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ABSTRACT
We extend our previous study of equilibrium solutions of non-rotating force-free magneto-
spheres of neutron stars. We show that multiple solutions exist for the same sets of parameters,
implying that the solutions are degenerate. We are able to obtain configurations with discon-
nected field lines, however, in nearly all cases these correspond to degenerate higher energy
solutions. We carry out a wide parametric search in order to understand the properties of
the solutions. We confirm our previous results that the lower energy solutions have up to
∼25 per cent more energy than the vacuum case, helicity of the order of ∼5 (in some defined
units), maximum twist of ∼1.5 rad and a dipole strength that is up to ∼40 per cent larger
than the vacuum dipole. Including the degenerate higher energy solutions allows for larger
theoretical limits of up to ∼80 per cent more energy with respect to the vacuum case, helicity
of the order of ∼8 and a dipole strength that can now be up to four times that of the vacuum
dipole, while the twist can be significantly larger and even diverge for configurations with dis-
connected domains. The higher energy solutions are probably unstable, therefore, it is unlikely
that such magnetospheres exist under normal conditions in magnetars and high magnetic field
pulsars.
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1 IN T RO D U C T I O N

Magnetars are strongly magnetized neutron stars with inferred mag-
netic fields above 1014 G. One of the most distinctive features
of these objects is the recurrent X-ray activity in the form of
short duration bursts (1036–1043 erg s−1 in ∼0.1 s), long duration
outbursts (1036 erg s−1 in hours) and energetic giant flares (1044–
1047 erg s−1 in ∼0.1 s) (Mereghetti, Pons & Melatos 2015; Kaspi
& Beloborodov 2017). This activity may be accompanied by an
extended X-ray decay lasting 103–104 times longer than the orig-
inal event (Coti-Zelati et al. 2017). The exact origin of this activ-
ity is currently unknown but is clearly linked to the presence of
a strong magnetic field, which is slowly evolving mainly due to
the dominant effect of the Hall drift and Ohmic dissipation in the
crust (Jones 1988; Goldreich & Reisenegger 1992; Pons, Miralles
& Geppert 2009; Gourgouliatos, Wood & Hollerbach 2016). Two
competing (or more precisely, complementary) models currently
try to explain the triggering of these violent events. In the classical
model, Hall drift of magnetic field lines builds up stresses in the
stellar crust that eventually lead to a mechanical failure (Thompson
& Duncan 1996; Perna & Pons 2011). This sudden ‘crustquake’
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releases energy and immediately disturbs the magnetosphere, pro-
ducing the observed X-ray emission. On the other hand, in more
recent works, it is assumed that the crust does not break suddenly,
but yields elastically to Hall-induced stresses up to a certain point,
beyond which it deforms plastically (Beloborodov & Levin 2014;
Thompson, Yang & Ortiz 2017). As that happens and the footprints
of the magnetic field lines at the surface are slowly displaced, there
is a transfer of helicity into the magnetosphere, leading to a mag-
netic reconnection event when some maximum twist is reached
(Lyutikov 2003; Gill & Heyl 2010; Parfrey, Beloborodov &
Hui 2013; Akgün et al. 2017). Regardless of the details of the
triggering model, it is clear that the X-ray emission is a conse-
quence of the presence of a strongly twisted magnetosphere, which
is potentially prone to severe magnetic instabilities. Therefore, it is
important to study the equilibrium of magnetospheres. As rotation
has negligible effects for typical magnetar spin periods, it can be
neglected.

Equilibrium solutions of force-free twisted magnetospheres have
been considered in the past by a number of authors (Fujisawa
& Kisaka 2014; Glampedakis, Lander & Andersson 2014; Pili,
Bucciantini & Del Zanna 2015; Akgün et al. 2016; Kojima 2017),
solving the Grad–Shafranov (GS) equation matched to the mag-
netic field at the neutron star surface. If one starts with an untwisted
current-free magnetosphere (i.e. a potential solution) and computes
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a sequence of force-free (but no longer current-free) equilibria with
increasing twist, the resulting magnetosphere tends to inflate as the
energy and helicity stored in the magnetosphere increase (see e.g.
Wolfson 1995). For sufficiently large twists, Fujisawa & Kisaka
(2014), Glampedakis et al. (2014), Pili et al. (2015) and Kojima
(2017) observed the formation of disconnected loops of current in
the magnetosphere. However, these kind of configurations were not
found in Akgün et al. (2016) (Paper I, hereafter) for a comparable
set of parameters. Instead, beyond a maximum twist of ∼1.5 rad,
the numerical procedure used to solve the non-linear GS equation
failed to converge. This maximum twist was interpreted as a physical
bound of the system and not as a limitation of the numerical solver
(see Paper I), and can be used to estimate the twist at which recon-
nection events are produced during the magneto-thermal evolution
of magnetars (Akgün et al. 2017). Furthermore, the values of the
maximum twist obtained with this procedure coincide with those
obtained in dynamical MHD simulations (Mikic & Linker 1994;
Parfrey, Beloborodov & Hui 2012, 2013).

In this work, we study in more detail the force-free configura-
tions of Paper I in order to try to understand the differences with
other authors in the appearance of disconnected regions in the mag-
netosphere. Our hypothesis, which is verified in this work, is that
the solutions of the GS equation are degenerate, and that beyond
a certain critical twist, the solution of this equation is non-unique.
For this purpose, we use an iterative numerical procedure similar
to that of Pili et al. (2015). We show that, for a given set of pa-
rameters resulting in multiple solutions, the solutions presented in
Paper I correspond to the lowest energy (and helicity and twist) and
hence should be considered as the stable branch of magnetospheric
configurations.

The structure of the paper is as follows: in Section 2 we present
a short statement of the problem, reviewing the most relevant equa-
tions, and then we discuss the new method applied for solving the
equation iteratively; in Section 3 we discuss our findings and their
implications; and in Section 4 we present our conclusions.

2 T H E G R A D – S H A F R A N OV EQUATI O N

The nature of the problem and the numerical methods we employ are
discussed in great length in Paper I. Here, we only give a minimal
review of the related equations as a reference.

We express the axisymmetric magnetic field in terms of the
poloidal stream function P and the toroidal stream function T as

B = ∇P × ∇φ + T ∇φ , (1)

φ being the azimuthal angle. The vanishing of the azimuthal com-
ponent of the Lorentz force implies that T must be a function of P.
Setting the remaining poloidal component of the force equal to zero
then gives the GS equation1

�GSP = −G(P ), (2)

where G(P) = T(P)T′(P) and �GS is the GS operator given by

�GS = � 2∇ · (�−2∇) = ∂2
r + 1 − μ2

r2
∂2

μ, (3)

with the notation � = r sin θ and μ = cos θ .

1 Force-free fields have been studied in Lüst & Schlüter (1954), prior to the
works by Grad and Shafranov.

We assume a toroidal function of the form

T (P ) =
{

s(P − Pc)σ for P ≥ Pc,

0 for P < Pc.
(4)

Here, s controls the relative strength of the toroidal field with respect
to the poloidal field, Pc is the critical field line defining the border
of the toroidal field (i.e. the region of magnetospheric currents)
and σ controls how the toroidal field amplitude is concentrated
within this region. Regularity of currents requires σ ≥ 1. Continuity
further requires σ > 1, and as noted in Paper I, the case of σ = 1
implies that the current has a sudden jump (discontinuity) at the
border of the toroidal field, while the magnetic field, obviously, is
continuous (as the poloidal field is tangential to this border, and the
toroidal field goes to zero). This discontinuity does not correspond
to surface currents, which would be problematic as they would
result in discontinuities in the magnetic field. Increasing σ lessens
the effect of the toroidal field. Therefore, in order to work with the
more extreme case, we choose σ = 1, as we did in Paper I. In reality,
taking a slightly larger value, for example σ = 1.1 as in Lander &
Jones (2009), makes little difference, as shown in Paper I.

2.1 Non-uniqueness of the solutions

The GS equation is a second-order, non-linear, inhomogeneous par-
tial differential equation. The non-linearity of the equation is due
to the presence of the function G(P) on the right-hand side of
equation (2). Even in the case of σ = 1, the non-linearity arises
due to the discontinuous behaviour of G(P) and its derivatives at
P = Pc. Given the elliptic nature of the equation, it is necessary
to impose boundary conditions in order to obtain a solution. In our
case, boundary conditions are completely set for fixed values of the
parameters σ , s and Pc, which effectively determine the matching
condition at the stellar surface as a Dirichlet boundary condition
(see Paper I for details). However, even if the freedom at the bound-
ary is completely set, the existence and uniqueness of the solutions
of the equation cannot be taken for granted.

The customary way of demonstrating uniqueness of the solutions
of elliptic equations is to find a maximum principle. Equation (2) is
quasi-linear, because it is linear in its second (highest) derivatives.
For such equations of the form

�u = f (u), (5)

� being the Laplace operator and f a non-linear function, it is
possible to use a maximum principle to prove local uniqueness of
the solution if f′(u) ≥ 0 (see Taylor 2010, chapter 14). The GS
equation can be rewritten in such a form through

�

(
P sin φ

r sin θ

)
= −G(P ) sin φ

r sin θ
, (6)

where we can now identify u = Psin φ/(r sin θ ) and f = −G(P)
sin φ/(r sin θ ) (see Glampedakis et al. 2014). In the linear case, f
∝ u, implying that G ∝ T ∝ P, and, therefore, f′(u) = −G′(P) is
a non-positive constant. Even under this simplistic assumption, the
only case in which we can guarantee the uniqueness of the solution
of the GS equation is the current-free case (G = 0).

More generally, for sufficiently small values of T′(P), Bineau
(1972) proved the uniqueness of force-free solutions, provided the
solution domain is bounded and the field is not vanishing any-
where. However, little more is known from an analytical point of
view on the conditions necessary to obtain unique solutions of the
GS equation, or, in general, of three-dimensional (3D) force-free
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configurations. (See e.g. Wiegelmann & Sakurai 2012, for a discus-
sion in the context of solar force-free fields.)

Given that for small or no currents we expect a unique solution
and for larger twists this may not be the case, we expect that there
will be a critical twist beyond which no unique solution can be
found. As we show in this paper, this indeed is the case.

2.2 New numerical implementation

We cannot use the same implementation as in Paper I in order to
study the multiple solutions. The numerical procedure in that work
consists of solving the linear part of the GS equation (the left-hand
side of equation 2) for an initial guess for the right-hand side. This
procedure is repeated while maintaining the values of s and Pc fixed
throughout the iterations. With this procedure, if multiple solutions
exist for the same values of s and Pc, the numerical procedure
converges to one of the solutions. The solution found depends on
the initial guess, so this numerical procedure presents difficulties to
obtain systematically all the solutions of the GS equation for given
s and Pc.

In this work, we follow the scheme devised by Pili et al. (2015).
Instead of fixing Pc during the iterations, we fix the value of the
critical radius rc, defined as the radial extent (on the equatorial
plane) of the magnetic field line with stream function Pc. This
means that Pc varies between iterations, while the border of the
toroidal region is forced to pass through rc, which is constant. As
we show in the next section, for a given value of Pc there may
exist multiple solutions with different values of rc. Therefore, this
procedure allows us to build selectively the different configurations
corresponding to a single value of Pc.

We build sequences of models starting with the untwisted
(current-free) solution and increasing the twist progressively by
increasing the value of rc for a fixed value of s. To speed up
the convergence of our iterative scheme, we use the solution of
the previous model as an initial guess for the subsequent model
in the sequence.

2.3 Notation and units

In this work, we use the same notation and dimensionless units as
in Paper I. Thus, distances are measured in units of the stellar radius
R�, and magnetic field strength is measured in units of some Bo. For
a dipole field, Bo corresponds to the surface magnetic field strength
at the equator (or equivalently, half of the magnetic field strength at
the pole). The dimensions of all other quantities used in the paper
can be derived from these two definitions. Thus, for example, the
poloidal function P is given in units of BoR

2
� . For a dipole field,

we have P(r, θ ) = r−1sin 2θ , implying that, on the stellar surface
(at r = 1), P ranges from 0 (at the pole) to 1 (at the equator). The
most important quantities and their units are listed in Table 1 as a
reference.

3 R ESULTS

In Paper I, we conjectured that the disconnected field lines reported
by Pili et al. (2015) might represent degenerate solutions of the GS
equation. Here, we employ the term degenerate in the sense that
multiple magnetospheric solutions can be constructed for the same
values of the parameters s and Pc (but with different rc). Using a
similar iteration scheme to Pili et al. (2015), we now present results
that effectively confirm this hypothesis. Since we fix rc and let Pc

to vary, the best way to carry out a detailed parametric study is to

Table 1. List of relevant quantities, notation
and units.

Quantity Notation Units

Magnetic field strength B Bo

Radius r R�

Poloidal function P BoR
2
�

Toroidal function T BoR�

Energy E B2
o R3

�

Helicity H B2
o R4

�

Twist ϕ rad

follow the progression of Pc for a given value of s, as rc is gradually
moved away from the stellar surface (which corresponds to rc = 1
in the dimensionless units listed in Table 1). We indeed find that
there are multiple solutions for the same set of s and Pc for different
values of rc. In fact, in some cases we find up to three solutions, and
it is likely that the progression can be continued further. In practice,
for larger values of rc, convergence becomes increasingly tedious,
requiring exceedingly good initial guesses, and greatly enhancing
the resolution is impractical.

We next present some sample models and then explore the param-
eter space in greater detail. In all cases considered in this paper, we
impose a dipole field at the stellar surface, Psurf ≡ P(1, θ ) = sin 2θ

(where r = 1 corresponds to the stellar radius in the units employed
here).

3.1 Sample field configurations

In Fig. 1, we show the 2D field configurations of three degenerate
solutions for s = 1.5 and Pc ≈ 0.57. The three solutions (labelled as
models 1, 2 and 3) correspond to rc = 1.85, 4.60 and 6.45, respec-
tively. The potential (current-free) solution for the same surface field
(i.e. the vacuum dipole) is shown in grey lines in the background as
a reference. These solutions are three representative cases of typical
geometries that can be obtained for the same parameters s and Pc:
(i) a nearly potential solution, where magnetospheric currents are
confined into a small region (marked by the thick black line) close
to the stellar surface (top panel); (ii) a larger, elongated region con-
taining the currents, but still connected to the stellar surface (middle
panel) and (iii) a greatly extended solution with some disconnected
field lines (bottom panel). The 3D view of the latter case is shown
in Fig. 2 as an illustration of a typical case. (The disconnected field
lines are not shown in 3D.)

Interestingly, as we will discuss in greater length in the next
section, we find that, for a fixed s, there is a maximum energy
at some rc, beyond which the energy starts to drop. For s = 1.5,
this maximum is the model shown in the middle panel in Fig. 1
(model 2). The first disconnected configuration appears shortly af-
ter this maximum, at a critical radius of rc ≈ 4.69, as becomes
apparent by comparing the middle and bottom panels. Model 1
in the top panel is the lowest energy solution for s = 1.5 and
Pc ≈ 0.57, which, incidentally, can also be obtained through the
method of Paper I, where Pc is kept fixed between iterations. The
third model shown in the bottom panel has an intermediate en-
ergy, somewhat higher than model 1, but nevertheless below that of
model 2.

We have carried out a thorough exploration of the parameter
space. In general, for a given function T(P), we have found anywhere
from one, up to three solutions for the same parameters s and Pc. We
now discuss in more detail the parameter space, and how important
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Figure 1. Sample field configurations in 2D for s = 1.5 and Pc ≈ 0.57.
Top: rc = 1.85 (lowest energy solution, also found by fixing Pc). Middle:
rc = 4.60 (highest energy solution). Bottom: rc = 6.45 (intermediate energy
solution). The toroidal field is confined within the critical field line indicated
by a thick black line. The vacuum dipole field is shown in the background
in grey lines for reference.

quantities such as energy, helicity, twist and dipole moment depend
on them.

3.2 Energy

The energy stored in the magnetosphere is

E = 1

8π

∫ ∞

R�

B2 dV . (7)

For force-free fields (including the special case of current-free
fields), the energy can be expressed entirely in terms of surface
integrals, as noted in Paper I. We define the relative energy with
respect to the vacuum energy as

�E = E − Evac, (8)

where the vacuum energy for a dipole is Evac = 1/3, in the units
listed in Table 1. In Fig. 3, we plot the fraction �E/Evac as a
function of Pc, which itself is a function of rc, for various values
of s. Note the spiral-like structure of the curves, which are plotted
for constant s. Along each curve, rc continuously increases starting
from 1 (corresponding to the point Pc = 1 near the lower right
corner of the plot, and which is simply the limiting case when
the toroidal field is confined to a single point on the equator) up
to the largest value for which reasonable convergence is achieved.

Figure 2. 3D field configuration for a sample field. (Model 3 shown in the
bottom panel in Fig. 1.)

Continuing further along the curve becomes progressively difficult
from a numerical perspective as rc is increased.

It is convenient to identify the important points along the curves.
For each line of constant s, we define the leftmost point as
point A, the maximum energy as point B and the rightmost ex-
tent of the upper section of the spiral as point C. These points are
indicated for the sample curve s = 1 in Fig. 3. The tangents to the
curve at points A and C are vertical, and at point B, it is horizontal.
Point A corresponds to the lowest value of Pc for a given s, while
point C corresponds to the largest value of Pc for which degenerate
solutions are found. Thus, degenerate solutions are only present in
the interval of Pc delimited by the points A and C. For larger values
of Pc, beyond point C, there is only one non-degenerate solution for
each value of s.

With these definitions, we can now identify two branches for
each curve: (i) the lower branch, consisting of the lower energy
solutions extending from Pc = 1 (i.e. from rc = 1) up to point A
(corresponding to some radius rc) and (ii) the upper branch, con-
sisting of the higher energy solutions (for larger rc). The points A
for the curves of constant s are shown as white circles in the figure,
forming what we will refer to as line A.

The solutions presented in Paper I correspond to the lower branch,
and the highest energy configurations obtained there (for the small-
est values of Pc for a given s) agree remarkably well with line A.
(This is discussed further in Section 3.4.)

The points where disconnected domains start to appear are de-
termined by analysing the equatorial profile of the poloidal stream
function P. Disconnected regions are present when P has a max-
imum (i.e. its radial derivative is zero). Note that the first discon-
nection must be a maximum (even if there is not necessarily a
minimum), because P has to decrease far away from the surface, in
order to smoothly connect to a vacuum field (which is of the form
P ∝ r−l, where l is the multipole index). The marginal disconnec-
tion takes place when the radial derivative becomes zero for the first
time. The points of marginal disconnection are marked with black
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Figure 3. Relative energy increase �E/Evac (defined in equation 8) as a function of Pc. The curves are drawn for constant s in the interval 0.5 ≤ s ≤ 6, in
increments of 0.1. Some curves are highlighted in black for emphasis and the corresponding values of s are indicated above them. For each curve, rc varies from
1 (corresponding to the point Pc = 1 at the lower right corner of the plot) up to the largest value for which reasonable convergence is achieved. The points A,
B and C are indicated for the sample curve of s = 1: A is the leftmost point along the line; B is the maximum energy and C is the rightmost extent of the upper
branch of the line, and also marks the largest value of Pc for which degenerate solutions are found for a given s. The leftmost points of the curves marking
the separation between the high-energy and low-energy branches of the solutions are indicated with white circles. The points where the first disconnected field
lines appear are marked with black circles for all the lines, and the corresponding values of rc for the highlighted lines are given in parentheses.

circles in the figure, and the corresponding values of rc can be read
from Fig. 4, which shows the relation between Pc and rc (allowing
to translate the values of Pc into the corresponding values of rc).
These values are also indicated in parentheses for the highlighted
lines in Fig. 3. Note that the formation of disconnected field lines
takes place quite late along the curves for small values of s, while
for larger values it approaches point A and may even be slightly
below it. In other words, for large s even the lower branch may have
some disconnected fields. Either way, while such field configura-
tions are interesting solutions of the GS equation, they may be of
little practical use from a physical point of view, as they will likely
result in the expulsion of a plasmoid and the sudden rearrangement
of the magnetic field structure.

Finally, we note a couple of peculiarities in Fig. 3. First, the
upper branches of the curves near s = 6 appear to exceed Pc = 1
(the largest value on the stellar surface). This implies that for these
models, the toroidal region is completely detached from the stellar
surface, and entirely confined within a magnetospheric torus. In
this case, the only lower energy solution available is the vacuum
solution. Secondly, also note that for larger values of s (in particular,
for s = 5 and s = 6) the curve crosses itself. This point is a triply
degenerate solution: the energy, as well as the parameters s and
Pc, are the same for two solutions with different values of rc. In
principle, there is no problem for the curve crossing itself, however,
it does put into doubt how its subsequent continuation would be, if
it could be followed further to even larger values of rc. Lastly, not
far from the triply degenerate points (for the largest values of rc for
s � 4), we come across the first doubly disconnected fields, that is,

field configurations with two disconnected regions. In principle, it
seems plausible that continuing further into ever higher values of rc

would lead to the successive appearance of multiply disconnected
fields.

3.2.1 Implications for the energetics

The grey line delimiting the maximum energy as a function of
Pc plotted in Fig. 3 is determined through a fit by eye, and is
approximately given through

�E

Evac
≈ Pc − 0.1. (9)

In the figure, note that the largest energies attained can be up to
∼80 per cent larger than the ground energy level corresponding to
the vacuum dipole. However, these are all in the upper branch of
the curves, corresponding to the degenerate solutions, and for large
s they are all disconnected field configurations. Therefore, it is un-
likely that these field configurations could ever be realized in nature
(without some external stabilizing force). For lower values of s, the
disconnection of field lines takes place on the upper branch (beyond
point A). The largest energy attained by the (marginally) connected
field configurations (indicated with black circles in the figure) is for
intermediate values around s ∼ 2 and is about ∼60 per cent larger
than the vacuum energy. However, even these solutions may be
unstable, as lower energy configurations exist for the same parame-
ters, and it is conceivable that any perturbation would take us to the
lower branch. Therefore, considering only the configurations on the
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Figure 4. rc versus Pc, for the same models as in Fig. 3. The vertical axis is shown on a logarithmic scale in order to reveal more detail. The plot allows
to convert the values of Pc to those of rc. As in Fig. 3, the points marking the edge of the lower branch are shown as white circles, and the points where
disconnected fields appear are shown as black circles.

lower branch (up to point A), the energy increase never exceeds the
∼25 per cent threshold, consistent with the results of Paper I.

Placing our results in the magnetar context, where the inter-
nal field evolution is somehow resulting in a slow, continuous
injection of energy and helicity into the magnetosphere, we can ar-
gue that the maximum (magnetospheric) energy available to power
a flare/outburst event is of the order of ∼25 per cent of the total
magnetic energy of the corresponding dipole solution. Thus, in the
most favourable case, this is

(�E)max ≈ 3.6 × 1044

(
Bpole

1014 G

)2 (
R�

12 km

)3

erg, (10)

where Bpole is the magnetic field amplitude at the pole (i.e.
Bpole = 2Bo, in the units of Table 1), which is consistent with the
observed energetics of magnetar-like events. In principle, assum-
ing the absolute maximum value of ∼80 per cent could potentially
triplicate this number, however, it seems unlikely that such config-
urations would be realized under normal circumstances.

3.3 Helicity, twist and dipole moment

We next consider the parametric dependence of other quantities of
interest, namely the helicity, twist and dipole moment.2 We define
magnetic helicity as

H =
∫

A · B dV = 2
∫

AφBφ dV . (11)

2 We refer the interested reader to Paper I, where more detailed definitions
and discussions of these quantities can be found.

Here, A is the vector potential, and as discussed in Paper I, the last
equality is valid for a specific gauge, where a surface integration
drops out.

On the other hand, twist is defined as the azimuthal displacement
(in radians) between the footprints of a magnetospheric field line
on the stellar surface. It is given through the integral

ϕ =
∫ 	

0

Bφ d	

(B2
r + B2

θ )1/2 r sin θ
, (12)

where d	 is the field line element in the (r, θ ) plane, and 	 is the
total length of the field line in this plane.

Finally, as in Paper I, we define the dipole strength normalized
to the surface,

a1 = rA1(r)

R�

, (13)

where A1(r) is the dipole component obtained through the multipole
expansion of the poloidal function P(r, θ ) at some external radius
r > rc, beyond the toroidal region containing the currents.

3.3.1 Helicity

The analogous plot to Fig. 3, but for the helicity H, is shown in
Fig. 5. In this case, the points corresponding to the maximum energy
(labelled as point B for s = 1) do not necessarily correspond to the
maxima of helicity, which are slightly displaced. Helicity seems to
have an absolute maximum of ∼8 (in the units listed in Table 1; see
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Figure 5. Helicity H versus Pc. As in Fig. 3, the curves are plotted for constant s, with a few of them highlighted in black lines. The leftmost points A and the
points of disconnection are indicated in white and black circles, respectively. Point B corresponds to the maximum energy (for a given s), and is near, but not
the same as, the maximum helicity.

footnote3) near Pc ∼ 0.6. Also note that the spirals no longer cross
themselves, unlike for the energy. It is not clear if this still would be
the case if the curves could be continued further into larger values
of rc. As in Fig. 3, the points A are shown in white circles and the
points of disconnection are shown in black circles. The solutions
presented in Paper I correspond to the region below line A, which
has a maximum of ∼5, consistent with the conclusions of Paper I.

3.3.2 Twist

For each field configuration, we calculate the twist of the field lines
with footprints on the stellar surface. The maximum twist – the
largest value of the integral given by equation (12) – is shown in
Fig. 6 as a function of Pc. In Paper I, we did not find solutions beyond
a maximum value of ∼1.5 rad, for a wide range of parameters (s
and Pc). This is consistent with the white circles corresponding to
the points A and marking the maximum extent of the lower branch
solutions in Fig. 6. Note how these points form a nearly horizontal
line except for the largest values of s, effectively confirming our
earlier conclusion. Thus, we can use the maximum twist as a rough
indication in order to determine if a magnetospheric model is in the
lower branch (for �1.5) or in the upper branch (for larger values).

3 Helicity is given in units of (cf. Table 1)

Ho = B2
o R4

� ≈ 5.2 × 1051
(

Bpole

1014 G

)2 (
R�

12 km

)4

G2 cm4.

The combination G cm2 is equivalent to Maxwell (Mx) – the cgs unit for
magnetic flux.

For the degenerate solutions of the upper branch, the twist can
be significantly larger. In this case, the maximum twist is harder
to calculate systematically, both because finer grids are needed in
order to resolve the field lines, and because of the appearance of
mathematical divergences due to the definition of the twist (through
equation 12) in the case of disconnected field lines. The latter
point requires careful consideration: the definition of twist is not
a straightforward matter for models with disconnected domains. In
particular, the twist will diverge near the X-point, which is a saddle
point on the surface defined by P(r, θ ). At this point, the radial and
angular derivatives ∂rP and ∂θP both go to zero (while the sec-
ond derivatives will have opposite signs), implying that the poloidal
magnetic field components Br and Bθ simultaneously vanish, while
the toroidal field Bφ and the length 	 of the projection of the field
line on the (r, θ ) plane remain finite. From equation (12) for the
definition of the twist, it then follows that the integrand diverges
at this point and the twist goes (continuously) to infinity. A similar
situation arises for the neutral point – the local maximum of P (and
the central point for the disconnected field lines), where again both
partial derivatives of P go to zero (while the second derivatives
are both negative). However, in this case 	 → 0 as well (as the
projections of the field lines tend to a dot), so there may not neces-
sarily be a divergence. We do not calculate the twist for completely
disconnected field lines (near the neutral point).

The divergence at the X-point can be understood as follows:
As the poloidal field strength Bpol decreases to zero along the
field line while approaching the X-point, the field line becomes
more and more inclined and circular (in 3D), until, finally, at the
X-point itself, Bpol vanishes and the field line turns into a circle
on the equatorial plane (for a dipole field), never returning back to

MNRAS 474, 625–635 (2018)
Downloaded from https://academic.oup.com/mnras/article-abstract/474/1/625/4582296
by Universidad de Alicante user
on 07 May 2018



632 T. Akgün et al.

Figure 6. Maximum twist ϕmax versus Pc. We do not calculate the twist for disconnected field lines (near the neutral point). Therefore, the lines are cut off
at the points of disconnection (shown as black circles in preceding figures). Moreover, when an X-point is present for a disconnected field configuration, the
twist diverges. As a consequence, the figure is capped at 2π.

the surface. This case represents a purely toroidal magnetic field
line, and the twist defined through equation (12) is no longer a
particularly useful concept. Thus, when an X-point forms, there
will inevitably be field lines of infinite twist, corresponding to cir-
cles with zero poloidal field strength, surrounded by nearby field
lines where the twist continuously approaches infinity. These diver-
gences are not integrable, in the sense that they cannot be avoided
by changing variables in the integration.

In Fig. 6, for small values of s, the X-point forms together with a
neutral point (for a sufficiently large rc) and the twist is found to di-
verge. For marginally disconnected fields, the twist would be large
but finite, and would require a high resolution to be calculated ac-
curately. Consequently, we choose to cut off the upper part of Fig. 6
at 2π, as higher values will have larger numerical uncertainties. On
the other hand, for large values of s, a neutral point forms initially
without the presence of an X-point, and the twist of the field lines
connected to the surface is still finite, while for the disconnected
field lines it is not calculated. As rc continues to increase, an X-point
will eventually form as well, at which point the twist would once
again diverge. In the figure, we only show the twist up to the point
where the first disconnected field lines appear (corresponding to the
black circles in the previous figures).

As an example, the twist profiles for the models of Fig. 1 are
shown in Fig. 7. The twist ϕ is shown as a function of the poloidal
function at the surface, Psurf = sin 2θ (for dipolar boundary con-
ditions). The twist goes to zero at Pc (≈0.57) and at 1, and has a
maximum somewhere in that interval. The twist for model 1 is a
smooth curve with a maximum of ϕmax ≈ 0.57 (at Psurf ≈ 0.80).
For model 2, the field lines are strongly stretched outwards, and
although not yet disconnected, the X-point is about to be formed.

Figure 7. Twist profiles of the three models shown in Fig. 1. The twist ϕ

is shown as a function of the poloidal function at the surface Psurf. When
the field configuration is highly outstretched and near disconnection, as in
model 2, the twist increases sharply. When eventually an X-point forms and
some field lines become disconnected, the twist diverges, as in model 3.
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Figure 8. Dipole strength at the surface a1 versus Pc.

As a consequence, the twist rises sharply to a (still finite) maximum
value of ϕmax ≈ 7.4 in the vicinity of Psurf ≈ 0.85. In model 3,
an X-point has already formed and a region of disconnected field
lines has appeared. Thus, the twist now diverges at the sharp cusp at
Psurf ≈ 0.66.

3.3.3 Dipole moment

The dipole moment at large distances (beyond the largest extent
of the currents), normalized to the value at the stellar surface (as
defined through equation 13), is shown in Fig. 8. In Paper I, we
found that it can be up to ∼40 per cent larger than the vacuum dipole
solution (which is unity in the dimensionless units used here). This
is consistent with the points A indicated by the white circles. On the
other hand, for the higher branch of solutions, the dipole moment
can be significantly larger – up to four times larger than the vacuum
case. Either way, the presence of magnetospheric currents amplifies
the dipole moment, implying that measurements at large distances
(for example, through the spin-down torque) overestimate the actual
surface dipole moment by a factor a1.

3.4 Map of the parameter space

In Fig. 9, we show a plot of the solutions in the parameter space for
s and Pc. The vertically shaded region corresponds to the solution
space reported in Paper I, where the value of Pc was held fixed
throughout the iterations. This space was explored systematically
in the interval 0.1 ≤ Pc ≤ 0.9 and for values of s ranging from zero
up to the largest value for which solutions could be found. (Thus,
this figure is analogous to Fig. 6 of Paper I.) On the other hand, the
horizontally shaded region represents the solution space explored
in this paper, while forcing rc to be constant and allowing Pc to vary
between iterations. In this case, the solutions have been explored in

the interval 0.5 ≤ s ≤ 6 and for rc = 1 (corresponding to Pc = 1) up
to the largest value of rc for which convergence could be achieved.

For each horizontal line of constant s, the leftmost point is marked
by an empty circle and corresponds to the point A, i.e. the lowest
value of Pc for which a solution can be found. Alternatively, it also
corresponds to the largest value of s for a given Pc for which a
solution can be found. The points A, calculated through the method
used in this paper, coincide remarkably well with the largest values
of s obtained for the solutions presented in Paper I (shown as the
vertical lines).

The white region in the upper left half of the plot beyond the
boundary formed by the points A corresponds to the parameter
space where no solutions through either method are found. As noted
in Paper I, the edge of the parameter space, as well as contours of
energy, helicity and twist, are very well approximated by a function
of the form

s = γP m
c

(1 − Pc)n
, (14)

where γ , m and n are three parameters to be determined by fitting. By
taking the logarithm of the equation, it can be linearized. The most
straightforward way is to pick three points along the boundary and
solve for the unknown parameters. Taking the corresponding values
of Pc for s = 1, 2 and 3, we find the values γ ≈ 1.70, m ≈ 0.925
and n ≈ 0.863 for the parameters. This function is plotted as a thin
black line, and indeed, it is an outstandingly good approximation to
the white circles.

The white diamonds represent the points C, which, together with
the points A, delimit the region where multiple solutions can be
found. To the right of line C, there is always only one solution,
which is also the lowest energy solution. Note that towards the right
upper corner, line C slightly goes over the value Pc = 1. In these
cases, the toroidal region is completely detached from the surface,
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Figure 9. Representation of the solutions in the parameter space of s and
Pc. The vertical grey lines are the solutions found using the method of
Paper I by fixing Pc, while the horizontal grey lines are the solutions found
with the method of this paper by fixing rc. The white space in the upper
left portion is where no solutions can be found through either method. The
edge of the solution space is marked by the white circles representing the
points A (the smallest value of Pc for a fixed s). The points C representing
the rightmost extent of the degenerate region are shown with white diamonds.
The thick black line is for the disconnection points (shown as black circles
in the previous figures, and labelled as line D here). Also shown is a fit to
line A (equation 14).

and there are always only degenerate solutions, since, for the lowest
energy solutions, Pc cannot exceed 1.

The thick black line shows where the first disconnected regions
appear. (Shown as the black circles in the previous figures.) For
small s, this line starts off near line C, and as s is increased, it
displaces to the left edge of the parameter space, eventually ap-
proaching line A.

4 C O N C L U S I O N S

In this work, we have extended the force-free magnetosphere solu-
tions for the GS equation presented in Paper I (where we fixed the
parameter Pc between iterations) by modifying the iteration scheme
(where we now fix rc and allow Pc to vary). As conjectured in
Paper I, we show that the solutions of the GS equation are degener-
ate and there are multiple solutions for the same sets of parameters
s and Pc. We are able to reproduce the solutions found previously in
Paper I, which we now confirm as the lower energy (branch) solu-
tions. In addition, we find a new branch of solutions corresponding
to higher energies, some of which present disconnected domains
similar to the results of Fujisawa & Kisaka (2014), Pili et al. (2015)
and Kojima (2017).

We find that as rc is gradually increased (starting from the stel-
lar surface), while maintaining s fixed, the field goes through the
following set of configurations:

(i) Initially, we are in the lower energy branch of the solutions,
and the field configuration is (relatively) close to the vacuum solu-
tion. As rc increases, the toroidal region becomes more and more
inflated (as in model 1 of Fig. 1).

(ii) Beyond point A (corresponding to the white circles in Figs 3–
6, 8 and 9), degenerate solutions start to appear. Initially they are
still connected to the interior, however now they present severe dis-
tortions from the vacuum case, as the field lines become elongated
near the equator (as for model 2 in Fig. 1).

(iii) As rc is increased further, the first disconnected field lines
appear (beyond the marginally connected configurations indicated
by black circles in Figs 3–5, 8 and 9). The field configurations now
contain neutral points and X-points (as in model 3 of Fig. 1; also
depicted in 3D in Fig. 2).

(iv) For s � 4, a second disconnected region starts to appear for
the largest values of rc, implying that further solutions (with mul-
tiple disconnected regions) could exist for even larger rc. However,
numerical convergence becomes progressively difficult to achieve
as rc is increased, and significantly enhancing the resolution is
impractical.

(v) For sufficiently large values of s, the toroidal region can be
completely detached from the stellar surface, as implied by Pc > 1.
For these extreme cases, there are no corresponding lower energy
solutions, except the vacuum (current-free) solution.

We note that disconnected configurations are likely to be prone
to severe instabilities through the ejection of a plasmoid and the
sudden rearrangement of the field structure. Therefore, while these
are interesting solutions of the GS equation, it is not clear how
they could be naturally formed and sustained under normal circum-
stances in neutron stars, without some external forces. Moreover,
for fixed parameters, it is conceivable that perturbations of higher
energy solutions would bring the system to the lower energy config-
urations. Therefore, we argue that the lower branch represents the
likely (more) stable solutions, while the upper branch consists of the
more difficult to realize and likely unstable solutions. Disconnected
field configurations are found almost entirely on the upper branch,
except a narrow range for large values of s. Proving stability more
generally requires a careful analysis of whether or not a transition
to a lower energy state is at all possible, as well as an estimation
of the associated time-scale for such a transition, and is beyond the
scope of this work.

Having identified the lower energy branch of solutions of the
GS equation (roughly defined by a maximum twist of �1.5 rad,
as implied by Fig. 6), we have also determined the region of the
parameter space (spanned by s and Pc) where solutions are pos-
sible. Interestingly, the new solutions found here do not mod-
ify the allowed parameter space reported in Paper I, described
very well through a fit of the form given by equation (14), as
depicted in Fig. 9. We argue that this border (which also corre-
sponds to the separation of the lower and higher energy branches)
is the point at which magnetospheric instabilities could be ex-
pected to produce a flare or outburst, such as the ones observed in
magnetars.

Considering only the lower branch, our analysis limits the maxi-
mum energy stored in the magnetosphere to ∼25 per cent more than
the energy of the corresponding vacuum (dipole) solution, which
sets an upper bound on the energetics of the flare of about a few
1044 − 1046 erg for typical magnetic fields of 1014–1015 G, consis-
tent with magnetar activity. In this case, the largest helicity is of the
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order of ∼5 (in the units listed in Table 1; see footnote3), and the
dipole strength is about ∼40 per cent larger than the vacuum dipole.

The degenerate upper branch allows for higher theoretical limits
of up to ∼80 per cent more energy with respect to the vacuum case
(i.e. about three times more than the amount for the lower branch),
larger helicity of the order of ∼8 and a dipole strength that can now
be up to four times that of the vacuum dipole. On the other hand,
the twist can be much bigger, and, in fact, it would diverge when an
X-point forms in a disconnected field configuration.

This work gives support to the interpretation by Akgün et al.
(2017) that the criterion to determine when a flare is produced
during the magneto-thermal evolution of magnetars can be deter-
mined as the point in which no solutions of the GS equation can
be found. This is indeed interesting, because it allows to perform
those evolutions without worrying about the complex dynamics of
the magnetosphere, which instead can be substituted by the much
simpler GS equation.
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