). It easily follows from the

definition that any sharp efficient solution for (P̃ ) is a weakly efficient solution for (P̃ ). The

sharpness modulus of x ∈ X regarding (P̃ ) is

κ(x, P̃ ) := sup

{
k ≥ 0 : max

i∈I
{f i(x)− f i(x)} ≥ k‖x− x‖, ∀x ∈ X

}

=

{
+∞, if X = {x} ,
inf
{

maxi∈I{f i(x)−f i(x)}
‖x−x‖ : x ∈ X\{x}

}
, otherwise.

(8)

Direct verification shows that x ∈ S(P̃ ) if and only if κ(x, P̃ ) > 0.
In passing, note that the notion of sharp efficient solution for a deterministic multi-

objective problem like (P ) was introduced in [13] under the name of isolated efficient solution,
and that the sharpness modulus is introduced here for the first time. The concept of sharp
efficient solution extends the well-known one of isolated minimizer [1], previously called
strong unique solution in [10] and sharp minimum in [30], from scalar to multi-objective
programming.

We now establish bounds for the radius of robust efficiency for uncertain convex multi-
objective programs under general uncertainty sets.

Theorem 3 (Bounds for radius: general uncertainty sets) LetWi, i ∈ I, be compact

convex sets such that εBn ⊆ Wi ⊆ ρBn with 0 < ε ≤ ρ. Assume that (P̃ ) has some weakly

efficient solution. Then, for every β ∈ R with 0 < β < δ(P̃ ) one has
{
x ∈ S(P̃ ) : β <

κ(x, P̃ )

ρ

}
⊆ Xβ

h ⊆
{
x ∈ S(P̃ ) : β ≤ κ(x, P̃ )

ε

}
. (9)

Moreover, the following statements hold:

(i) If S(P̃ ) 6= ∅, then

sup{κ(x, P̃ ) : x ∈ S(P̃ )}
ρ

≤ δ(P̃ ) ≤ sup{κ(x, P̃ ) : x ∈ S(P̃ )}
ε

.
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(ii) If S(P̃ ) = ∅, then δ(P̃ ) = 0.

Proof. We first note that, if X is a singleton, then the three sets in (9) coincide with X,
and so, the conclusion trivially holds.

Let β ∈ R be such that 0 < β < δ(P̃ ). In order to prove the first inclusion in (9), let

x ∈ S(P̃ ) be such that β < κ(x,P̃ )
ρ

. Take k > 0 be such that ρβ < k < κ(x, P̃ ). Then,

from (7) applied to (P̃ ), given x ∈ X, one has maxi∈I{f i(x) − f i(x)} ≥ k‖x − x‖. So, if
u = (u1, . . . , um) ∈∏m

i=1 ρβBn, then

max
i∈I
{
(
f i(x) + 〈ui, x〉

)
−
(
f i(x) + 〈ui, x〉

)
} ≥ max

i∈I
{
(
f i(x)− f i(x)

)
− ‖ui‖‖x− x‖}

≥ max
i∈I
{f i(x)− f i(x)− ρβ‖x− x‖}

≥ (k − ρ β) ‖x− x‖.

Hence, x turns out to be a sharp efficient solution (and so, weakly efficient solution) for any
problem defined below with u = (u1, . . . , um) and ui ∈ ρβBn,

(Pu)u∈∏m
i=1 ρβBn V- min

x∈X

(
f 1(x) + 〈u1, x〉 , . . . , fm(x) + 〈um, x〉

)
.

Note that Wi ⊆ ρBn for each i ∈ I. So, x is a highly robust weakly efficient solution for (P̃ )
with uncertainty set Ui = βWi, and hence x ∈ Xβ

h . Thus, the first inclusion in (9) holds.

Now, we establish the second inclusion in (9). Let x ∈ Xβ
h where 0 < β < δ(P̃ ). Note

that a highly robust weakly efficient solution for (P̃ ) with uncertainty set Ui = βWi, is a
weakly efficient solution of

V- min
x∈X

(
f 1(x) + 〈u1, x〉 , . . . , fm(x) + 〈um, x〉

)

for all ui ∈ βWi, i ∈ I. Since εBn ⊆ Wi for all i ∈ I, then x is a weakly efficient solution of
(Pu)u∈∏m

i=1 εβBn for arbitrary vectors ui ∈ εβBn, i ∈ I. Denote γ = εβ. Take x̃ ∈ X, x̃ 6= x,

and ui := γ
(x− x̃)

‖x− x̃‖ ∈ εβBn, i ∈ I. Using scalarization of weakly efficient solutions, there

exists λ ∈ ∆m such that

x ∈ argmin

{(
λ>f

)
(x) +

γ

‖x− x̃‖ (x− x̃)> x : x ∈ X
}
.

In particular,

(
λ>f

)
(x) +

γ

‖x− x̃‖ (x− x̃)> x ≤
(
λ>f

)
(x̃) +

γ

‖x− x̃‖ (x− x̃)> x̃,

so that (
λ>f

)
(x̃)−

(
λ>f

)
(x) ≥ γ

‖x− x̃‖ (x− x̃)> (x− x̃) = γ ‖x̃− x‖ . (10)

Since λ ∈ ∆m, we also have

(
λ>f

)
(x̃)−

(
λ>f

)
(x) =

m∑

i=1

λi
(
f i(x̃)− f i(x)

)
∈ conv

{
f i(x̃)− f i(x) : i ∈ I

}

10
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(an interval in R), so that

(
λ>f

)
(x̃)−

(
λ>f

)
(x) ≤ max

i∈I
{f i(x̃)− f i(x)}. (11)

From (10) and (11) one gets maxi∈I{f i(x)− f i(x)} ≥ γ‖x− x‖ for all x ∈ X, which shows

that x ∈ S(P̃ ) and εβ = γ ≤ κ(x, P̃ ). So, Xβ
h ⊆

{
x ∈ S(P̃ ) : β ≤ κ(x,P̃ )

ε

}
.

To conclude the proof, it remains to show that δ(P̃ ) > 0 if and only if S(P̃ ) 6= ∅. Indeed,

if δ(P̃ ) > 0 and 0 < β < δ(P̃ ), then, in virtue of (9), there exists x ∈ Xβ
h such that x ∈ S(P̃ )

and β ≤ κ(x,P̃ )
ε

, which shows that S(P̃ ) 6= ∅. Conversely, if S(P̃ ) 6= ∅, taking an arbitrary

x ∈ S(P̃ ), again by (9) one has x ∈ Xβ
h for any β < κ(x,P̃ )

ρ
. This implies

δ(P̃ ) ≥ κ(x, P̃ )

ρ
> 0.

Therefore, the conclusion follows. �
In the special case of ball uncertainty, we obtain an exact formula for the radius of highly

robust weak efficiency in the next corollary.

Corollary 4 (Exact radius formula: ball uncertainty) Consider the case for ball un-

certainty sets, that is, Wi = Bn, i ∈ I. Assume that (P̃ ) has some weakly efficient solution.

Then, for every β ∈ R with 0 < β < δ(P̃ ) one has

{x ∈ S(P̃ ) : β < κ(x, P̃ )} ⊆ Xβ
h ⊆ {x ∈ S(P̃ ) : β ≤ κ(x, P̃ )}. (12)

Moreover,

δ(P̃ ) =

{
sup{κ(x, P̃ ) : x ∈ S(P̃ )}, if S(P̃ ) 6= ∅,
0, otherwise,

(13)

and the supremum in (13) is attained at x ∈ S(P̃ ) if and only if x ∈ ⋂
0<β<δ(P̃ )

Xβ
h .

Proof. The inclusion (12) and the equality (13) follow by applying the preceding Theorem
with ε = ρ = 1.

To see the last assertion, let x ∈ S(P̃ ) be such that δ(P̃ ) = κ(x, P̃ ). Then, by the first
inclusion in (12) one has x ∈ ⋂

0<β<δ(P̃ )

Xβ
h . Conversely, if x ∈ ⋂

0<β<δ(P̃ )

Xβ
h , then the second

inclusion in (12) yields β ≤ κ(x, P̃ ) for all β such that 0 < β < δ(P̃ ), that is, δ(P̃ ) ≤ κ(x, P̃ ).

This together with (13) yields δ(P̃ ) = κ(x, P̃ ). �
Next, we illustrate Corollary 4 with an example.

Example 5 Consider an uncertain bi-objective problem with corresponding single-parame-
terized problem

(P β
u )u∈β(B2×B2) V- min

x∈X
(x1 + u>1 x, x2 + u>2 x)

11
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whose robust feasible set is X = conv
{

(1− cos t, 1− sin t) : t ∈
[
0, π

2

]}
and the uncertainty

parameter u ranges on the uncertainty set U = β
(
B2 × B2

)
whose size depends on the

parameter β ≥ 0, and f i(x) = xi for i = 1, 2. Its semi-robust counterpart (6) reads

(P̃ ) V- min
x∈X

(x1, x2) .

We now see that one can use Corollary 4 to identify the radius of highly robust weak
efficiency. To do this, we first identify the set S(P̃ ) of sharp efficient solutions of the

deterministic bi-objective problem (P̃ ). Let xt = (1−cos t, 1− sin t). Firstly, since any sharp

efficient solution is weakly efficient, then S(P̃ ) ⊆
{
xt : t ∈

[
0, π

2

]}
(the set of weakly efficient

solutions).
Now we observe that x0 = (0, 1) is not a sharp efficient solution. Indeed, if there exists

k > 0 such that k‖(x1, x2−1)‖ ≤ max{x1, x2−1} = x1 for all x ∈ X, we get k2 ≤ x21
x21+(x2−1)2

for all x ∈ X, and hence k2 ≤ (1−cos t)2

(1−cos t)2+(sin t)2
for all t ∈

]
0, π

2

]
. By taking limits when t→ 0

we get k2 ≤ 0, which entails a contradiction. Following a similar reasoning, we get that
x
π
2 = (1, 0) is not a sharp efficient solution either.

Consequently, we just have to check the sharp efficiency of xt = (1 − cos t, 1 − sin t) for
t ∈
]
0, π

2

[
. Thus, fix any t ∈

]
0, π

2

[
. For each i = 1, 2, let

Xi := X ∩ {x ∈ R2 : x3−i − xt3−i ≤ xi − xti},

hi(x) :=
(xi−xti)2
‖x−xt‖2 ∈ [0, 1] for x ∈ D := R2\{xt}, and γi := inf{hi(x) : x ∈ Xi\{xt}}.

According to (8), one has

κ2(xt, P̃ ) = inf
x∈X\{xt}

{(
max{x1−xt1,x2−xt2}

‖x−xt‖

)2
}

= min

{
inf

x∈X1\{xt}
h1(x), inf

x∈X2\{xt}
h2(x)

}
= min{γ1, γ2}.

The set of level α ∈ [0, 1] of hi is given by

L(hi, α) =

{
{x ∈ D : xi = xti} , if α = 0,{
x ∈ D : x3−i − xt3−i = ±

(
1−α
α

) 1
2 (xi − xti)

}
, else.

Observe that L(hi, α) is the intersection of D with a line when α = 0 while it is the union of
two lines, otherwise, all of them crossing xt. Figure 1 represents X (the shadowed region),
the line x2 − xt2 = x1 − xt1 (the red line) which splits X into the sets X1 and X2, and some
level sets (the dashed lines) of h1 (below the red line) and h2 (above the red line) where
each line is labeled with the corresponding level. In particular, L(h1, 0.5) = L(h2, 0.5) is the
union of two lines parallel to the bisectors of the four quadrants (the red line and its dashed
orthogonal line).

In order to compute γ1 and γ2 we distinguish two cases:

(i) If t ≥ π
4

and so xt1 ≥ xt2 (as the situation illustrated in Figure 1), one has γ1 = 1
2

(attained at the points of X in the red line) and γ2 = (1 − xt1)2. Observe that γ2

12
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Figure 1: Illustration of Example 5.

xt

1

0.5

0

0.5

1

0 0.50.5

γ2

b
X1

X2

x1

x2

is the level at which the corresponding level set of h2 is tangent to the boundary of
X at xt (the green line in Figure 1). Since xt1 ≥ 1 −

√
2

2
, one has γ2 ≤ 1

2
and so

κ(xt, P̃ ) =
√
γ2 = 1− xt1.

(ii) Analogously, if t ≤ π
4
, one gets κ(xt, P̃ ) =

√
γ1 = 1− xt2.

Therefore, every point xt = (1 − cos t, 1 − sin t), t ∈
]
0, π

2

[
, is a sharp efficient solution

for (P̃ ) with modulus κ(xt, P̃ ) = min{1− xt1, 1− xt2} = min{cos t, sin t}. Thus, we have

{κ(x, P̃ ) : x ∈ S(P̃ )} =
{

min{cos t, sin t} : t ∈
]
0, π

2

[}
=
]
0,
√

2
2

]
,

whose supremum, δ(P̃ ) =
√

2
2

, is attained at x
π
4 =

(
1−

√
2

2
, 1−

√
2

2

)
and

⋂
0<β<

√
2

2

Xβ
h =

{
x
π
4

}

(the sets Xβ
h are properly computed in Example 11 below). Observe that, for each 0 < β <

√
2

2
,

we have

{x ∈ S(P̃ ) : β < κ(x, P̃ )} = {xt : t ∈ ] arcsin(β), arccos(β)[ }
( {xt : t ∈ [arcsin(β), arccos(β)] } = {x ∈ S(P̃ ) : β ≤ κ(x, P̃ )},

so that the lower and upper estimations of Xβ
h in (12) do not coincide.

Remark 6 Recall that the notion of radius of highly robust weak efficiency has been defined
in Definition 2 as δ(P̃ ) := sup{β ∈ R+ : Xβ

h 6= ∅} where the uncertainty sets are of the form
Ui = βWi, i ∈ I. On the other hand, if we consider Ui = βiWi with βi ≥ 0, i ∈ I, then a
plausible definition for the radius of highly robust weak efficiency (cf. [15]) is as follows:

δ̂(P̃ ) := sup{ min
1≤i≤m

βi ∈ R+ : X
(β1,...,βm)
h 6= ∅}.

In such a case, one can show δ̂(P̃ ) = δ(P̃ ). Indeed, it is easy to see that

δ̂(P̃ ) ≥ sup{γ ∈ R+ : X
(β1,...,βm)
h 6= ∅, βi = γ, i ∈ I} = δ(P̃ ).

13
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To see the equality, we suppose on the contrary that there exists α > 0 be such that

sup{ min
1≤i≤m

βi ∈ R+ : X
(β1,...,βm)
h 6= ∅} > α > sup{γ ∈ R+ : X

(β1,...,βm)
h 6= ∅, βi = γ, i ∈ I}.

Then, there exists (β1, . . . , βm) ∈ Rm
+ such that γ := min

1≤i≤m
βi > α and X

(β1,...,βm)
h 6= ∅.

Consequently, X
(γ,...,γ)
h 6= ∅ and so,

sup{γ ∈ R+ : X
(β1,...,βm)
h 6= ∅, βi = γ, i = 1, . . . ,m} ≥ γ > α.

This makes a contradiction and thus, the desired equality holds. Therefore, one can apply
previous results so as to compute δ̂(P̃ ).

4 Existence and characterizations of solutions

In this section, we provide verifiable conditions guaranteeing non-emptiness of highly ro-
bust weakly efficient solution sets. As an immediate implication of Theorem 3, a sufficient
condition ensuring the existence of a highly robust weakly efficient solution is κ(x, P̃ ) > 0
for some x ∈ X, where X is the robust feasible set. On the other hand, this condition
might not be directly verifiable because computing the modulus of sharp efficient solution
is not a trivial task in general. To this end, in the next proposition, we establish upper and
lower estimates of the modulus of sharp efficient solutions. This paves the way for obtaining
verifiable conditions of the existence of highly robust weakly efficient solutions for uncertain
convex multi-objective programs.

Proposition 7 (Bounds for the modulus of sharp solution) Consider the uncertain multi-

objective program (P β
u,v) and its semi-robust counterpart (P̃ ). Let x ∈ X be such that

∆(x) := {λ ∈ ∆m : 0n ∈
∑m

i=1 λi∂f i(x) +N(X, x)} 6= ∅. Then, one has

v∗1 ≤ κ(x, P̃ ) ≤ v∗2,

where

v∗1 = sup
λ∈∆(x)

inf

{∥∥∥∥
m∑
i=1

λiwi + y

∥∥∥∥ : y ∈ bdN(X, x), wi ∈ ∂f i(x)

}
,

v∗2 = inf

{
‖y‖ : y ∈ bd

( ⋃
λ∈∆m

m∑
i=1

λi∂f i(x) +N(X, x)

)}
.

Proof. If the robust feasible set X is a singleton set, then N(X, x) = Rn and so κ(x, P̃ ) =
v∗1 = v∗2 = inf ∅ = +∞. Thus, we assume that X contains at least two points. To see that

κ(x, P̃ ) ≥ v∗1, we proceed by the method of contradiction and suppose that there exists α ≥ 0
such that

sup
λ∈∆(x)

inf

{∥∥∥∥
m∑
i=1

λiwi + y

∥∥∥∥ : y ∈ bdN(X, x), wi ∈ ∂f i(x)

}
> α > κ(x, P̃ ).

14
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Then, there exists λ ∈ ∆(x) such that, for all y ∈ bdN(X, x) and wi ∈ ∂f i(x),
∥∥∥∥−

m∑
i=1

λiwi − y
∥∥∥∥ > α, (14)

and there exists x′ 6= x with x′ ∈ X such that

max
i∈I
{f i(x′)− f i(x)} < α‖x′ − x‖. (15)

As λ ∈ ∆(x), it follows that there exist wi ∈ ∂f i(x) such that −∑m
i=1 λiwi ∈ N(X, x). This

together with the relation in (14) shows that

−
m∑

i=1

λiwi + αBn ⊆ N(X, x). (16)

Now, let w := −α x′−x
‖x′−x‖ . Clearly, ‖w‖ = α. Let h be the convex function defined by

h(x) :=
(∑m

i=1 λiwi +w
)>

(x− x). Then, (16) implies that 0n ∈ ∇h(x) +N(X, x) and so, x
is a minimizer of h on X. Thus,

m∑

i=1

λiwi(x
′ − x)− α‖x′ − x‖ = h(x′) ≥ h(x) = 0.

This together with λ ∈ ∆m and wi ∈ ∂fi(x) implies that

max
i∈I
{f i(x′)− f i(x)} ≥

m∑

i=1

λi
(
f i(x

′)− f i(x)
)
≥

m∑

i=1

λiw
>
i (x′ − x) ≥ α‖x′ − x‖,

which contradicts (15). So, κ(x, P̃ ) ≥ v∗1.

We now show that κ(x, P̃ ) ≤ v∗2. Let γ ≥ 0 be such that maxi∈I{f i(x)−f i(x)} ≥ γ‖x−x‖
for all x ∈ X, and so κ(x, P̃ ) ≥ γ. Denote F (x) := maxi∈I{f i(x)− f i(x)}. By the Valadier
formula (see, e.g., [18, Thm. 4.4.2]), one has

∂F (x) = conv

( ⋃

i∈I(x)

∂f i(x)

)
,

where I(x) := {i ∈ I : fi(x) = F (x)}. Fix any w ∈ Rn such that ‖w‖ ≤ γ and let H be the
convex function defined by H(x) := F (x)− w>(x− x). Then, for all x ∈ X,

H(x)−H(x) = F (x)− w>(x− x) ≥ γ‖x− x‖ − w>(x− x) ≥ 0.

So, H attains its global minimum over X at x. It follows that 0n ∈ ∂H(x) + N(X, x), and
hence, there exists λ ∈ ∆m such that w ∈∑m

i=1 λi∂f i(x)+N(X, x). Note that w was chosen
as an arbitrary element in γBn. Since

γBn ⊆
⋃

λ∈∆m

m∑

i=1

λi∂f i(x) +N(X, x),

15
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one has

v∗2 = inf

{
‖y‖ : y ∈ bd

( ⋃

λ∈∆m

m∑

i=1

λi∂f i(x) +N(X, x)
)
}
≥ γ.

From the above inequality and the definition of κ(x, P̃ ) it follows that v∗2 ≥ κ(x, P̃ ). �
Next, we use an example to illustrate that the estimates for the modulus of sharpness in

Proposition 7 can be tight.

Example 8 Consider the following uncertain bi-objective problem with corresponding single-
parameterized problem

(EPu)u∈U V- min
x∈X

(
1
2
x2

1 + u>1 x,
1
2
x2

2 + u>2 x
)

whose robust feasible set is X = [1, 2]2, and the uncertainty parameters u1 ∈ U1 = [−1, 1]×
{0} and u2 ∈ U2 = {0} × [−1, 1]. Its semi-robust counterpart problem (6) reads

(ẼP ) V- min
x∈X

(
1
2
x2

1,
1
2
x2

2

)
.

Consider the feasible point x = (1, 1) ∈ X and let and f i(x) := 1
2
x2
i for i = 1, 2. Direct

verification shows that N(X, x) = −R2
+ and ∆(x) = ∆2 = {λ ∈ R2

+ : λ1 + λ2 = 1}, whose

symmetry center
(

1
2
, 1

2

)
we denote by λ. Thus, we see in Figure 2, where the red and the blue

polygonal lines represent λ+ bdN(X, x) and bd
(
∆2 +N(X, x)

)
, respectively, that

v∗1 = sup
λ∈∆(x)

inf

{∥∥∥∥
2∑
i=1

λiwi + y

∥∥∥∥ : y ∈ bdN(X, x), wi ∈ ∂f i(x)

}

= sup
λ∈∆2

inf{‖λ+ y‖ : y ∈ bdN(X, x)}
= inf{‖λ+ y‖ : y ∈ bdN(X, x)} = 1/2,

and

v∗2 = inf

{
‖y‖ : y ∈ bd

( ⋃
λ∈∆2

2∑
i=1

λi∂f i(x) +N(X, x)

)}

= inf{‖y‖ : y ∈ bd
(
∆2 +N(X, x)

)
} =

∥∥λ
∥∥ =
√

2/2.

Thus, Proposition 7 implies that 1/2 ≤ κ(x, ẼP ) ≤
√

2/2.

Alternatively, simple calculations allow to verify that x is a sharp efficient solution for
(ẼP ) with κ(x, ẼP ) =

√
2

2
. Indeed, if x = (x1, x2) ∈ X and x1 ≥ x2, maxi∈I{f i(x)−f i(x)} =

(x1−1)(x1+1)
2

≥ x1−1 and ‖x−x‖ ≤
√

2 (x1 − 1) , so that maxi∈I{f i(x)−f i(x)} ≥
√

2
2
‖x−x‖.

By symmetry, we have maxi∈I{f i(x)− f i(x)} ≥
√

2
2
‖x− x‖ for all x ∈ X. This shows that

κ(x, ẼP ) ≥
√

2/2. To prove the equality κ(x, ẼP ) =
√

2/2 we suppose, on the contrary, that
there exists α >

√
2/2 such that maxi∈I{f i(x)− f i(x)} ≥ α‖x− x‖ for all x ∈ X. We can

assume that α <
√

2 without loss of generality. Then, by taking x = (
√

2α,
√

2α) ∈ X, we
see that

max
i∈I
{f i(x)− f i(x)} =

2α2 − 1

2
and α‖x− x‖ = α

√
2(
√

2α− 1) = 2α2 −
√

2α.
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Figure 2: Geometric interpretation of the bounds for the modulus in Example 8.

v∗2

N(X, x)

v∗1

λb

Note that, as α >
√

2/2,

2α2 − 1

2
−
(
2α2 −

√
2α
)

= −α2 +
√

2α− 1

2
=

(
−α−

√
2

2

)2

< 0

This contradicts the assumption that maxi∈I{f i(x)− f i(x)} ≥ α‖x− x‖ for all x ∈ X. So,

κ(x, ẼP ) =
√

2/2.

Theorem 9 (Sufficient conditions for existence of solutions) Let Wi, i ∈ I, be com-
pact convex sets with 0n ∈ intWi such thatWi ⊆ ρBn for some ρ > 0. Consider the uncertain
multi-objective program (Pu,v) and its semi-robust counterpart (P̃ ). Suppose that there exist

x ∈ X and λ ∈ ∆m such that 0n ∈
m∑
i=1

λi∂f i(x) +N(X, x) and

v∗1 = inf

{∥∥∥∥
m∑
i=1

λiwi + y

∥∥∥∥ : y ∈ bdN(X, x), wi ∈ ∂f i(x)

}
> 0.

Then, Xβ
h 6= ∅ for all β ∈ [0,

v∗1
ρ

[.

Proof. From the assumptions, we see that v∗1 in Proposition 7 is positive. Thus, this

Proposition guarantees that κ(x, P̃ ) ≥ v∗1 > 0. It then follows from Theorem 3 that δ(P̃ ) ≥
v∗1
ρ
> 0. Thus, the conclusion follows by the definition of radius of highly robust weak

efficiency. �
We now provide a complete characterization for highly robust weak efficiency in terms of

the cones G(x, u) := cone
(⋃m

i=1 ∂xfi(x, ui)
)

for each x ∈ X, u ∈ U . We note that the char-
acterization below continues to hold for the general notion of highly robust weakly efficient
solutions where the objective functions are subject to possibly nonlinear perturbations.
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Proposition 10 (Characterizing highly robust weakly efficient solutions) Assume that

x ∈ X and 0n /∈
⋃
u∈U

m⋃
i=1

∂xfi(x, ui). Then, x is a highly robust weakly efficient solution if and

only if

D(X, x) ∩
⋃

u∈U
intG(x, u)◦ = ∅. (17)

Proof. Since 0n /∈ ⋃m
i=1 ∂xfi(x, ui) for each u ∈ U , [14, Theorem 21] guarantees that x is

a weakly efficient solution to (Pu) if and only if D(X, x) ∩ intG(x, u)◦ = ∅. The conclusion
follows from the definition of highly robust weakly efficient solutions. �

Next, we illustrate Proposition 10 using the previous Example 5.

Example 11 Consider the same example examined in 5, that is, the following uncertain
bi-objective problem with corresponding single-parameterized problem

(P β
u )u∈β(B2×B2) V- min

x∈X
(x1 + u>1 x, x2 + u>2 x)

whose robust feasible set is X = conv
{

(1− cos t, 1− sin t) : t ∈
[
0, π

2

]}
and the uncertainty

parameter u ranges on the uncertainty set U = β (B2 × B2) , whose size depends on a size
parameter β ≥ 0. In this case, the deterministic problem in (6) reads

(P̃ ) V- min
x∈X

(x1, x2) ,

which can be seen as a particular instance of (P β
u ) by letting β = 0. Assume 0 < β < 1.

Since β < 1, one has

02 /∈
⋃

u∈U
{∇xf1(x, u1),∇xf2(x, u2)} = {(1, 0), (0, 1)}+ βB2 ∀x ∈ X,

and we can apply Proposition 10 to compute the set Xβ
h of highly robust weakly efficient

solutions. Firstly, observe that any highly robust weakly efficient solution is, in particular, a
weakly efficient solution to (P̃ ), that is,

Xβ
h ⊆

{
xt : t ∈

[
0, π

2

]}
,

where xt := (1− cos t, 1− sin t), t ∈
[
0, π

2

]
. The points x0 = (0, 1) and x

π
2 = (1, 0), though,

cannot be elements of Xβ
h as they are no longer weakly efficient solutions to (P β

u ) for some
arbitrarily small parameter u. For the rest of points of the arc, given t ∈

]
0, π

2

[
, one has

D(X, xt) =
{
x ∈ R2 : x2 > (− cot t)x1

}
∪ {02},

with − cot t representing the slope of the tangent line to the arc at xt. Moreover, if 0 < β ≤√
2

2
, one gets

⋃

u∈U
intG(xt, u)◦ = int cone{(−

√
1− β2, β), (β,−

√
1− β2)},
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so that, (17) holds if and only if

√
1−β2

−β ≤ − cot t ≤ −β√
1−β2

or, equivalently,

t ∈ T βh := [arcsin(β), arccos(β)] .

We thus get

Xβ
h =

{
{xt : t ∈ T βh }, if 0 ≤ β ≤

√
2

2
,

∅, otherwise.
(18)

Hence, Xβ
h is an arc of circle when 0 ≤ β <

√
2

2
, a singleton when β =

√
2

2
, and the empty

set when β >
√

2
2
.

5 Uncertain convex quadratic multi-objective programs

In this section, we examine the important class of convex quadratic multi-objective programs
under uncertainty, and obtain sufficient conditions, expressed in terms of the original data
of the problem, for the existence of highly robust weak efficiency.

Let Ai be a given n× n symmetric positive semidefinite matrix, ci, aj ∈ Rn and bj ∈ R
where i ∈ I = {1, . . . ,m} and j ∈ J = {1, . . . , p}. Let Wi ⊆ Rn, i ∈ I, be convex compact
sets with 0n ∈ intWi, and Vj ⊆ Rn+1, j ∈ J , be convex compact sets, while β ≥ 0. Consider
the convex quadratic multi-objective programs under uncertainty:

(QP β
u,v)u∈

∏m
i=1 βWi,(v,γ)∈∏p

j=1 Vj V- min
(

1
2
x>A1x+ c>1 x+ u>1 x, . . . ,

1
2
x>Aix+ c>i x+ u>i x

)

s.t. a>j x+ bj + v>j x+ γj ≤ 0, j ∈ J,
(19)

whose corresponding single parametric problem has the form

(QP β
u )u∈∏m

i=1 βWi
V- min

(
1
2
x>A1x+ c>1 x+ u>1 x, . . . ,

1
2
x>Aix+ c>i x+ u>i x

)

s.t. a>j x+ bj + v>j x+ γj ≤ 0, ∀(vj, γj) ∈ Vj, j ∈ J.
(20)

The corresponding semi-robust counterpart reads

(Q̃P ) V- min
(

1
2
x>A1x+ c>1 x, . . . ,

1
2
x>Aix+ c>i x

)

s.t. a>j x+ bj + v>j x+ γj ≤ 0, ∀(vj, γj) ∈ Vj, j ∈ J.
(21)

Throughout this section, we assume that the robust feasible set X, in this case given by
X = {x : a>j x+ bj + v>j x+ γj ≤ 0, ∀(vj, γj) ∈ Vj, j ∈ J}, is a nonempty set.

Corollary 12 (Existence of solutions) Let Wi, i ∈ I, be compact convex sets with 0n ∈
intWi such that Wi ⊆ ρBn for some ρ > 0. Consider the uncertain quadratic multi-objective
program (QP β

u,v) and its semi-robust counterpart (Q̃P ). Suppose that there exist x ∈ X and

λ ∈ ∆m such that −
m∑
i=1

λi
(
Aix+ ci

)
∈ N(X, x) and

v∗1 = inf

{∥∥∥∥
m∑
i=1

λi(Aix+ ci) + y

∥∥∥∥ : y ∈ bdN(X, x)

}
> 0. (22)

Then, a highly robust weakly efficient solution for (QP β
u,v) exists for all β ∈ [0,

v∗1
ρ

[.
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Proof. Let f i(x) = 1
2
x>Aix + c>i x, i ∈ I. Then, ∂f i(x) = {Aix + ci}, i ∈ I. Thus, the

conclusion follows from Theorem 9. �
It is worth noting that, in the case where V is a polytope uncertainty set, the robust

feasible set X is a polyhedral convex set and the boundary of normal cone of X at a particular
point x can be expressed as a finite union of polyhedral convex sets. In this case, the
condition (22) can be checked by solving finitely many convex quadratic programs with
linear constraints.

We now consider a linear multi-objective program under uncertainty

(LP β
u,v)u∈

∏m
i=1 Ui,v∈

∏p
j=1 Vj V- min

(
c>1 x+ u>1 x, . . . , c

>
i x+ u>i x

)

s.t. a>j x+ bj + v>j x+ γj ≤ 0, j ∈ J,

with uncertain objective functions fi(x, ui) = c>i x + u>i x and ci ∈ Rn for all i ∈ I. The
corresponding single parametric problem can be expressed as

(LP β
u)u∈∏m

i=1 Ui V- min (c>1 x+ u>1 x, . . . , c
>
mx+ u>mx)

s.t. a>j x+ bj + v>j x+ γj ≤ 0, ∀(vj, γj) ∈ Vj, j ∈ J,

and the corresponding semi-robust counterpart reads

(L̃P ) V- min
(
c>1 x, . . . , c

>
mx
)

s.t. a>j x+ bj + v>j x+ γj ≤ 0, ∀(vj, γj) ∈ Vj, j ∈ J.

As before, we assume that the uncertainty sets are Ui = βWi ⊆ Rn withWi convex compact
sets with 0n ∈ intWi, β ≥ 0 and Vj ⊆ Rn+1 are all convex and compact. We remark that, in
the special case of ball uncertainty sets, that is, Wi = Bn for all i ∈ I, this model problem
has been examined in [17].

Below, we obtain a sufficient condition for existence of highly robust weakly efficient
solutions for linear multi-objective programs.

Corollary 13 (Existence of solutions: multi-objective linear programs) LetWi, i ∈
I, be compact convex sets with 0n ∈ intWi such that Wi ⊆ ρBn for some ρ > 0. Consider
the uncertain linear multi-objective program (LP β

u,v) and its semi-robust counterpart (L̃P ).

If there exist x ∈ X and λ ∈ ∆m such that −∑i∈I λici ∈ intN(X, x), then δ(L̃P ) ≥ v∗1
ρ

with

v∗1 := inf{‖∑m
i=1 λici+y‖ : y ∈ bdN(X, x)} > 0 and a highly robust weakly efficient solution

for (LP β
u,v) exists for all β ∈ [0,

v∗1
ρ

[.

Proof. The assumption −∑i∈I λici ∈ intN(X, x) implies that

−
m∑

i=1

λici ∈ N(X, x) and v∗1 := inf{‖
m∑

i=1

λici + y‖ : y ∈ bdN(X, x)} > 0. (23)

So, the conclusion follows by applying Corollary 12 with Ai = 0n×n. �
The next straightforward consequence of Corollary 13 extends [17, Theorem 15] by drop-

ping the assumption that X is a polytope and allowing the uncertainty set to be more
general.
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Corollary 14 Let Wi, i ∈ I, be compact convex sets with 0n ∈ intWi such that Wi ⊆ ρBn
for some ρ > 0. Consider the uncertain linear multi-objective program (LP β

u,v) and its semi-

robust counterpart (L̃P ). If there exists an index i ∈ I and a corresponding extreme point a of

X such that −ci ∈ intN(X, a), then δ(L̃P ) ≥ v∗1
ρ

with v∗1 := inf{‖ci+y‖ : y ∈ bdN(X, a)} =

dist(−ci, bdN(X, a)) > 0.

The above lower bound for δ(L̃P ) was derived in the constructive proof of [17, Theorem
15] under the additional assumption that the robust feasible set X is a non-singleton polytope
and the uncertainty sets are balls. The next example illustrates how one could make use
of our Corollary 4 to determine the exact value of δ(L̃P ), which explains the practical
advantages of Corollary 4 instead of [17, Theorem 15].

Example 15 Consider the following linear uncertain multi-objective program which was
examined in [17, Example 16]:

(LPu)u∈U V- min
x∈X

(
c>1 x+ u>1 x, c

>
2 x+ u>2 x

)

whose robust feasible set is X = [−1, 1]2, and the uncertainty parameters ui, i = 1, 2, belong
to βB2. The vectors ci, i = 1, 2, are the (nominal) objective data given as below. The
semi-robust counterpart problem (6) reads

(L̃P ) V- min
x∈X

(
c>1 x, c

>
2 x
)
.

The candidates to be sharp efficient solution for (L̃P ) are the extreme points of X, namely,
a1 = (1, 1), a2 = (−1, 1), a3 = (−1,−1) and a4 = (1,−1). We study the following two cases:

(i) Let c1 = (−2,−1) and c2 = (−1, 1). In this case, a1 is sharp efficient solution for (L̃P )

and so, δ(L̃P ) > 0. Moreover, from Corollary 4,

δ(L̃P ) = κ(a1, L̃P ) = inf
{

max{3−2x1−x2,−x1+x2}
‖x−a1‖ : x ∈ [−1, 1]2 \ {a1}

}

= inf
{

3−2x1−x2
‖x−a1‖ : x ∈ [−1, 1]2 \ {a1}

}
,

so that

δ(L̃P )2 = inf
{

(3−2x1−x2)2

(x1−1)2+(x2−1)2
: x ∈ [−1, 1]2 \ {a1}

}

= sup
{
µ ∈ R+ : (3− 2x1 − x2)2 ≥ µ

[
(x1 − 1)2 + (x2 − 1)2] ,∀x ∈ [−1, 1]2

}
.

Taking x = (1, 0) , the first equality in the preceding relation gives us that δ(L̃P ) ≤ 1.

We conclude that δ(L̃P ) = 1 by observing that

min
x∈X

{
(3− 2x1 − x2)2 −

[
(x1 − 1)2 + (x2 − 1)2]} = 0.

We note that [17, Example 16] only concludes that δ(L̃P ) ≥ 1.
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(ii) Let c1 = (1, 0) and c2 = (−1, 0) . None of the points ai, i = 1, . . . , 4, is sharp efficient

solution for (L̃P ). Consequently, Corollary 4 implies that δ(L̃P ) = 0.

We conclude this section by showing how our approach can be used to obtain conditions,
guaranteeing the existence of highly robust solutions for portfolio optimization problems.
So, consider the simple multi-objective portfolio optimization problem mentioned in the
introduction

(P(r,A)) V- min
x∈X

(
−r>x, x>Ax

)

where the robust feasible set X is given by

X :=

{
x ∈ Rn :

a>j x+ bj ≤ 0, ∀ (aj, bj) ∈ Vj,∀j ∈ J,∑n
i=1 xi ≤ C, xi ≥ 0, i = 1, . . . , n

}

Recall that the spectral norm for an (n× n) matrix C is given by ‖C‖spec =
√
λmax(C>C).

Let V be the matrix spectral norm uncertainty set given by V = {C � 0 : ‖C‖spec ≤ 1},
where C � 0 means C is positive semi-definite. Let r ∈ Rn and A � 0. For each fixed β ≥ 0,
the corresponding single parametric problem has the form

(P β
u,C)u∈βBn,C∈βV V- min

(
−r>x+ u>x, x>(A+ C)x

)

s.t. x ∈ X,
and the semi-robust counterpart becomes

(P̃ ) V- min
(
−r>x, x>Ax

)

s.t. x ∈ X.

Recall that the set of all sharp efficient solutions of (P̃ ) is denoted by S(P̃ ) and that the

corresponding sharpness modulus of x with respect to (P̃ ) is denoted by κ(x, P̃ ). As noted

before, for any x ∈ S(P̃ ), one has κ(x, P̃ ) > 0.
We will see now that a suitable modification of the argument in Theorem 3 leads to

a lower estimate of the radius of highly robust efficiency and a simple sufficient condition
ensuring the non-emptiness of the highly robust (weakly) efficient solution set.

Proposition 16 If x ∈ S(P̃ ) then δ(P̃ ) ≥ κ(x,P̃ )
max{2‖x‖,1} > 0. In particular, Xβ

h 6= ∅ for all

0 < β < κ(x,P̃ )
max{2‖x‖,1} .

Proof. Let x ∈ S(P̃ ). Let β > 0 be such that β < κ(x,P̃ )
max{2‖x‖,1} . Take k > 0 be such that

β · max{2‖x‖, 1} < k < κ(x, P̃ ). Let f 1(x) = −r>x and f 2(x) = x>Ax. Then, from the

definition of the sharpness modulus of (P̃ ) (see (7)), one has

max{f 1(x)− f 1(x), f 2(x)− f 2(x)} ≥ k ‖x− x‖, for all x ∈ Rn.

So, for all u ∈ βBn and C ∈ βV ,

max{f 1(x) + u>x−
(
f 1(x) + u>x

)
, f 2(x) + x>Cx−

(
f 2(x) + x>Cx

)
}

≥ max{f 1(x)− f 1(x) + u>x− u>x, f 2(x)− f 2(x) + 2(Cx)>(x− x)}
≥ max{f 1(x)− f 1(x)− ‖u‖ ‖x− x‖, f 2(x)− f 2(x)− 2‖Cx‖ ‖x− x‖},
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where the first inequality follows from the positive semi-definiteness of C and the second
inequality follows from the Cauchy–Schwartz inequality. As C ∈ βV ,

‖Cx‖2 = x>(C>C)x ≤ λmax(C)‖x‖2 ≤ β2‖x‖2.

Now, for all u ∈ βBn and for all C ∈ βV ,

max{f 1(x) + u>x−
(
f 1(x) + u>x

)
, f 2(x) + x>Cx−

(
f 2(x) + x>Cx

)
}

≥ max{f 1(x)− f 1(x), f 2(x)− f 2(x)} − βmax{2‖x‖, 1}‖x− x‖
≥ (k − βmax{2‖x‖, 1})‖x− x‖.

From our choice of k, we see that, for all u ∈ βBn and for all C ∈ βV , x is a sharp
efficient solution for (P β

u,C) (and so, is, in particular, a weakly efficient solution for (P β
u,C)).

This means that x is a highly robust weakly efficient solution for (P β
u,C)u∈βBn,C∈βV . Thus,

δ(P̃ ) ≥ β for all β < κ(x,P̃ )
max{2‖x‖,1} . This implies that

δ(P̃ ) ≥ κ(x, P̃ )

max{2‖x‖, 1} .

Thus, the conclusion follows. �
We now provide two examples to illustrate how one could estimate the radius of highly

robust solutions for uncertain multi-objective optimization problems, where the uncertainty
sets are generated as in the artificial portfolio problem in [4, Sec. 4].

Example 17 Consider the uncertain bi-objective optimization problem

(LP β) V- min
x∈∆n

(−r>x,−w>x)

where the uncertain vectors r and w belong to the uncertainty sets r + βW1 and r + βW2,

respectively. As in the example of [4, Sec. 4], we assume that W1 =
n∏
k=1

[−σk, σk] (a box),

W2 = {u ∈ Rn :
n∑
k=1

σ−2
k u2

k ≤ θ2} (an ellipsoid whose size depends on the positive constant

θ), n = 150, rk = 1.15+
(

0.05
150

)
k and σk =

(
0.05

3

)√
151k
75

for k = 1, . . . , 150. Clearly, the finite

sequences rk and σk are increasing. Denoting by {e1, . . . , en} the canonical basis of Rn, it is
not hard to verify that en is a weakly efficient solution for the problem

(L̃P ) V- min
x∈∆n

(−r>x,−r>x)

and an extreme point of the feasible set X = ∆n = conv{e1, . . . , en}. Note that

D (X, en) = cone {ek − en : k = 1, . . . , n− 1} ,
N(X, en) = {x ∈ Rn : xn ≥ xk, k = 1, . . . , n− 1} ,

and
r ∈ intN(X, en) = {x ∈ Rn : xn > xk, k = 1, . . . , n− 1} .
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For k = 1, . . . , n− 1, the distance from r to the hyperplane xk− xn = 0 is |rk−rn|√
2

= 0.05(n−k)

150
√

2
,

so that

δ0 := dist (r, bdN(X, en)) = min

{
0.05(n− k)

150
√

2
: k = 1, . . . , n− 1

}
=

0.05

150
√

2
.

Since W1 ⊂ σ150

√
2B150 and W2 ⊂ σ150θB150, one can apply Corollary 14, with v∗1 = δ0 and

ρ = σ150 max{
√

2, θ}, to conclude that the radius of highly robust weak efficiency δ(L̃P ) is

at least
v∗1
ρ

= 1
100
√

151 max{
√

2,θ} .

Example 18 Consider now the uncertain bi-objective optimization problem

(QP β) V- min
x∈∆n

(−r>x, x>Ax)

where the vector r and the matrix A are uncertain, and they belong to the following uncer-
tainty sets respectively:

r ∈ r + βBn, and A ∈ A+ {C : C � 0, ‖C‖spec ≤ β},

where A � 0 is a given matrix while n, ek and rk are defined as in Example 17. Denote
by f1(x) = −r>x and f2(x) = x>Ax the objective functions of the problem (Q̃P ). Direct
verification shows that, for all x ∈ X = ∆n,

f1(x)− f1(en) = −
n∑
k=1

rkxk + rn = −
n−1∑
k=1

rkxk + rn(1− xn)

≥ −rn−1

n−1∑
k=1

xk + rn(1− xn) = (rn − rn−1)(1− xn)

=
rn − rn−1

2
‖x− en‖1 ≥

rn − rn−1

2
‖x− en‖,

where the first inequality follows from the fact that rk is a finite increasing sequence, the
third equality follows from x ∈ X, the fourth equality holds because x ∈ X and

‖x− en‖1 =
n−1∑

k=1

|xk|+ |xn − 1| =
n−1∑

k=1

xk + (1− xn) = 2(1− xn),

and the last inequality follows since ‖ · ‖1 ≥ ‖ · ‖. This shows that en is a sharp efficient

solution for the problem (Q̃P ) and

κ(en, Q̃P ) ≥ rn − rn−1

2
.

Hence, Proposition 16 shows that the radius of highly robust weak efficiency is at least
rn−rn−1

4
= 1

12000
. Since only f1 is relevant in the above computations, the latter lower bound

for the radius of highly robust weak efficiency also applies to the problem in Example 17, and
it is tighter than the one obtained there whenever θ ≥ 120√

151
.
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6 Conclusions and further research

In this paper we have established bounds and an exact formula (see Theorem 3 and Corollary
4) for the radius of highly robust efficiency. The exact formula provides a certificate for the
existence of highly robust weakly efficient solutions in the case where the objective functions
are affected by the commonly used ball uncertainty.

Such a formula involves the moduli of the sharp solutions of the semi-robust counterpart
(P̃ ), which is an unexpected finding, and can be applied when at least one sharp solution of

(P̃ ) is available since its modulus is a lower bound for the radius of highly robustness.

On the other hand, finding formulas expressing the radius of highly robustness in terms of
the data is a challenging open problem even in the case of convex quadratic and linear multi-
objective programs. However, Theorem 9 to these particular problems provides relatively
simple formulas under mild conditions (Corollaries 12 and 13). Moreover, Corollary 14 is a
significant improvement of [17, Theorem 15].

The results in this paper warrant further research in several directions. In particular,
it would be of great interest to examine how the results of this paper can be extended by
replacing the weak efficient solutions (whose characterization via scalarization has been used
in many proofs) with efficient, properly efficient and strongly efficient solutions.
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