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Abstract

Image semantic segmentation is more and more being of interest for com-
puter vision and machine learning researchers. Many applications on the rise
need accurate and efficient segmentation mechanisms: autonomous driving,
indoor navigation, and even virtual or augmented reality systems to name
a few. This demand coincides with the rise of deep learning approaches in
almost every field or application target related to computer vision, including
semantic segmentation or scene understanding. This paper provides a re-
view on deep learning methods for semantic segmentation applied to various
application areas. Firstly, we formulate the semantic segmentation problem
and define the terminology of this field as well as interesting background con-
cepts. Next, the main datasets and challenges are exposed to help researchers
decide which are the ones that best suit their needs and goals. Then, existing
methods are reviewed, highlighting their contributions and their significance
in the field. We also devote a part of the paper to review common loss func-
tions and error metrics for this problem. Finally, quantitative results are
given for the described methods and the datasets in which they were evalu-
ated, following up with a discussion of the results. At last, we point out a
set of promising future works and draw our own conclusions about the state
of the art of semantic segmentation using deep learning techniques.
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1. Introduction

Nowadays, semantic segmentation — applied to still 2D images, video, and
even 3D or volumetric data — is one of the key problems in the field of com-
puter vision. Looking at the big picture, semantic segmentation is one of the
high-level tasks that paves the way towards complete scene understanding.
The importance of scene understanding as a core computer vision problem
is highlighted by the fact that an increasing number of applications nourish
from inferring knowledge from imagery. Some of those applications include
autonomous driving [1][2][3], human-machine interaction [4]|, computational
photography [5], image search engines [6], and augmented reality to name a
few. Such problem has been addressed in the past using various traditional
computer vision and machine learning techniques. Despite the popularity of
those kind of methods, the deep learning revolution has turned the tables so
that many computer vision problems — semantic segmentation among them
— are being tackled using deep architectures, usually Convolutional Neural
Networks (CNNs) [7][8][9][10][11], which are surpassing other approaches by
a large margin in terms of accuracy and sometimes even efficiency. How-
ever, deep learning is far from the maturity achieved by other old-established
branches of computer vision and machine learning. Because of that, there
is a lack of unifying works and state of the art reviews. The ever-changing
state of the field makes initiation difficult and keeping up with its evolution
pace is an incredibly time-consuming task due to the sheer amount of new
literature being produced. This makes it hard to keep track of the works
dealing with semantic segmentation and properly interpret their proposals,
prune subpar approaches, and validate results.

To the best of our knowledge, this is the first review to focus explicitly on
deep learning for semantic segmentation. Various semantic segmentation sur-
veys already exist such as the works by Zhu et al.[12] and Thoma[13], which
do a great work summarizing and classifying existing methods, discussing
datasets and metrics, and providing design choices for future research direc-
tions. However, they lack some of the most recent datasets, they do not
analyze frameworks, and none of them provide details about deep learning
techniques. Because of that, we consider our work to be novel and helpful
thus making it a significant contribution for the research community.
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ACCEPTED MANUSCRIPT

The key contributions of our work are as follows:

e We provide a broad survey of existing datasets that might be useful for
segmentation projects with deep learning techniques.

e An in-depth and organized review of the most significant methods that
use deep learning for semantic segmentation, their origins, and their
contributions.

e A thorough performance evaluation which gathers quantitative metrics
such as accuracy, execution time, and memory footprint.

e A discussion about the aforementioned results, as well as a list of pos-
sible future works that might set the course of upcoming advances, and
a conclusion summarizing the state of the art of the field.

The remainder of this paper is organized as follows. Firstly, Section 2
introduces the semantic segmentation problem as well as notation and con-

(a) Image classification (b) Object localization

(c) Semantic segmentation (d) Instance segmentation

Figure 1: Evolution of object recognition or scene understanding from coarse-grained to
fine-grained inference: classification, detection or localization, semantic segmentation, and
instance segmentation.
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ventions commonly used in the literature. Other background concepts such
as common deep neural networks are also reviewed. Next, Section 3 describes
existing datasets, challenges, and benchmarks. It also reviews existing meth-
ods following a bottom-up complexity order based on their contributions.
This section focuses on describing the theory and highlights of those meth-
ods rather than performing a quantitative evaluation. Finally, Section 4
presents a brief discussion on the presented methods based on their quanti-
tative results on the aforementioned datasets. In addition, future research
directions are also laid out. At last, Section 5 summarizes the paper and
draws conclusions about this work and the state of the art of the field.

2. Terminology and Background Concepts

In order to properly understand how semantic segmentation is tackled by
modern deep learning architectures, it is important to know that it is not
an isolated field but rather a natural step in the progression from coarse to
fine inference. The origin could be located at classification, which consists of
making a prediction for a whole input, i.e., predicting which is the object in
an image or even providing a ranked list if there are many of them. Local-
ization or detection is the next step towards fine-grained inference, providing
not only the classes but also additional information regarding the spatial
location of those classes, e.g., centroids or bounding boxes. Providing that,
it is obvious that semantic segmentation is the natural step to achieve fine-
grained inference, its goal: make dense predictions inferring labels for every
pixel; this way, each pixel is labeled with the class of its enclosing object or
region. Further improvements can be made, such as instance segmentation
(separate labels for different instances of the same class) and even part-based
segmentation (low-level decomposition of already segmented classes into their
components). Figure 1 shows the aforementioned evolution. In this review,
we will mainly focus on generic scene labeling, i.e., per-pixel class segmen-
tation, but we will also review the most important methods on instance and
part-based segmentation.

In the end, the per-pixel labeling problem can be reduced to the fol-
lowing formulation: find a way to assign a state from the label space £ =
{l1,12, ..., 1} to each one of the elements of a set of random variables X' =
{1, 9, ...,xy}. Each label [ represents a different class or object, e.g., aero-
plane, car, traffic sign, or background. This label space has k possible states
which are usually extended to k£ + 1 and treating [y as background or a void
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class. Usually, X is a 2D image of W x H = N pixels z. However, that set of
random variables can be extended to any dimensionality such as volumetric
data or hyperspectral images.

Apart from the problem formulation, it is important to remark some
background concepts that might help the reader to understand this review.
Firstly, common networks, approaches, and design decisions that are often
used as the basis for deep semantic segmentation systems. In addition, com-
mon techniques for training such as transfer learning. At last, data pre-
processing and augmentation approaches.

2.1. Common Deep Network Architectures

As we previously stated, certain deep networks have made such significant
contributions to the field that they have become widely known standards. It
is the case of AlexNet, VGG-16, GoogLeNet, and ResNet. Such was their
importance that they are currently being used as building blocks for many
segmentation architectures. For that reason, we will devote this section to
review them.

2.1.1. AlexNet

AlexNet was the pioneering deep CNN that won the ILSVRC-2012 with
a TOP-5 test accuracy of 84.6% while the closest competitor, which made
use of traditional techniques instead of deep architectures, achieved a 73.8%
accuracy in the same challenge. The architecture presented by Krizhevsky
et al. [14] was relatively simple. It consists of five convolutional layers,
max-pooling ones, Rectified Linear Units (ReLUs) as non-linearities, three
fully-connected layers, and dropout. Figure 2 shows that CNN architecture.

55

M

13

>
13
dense dense
] 258

Max pooling || 1000

96
Stride of 4 Max pooling Max pooling 4096 4096

Figure 2: AlexNet Convolutional Neural Network architecture. Figure reproduced from
[14].
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2.1.2. VGG

Visual Geometry Group (VGG) is a CNN model introduced by the Visual
Geometry Group (VGG) from the University of Oxford. They proposed vari-
ous models and configurations of deep CNNs [15], one of them was submitted
to the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)-2013.
That model, also known as VGG-16 due to the fact that it is composed by 16
weight layers, became popular thanks to its achievement of 92.7% TOP-5 test
accuracy. Figure 3 shows the configuration of VGG-16. The main difference
between VGG-16 and its predecessors is the use of a stack of convolution
layers with small receptive fields in the first layers instead of few layers with
big receptive fields. This leads to less parameters and more non-linearities
in between, thus making the decision function more discriminative and the
model easier to train.

224x224

Figure 3: VGG-16 CNN architecture. Figure extracted from [16].

2.1.3. GoogLeNet

GoogLeNet is a network introduced by Szegedy et al. [17] which won the
ILSVRC-2014 challenge with a TOP-5 test accuracy of 93.3%. This CNN
architecture is characterized by its complexity, emphasized by the fact that
it is composed by 22 layers and a newly introduced building block called
inception module (see Figure 4). This new approach proved that CNN layers
could be stacked in more ways than a typical sequential manner. In fact,
those modules consist of a Network in Network (NiN) layer, a pooling opera-
tion, a large-sized convolution layer, and small-sized convolution layer. All of

6
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them are computed in parallel and followed by 1 x 1 convolution operations
to reduce dimensionality. Thanks to those modules, this network puts special
consideration on memory and computational cost by significantly reducing
the number of parameters and operations.

Filter
concatenation

1x1 convolutions 3x3 convolutions 1x1 convolutions
) t 1
1x1 convolutions | | 1x1 convolutions 3x3 max pooling

Previous layer

Figure 4: Inception module with dimensionality reduction from the GoogLeNet architec-
ture. Figure reproduced from [17].

2.1.4. ResNet

Microsoft’s ResNet[18] is specially remarkable thanks to winning ILSVRC-
2016 with 96.4% accuracy. Apart from that fact, the network is well-known
due to its depth (152 layers) and the introduction of residual blocks (see
Figure 5). The residual blocks address the problem of training a really deep
architecture by introducing identity skip connections so that layers can copy
their inputs to the next layer.

The intuitive idea behind this approach is that it ensures that the next
layer learns something new and different from what the input has already
encoded (since it is provided with both the output of the previous layer and
its unchanged input). In addition, this kind of connections help overcoming
the vanishing gradients problem.

2.1.5. ReNet

In order to extend Recurrent Neural Networks (RNNs) architectures to
multi-dimensional tasks, Graves et al. [19] proposed a Multi-dimensional Re-
current Neural Network (MDRNN) architecture which replaces each single
recurrent connection from standard RNNs with d connections, where d is the
number of spatio-temporal data dimensions. Based on this initial approach,
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Figure 5: Residual block from the ResNet architecture. Figure reproduced from [18].

Visin el al. [20] proposed ReNet architecture in which instead of multidimen-
sional RNNs, they have been using usual sequence RNNs. In this way, the
number of RNNs is scaling linearly at each layer regarding to the number of
dimensions d of the input image (2d). In this approach, each convolutional
layer (convolution + pooling) is replaced with four RNNs sweeping the image
vertically and horizontally in both directions as we can see in Figure 6.

2.2. Transfer Learning and Fine-tuning

Training a deep neural network from scratch is often not feasible because
of various reasons: a dataset of sufficient size is required (and not usually
available) and reaching convergence can take too long for the experiments to
be worth. Even if a dataset large enough is available and convergence does
not take that long, it is often helpful to start with pre-trained weights instead
of random initialized ones|[21][22]. Fine-tuning the weights of a pre-trained
network by continuing with the training process is one of the major transfer
learning scenarios.

Yosinski et al.[23] proved that transferring features even from distant
tasks can be better than using random initialization, taking into account
that the transferability of features decreases as the difference between the
pre-trained task and the target one increases.

However, applying this transfer learning technique is not completely straight-

forward. On the one hand, there are architectural constraints that must be
met to use a pre-trained network. Nevertheless, since it is not usual to come
up with a whole new architecture, it is common to reuse already existing

8
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Figure 6: One layer of ReNet architecture modeling vertical and horizontal spatial depen-
dencies. Extracted from [20].

network architectures (or components) thus enabling transfer learning. On
the other hand, the training process differs slightly when fine-tuning instead
of training from scratch. It is important to choose properly which layers
to fine-tune — usually the higher-level part of the network, since the lower
one tends to contain more generic features — and also pick an appropriate
policy for the learning rate, which is usually smaller due to the fact that the
pre-trained weights are expected to be relatively good so there is no need to
drastically change them.

Transfer learning from ImageNet pre-trained networks is common for se-
mantic segmentation. Nevertheless, the interest in modeling representations
using self-supervised, weakly-supervised and unsupervised learning increas-
ingly predominates. Pre-trained weights of context encoders used for context-
based pixel prediction aiming semantic hole-filling, have been used for ini-
tializing a FCN [24]. This setting outperform random initialized networks
and plain autoencoders thus advancing the state of the art in semantic seg-
mentation.

Due to the inherent difficulty of gathering and creating per-pixel labelled
segmentation datasets, their scale is not as large as the size of classification
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datasets such as ImageNet[25][26]. This problem gets even worse when deal-
ing with RGB-D or 3D datasets, which are even smaller. For that reason,
transfer learning, and in particular fine-tuning from pre-trained classifica-
tion networks is a common trend for segmentation networks and has been
successfully applied in the methods that we will review in the following sec-
tions.Although the datasets are smaller the more detailed the semantic la-
belling, a feasible solution to this problem is the use of synthetic datasets
extracted from commercial video games. Some experiments on semantic seg-
mentation shows that models trained with game data and % of the CamVid
dataset outperform methods trained on the complete CamVid training set
[27]. This technique relies on a two-staged process: (1) real and synthetic
data are used jointly to train the model, (2) model will be fine-tunned with
only real data.

Due to the inherent difficulty of gathering and creating per-pixel labelled
segmentation datasets, their scale is not as large as the size of classification
datasets such as ImageNet[25][26]. This problem gets even worse when deal-
ing with RGB-D or 3D datasets, which are even smaller. For that reason,
transfer learning, and in particular fine-tuning from pre-trained classification
networks is a common trend for segmentation networks and has been suc-
cessfully applied in the methods that we will review in the following sections.

2.3. Data Preprocessing and Augmentation

Data augmentation is a common technique that has been proven to benefit
the training of machine learning models in general and deep architectures in
particular; either speeding up convergence or acting as a regularizer, thus
avoiding overfitting and increasing generalization capabilities[28].

It typically consist of applying a set of transformations in either data
or feature spaces, or even both. The most common augmentations are per-
formed in the data space. That kind of augmentation generates new samples
by applying transformations to the already existing data. There are many
transformations that can be applied: translation, rotation, warping, scaling,
color space shifts, crops, etc. The goal of those transformations is to generate
more samples to create a larger dataset, preventing overfitting and presum-
ably regularizing the model, balance the classes within that database, and
even synthetically produce new samples that are more representative for the
use case or task at hand.

Augmentations are specially helpful for small datasets, and have proven
their efficacy with a long track of success stories. For instance, in [29], a

10
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dataset of 1500 portrait images is augmented synthesizing four new scales
(0.6,0.8,1.2,1.5), four new rotations (—45, —22, 22, 45), and four gamma vari-
ations (0.5,0.8,1.2,1.5) to generate a new dataset of 19000 training images.
That process allowed them to raise the accuracy of their system for por-
trait segmentation from 73.09 to 94.20 Intersection over Union (IoU) when
including that augmented dataset for fine-tuning.

3. Materials and Methods

In this section we present the main content of this paper: an in-depth
review of existing datasets and methods together with an evaluation of their
quality, relevance, and impact in the field. Both of them are presented ac-
cording to a well thought taxonomy of the research completed in the area.

Datasets were sampled from a wide variety of application scenarios and
subdivided according to their data representation (2D, 2.5D, or 3D) since
that is the first factor to take into account when choosing a dataset. Apart
from that we categorize them according to other application-specific factors
which are later described in detail. The datasets were selected mainly by
using a criteria of relevance (popularity by means of citation reports, usage
as benchmarking tools, and scientific quality enforced by top-tier venues and
journals) and usefulness for the community (novel data or application sce-
narios). We also focused on taking into account their scale and possibilities
for training deep architectures.

The same criteria of relevance was applied when selecting methods. Cer-
tain outdated methods were still selected for completeness when describing
improved versions of those or even newer ones. Others were also included
due to their importance in laying the fundamentals for future research. The
rest of the methods were selected due to the impact of their main contribu-
tions either by creating a new research direction (e.g., instance segmentation,
sequence processing, 3D segmentation) or pushing forward the limits of a cer-
tain aspect (e.g., accuracy, efficiency, or training capabilities). More details
about the followed taxonomy can be found later in the corresponding section.

3.1. Datasets and Challenges

Two kinds of readers are expected for this type of review: either they are
initiating themselves in the problem, or either they are experienced enough
and they are just looking for the most recent advances made by other re-
searchers in the last few years. Although the second kind is usually aware

11
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Table 1: Popular large-scale segmentation datasets.

Name and Reference Year | Classes Data Resolution_| Sequence | Synthetic/Real | Samples (training) | Samples (validation) | Samples (test)
PASCAL VOC 2012 Segmentation [30] 2012 21 2D Variable X R 464 T4 Private

PASCAL-Context [fﬂ] 2014 | 540 (59) 2D Variable X R 10103 N/A 9637
PASCAL-Part [32] 2004 | 20 2D Variable X R 10103 N/A 9637

SBD [33] i 2011 | 21 2D Variable X R 8498 2857 N/A

Microsoft COCO [34] Generic 2004 | +80 2D Variable X R 82783 10504 81431
'NTHIA [.55] Urban (Driving) | 2016 11 2D 960 x 720 X S 13407 N/A N/A

Urban 2015 | 30 (8) 2D 2048 x 1024 | v R 2075 500 1525

(coarse) (36 Urban 2015 | 30 (8) 2D 2048 x 1024 | v/ R 22973 500 N/A

CamVid [37] Urban (Driving) | 2009 | 32 2D 960 x 720 v R 701 N/A N/A
CamVid-Sturgess [38] Urban (Driving) | 2009 | 11 2D 960 x 720 v R 367 100 233
KITTI-Layout [30][40] Urban/Driving | 2012 3 2D Variable X R 323 N/A N/A
KITTI-Ros [41] Urban/Driving | 2015 | 11 2D Variable X R 170 N/A 46
KITTI-Zhang [42 Urban/Driving | 2015 | 10 2D/3D | 1226 x 370 X R 140 N/A 112

Stanford background [43] Outdoor 2000 8 2D 320 x 240 X R 725 N/A N/A
SiftFlow [44] Outdoor 2011 | 33 2D 256 x 256 X R 2688 N/A N/A
Youtube-Objects-Jain [45] Objects 2014 10 2D 180 x 360 v R 10167 N/A N/A
ntation [29] Portrait 2006 2 2D 600 x 800 X R 1500 300 N/A

MINC [46 Materials 2015 23 2D Variable X R 7061 2500 5000

DAVIS [47][48] Generic 2006 4 2D 430p v R 4219 2023 2180

NYUDv2 ISJ] Indoor 2012 10 2.5D 180 x 640 X R 795 654 N/A

SUN3D [50 Indoor 2013 2.5D 640 x 480 v R 19640 N/A N/A

SUNRGBD [51] Indoor 2015 | 37 2.5D Variable X R 2666 2619 5050

2 ef [')2] Houschold objects | 2011 51 2.5D 640 x 480 v R 207920 N/A N/A

Object/Part | 2016 | 16/50 3D N/A X S 31,963 N/A N/A

Stanford 2D-3D-S[34] Indoor 2017 | 13 |2D/25D/3D | 1080 x 1080 | v/ R 70469 N/A N/A

3D Mesh [53) Object/Part | 2009 | 19 3D y X S 380 N/A N/A

Sydney Urban Objects Dataset[56] Urban (Objects) | 2013 | 26 3D N/A x R a1 N/A N/A
Large-Scale Point Cloud Classification Benchmark[57] | Urban/Nature [ 2016 | 8 3D N/A X R 15 N/A 15

of two of the most important aspects to know before starting to research
in this problem, it is critical for newcomers to get a grasp of what are the
top-quality datasets and challenges. Therefore, the purpose of this section is
to help novel scientists get to speed, providing them with a brief summary of
datasets that might suit their needs as well as data augmentation and pre-
processing tips. Nevertheless, it can also be useful for hardened researchers
who want to review the fundamentals or maybe discover new information.

In the following lines we describe the most popular large-scale datasets
currently in use for semantic segmentation. All datasets listed here provide
appropriate pixel-wise or point-wise labels. The list is structured into three
parts according to the nature of the data: 2D or plain RGB datasets, 2.5D or
RGB-Depth (RGB-D) ones, and pure volumetric or 3D databases. Table 1
shows a summarized view, gathering all the described datasets and providing
useful information such as their purpose, number of classes, data format, and
training/validation/testing splits.

3.1.1. 2D Datasets

Throughout the years, semantic segmentation has been mostly focused on
two-dimensional images. For that reason, 2D datasets are the most abundant
ones. In this section we describe the most popular 2D large-scale datasets for
semantic segmentation, considering 2D any dataset that contains any kind of
two-dimensional representations such as gray-scale or Red Green Blue (RGB)
images.

12
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e PASCAL Visual Object Classes (VOC)[30]': this challenge con-
sists of a ground-truth annotated dataset of images and five different
competitions: classification, detection, segmentation, action classifica-
tion, and person layout. The segmentation one is specially interesting
since its goal is to predict the object class of each pixel for each test
image. There are 21 classes categorized into vehicles, household, ani-
mals, and other: aeroplane, bicycle, boat, bus, car, motorbike, train,
bottle, chair, dining table, potted plant, sofa, TV /monitor, bird, cat,
cow, dog, horse, sheep, and person. Background is also considered if
the pixel does not belong to any of those classes. The dataset is di-
vided into two subsets: training and validation with 1464 and 1449
images respectively. The test set is private for the challenge. This
dataset is arguably the most popular for semantic segmentation so al-
most every remarkable method in the literature is being submitted to
its performance evaluation server to validate against their private test
set. Methods can be trained either using only the dataset or either
using additional information. Furthermore, its leaderboard is public
and can be consulted online?.

e PASCAL Context[31]*: this dataset is an extension of the PASCAL
VOC 2010 detection challenge which contains pixel-wise labels for all
training images (10103). It contains a total of 540 classes — includ-
ing the original 20 classes plus background from PASCAL VOC seg-
mentation — divided into three categories (objects, stuff, and hybrids).
Despite the large number of categories, only the 59 most frequent are
remarkable. Since its classes follow a power law distribution, there are
many of them which are too sparse throughout the dataset. In this
regard, this subset of 59 classes is usually selected to conduct studies
on this dataset, relabeling the rest of them as background.

e PASCAL Part[32)*: this database is an extension of the PASCAL
VOC 2010 detection challenge which goes beyond that task to provide

lhttp://host.robots.ox.ac.uk/pascal/VOC/voc2012/

2http://host.robots.ox.ac.uk:8080/leaderboard/displaylb.php?
challengeid=11&compid=6

3http://www.cs.stanford.edu/~roozbeh/pascal-context/

‘http://www.stat.ucla.edu/~xianjie.chen/pascal_part_dataset/pascal_
part.html

13
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per-pixel segmentation masks for each part of the objects (or at least
silhouette annotation if the object does not have a consistent set of
parts). The original classes of PASCAL VOC are kept, but their parts
are introduced, e.g., bicycle is now decomposed into back wheel, chain
wheel, front wheel, handlebar, headlight, and saddle. It contains labels
for all training and validation images from PASCAL VOC as well as
for the 9637 testing images.

e Semantic Boundaries Dataset (SBD)[33]°: this dataset is an ex-
tended version of the aforementioned PASCAL VOC which provides
semantic segmentation ground truth for those images that were not
labelled in VOC. It contains annotations for 11355 images from PAS-
CAL VOC 2011. Those annotations provide both category-level and
instance-level information, apart from boundaries for each object. Since
the images are obtained from the whole PASCAL VOC challenge (not
only from the segmentation one), the training and validation splits
diverge. In fact, SBD provides its own training (8498 images) and val-
idation (2857 images) splits. Due to its increased amount of training
data, this dataset is often used as a substitute for PASCAL VOC for
deep learning.

e Microsoft Common Objects in Context (COCO)[34]%: is another
image recognition, segmentation, and captioning large-scale dataset. It
features various challenges, being the detection one the most relevant
for this field since one of its parts is focused on segmentation. That
challenge, which features more than 80 classes, provides more than
82783 images for training, 40504 for validation, and its test set consist
of more than 80000 images. In particular, the test set is divided into
four different subsets or splits: test-dev (20000 images) for additional
validation, debugging, test-standard (20000 images) is the default test
data for the competition and the one used to compare state-of-the-
art methods, test-challenge (20000 images) is the split used for the
challenge when submitting to the evaluation server, and test-reserve
(20000 images) is a split used to protect against possible overfitting
in the challenge (if a method is suspected to have made too many

Shttp://home.bharathh.info/home/sbd
Shttp://mscoco.org/

14

Page 14 of 67



submissions or trained on the test data, its results will be compared
with the reserve split). Its popularity and importance has ramped up
since its appearance thanks to its large scale. In fact, the results of
the challenge are presented yearly on a joint workshop at the European
Conference on Computer Vision (ECCV)” together with ImageNet’s
ones.

e SYNTHetic Collection of Imagery and Annotations (SYNTHIA)|35:
is a large-scale collection of photo-realistic renderings of a virtual city,
semantically segmented, whose purpose is scene understanding in the
context of driving or urban scenarios.The dataset provides fine-grained
pixel-level annotations for 11 classes (void, sky, building, road, side-
walk, fence, vegetation, pole, car, sign, pedestrian, and cyclist). Tt
features 13407 training images from rendered video streams. It is also
characterized by its diversity in terms of scenes (towns, cities, high-
ways), dynamic objects, seasons, and weather.

e Cityscapes[36]%: is a large-scale database which focuses on semantic
understanding of urban street scenes. It provides semantic, instance-
wise, and dense pixel annotations for 30 classes grouped into 8 cate-
gories (flat surfaces, humans, vehicles, constructions, objects, nature,
sky, and void). The dataset consist of around 5000 fine annotated im-
ages and 20000 coarse annotated ones. Data was captured in 50 cities
during several months, daytimes, and good weather conditions. It was
originally recorded as video so the frames were manually selected to
have the following features: large number of dynamic objects, varying
scene layout, and varying background.

e CamVid[58][37]'%: is a road/driving scene understanding database
which was originally captured as five video sequences with a 960 x 720
resolution camera mounted on the dashboard of a car. Those sequences
were sampled (four of them at 1 fps and one at 15 fps) adding up
to 701 frames. Those stills were manually annotated with 32 classes:
void, building, wall, tree, vegetation, fence, sidewalk, parking block,

"http://image-net.org/challenges/ilsvrc+coco2016

8http://synthia-dataset.net/

‘https://www.cityscapes-dataset.com/
Ohttp://mi.eng.cam.ac.uk/research/projects/VideoRec/CamVid/
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column /pole, traffic cone, bridge, sign, miscellaneous text, traffic light,
sky, tunnel, archway, road, road shoulder, lane markings (driving), lane
markings (non-driving), animal, pedestrian, child, cart luggage, bicy-
clist, motorcycle, car, SUV /pickup/truck, truck/bus, train, and other
moving object. It is important to remark the partition introduced by
Sturgess et al.[38] which divided the dataset into 367/100/233 training,
validation, and testing images respectively. That partition makes use of
a subset of class labels: building, tree, sky, car, sign, road, pedestrian,
fence, pole, sidewalk, and bicyclist.

o KITTI[59]: is one of the most popular datasets for use in mobile
robotics and autonomous driving. It consists of hours of traffic sce-
narios recorded with a variety of sensor modalities, including high-
resolution RGB, grayscale stereo cameras, and a 3D laser scanner. De-
spite its popularity, the dataset itself does not contain ground truth
for semantic segmentation. However, various researchers have manu-
ally annotated parts of the dataset to fit their necessities. Alvarez et
al.[39][40] generated ground truth for 323 images from the road detec-
tion challenge with three classes: road, vertical, and sky. Zhang et
al.[42] annotated 252 (140 for training and 112 for testing) acquisitions
— RGB and Velodyne scans — from the tracking challenge for ten object
categories: building, sky, road, vegetation, sidewalk, car, pedestrian,
cyclist, sign/pole, and fence. Ros et al. [41] labeled 170 training im-
ages and 46 testing images (from the visual odometry challenge) with
11 classes: building, tree, sky, car, sign, road, pedestrian, fence, pole,
sidewalk, and bicyclist.

e Youtube-Objects[60] is a database of videos collected from YouTube
which contain objects from ten PASCAL VOC classes: aeroplane, bird,
boat, car, cat, cow, dog, horse, motorbike, and train. That database
does not contain pixel-wise annotations but Jain et al.[45] manually
annotated a subset of 126 sequences. They took every 10th frame
from those sequences and generated semantic labels. That totals 10167
annotated frames at 480 x 360 pixels resolution.

e Adobe’s Portrait Segmentation[29]'!: this is a dataset of 800 x 600

Uhttp://xiaoyongshen.me/webpage_portrait/index.html

16

Page 16 of 67



pixels portrait images collected from Flickr, mainly captured with mo-
bile front-facing cameras. The database consist of 1500 training images
and 300 reserved for testing, both sets are fully binary annotated: per-
son or background. The images were labeled in a semi-automatic way:
first a face detector was run on each image to crop them to 600 x 800 pix-
els and then persons were manually annotated using Photoshop quick
selection. This dataset is remarkable due to its specific purpose which
makes it suitable for person in foreground segmentation applications.

e Materials in Context (MINC)[46]: this work is a dataset for patch
material classification and full scene material segmentation. The dataset
provides segment annotations for 23 categories: wood, painted, fabric,
glass, metal, tile, sky, foliage, polished stone, carpet, leather, mirror,
brick, water, other, plastic, skin, stone, ceramic, hair, food, paper, and
wallpaper. It contains 7061 labeled material segmentations for train-
ing, 5000 for test, and 2500 for validation. The main source for these
images is the OpenSurfaces dataset [61], which was augmented using
other sources of imagery such as Flickr or Houzz. For that reason, im-

age resolution for this dataset varies. On average, image resolution is
approximately 800 x 500 or 500 x 800.

e Densely-Annotated VIdeo Segmentation (DAVIS)[47][48]'%: this
challenge is purposed for video object segmentation. Its dataset is com-
posed by 50 high-definition sequences which add up to 4219 and 2023
frames for training and validation respectively. Frame resolution varies
across sequences but all of them were downsampled to 480p for the
challenge. Pixel-wise annotations are provided for each frame for four
different categories: human, animal, vehicle, and object. Another fea-
ture from this dataset is the presence of at least one target foreground
object in each sequence. In addition, it is designed not to have many
different objects with significant motion. For those scenes which do
have more than one target foreground object from the same class, they
provide separated ground truth for each one of them to allow instance
segmentation.

e Stanford background[43]'3: dataset with outdoor scene images im-

2http://davischallenge.org/index.html
3http://dags.stanford.edu/data/iccvO9Data.tar.gz
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ported from existing public datasets: LabelMe, MSRC, PASCAL VOC
and Geometric Context. The dataset contains 715 images (size of
320 x 240 pixels) with at least one foreground object and having the
horizon position within the image. The dataset is pixel-wise annotated
(horizon location, pixel semantic class, pixel geometric class and image
region) for evaluating methods for semantic scene understanding.

e SiftFlow [44]: contains 2688 fully annotated images which are a subset
of the LabelMe database [62]. Most of the images are based on 8
different outdoor scenes including streets, mountains, fields, beaches
and buildings. Images are 256 x 256 belonging to one of the 33 semantic
classes. Unlabeled pixels, or pixels labeled as a different semantic class
are treated as unlabeled.

3.1.2. 2.5D Datasets
With the advent of low-cost range scanners, datasets including not only
RGB information but also depth maps are gaining popularity and usage. In

this section, we review the most well-known 2.5D databases which include
that kind of depth data.

e NYUDv2 [49]*: this database consists of 1449 indoor RGB-D images
captured with a Microsoft Kinect device. It provides per-pixel dense
labeling (category and instance levels) which were coalesced into 40
indoor object classes by Gupta et al.[63] for both training (795 images)
and testing (654) splits. This dataset is specially remarkable due to its
indoor nature, this makes it really useful for certain robotic tasks at
home. However, its relatively small scale with regard to other existing
datasets hinders its application for deep learning architectures.

e SUN3D [50]'°: similar to the NYUDv2, this dataset contains a large-
scale RGB-D video database, with 8 annotated sequences. Each frame
has a semantic segmentation of the objects in the scene and information
about the camera pose. It is still in progress and it will be composed by
415 sequences captured in 254 different spaces, in 41 different buildings.
Moreover, some places have been captured multiple times at different
moments of the day.

Yhttp://cs.nyu.edu/~silberman/projects/indoor_scene_seg_sup.html
http://sun3d.cs.princeton.edu/
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e SUNRGBD [51]': captured with four RGB-D sensors, this dataset
contains 10000 RGB-D images, at a similar scale as PASCAL VOC.
It contains images from NYU depth v2 [49], Berkeley B3DO [64], and
SUN3D [50]. The whole dataset is densely annotated, including poly-
gons, bounding boxes with orientation as well as a 3D room layout and
category, being suitable for scene understanding tasks.

e The Object Segmentation Database (OSD) [65]'7 this database
has been designed for segmenting unknown objects from generic scenes
even under partial occlusions. This dataset contains 111 entries, and
provides depth image and color images together withper-pixel annota-
tions for each one to evaluate object segmentation approaches. How-
ever, the dataset does not differentiate the category of different objects
so its classes are reduced to a binary set of objects and not objects.

e RGB-D Object Dataset[52]'®: this dataset is composed by video se-
quences of 300 common household objects organized in 51 categories ar-
ranged using WordNet hypernym-hyponym relationships. The dataset
has been recorded using a Kinect style 3D camera that records synchro-
nized and aligned 640 x 480 RGB and depth images at 30H z. For each
frame, the dataset provides, the RGB-D and depth images, a cropped
ones containing the object, the location and a mask with per-pixel
annotation. Moreover, each object has been placed on a turntable,
providing isolated video sequences around 360 degrees. For the vali-
dation process, 22 annotated video sequences of natural indoor scenes
containing the objects are provided.

3.1.53. 3D Datasets

Pure three-dimensional databases are scarce, this kind of datasets usually
provide Computer Aided Design (CAD) meshes or other volumetric repre-
sentations, such as point clouds. Generating large-scale 3D datasets for seg-
mentation is costly and difficult, and not many deep learning methods are
able to process that kind of data as it is. For those reasons, 3D datasets are
not quite popular at the moment. In spite of that fact, we describe the most
promising ones for the task at hand.

http://rghd.cs.princeton.edu/
"http://www.acin.tuwien.ac.at/?id=289
8http://rgbd-dataset.cs.washington.edu/
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e ShapeNet Part[53]": is a subset of the ShapeNet[66] repository
which focuses on fine-grained 3D object segmentation. It contains
31,693 meshes sampled from 16 categories of the original dataset (air-
plane, earphone, cap, motorbike, bag, mug, laptop, table, guitar, knife,
rocket, lamp, chair, pistol, car, and skateboard). Each shape class is
labeled with two to five parts (totalling 50 object parts across the whole
dataset), e.g., each shape from the airplane class is labeled with wings,
body, tail, and engine. Ground-truth labels are provided on points
sampled from the meshes.

Stanford 2D-3D-S[54]%: is a multi-modal and large-scale indoor
spaces dataset extending the Stanford 3D Semantic Parsing work [67].
It provides a variety of registered modalities — 2D (RGB), 2.5D (depth
maps and surface normals), and 3D (meshes and point clouds) — with
semantic annotations. The database is composed of 70,496 full high-
definition RGB images (1080 x 1080 resolution) along with their corre-
sponding depth maps, surface normals, meshes, and point clouds with
semantic annotations (per-pixel and per-point). That data were cap-
tured in six indoor areas from three different educational and office
buildings. That makes a total of 271 rooms and approximately 700
million points annotated with labels from 13 categories: ceiling, floor,
wall, column, beam, window, door, table, chair, bookcase, sofa, board,
and clutter.

A Benchmark for 3D Mesh Segmentation[55)': this benchmark
is composed by 380 meshes classified in 19 categories (human, cup,
glasses, airplane, ant, chair, octopus, table, teddy, hand, plier, fish,
bird, armadillo, bust, mech, bearing, vase, fourleg). Each mesh has
been manually segmented into functional parts, the main goal is to
provide a sample distribution over "how humans decompose each mesh
into functional parts”.

Sydney Urban Objects Dataset[56]**: this dataset contains a vari-
ety of common urban road objects scanned with a Velodyne HDK-64E

Yhttp://cs.stanford.edu/~ericyi/project_page/part_annotation/
20nttp://buildingparser.stanford.edu
2lhttp://segeval.cs.princeton.edu/

22http://www.acfr.usyd. edu.au/papers/SydneyUrbanObjectsDataset . shtml
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Table 2: Summary of semantic segmentation methods based on deep learning.
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LIDAR. There are 631 individual scans (point clouds) of objects across
classes of vehicles, pedestrians, signs and trees. The interesting point
of this dataset is that, for each object, apart from the individual scan,
a full 360-degrees annotated scan is provided.

e Large-Scale Point Cloud Classification Benchmark [57]%%: this
benchmark provides manually annotated 3D point clouds of diverse
natural and urban scenes: churches, streets, railroad tracks, squares,
villages, soccer fields, castles among others. This dataset features stat-
ically captured point clouds with very fine details and density. It con-
tains 15 large-scale point clouds for training and another 15 for testing.
Its scale can be grasped by the fact that it totals more than one billion
labelled points.

3.2. Methods

The relentless success of deep learning techniques in various high-level
computer vision tasks — in particular, supervised approaches such as Convo-
lutional Neural Networks (CNNs) for image classification or object detection
[14][15][17] — motivated researchers to explore the capabilities of such net-
works for pixel-level labelling problems like semantic segmentation. The key
advantage of these deep learning techniques, which gives them an edge over

2http://www.semantic3d.net/
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traditional methods, is the ability to learn appropriate feature representa-
tions for the problem at hand, e.g., pixel labelling on a particular dataset,
in an end-to-end fashion instead of using hand-crafted features that require
domain expertise, effort, and often too much fine-tuning to make them work

on a particular scenario.
ﬁﬂﬂﬂ_e_e_o
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Figure 7: Fully Convolutional Network figure by Long et al.[68]. Transforming a
classification-purposed CNN to produce spatial heatmaps by replacing fully connected
layers with convolutional ones. Including a deconvolution layer for upsampling allows
dense inference and learning for per-pixel labeling.
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Figure 8: Visualization of the reviewed methods.

Currently, the most successful state-of-the-art deep learning techniques
for semantic segmentation stem from a common forerunner: the Fully Con-
volutional Network (FCN) by Long et al.[68]. The insight of that approach
was to take advantage of existing CNNs as powerful visual models that
are able to learn hierarchies of features. They transformed those existing
and well-known classification models — AlexNet[14], VGG (16-layer net)[15],
GoogLeNet[17], and ResNet [18] — into fully convolutional ones by replacing
the fully connected layers with convolutional ones to output spatial maps
instead of classification scores. Those maps are upsampled using fraction-
ally strided convolutions (also named deconvolutions [98][99]) to produce
dense per-pixel labeled outputs. This work is considered a milestone since
it showed how CNNs can be trained end-to-end for this problem, efficiently
learning how to make dense predictions for semantic segmentation with in-
puts of arbitrary sizes. This approach achieved a significant improvement
in segmentation accuracy over traditional methods on standard datasets like
PASCAL VOC, while preserving efficiency at inference. For all those rea-
sons, and other significant contributions, the FCN is the cornerstone of deep
learning applied to semantic segmentation. The convolutionalization process
is shown in Figure 7.

Despite the power and flexibility of the FCN model, it still lacks various
features which hinder its application to certain problems and situations: its
inherent spatial invariance does not take into account useful global context
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information, no instance-awareness is present by default, efficiency is still far
from real-time execution at high resolutions, and it is not completely suited
for unstructured data such as 3D point clouds or models. Those problems
will be reviewed in this section, as well as the state-of-the-art solutions that
have been proposed in the literature to overcome those hurdles. Table 2 pro-
vides a summary of that review. It shows all reviewed methods (sorted by
appearance order in the section), their base architecture, their main contri-
bution, and a classification depending on the target of the work: accuracy,
efficiency, training simplicity, sequence processing, multi-modal inputs, and
3D data. Each target is graded from one to three stars (x) depending on how
much focus puts the work on it, and a mark (X) if that issue is not addressed.
In addition, Figure 8 shows a graph of the reviewed methods for the sake of
visualization.

3.2.1. Decoder Variants

Apart from the FCN architecture, other variants were developed to trans-
form a network whose purpose was classification to make it suitable for seg-
mentation. Arguably, FCN-based architectures are more popular and suc-
cessful, but other alternatives are also remarkable. In general terms, all of
them take a network for classification, such as VGG-16, and remove its fully
connected layers. This part of the new segmentation network often receives
the name of encoder and produce low-resolution image representations or
feature maps. The problem lies on learning to decode or map those low-
resolution images to pixel-wise predictions for segmentation. This part is
named decoder and it is usually the divergence point in this kind of archi-
tectures.

SegNet[70] is a clear example of this divergence (see Figure 9). The
decoder stage of SegNet is composed by a set of upsampling and convolution
layers which are at last followed by a softmax classifier to predict pixel-wise
labels for an output which has the same resolution as the input image. Each
upsampling layer in the decoder stage corresponds to a max-pooling one
in the encoder part. Those layers upsample feature maps using the max-
pooling indices from their corresponding feature maps in the encoder phase.
The upsampled maps are then convolved with a set of trainable filter banks
to produce dense feature maps. When the feature maps have been restored
to the original resolution, they are fed to the softmax classifier to produce
the final segmentation.

On the other hand, FCN-based architectures make use of learnable decon-
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Figure 9: SegNet architecture with an encoder and a decoder followed by a softmax
classifier for pixel-wise classification. Figure extracted from [70].

volution filters to upsample feature maps. After that, the upsampled feature
maps are added element-wise to the corresponding feature map generated by
the convolution layer in the encoder part. Figure 10 shows a comparison of
both approaches.

U-Net [69] is another example of a Fully Convolutional Neural Network
that has been used for image segmentation. It was initially proposed for
biomedical image segmentation, but in the last years it has also been suc-
cessfully used in other applications, such as aerial imagery [100] and regular
foreground /background segmentation problems. It consists of a contracting
path (downsampling) which captures context and a symmetric expanding
path (upsampling) that enables precise localization. The architecture also
has skip connections that allow the decoder at each stage to learn relevant
features from the contracting path.

3.2.2. Integrating Context Knowledge

Semantic segmentation is a problem that requires the integration of infor-
mation from various spatial scales. It also implies balancing local and global
information. On the one hand, fine-grained or local information is crucial to
achieve good pixel-level accuracy. On the other hand, it is also important
to integrate information from the global context of the image to be able to
resolve local ambiguities.

Vanilla CNNs struggle with this balance. Pooling layers, which allow the
networks to achieve some degree of spatial invariance and keep computational
cost at bay, dispose of the global context information. Even purely CNNs
— without pooling layers — are limited since the receptive field of their units
can only grow linearly with the number of layers.
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Figure 10: Comparison of SegNet (left) and FCN (right) decoders. While SegNet uses
max-pooling indices from the corresponding encoder stage to upsample, FCN learns de-
convolution filters to upsample (adding the corresponding feature map from the encoder
stage). Figure reproduced from [70].

Many approaches can be taken to make CNNs aware of that global in-
formation: refinement as a post-processing step with Conditional Random
Fields (CRFs), dilated convolutions, multi-scale aggregation, or even defer
the context modeling to another kind of deep networks such as RNNs.

Conditional Random Fields. As we mentioned before, the inherent invari-
ance to spatial transformations of CNN architectures limits the very same
spatial accuracy for segmentation tasks. One possible and common approach
to refine the output of a segmentation system and boost its ability to capture
fine-grained details is to apply a post-processing stage using a Conditional
Random Field (CRF). CRFs enable the combination of low-level image in-
formation — such as the interactions between pixels [101][102] — with the
output of multi-class inference systems that produce per-pixel class scores.
That combination is especially important to capture long-range dependen-
cies, which CNNs fail to consider, and fine local details.

The DeepLab models [72][73] make use of the fully connected pairwise
CRF by Krahenbiihl and Koltun[103][104] as a separated post-processing
step in their pipeline to refine the segmentation result. It models each pixel
as a node in the field and employs one pairwise term for each pair of pixels no
matter how far they lie (this model is known as dense or fully connected factor
graph). By using this model, both short and long-range interactions are
taken into account, rendering the system able to recover detailed structures
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Figure 11: CRF refinement per iteration as shown by the authors of DeepLab[72]. The
first row shows the score maps (inputs before the softmax function) and the second one
shows the belief maps (output of the softmax function).

in the segmentation that were lost due to the spatial invariance of the CNN.
Despite the fact that usually fully connected models are inefficient, this model
can be efficiently approximated via probabilistic inference. Figure 11 shows
the effect of this CRF-based post-processing on the score and belief maps
produced by the DeepLab model.

The material recognition in the wild network by Bell et al.[46] makes use
of various CNNs trained to identify patches in the MINC database. Those
CNNs are used on a sliding window fashion to classify those patches. Their
weights are transferred to the same networks converted into FCNs by adding
the corresponding upsampling layers. The outputs are averaged to generate
a probability map. At last, the same CRF from DeepLab, but discretely
optimized, is applied to predict and refine the material at every pixel.

Another significant work applying a CRF to refine the segmentation of a
FCN is the CRFasRNN by Zheng et al.[74]. The main contribution of that
work is the reformulation of the dense CRF with pairwise potentials as an
integral part of the network. By unrolling the mean-field inference steps as
RNNs, they make it possible to fully integrate the CRF with a FCN and train
the whole network end-to-end. This work demonstrates the reformulation of
CRF's as RNNs to form a part of a deep network, in contrast with Pinheiro
et al. [86] which employed RNNs to model large spatial dependencies.

Dilated Convolutions. Dilated convolutions, also named a-trous convolutions,
are a generalization of Kronecker-factored convolutional filters [105] which
support exponentially expanding receptive fields without losing resolution.
In other words, dilated convolutions are regular ones that make use of up-
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sampled filters. The dilation rate [ controls that upsampling factor. As shown
in Figure 12, stacking [-dilated convolution makes the receptive fields grow
exponentially while the number of parameters for the filters keeps a linear
growth. This means that dilated convolutions allow efficient dense feature
extraction on any arbitrary resolution. As a side note, it is important to
remark that typical convolutions are just 1-dilated convolutions.

(a) 1-dilated (b) 2-dilated (c) 3-dilated

Figure 12: As shown in [75], dilated convolution filters with various dilation rates: (a)
1-dilated convolutions in which each unit has a 3 x 3 receptive fields, (b) 2-dilated ones
with 7 x 7 receptive fields, and (c) 3-dilated convolutions with 15 x 15 receptive fields.

In practice, it is equivalent to dilating the filter before doing the usual
convolution. That means expanding its size, according to the dilation rate,
while filling the empty elements with zeros. In other words, the filter weights
are matched to distant elements which are not adjacent if the dilation rate
is greater than one. Figure 13 shows examples of dilated filters.

The most important works that make use of dilated convolutions are
the multi-scale context aggregation module by Yu et al.[75], the already
mentioned DeepLab (its improved version)[73], and the real-time network
ENet[76]. All of them use combinations of dilated convolutions with increas-
ing dilation rates to have wider receptive fields with no additional cost and
without overly downsampling the feature maps. Those works also show a
common trend: dilated convolutions are tightly coupled to multi-scale con-
text aggregation as we will explain in the following section.

Multi-scale Prediction. Another possible way to deal with context knowledge
integration is the use of multi-scale predictions. Almost every single parame-
ter of a CNN affects the scale of the generated feature maps. In other words,
the very same architecture will have an impact on the number of pixels of
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Figure 13: Filter elements (green) matched to input elements when using 3 x 3 dilated
convolutions with various dilation rates. From left to right: 1,2, and 3.

the input image which correspond to a pixel of the feature map. This means
that the filters will implicitly learn to detect features at specific scales (pre-
sumably with certain invariance degree). Furthermore, those parameters are
usually tightly coupled to the problem at hand, making it difficult for the
models to generalize to different scales. One possible way to overcome that
obstacle is to use multi-scale networks which generally make use of multi-
ple networks that target different scales and then merge the predictions to
produce a single output.

Raj et al.[77] propose a multi-scale version of a fully convolutional VGG-
16. That network has two paths, one that processes the input at the original
resolution and another one which doubles it. The first path goes through
a shallow convolutional network. The second one goes through the fully
convolutional VGG-16 and an extra convolutional layer. The result of that
second path is upsampled and combined with the result of the first path.
That concatenated output then goes through another set of convolutional
layers to generate the final output. As a result, the network becomes more
robust to scale variations.

Roy et al.[79] take a different approach using a network composed by
four multi-scale CNNs. Those four networks have the same architecture in-
troduced by Eigen et al. [78]. One of those networks is devoted to finding
semantic labels for the scene. That network extracts features from a progres-
sively coarse-to-fine sequence of scales (see Figure 14).

Another remarkable work is the network proposed by Bian et al.[80]. That
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Figure 14: Multi-scale CNN architecture proposed by Eigen et al.[78]. The network pro-
gressively refines the output using a sequence of scales to estimate depth, normals, and
also perform semantic segmentation over an RGB input. Figure extracted from [78].

network is a composition of n FCNs which operate at different scales. The
features extracted from the networks are fused together (after the necessary
upsampling with an appropriate padding) and then they go through an ad-
ditional convolutional layer to produce the final segmentation. The main
contribution of this architecture is the two-stage learning process which in-
volves, first, training each network independently, then the networks are
combined and the last layer is fine-tuned. This multi-scale model allows to
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add an arbitrary number of newly trained networks in an efficient manner.

Feature Fusion. Another way of adding context information to a fully con-
volutional architecture for segmentation is feature fusion. This technique
consists of merging a global feature (extracted from a previous layer in a
network) with a more local feature map extracted from a subsequent layer.
Common architectures such as the original FCN make use of skip connec-
tions to perform a late fusion by combining the feature maps extracted from
different layers (see Figure 15).

A

1414

56x56

112x112]

Figure 15: Skip-connection-like architecture, which performs late fusion of feature maps as
if making independent predictions for each layer and merging the results. Figure extracted
from [89).

Another approach is performing early fusion. This approach is taken by
ParseNet[81] in their context module. The global feature is unpooled to
the same spatial size as the local feature and then they are concatenated
to generate a combined feature that is used in the next layer or to learn a
classifier. Figure 16 shows a representation of that process.
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Figure 16: ParseNet context module overview in which a global feature (from a previous
layer) is combined with the feature of the next layer to add context information. Figure
extracted from [81].

This feature fusion idea was continued by Pinheiro et al. in their Sharp-
Mask network [89], which introduced a progressive refinement module to
incorporate features from the previous layer to the next in a top-down ar-
chitecture. This work will be reviewed later since it is mainly focused on
instance segmentation.

In contrast to the pooling operation performed by ParseNet to incor-
porate global features and in addition to dilated FCNs [72][75], pyramid
pooling empirically demonstrates the capability of global feature extraction
by different-region-based context aggregation [82]. Figure 17 shows Pyra-
mid Scene Parsing Networks (PSPNets) 2* which provide a pyramid parsing
module focused into feature fusion at four different pyramid scales in order
to embed global contexts from complex scenes. Pyramid levels and size of
each level can be arbitrarily modified. The better performance of PSPNet
facing FCNs-based models lies to: (1) the lack of ability in collecting contex-
tual information, (2) the absence of category relationships and (3) not using
sub-regions. This approach achieves state-of-the-art performance on various
datasets.

Recurrent Neural Networks. As we noticed, CNNs have been successfully ap-
plied to multi-dimensional data, such as images. Nevertheless, these networks
rely on hand specified kernels limiting the architecture to local contexts. Tak-
ing advantage of its topological structure, Recurrent Neural Networks have
been successfully applied for modeling short- and long-temporal sequences.

2https://github. com/hszhao/PSPNet
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Figure 17: PSPNet architecture. Initial feature maps (b) are extracted from input images
(a) by using a pretrained ResNet [18] alongside dilated network strategy. Pyramid pooling
module (¢) covers from the whole, half of to small regions of the image. Finally, initial
feature map is concatenated with pooling module output and applying a convolution layer
final predicted maps (d) are generated. Figure extracted from [82].

Figure 18: Representation of ReSeg network. VGG-16 convolutional layers are represented
by the blue and yellow first layers. The rest of the architecture is based on the ReNet
approach with fine-tuning purposes. Figure extracted from [83].

In this way and by linking together pixel-level and local information, RNNs
are able to successfully model global contexts and improve semantic seg-
mentation. However, one important issue is the lack of a natural sequential
structure in images and the focus of standard vanilla RNNs architectures on
one-dimensional inputs.

Based on ReNet model for image classification Visin et al.[20] proposed
an architecture for semantic segmentation called ReSeg [83] represented in
Figure 18. In this approach, the input image is processed with the first layers
of the VGG-16 network [15], feeding the resulting feature maps into one or
more ReNet layers for fine-tuning. Finally, feature maps are resized using
upsampling layers based on transposed convolutions. In this approach Gated
Recurrent Units (GRUs) have been used as they strike a good performance
balance regarding memory usage and computational power. Vanilla RNNs
have problems modeling long-term dependencies mainly due to the vanishing

33

Page 33 of 67



gradients problem. Several derived models such as Long Short-Term Memory
(LSTM) networks [106] and GRUs [107] are the state-of-art in this field to
avoid such problem.

Inspired on the same ReNet architecture, a novel Long Short-Term Mem-
orized Context Fusion (LSTM-CF) model for scene labeling was proposed
by [108]. In this approach, they use two different data sources: RGB and
depth. The RGB pipeline relies on a variant of the DeepLab architecture [32]
concatenating features at three different scales to enrich feature representa-
tion (inspired by [109]). The global context is modeled vertically over both,
depth and photometric data sources, concluding with a horizontal fusion in
both direction over these vertical contexts.

As we noticed, modeling image global contexts is related to 2D recurrent
approaches by unfolding vertically and horizontally the network over the
input images. Based on the same idea, Byeon et al. [85] purposed a simple
2D LSTM-based architecture in which the input image is divided into non-
overlapping windows which are fed into four separate LSTMs memory blocks.
This work emphasizes its low computational complexity on a single-core CPU
and the model simplicity.

Another approach for capturing global information relies on using bigger
input windows in order to model larger contexts. Nevertheless, this reduces
images resolution and also implies several problems regarding to window
overlapping. However, Pinheiro et al. [86] introduced Recurrent Convolu-
tional Neural Networks (rCNNs) which recurrently train with different input
window sizes taking into account previous predictions by using a different in-
put window sizes. In this way, predicted labels are automatically smoothed
increasing the performance.

Undirected cyclic graphs (UCGs) were also adopted to model image con-
texts for semantic segmentation [87]. Nevertheless, RNNs are not directly
applicable to UCG and the solution is decomposing it into several directed
graphs (DAGs). In this approach, images are processed by three different
layers: image feature map produced by CNN, model image contextual de-
pendencies with DAG-RNNs, and deconvolution layer for upsampling feature
maps. This work demonstrates how RNNs can be used together with graphs
to successfully model long-range contextual dependencies, overcoming state-
of-the-art approaches in terms of performance.
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3.2.3. Instance Segmentation

Instance segmentation is considered the next step after semantic segmen-
tation and at the same time the most challenging problem in comparison
with the rest of low-level pixel segmentation techniques. Its main purpose is
to represent objects of the same class splitted into different instances. The
automation of this process is not straightforward, thus the number of in-
stances is initially unknown and the evaluation of performed predictions is
not pixel-wise such as in semantic segmentation. Consequently, this problem
remains partially unsolved but the interest in this field is motivated by its
potential applicability. Instance labeling provides us extra information for
reasoning about occlusion situations, also counting the number of elements
belonging to the same class and for detecting a particular object for grasping
in robotics tasks, among many other applications.

For this purpose, Hariharan et al. [10] proposed a Simultaneous Detec-
tion and Segmentation (SDS) method in order to improve performance over
already existing works. Their pipeline uses, firstly, a bottom-up hierarchical
image segmentation and object candidate generation process called Multi-
scale COmbinatorial Grouping (MCG) [110] to obtain region proposals. For
each region, features are extracted by using an adapted version of the Region-
CNN (R-CNN) [111], which is fine-tuned using bounding boxes provided by
the MCG method instead of selective search and also alongside region fore-
ground features. Then, each region proposal is classified by using a linear
Support Vector Machine (SVM) on top of the CNN features. Finally, and
for refinement purposes, Non-Maximum Suppression (NMS) is applied to the
previous proposals.

Later, Pinheiro et al. [88] presented DeepMask model, an object proposal
approach based on a single ConvNet. This model predicts a segmentation
mask for an input patch and the likelihood of this patch for containing an
object. The two tasks are learned jointly and computed by a single network,
sharing most of the layers except last ones which are task-specific.

Based on the DeepMask architecture as a starting point due to its effec-
tiveness, the same authors presented a novel architecture for object instance
segmentation implementing a top-down refinement process [89] and achieving
a better performance in terms of accuracy and speed. The goal of this process
is to efficiently merge low-level features with high-level semantic information
from upper network layers. The process consisted in different refinement
modules stacked together (one module per pooling layer), with the purpose
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of inverting pooling effect by generating a new upsampled object encoding.
Figure 19 shows the refinement module in SharpMask.
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Figure 19: SharpMask’s top-down architecture with progressive refinement using their
signature modules. That refinement merges spatially rich information from lower-level
features with high-level semantic cues encoded in upper layers. Figure extracted from
[88].

Another approach, based on Fast R-CNN as a starting point and us-
ing DeepMask object proposals instead of Selective Search was presented by
Zagoruyko et al [90]. This combined system called MultiPath classifier, im-
proved performance over COCO dataset and supposed three modifications to
Fast R-CNN: improving localization with an integral loss, provide context by
using foveal regions and finally skip connections to give multi-scale features
to the network. The system achieved a 66% improvement over the baseline
Fast R-CNN.

As we have seen, most of the methods mentioned above rely on existing
object detectors limiting in this way model performance. Even so, instance
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segmentation process remains an unresolved research problem and the men-
tioned works are only a small part of this challenging research topic.

3.2.4. RGB-D Data

As we noticed, a significant amount of work has been done in semantic
segmentation by using photometric data. Nevertheless, the use of structural
information was spurred on with the advent of low-cost RGB-D sensors which
provide useful geometric cues extracted from depth information. Several
works focused on RGB-D scene segmentation have reported an improvement
in the fine-grained labeling precision by using depth information and not only
photometric data. Using depth information for segmentation is considered
more challenging because of the unpredictable variation of scene illumination
alongside incomplete representation of objects due to complex occlusions.
However, various works have successfully made use of depth information to
increase accuracy.

The use of depth images with approaches focused on photometric data is
not straightforward. Depth data needs to be encoded with three channels at
each pixel as if it was an RGB images. Different techniques such as Horizontal
Height Angle (HHA) [11] are used for encoding the depth into three channels
as follows: horizontal disparity, height above ground, and the angle between
local surface normal and the inferred gravity direction. In this way, we can
input depth images to models designed for RGB data and improve in this
way the performance by learning new features from structural information.
Several works such as [108] are based on this encoding technique.

In the literature, related to methods that use RGB-D data, we can also
find some works that leverage a multi-view approach to improve existing
single-view works.

Zeng et al.[112] present an object segmentation approach that leverages
multi-view RGB-D data and deep learning techniques. RGB-D images cap-
tured from each viewpoint are fed to a FCN network which returns a 40-class
probability for each pixel in each image. Segmentation labels are threshold by
using three times the standard deviation above the mean probability across
all views. Moreover, in this work, multiple networks for feature extraction
were trained (AlexNet [14] and VGG-16 [15]), evaluating the benefits of using
depth information. They found that adding depth did not yield any major
improvements in segmentation performance, which could be caused by noise
in the depth information. The described approach was presented during the
2016 Amazon Picking Challenge. This work is a minor contribution towards
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multi-view deep learning systems since RGB images are independently fed
to a FCN network.

Ma et al.[113] propose a novel approach for object-class segmentation us-
ing a multi-view deep learning technique. Multiple views are obtained from
a moving RGB-D camera. During the training stage, camera trajectory is
obtained using an RGB-D SLAM technique, then RGB-D images are warped
into ground-truth annotated frames in order to enforce multi-view consis-
tency for training. The proposed approach is based on FuseNet[114], which
combines RGB and depth images for semantic segmentation, and improves
the original work by adding multi-scale loss minimization.

3.2.5. 3D Data

3D geometric data such as point clouds or polygonal meshes are useful
representations thanks to their additional dimension which provides meth-
ods with rich spatial information that is intuitively useful for segmentation.
However, the vast majority of successful deep learning segmentation archi-
tectures — CNNs in particular — are not originally engineered to deal with
unstructured or irregular inputs such as the aforementioned ones. In order to
enable weight sharing and other optimizations in convolutional architectures,
most researchers have resorted to 3D voxel grids or projections to transform
unstructured and unordered point clouds or meshes into regular representa-
tions before feeding them to the networks. For instance, Huang et al.[91]
take a point cloud and parse it through a dense voxel grid, generating a set
of occupancy voxels which are used as input to a 3D CNN to produce one
label per voxel. They then map back the labels to the point cloud. Although
this approach has been applied successfully, it has some disadvantages like
quantization, loss of spatial information, and unnecessarily large represen-
tations. For that reason, various researchers have focused their efforts on
creating deep architectures that are able to directly consume unstructured
3D point sets or meshes.

PointNet[92] is a pioneering work which presents a deep neural network
that takes raw point clouds as input, providing a unified architecture for
both classification and segmentation. Figure 20 shows that two-part network
which is able to consume unordered point sets in 3D.

As we can observe, PointNet is a deep network architecture that stands
out of the crowd due to the fact that it is based on fully connected layers
instead of convolutional ones. The architecture features two subnetworks:
one for classification and another for segmentation. The classification sub-
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Figure 20: The PointNet unified architecture for point cloud classification and segmenta-
tion. Figure reproduced from [92].

network takes a point cloud and applies a set of transforms and Multi Layer
Perceptrons (MLPs) to generate features which are then aggregated using
max-pooling to generate a global feature which describes the original input
cloud. That global feature is classified by another MLP to produce output
scores for each class. The segmentation subnetwork concatenates the global
feature with the per-point features extracted by the classification network and
applies another two MLPs to generate features and produce output scores
for each point. As an improvement, the same authors proposed PointNet++
[93] which is able to capture local features with increasing context scales by
using metric space distances.

Another remarkable work to deal with point clouds as graphs and di-
rectly apply convolutions without any kind of discretization is the DGCNN
[94]. This novel architecture proposes a new neural network module, namely
EdgeConv, which operates directly over the point cloud and incorporates sev-
eral important properties (local neighborhood information, it can be stacked,
and it is able to capture long-distance properties). That module is easily plug-
gable into existing architectures and has been proven to capture and exploit
fine-grained and global properties of point clouds expressed as graphs.

3.2.6. Video Sequences

As we have observed, there has been a significant progress in single-image
segmentation. However, when dealing with image sequences, many systems
rely on the naive application of the very same algorithms in a frame-by-frame
manner. This approach works, often producing remarkable results. Never-
theless, applying those methods frame by frame is usually non-viable due to
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computational cost. In addition, those methods completely ignore temporal
continuity and coherence cues which might help increase the accuracy of the
system while reducing its execution time.

Arguably, the most remarkable work in this regard is the clockwork FCN
by Shelhamer et al.[95]. This network is an adaptation of a FCN to make
use of temporal cues in video to decrease inference time while preserving
accuracy. The clockwork approach relies on the following insight: feature
velocity — the temporal rate of change of features in the network — across
frames varies from layer to layer so that features from shallow layers change
faster than deep ones. Under that assumption, layers can be grouped into
stages, processing them at different update rates depending on their depth.
By doing this, deep features can be persisted over frames thanks to their
semantic stability, thus saving inference time. Figure 21 shows the network
architecture of the clockwork FCN.
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Figure 21: The clockwork FCN with three stages and their corresponding clock rates.
Figure extracted from [95].

It is important to remark that the authors propose two kinds of update
rates: fixed and adaptive. The fixed schedule just sets a constant time frame
for recomputing the features for each stage of the network. The adaptive
schedule fires each clock on a data-driven manner, e.g., depending on the
amount of motion or semantic change. Figure 22 shows an example of this
adaptive scheduling.

Zhang et al.[115] took a different approach and made use of a 3DCNN,
which was originally created for learning features from volumes, to learn
hierarchical spatio-temporal features from multi-channel inputs such as video
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Figure 22: Adaptive clockwork method proposed by Shelhamer et al.[95]. Extracted fea-
tures persists during static frames while they are recomputed for dynamic ones. Figure
extracted from [95].

clips. In parallel, they over-segment the input clip into supervoxels. Then
they use that supervoxel graph and embed the learned features in it. The
final segmentation is obtained by applying graph-cut[116] on the supervoxel
graph.

Another remarkable method, which builds on the idea of using 3D con-
volutions, is the deep end-to-end voxel-to-voxel prediction system by Tran et
al.[96]. In that work, they make use of the Convolutional 3D (C3D) network
introduced by themselves on a previous work [117], and extend it for seman-
tic segmentation by adding deconvolutional layers at the end. Their system
works by splitting the input into clips of 16 frames, performing predictions
for each clip separately. Its main contribution is the use of 3D convolutions.
Those convolutions make use of three-dimensional filters which are suitable
for spatio-temporal feature learning across multiple channels, in this case
frames. Figure 23 shows the difference between 2D and 3D convolutions ap-
plied to multi-channel inputs, proving the usefulness of the 3D ones for video
segmentation.

Novel approaches such as SegmPred model proposed by Luc et al. [97] are
able to predict semantic segmentation maps of not yet observed video frames
in the future. This model consists in a two-scale architecture which is trained
in both, adversarial and non-adversarial ways in order to deal with blurred
predicted results. Model inputs have been previously per-frame annotated
and consists in the softmax output layer pre-activations. Model performance
drops when predicting more than a few frames in the future. However, this
approach is able to model the object dynamics on the semantic segmentation
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(a) 2D Convolution (b) 3D Convolution

Figure 23: Difference between 2D and 3D convolutions applied on a set of frames. (a) 2D
convolutions use the same weights for the whole depth of the stack of frames (multiple
channels) and results in a single image. (b) 3D convolutions use 3D filters and produce
a 3D volume as a result of the convolution, thus preserving temporal information of the
frame stack.

maps, which remains an open challenge for current computer vision systems.

3.2.7. Loss functions for semantic segmentation

Particular choices of the loss function can strongly affect deep models
accuracy and their learning process. For training image and patch-based
classification models, we find that the vast majority of research works and
applications simply use a cross entropy loss function. However, for regression
models, we find that L1 and L2 losses are the most common functions. In this
work, we are targeting a slightly different problem, pixel-based classification.
An important issue to consider when moving from image or patch-based clas-
sification to pixel-based classification is that the last one is more prone to
suffer the data imbalance problem. Reviewing existing works in the literature
we found that categorical cross entropy and the dice similarity coefficient are
the main loss functions used for training semantic segmentation models. We
also found different variations for these methods, such as combining both in
a weighted manner. For example, ReLayNet [118] is trained to optimize a
joint loss function comprising of weighted categorical cross-entropy and Dice
similarity score. Another common variation that has been used in existing
works is the use of a weighted scheme for the categorical cross entropy itself.
Ronneberger et al [69] precompute a weight map for the categorical cross
entropy loss. It is also very common when we have a single background class
and few foreground classes, in that case, the data imbalance problem becomes
overwhelming. Several previous approaches resorted to loss functions based
on sample re-weighting where foreground regions are given more importance
than background ones during learning. However, other approaches only op-
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timize the dice similarity score instead [119]. More recently, a new variant
has been presented, it is a loss strategy coined as Focal Loss [120], that adds
a factor v to the standard cross entropy criterion. It basically reduces the
relative loss for well-classified pixels and puts more focus on hard, misclassi-
fied ones. A similar strategy can be applied for refining object boundaries,
which often contain misclassified pixels.

Reviewing loss functions used in existing architectures for semantic seg-
mentation, we find that the FCN [68] was trained using a per-pixel multino-
mial logistic loss and was validated with the standard metric of mean pixel
intersection over union. The more recent DeepLab [73] architecture, simi-
larly to FCN, uses as a loss function the sum of cross-entropy terms for each
spatial position in the CNN output map. In this case, the original input is
subsampled by 8 and all positions are equally weighted in the loss function.
PSPNet [82] also uses the cross-entropy loss function, but in this work, two
loss functions are optimized during the training of the network. Apart from
the main branch using cross-entropy loss to train the final classifier, another
classifier is applied after the fourth stage. The optimization of these two func-
tions is performed in a weighted manner, applying different weights to each
loss function and therefore balancing the auxiliary loss function. SegmPred
[97] model relies on Gradient Difference Loss (GDL), designed to sharpen
results by penalizing high-frequency mismatches such as errors along the ob-
ject boundaries. Using GDL alongside L1 loss function, SegmPred model
results significantly improved by sharpening its outputs.

In general, the particular choice of the loss function will depend on the
type, amount of classes and samples that your dataset contains for each
class. Moreover, it is important to consider the number of pixels that are
hard to classify pixels in your dataset (compared to the total amount in
the ground truth segmentation masks). Based on those aspects, some of
the previously presented approaches may help you facing the data imbalance
problem and therefore, provide you with a more accurate model for semantic
segmentation.

4. Discussion

In the previous section we reviewed the existing methods from a literary
and qualitative point of view, i.e., we did not take any quantitative result
into account. In this Section we are going to discuss the very same methods
from a numeric standpoint. First of all, we will describe the most popular
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evaluation metrics that can be used to measure the performance of semantic
segmentation systems from three aspects: execution time, memory footprint,
and accuracy. Next, we will gather the results of the methods on the most
representative datasets using the previously described metrics. After that,
we will summarize and draw conclusions about those results. At last, we

enumerate possible future research lines that we consider significant for the
field.

4.1. Evaluation Metrics

For a segmentation system to be useful and actually produce a significant
contribution to the field, its performance must be evaluated with rigor. In
addition, that evaluation must be performed using standard and well-known
metrics that enable fair comparisons with existing methods. Furthermore,
many aspects must be evaluated to assert the validity and usefulness of a
system: execution time, memory footprint, and accuracy. Depending on
the purpose or the context of the system, some metrics might be of more
importance than others, i.e., accuracy may be expendable up to a certain
point in favor of execution speed for a real-time application. Nevertheless,
for the sake of scientific rigor it is of utmost importance to provide all the
possible metrics for a proposed method.

4.1.1. Execution Time

Speed or runtime is an extremely valuable metric since the vast majority
of systems must meet hard requirements on how much time can they spend on
the inference pass. In some cases it might be useful to know the time needed
for training the system, but it is usually not that significant, unless it is
exaggeratedly slow, since it is an offline process. In any case, providing exact
timings for the methods can be seen as meaningless since they are extremely
dependant on the hardware and the backend implementation, rendering some
comparisons pointless.

However, for the sake of reproducibility and in order to help fellow re-
searchers, it is useful to provide timings with a thorough description of the
hardware in which the system was executed on, as well as the conditions for
the benchmark. If done properly, that can help others estimate if the method
is useful or not for the application as well as perform fair comparisons under
the same conditions to check which are the fastest methods.
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4.1.2. Memory Footprint

Memory usage is another important factor for segmentation methods.
Although it is arguably less constraining than execution time — scaling mem-
ory capacity is usually feasible — it can also be a limiting element. In some
situations, such as onboard chips for robotic platforms, memory is not as
abundant as in a high-performance server. Even high-end Graphics Process-
ing Units (GPUs), which are commonly used to accelerate deep networks, do
not pack a copious amount of memory. In this regard, and considering the
same implementation-dependent aspects as with runtime, documenting the
peak and average memory footprint of a method with a complete description
of the execution conditions can be extraordinarily helpful.

4.1.83. Accuracy

Many evaluation criteria have been proposed and are frequently used
to assess the accuracy of any kind of technique for semantic segmentation.
Those metrics are usually variations on pixel accuracy and IoU. We report
the most popular metrics for semantic segmentation that are currently used
to measure how per-pixel labeling methods perform on this task. For the
sake of the explanation, we remark the following notation details: we assume
a total of k4 1 classes (from Ly to Ly including a void class or background)
and p;; is the amount of pixels of class 7 inferred to belong to class j. In other
words, p;; represents the number of true positives, while p;; and p;; are usually
interpreted as false positives and false negatives respectively (although either
of them can be the sum of both false positives and false negatives)..

e Pixel Accuracy (PA): it is the simplest metric, simply computing

a ratio between the amount of properly classified pixels and the total
number of them.

Zp“
PA= =0
2D P
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e Mean Pixel Accuracy (MPA): a slightly improved PA in which

the ratio of correct pixels is computed in a per-class basis and then
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averaged over the total number of classes.

MPA_k+1Z ku
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e Mean Intersection over Union (MIoU): this is the standard metric
for segmentation purposes. It computes a ratio between the intersec-
tion and the union of two sets, in our case the ground truth and our
predicted segmentation. That ratio can be reformulated as the number
of true positives (intersection) over the sum of true positives, false neg-
atives, and false positives (union). That IoU is computed on a per-class
basis and then averaged.
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e Frequency Weighted Intersection over Union (FWIoU): it is
an improved over the raw MIoU which weights each class importance
depending on their appearance frequency.
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Of all metrics described above, the MIoU stands out of the crowd as

the most used metric due to its representativeness and simplicity. Most
challenges and researchers make use of that metric to report their results.

4.2. Results

As we stated before, Section 3.2 provided a functional description of the

reviewed methods according to their targets. Now we gathered all the quan-
titative results for those methods as stated by their authors in their corre-
sponding papers (see Table 3. These results are organized into three parts
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depending on the input data used by the methods: 2D RGB or 2.5D RGB-D
images, volumetric 3D, or video sequences.

The most used datasets have been selected for that purpose. It is impor-
tant to remark the heterogeneity of the papers in the field when reporting
results. Although most of them try to evaluate their methods in standard
datasets and provide enough information to reproduce their results, also ex-
pressed in widely known metrics, many others fail to do so. That leads to a
situation in which it is hard or even impossible to fairly compare methods.

Table 3: Accuracy results for the most relevant methods and datasets.
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PSPNet[32] | 85.40 | - - 8020 - - - - -

DeepLab[73] | 79.70 | 45.70 | 64.94 - 70.40 - - - - - -

Dilation-10[75] | 75.30 - - - 67.10 - - - - - - - -

CRFasRNN([74] | 74.70 | 39.28 - - 62.50 - - - - - - - -

ParseNet[81] | 69.80 - - - - - - - - - - - -

FCN-8s[68] | 67.20 | 39.10 - - 65.30 - - - - - - - -

M.scale-CNN-Eigen[78] | 62.60 - - - - - - - - - - - -

Bayesian SegNet[71] | 60.50 - - 63.10 - - - - - - - - -

SegNet[70] | - . - |10 | - - - - - - - - -

DAG-RNN[87] | - . - |o160]| - - |s530 - . . - . .

ReSeg [83] - - - 58.80 - - - - - - - - -

ENet[76] | - . - | 5560 | 5830 | - - - - - - - -

tCNN[s6] | - . . 4 - |s0.20 | 7770 || - . . - . .

9D-LSTM[85] | - . . : - | 7856 | 7001 || - . . - . .

LSTM-CF[84] - - - - - - - 48.10 | 49.40 | 58.50 - - -

PointNet[92] - - - - - - - - - - 83.70 | 47.71 -

PointNet-++[93] - = - - - - - - - - 85.10 - -

DGCONN[94] | - - . § . - . . - - || 85.10 | 56.10 || -
Clockwork Convnet [9"] - - - - 64.40 - - - - - - - 68.50

SegmPred [97] - - - 46.80 | 59.40 - - - - - - - -

Furthermore, we also came across the fact few authors provide informa-
tion about other metrics rather than accuracy. Despite the importance of
other metrics, most of the papers do not include any data about execution
time nor memory footprint. In some cases that information is provided, but
no reproducibility information is given so it is impossible to know the setup
that produced those results which are of no use.

25This model is focused on predicting future frames in the space of semantic segmenta-
tion, thus a direct comparison with the other methods listed in this table would not be
fair.
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4.2.1. RGB
For the single 2D image category we have selected seven datasets: PAS-

CAL VOC2012, PASCAL Context, PASCAL Person-Part, CamVid, CityScapes,

Stanford Background, and SiftFlow. That selection accounts for a wide range
of situations and targets.

The first, and arguably the most important dataset, in which the vast
majority of methods are evaluated is PASCAL VOC-2012. This set of results
shows a clear improvement trend from the firs proposed methods (SegNet and
the original FCN) to the most complex models such as CRFasRNN and the
winner (PSPNet) with 85.70 IoU.

Apart from the widely known VOC we also collected metrics of its Context
counterpart in which DeepLab is the top scorer (45.70 IoU).

In addition, we also took into account the PASCAL Part dataset. In
this case, the only analyzed method that provided metrics for this dataset is
DeepLab which achieved a 64.94 ToU.

Moving from a general-purpose dataset such as PASCAL VOC, we also
gathered results for two of the most important urban driving databases. For
CamVid, an RNN-based approach (DAG-RNN) is the top one with a 91.60
IoU. Results on a more challenging and currently more in use database like
CityScapes change. The trend on this dataset is similar to the one with
PASCAL VOC with PSPNet leading with a 80.20 IoU.

The results of various recurrent networks on the Stanford Background
dataset are also remarkable. The winner, rCNN, achieves a maximum accu-
racy of 80.20 IoU.

At last, results for another popular dataset such as SiftFlow are also
dominated by recurrent methods. In particular DAG-RNN is the top scorer
with 85.30 IoU.

4.2.2. 2.5D

Regarding the 2.5D category, i.e., datasets which also include depth in-
formation apart from the typical RGB channels, we have selected three of
them for the analysis: SUN-RGB-D and NYUDv2. Results for SUN-RGB-D
are only provided by LSTM-CF, which achieves 48.10 IoU. In the case of
NYUDv2, results are exclusive too for LSTM-CF. That method reaches 49.40
IoU. LSTM-CF is the only one which provides information for SUN-3D, in
this case a 58.50 accuracy.
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4.2.3. 3D

Two 3D datasets have been chosen for this discussion: ShapeNet Part and
Stanford-2D-3D-S. PointNet++ and DGCNN are the most promising alter-
natives in part segmentation with 85.10 mean IoU. In the case of Stanford-
2D-3D-S, DGCNN raised the bar set by PointNet from 47.71 to 56.10 mean
IoU.

4.2.4. Sequences

The last category included in this discussion is video or sequences. For
that part we gathered results for two datasets which are suitable for se-
quence segmentation: CityScapes and YouTube-Objects. Only one of the
reviewed methods for video segmentation provides quantitative results on
those datasets: Clockwork Convnet. That method reaches 64.40 ToU on
CityScapes, and 68.50 on YouTube-Objects.

4.8. Summary

In light of the results, we can draw various conclusions. The most impor-
tant of them is related to reproducibility. As we have observed, many meth-
ods report results on non-standard datasets or they are not even tested at
all. That makes comparisons impossible. Furthermore, some of them do not
describe the setup for the experimentation or do not provide the source code
for the implementation, thus significantly hurting reproducibility. Methods
should report their results on standard datasets, exhaustively describe the
training procedure, and also make their models and weights publicly available
to enable progress.

Another important fact discovered thanks to this study is the lack of in-
formation about other metrics such as execution time and memory footprint.
Almost no paper reports this kind of information, and those who do suffer
from the reproducibility issues mentioned before. This void is due to the
fact that most methods focus on accuracy without any concern about time
or space. However, it is important to think about where are those methods
being applied. In practice, most of them will end up running on embedded
devices, e.g., self-driving cars, drones, or robots, which are fairly limited from
both sides: computational power and memory.

Regarding the results themselves, we can conclude that DeepLab is the
most solid method which outperforms the rest on almost every single RGB
images dataset by a significant margin. The 2.5D or multimodal datasets are
dominated by recurrent networks such as LSTM-CF. 3D data segmentation
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still has a long way to go with PointNet paving the way for future research on
dealing with unordered point clouds without any kind of preprocessing or dis-
cretization. Finally, dealing with video sequences is another green area with
no clear direction, but Clockwork Convnets are the most promising approach
thanks to their efficiency and accuracy duality. 3D convolutions are worth
remarking due to their power and flexibility to process multichannel inputs,
making them successful at capturing both spatial and temporal information.

4.4. Future Research Directions

Based on the reviewed research, which marks the state of the art of the
field, we present a list of future research directions that would be interesting
to pursue.

e 3D datasets: methods that make full use of 3D information are starting
to rise but, even if new proposals and techniques are engineered, they
still lack one of the most important components: data. There is a strong
need for large-scale datasets for 3D semantic segmentation, which are
harder to create than their lower dimensional counterparts. Although
there are already some promising works, there is still room for more,
better, and varied data. It is important to remark the importance
of real-world 3D data since most of the already existing works are
synthetic databases. A proof of the importance of 3D is the fact that
the ILSVRC will feature 3D data in 2018.

e Sequence datasets: the same lack of large-scale data that hinders progress

on 3D segmentation also impacts video segmentation. There are only
a few datasets that are sequence-based and thus helpful for developing
methods which take advantage of temporal information. Bringing up
more high-quality data from this nature, either 2D or 3D, will unlock
new research lines without any doubt.

e Point cloud segmentation using Graph Convolutional Networks (GCNs):
as we already mentioned, dealing with 3D data such as point clouds
poses an unsolved challenge. Due to its unordered and unstructured
nature, traditional architectures such as CNNs cannot be applied un-
less some sort of discretization process is applied to structure it. One
promising line of research aims to treat point clouds as graphs and ap-
ply convolutions over them [121] [122] [123]. This has the advantage of
preserving spatial cues in every dimension without quantizing data.
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o (Context knowledge: while FCNs are a consolidated approach for seman-
tic segmentation, they lack several features such as context modelling
that help increasing accuracy. The reformulation of CRFs as RNNs
to create end-to-end solutions seems to be a promising direction to
improve results on real-life data. Multi-scale and feature fusion ap-
proaches have also shown remarkable progress. In general, all those
works represent important steps towards achieving the ultimate goal,
but there are some problems that still require more research.

e Real-time segmentation: In many applications, precision is important;
however, it is also crucial that these implementations are able to cope
with common camera frame rates (at least 25 frames per second). Most
of the current methods are far from that framerate, e.g., FCN-8s takes
roughly 100 ms to process a low-resolution PASCAL VOC image whilst
CRFasRNN needs more than 500 ms. Therefore, during the next years,
we expect a stream of works coming out, focusing more on real-time
constraints. These future works will have to find a trade-off between
accuracy and runtime.

e Memory: some platforms are bounded by hard memory constraints.
Segmentation networks usually do need significant amounts of memory
to be executed for both inference and training. In order to fit them in
some devices, networks must be simplified. While this can be easily ac-
complished by reducing their complexity (often trading it for accuracy),
another approaches can be taken. Pruning is a promising research line
that aims to simplify a network, making it lightweight while keeping the
knowledge, and thus the accuracy, of the original network architecture
[124][125][126].

e Temporal coherency on sequences: some methods have addressed video
or sequence segmentation but either taking advantage of that temporal
cues to increase accuracy or efficiency. However, none of them have
explicitly tackled the coherency problem. For a segmentation system to
work on video streams it is important, not only to produce good results
frame by frame, but also make them coherent through the whole clip
without producing artifacts by smoothing predicted per-pixel labels
along the sequence.

o Multi-view integration: Use of multiple views in recently proposed seg-
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mentation works is mostly limited to RGB-D cameras and in particular
focused on single-object segmentation.

5. Conclusion

To the best of our knowledge, this is the first review paper in the literature
which focuses on semantic segmentation using deep learning. In comparison
with other surveys, this paper is devoted to such rising topic as deep learning,
covering the most advanced and recent work on that front.

We formulated the semantic segmentation problem and provided the
reader with the necessary background knowledge about deep learning for
the task. We covered the contemporary literature of datasets and methods,
providing a comprehensive survey of 28 datasets and 29 methods.

Datasets were carefully described, stating their purposes and character-
istics so that researchers can easily pick the one that best suits their needs.
We presented a comparative summary of datasets in a tabular form to ease
the comparison.

Methods were surveyed from two perspectives: contributions (from a
result-agnostic point of view) and raw results, i.e., accuracy (quantitative
evaluation on the most common datasets). We also presented a comparative
summary of methods in tabular form and grouped them hierarchically in a
graph.

In the end, we discussed the results and provided useful insight for future
research directions and open problems in the field. A general conclusion that
we can draw from this study is that semantic segmentation has been ap-
proached with many success stories but still remains an open problem whose
solution would prove really useful for a wide set of real-world applications.
Furthermore, deep learning has proved to be extremely powerful to tackle
this problem so we can expect a flurry of innovation and spawns of research
lines in the upcoming years.
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