
1

Efficient Wideband DOA Estimation through
Function Evaluation Techniques

J. Selva

Abstract—This paper presents an efficient evaluation method
for the functions involved in the computation of direction-of-
arrival (DOA) estimators. The method is a combination of the
Chebyshev and barycentric interpolators, and makes use of the
Discrete Cosine Transform (DCT). We present two applications
of this method. The first is for reducing the complexity of the
line searches in three wideband DOA estimators: Incoherent
Multiple Signal Classification (IC-MUSIC), Test of Orthogonality
of Projected Subspaces (TOPS), and Deterministic Maximum
Likelihood (DML). And the second application is a procedure to
compress the wideband DML cost function, so that it is formed
by just a few summands. This compression entails a reduction
in complexity by a large factor. The evaluation method and
its applications are numerically assessed in several numerical
examples.

I. INTRODUCTION

The estimation of the directions of arrival (DOAs) to an
array of sensors is a fundamental problem in signal processing,
which has been studied in multitude papers during the last
decades. Most of the existing estimators are based on the so-
called narrowband assumption, i.e, on considering that the
maximum delay along the array is much smaller than the
inverse bandwidths of the incoming signals, [1, Sec. 2.2]. As is
well known, this assumption greatly simplifies the modeling,
because the geometry of a given impinging wave just trans-
lates into a single complex factor for each sensor-wave pair.
Actually, the various estimation methods in array processing
can be viewed as effective ways to exploit this single-factor
structure, [1]. In practice, however, the signals’ bandwidths
are often too wide and, as a consequence, the array geometry
affects separate spectral components differently. Thus, in this
wideband case there is a factor for each combination of sensor,
wave and spectral component, and this fact complicates the
estimation significantly.

In the literature, the basic approach for the wideband DOA
problem is based on decomposing the impinging signals into
a sum of components, for which the narrowband DOA models
are sufficiently accurate. Then, the main problem is how the
components’ models should be combined in order to derive a
single wideband DOA estimator. For this combination, there
are two main trends in the literature. The combination can
be either coherent [2]–[5], in the sense that it incorporates
the array snapshots from separate components into a single
covariance matrix, or incoherent, meaning that a narrowband
estimate is computed for each component first, and then these
last estimates are combined through a method like a weighted
average, [6]. Besides, there exist methods that share features
of the coherent and incoherent approaches like the Test of
Orthogonality of Projected Subspaces (TOPS) in [7], [8]. All

these methods have been surveyed in several references, [7],
[9, Ch. 3] and [10, Sec. 4.3].

We must additionally mention that the direct estimation
through well-established methodologies like the maximum
likelihood (ML) principle has also been attempted in a number
of references. The deterministic and stochastic ML estimators
have been analyzed in [11] theoretically. An approximate ML
estimator has been proposed in [12], [13] and the ML estimator
for near-field sources has been analyzed in [14]. The main
drawback of these direct approaches is their complexity, given
that the cost function has one summand for each component,
and the number of components is usually high. Finally, group
sparsity methods have been applied to wideband DOA esti-
mation in [15], and low complexity implementations for these
methods have been presented in [16]. See also [17].

A feature of most narrowband and wideband DOA estima-
tors is the repeated evaluation of complicated functions, and
such evaluations produce a large portion of the total computa-
tional burden. In the narrowband case, a typical example of this
is the location of peaks in the Multiple Signal Classification
(MUSIC) estimator [18], in which the pseudo-spectrum must
be evaluated in a fine grid. A similar task is the addition of
one DOA in the Generalized Likelihood Ratio Test (GLRT)
detection scheme for the Deterministic ML (DML) estimator,
which is based on locating the global maximum of a residual
cost function [19]. We also find this feature in wideband
DOA estimators like Incoherent MUSIC (IC-MUSIC) and
TOPS. Additionally, the wideband case involves a repeated
function evaluation at a more abstract level, that multiplies
the computational burden by a large factor. Specifically, in
wideband DOA estimation, the array response or some related
function varies with the temporal frequency variable, and such
function must be evaluated at a large number of frequencies
R. R must be large in order to control the mismatch produced
by the Fast Fourier Transform (FFT). We can see this in IC-
MUSIC and TOPS, where the array response matrix is sampled
in a grid covering the signals’ spectra, in order to decompose
the wideband problem into a collection of narrowband ones.
Also, there is a similar evaluation in the wideband DML cost
function, given that it consists of the sum of R narrowband
equivalents.

Thus, a common complexity issue in DOA estimation is the
evaluation of various complicated functions at a large number
of abscissas. Besides, these functions usually change “on the
fly”, because they depend on acquired data that vary for each
new estimate computation. In this paper, we propose to address
this complexity issue through interpolation techniques and,
fundamentally, through the Chebyshev interpolation scheme.
Though other interpolation schemes are usable, we restrict
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ourselves to this one for three reasons. The first is that the
Chebyshev interpolator has a performance close to that of
the minimax polynomial [20, Sec. 6.5]. This implies that
a reasonably small number of function evaluations ensures
a low interpolation error. The second is that it requires no
special structure in the interpolated function and, therefore, is
applicable to any sensor array or function structure. And the
third is that it can be efficiently evaluated through efficient
techniques like the FFT-based Discrete Cosine Transform
(DCT) and the barycentric interpolator [21].

We present in this paper two contributions that provide
significant complexity savings, based on interpolation tech-
niques. The first applies to the usual line search or evaluation
tasks in DOA estimation, that must be performed on high-
complexity functions. Fundamentally, it consists of an efficient
method for performing such tasks (evaluation, scanning, peak
location) from a reasonably small number of function evalua-
tions. The second contribution applies to the wideband DML
estimator. This estimator is optimal statistically [reaches the
Cramer Rao (CR) bound at high signal-to-noise (SNR) ratios]
and, therefore, its expected root-mean square (RMS) error is
significantly smaller than that of sub-optimal estimators like
IC-MUSIC or TOPS. Besides, it works for either uncorrelated
or correlated sources and is immune to uneven spectral power
distributions. However, the DML estimator is not usable in
practice due to the large number of components in its cost
function. We present a technique to reduce such large number
to a small one, which is independent of the actual FFT
length employed. The method is based on approximating
the projection matrix in the DML cost function using its
Chebyshev interpolator. With this interpolation method, the
complexities of computing the narrowband and the wideband
DML estimates just differ in a small factor (from 4 to 7 in the
numerical examples).

The paper has been divided into three main parts. The
first is composed by Secs. II and III, where we respectively
present the signal model for the wideband DOA estimation
problem and three estimators: IC-MUSIC, TOPS, and Direct
DML. The main purpose of this part is to present state-of-
art estimators involving function evaluations or line searches
as those just commented. The second part is Sec. IV, where
we address the problem of efficiently evaluating the typical
functions appearing in DOA estimation with low complexity.
By low complexity, we mean two features: the number of
function evaluations is small and, at the same time, it is
possible to obtain the function’s value at arbitrary abscissas in
a small number of arithmetic operations. We achieve this low
complexity through a combination of techniques, that include
the Chebyshev and barycentric interpolators, and the DCT. The
third part consists of four sections, in which we exploit the
interpolation method in the second part in order to reduce the
complexity of the estimators in the first (IC-MUSIC, TOPS,
and Direct DML). In Sec. V, we reduce the complexity of
the line searches involved in the estimators. In Sec. VI, we
show how the number of summands in the DML cost function
can be drastically reduced through interpolation. Finally, we
discuss the reductions in complexity that can be expected in
Sec. VII, and evaluate the methods in this third part in Sec.

VIII numerically.

A. Notation

The notation is the following:
• We write vectors and matrices in lower and upper bold

face respectively. So y denotes a vector and Y a matrix.
• I denotes the identity matrix.
• [y]k and [Y ]p,q represent the kth and (p, q) elements of
y and Y respectively.

• The vector formed by appending a scalar a to a column
vector y is denoted [y; a].

• ’�’ is the element-by-element product of two equal-size
matrices or vectors.

• Y † denotes the pseudo-inverse of matrix Y . As is well
known, Y † = (Y HY )−1Y H if Y has full-column rank.

• New symbols and functions are introduced using the
operator ’≡’.

• Tp(x) denotes the Chebyshev polynomial of order p,
defined by

Tp(x) ≡ cos(p arccos(x)), p = 0, 1, 2, . . .

II. SIGNAL MODEL FOR WIDEBAND DOA ESTIMATION

Consider a linear array of M sensors at positions dm, into
which K wideband signals impinge with angles of arrival θk
relative to the broadside, (m = 1, . . . , M , k = 1, . . . , K). We
assume that these signals are passband with spectra contained
in [fo − B/2, fo + B/2], where B > 0 and fo > B/2. After
demodulation from frequency fo to baseband, the signal from
the mth sensor follows the model

xm(t) =
K∑
k=1

e−j2πfoτmγkbm(γk)sk(t− τmγk) + wm(t),

where
• τm is the delay between the array’s reference point and

the mth sensor at the propagation velocity,

τm ≡
dm
c
, (propagation velocity c),

• γk is the sine of the kth angle of arrival,

γk ≡ sin θk,

• bm(γ) is the mth sensor pattern,
• sk(t) is the lowpass equivalent of the kth impinging

signal,
• and the wm(t) are independent complex white noise

processes of equal variance.
Next, we assume the receiver takes regular samples of each

xm(t) with a period T fulfilling the Nyquist condition (BT <
1) in J slots of N samples each. The receiver then computes
the N -length DFT of each slot sequence, producing spectral
samples denoted x̃m,`(r/(NT )), where r and ` are the fre-
quency and slot indices respectively. The ranges for these in-
dices are ` = 1, 2, . . . , J and r = r1, r1 + 1, . . . , r1 +R− 1,
where r1 is the first frequency with significant signal power

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSP.2018.2824256

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



3

in a sequence of R frequencies. If N is sufficiently large,
x̃m,`(r/(NT )) follows the approximate model

x̃m,`

( r

NT

)
=

K∑
k=1

e−j2π(fo+r/(NT ))τmγkbm(γk)s̃k,`

( r

NT

)
+w̃m,`

( r

NT

)
,

(1)
where s̃k,`(r/(NT )) and w̃m(r/(NT )) have the obvious
definitions. In vector notation, this model reads

Xr = A(r,γ)Sr +W r, (2)

where

[Xr]m,` ≡ x̃m,`
( r

NT

)
, [γ]k ≡ γk,

[a(r, γ)]m ≡ e−j2π(fo+r/(NT ))τmγ bm(γ),

[A(r,γ)]·,k ≡ a(r, γk), [Sr]k,` ≡ s̃k,`
( r

NT

)
,

[wr]m,` ≡ w̃m
( r

NT

)
,

m = 1, . . . , M, k = 1, . . . , K, ` = 1, . . . , J.

(3)

In the next section, we present the IC-MUSIC, TOPS, and
Direct DML estimators for this model.

III. SELECTION OF WIDEBAND DOA ESTIMATORS

Given the sample covariance matrices

Rr ≡XrX
H
r ,

the IC-MUSIC estimates are the angles corresponding to the
K main local minima of the cost function

LMU(γ) ≡
r1+R−1∑
r=r1

a(r, γ)HV rV
H
r a(r, γ), (4)

where V r spans the noise subspace of Rr; (V r is composed
of the M −K eigenvectors with smaller eigenvalues). (4) is a
natural extension of the corresponding narrowband estimator,
which consists of a single summand [18].

Another subspace method is TOPS [7]. In this estimator, the
noise subspaces from R− 1 frequencies are combined into a
single matrix that depends on a DOA parameter γ. Then, the
parameter values for which the matrix approximately becomes
rank deficient correspond to the angle-of-arrival estimates.
In order to introduce this estimator, define first the R− 1
matrices

Er(γ) ≡ UH
r′diag(a(r − r1, γ)∗)V r,

for r = r1, r1 + 1, . . . , r1 +R− 1, r 6= r′, where U r′ is the
matrix spanning the signal subspace at a fixed r′, and V r was
already defined for (4). r′ is chosen so that the power tr{Rr′}
is sufficiently high. (U r′ contains the eigenvectors associated
with the K larger eigenvalues of Rr′ .) Next, stack these R−1
matrices into a single one,

E(γ) ≡ [Er1(γ), Er1+1(γ), . . . , Er1+R−1(γ)],

where the block Er′(γ) is missing. The TOPS estimates are
the K main local minima of the cost function

LT (γ) ≡ σmin(E(γ)), (5)

where σmin(·) denotes the smallest singular value of the given
matrix.

Next, let us introduce the DML estimator, termed “Direct
DML” in the rest of the paper. For the model in (2), the
Direct DML estimate of S and γ is given by the arguments
minimizing the cost function

LML,0(Sr1 , . . . ,Sr1+R−1,γ) ≡
r1+R−1∑
r=r1

‖Xr −A(r,γ)Sr‖2F .

(6)
As is well known, each summand in this cost function can
be independently minimized in Sr for fixed γ, using the
pseudo-inverses of the matrices A(r,γ). If the resulting Sr
are substituted into (6), then we obtain the compressed cost
function,

LML(γ) ≡
r1+R−1∑
r=r1

tr{P⊥(r,γ)Rr}, (7)

where P⊥(r,γ) denotes the projection matrix for the orthog-
onal complement of A(r,γ),

P⊥(r,γ) ≡ I −A(r,γ)A(r,γ)†.

The Direct DML estimator of γ is the vector minimizing
LML(γ).

In the sequel, we present a detection-estimation method
for computing this estimate, that resembles well-known pro-
cedures for the narrowband case, like those in [22], [23]
and [24, Sec. 4.6)]. It is a combination of two steps, one
for detecting additional components, and another for refining
a given estimate. The first is a variant of the Generalized
Likelihood Ratio (GLR) test in [25], and the second is the
modified variable projection method (MVP) in [26], which
is an iterative method that converges in a small number of
iterations.

The method operates on a given estimate γK,α, repeating
in turn a detection step followed by an estimation step, until a
statistical test fails. The sub-indices K and α in γK,α are the
length of this same vector and the number of iterations in the
estimation step respectively. The initial vector γ0,0 is empty.
Both steps are described in the next two sub-sections.

A. Detection step for the wideband DML estimator

Given an iterate γK,α (which can be initially empty),
the detection method decides whether to look for an addi-
tional parameter γ and, if so, selects as γ the minimum of
LML([γK,α; γ]). The detection is based on a statistical test
for LML(γK,α), assuming that γK,α is the true parameter
vector. More precisely, if γK,α is the true vector and there is
available a noise variance estimate σ̂2, then LML(γK,α)/σ̂

2

approximately follows a χ2 distribution with 2(M − K)R
degrees of freedom. Thus, an additional component is sought
if LML(γK,α) > A, with

A ≡ σ̂2

2
F−1(1− PFA),

where F is the χ2 cumulative distribution function, and PFA
a fixed false-alarm probability.
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We may summarize this detection step as follows. If
LML(γK,α) < A, the iterative process finishes and the final
estimate is γK,α, but if LML(γK,α) > A then it proceeds to
the estimation step with the new vector γK+1,0 = [γK,α; γ],
where

γ = argmin
γ′

LML([γK,α; γ
′]). (8)

B. Estimation step for the wideband DML estimator

This step is an implementation of the MVP method in
[26], already used in [23], [27] and [24, Sec. 4.6)] for the
narrowband problem. For introducing it, let us define first the
following matrix of differentials with the same size asA(r,γ),

[D(r,γ)]m,k ≡
d

dγk
[A(r,γ)]m,k.

Its explicit expression can be readily computed from (3). Also,
it is convenient to define the following shorthand notation

Ar,K,α ≡ A(r,γK,α), Dr,K,α ≡D(r,γK,α),

P⊥,r,K,α ≡ P⊥(r,γK,α).

Given an iterate γK,α, the MVP method refines it using the
iteration

γK,α+1 = γK,α − µH
−1
K,αgK,α, (9)

where usually µ = 1, though 0 < µ < 1 may be used to ensure
a cost function decrease [28, Ch. 5], and gK,α and HK,α are
the gradient and approximate Hessian of (7) at γ = γK,α,

gK,α ≡ −2Re{diag{
r1+R−1∑
r=r1

A†r,K,αRrP⊥,r,K,αDr,K,α}}

HK,α ≡ 2Re{
r1+R−1∑
r=r1

(DH
r,K,αP⊥,r,K,αDr,K,α})T

� (A†r,K,αRr(A
†
r,K,α)

H)}.

The convergence rate of (9) is quadratical close to a mini-
mum, and usually a small number of iterations is sufficient.
This gradient and approximate Hessian can be efficiently
computed from the Housholder QR decompositions of the
matrices Ap,K,α, as shown in [24, Sec. 4.6.4b)]. Actually, it
is not necessary to compute neither A†p,K,α nor P⊥,p,K,α. The
iteration in (9) is repeated until there is no significant reduction
in the cost function’s value. Afterward, the execution proceeds
to the detection step again.

IV. EFFICIENT FUNCTION EVALUATION

A feature of the DOA estimators in the previous section,
as well as of many other estimators in the literature, is that
they involve the repeated evaluation of one or more functions,
and such evaluations take up a large portion of the total
computational burden. Let us draw some examples of such
functions from the estimators presented in the previous section.
For this, let g(λ) and [a, b] respectively denote, in each case,
the evaluated function and its domain. We have the following
examples:
• In IC-MUSIC, the K main local minima of the pseudo-

spectrum LMU(γ) in (4) must be obtained through some

numerical method, and such method may involve the eval-
uation of LMU(γ) at many abscissas γ. So, in this case, the
function’s variable is λ = γ, its domain is [a, b] = [−1, 1],
and the evaluated function is g(λ) = LMU(λ).

• In TOPs, we find a similar peak search but for the
function g(λ) = LT (λ) in (5), where, again, we have
λ = γ and [a, b] = [−1, 1].

• In the DML estimator-detector, the addition of a new
γ involves a line search on the function g(λ) =
LML([γK,α;λ]) in (8). And again, we have λ = γ and
[a, b] = [−1, 1].

• The Direct DML cost function in (7) contains another
example of repeated function evaluation. Actually, there
is one such repeated evaluation for every component
of the projection matrix P⊥(r,γ). More precisely, for
arbitrary indices m and m′, (1 ≤ m ≤M, 1 ≤ m′ ≤M ),
the (m, m′) component of the projection matrix P⊥(r,γ)
is a function of r, which is repeatedly evaluated (R times)
in order to compute LML(γ), given a fixed vector γ. Thus,
in this case, the function is

g(λ) = [P⊥(λ,γ)]m,m′ .

with variable λ = r and domain [a, b] = [r1, r1+R− 1].
In this paper, we propose a simple strategy for reducing the

complexity of these evaluations, applicable to most practical
functions g(λ). The strategy consists of evaluating the Cheby-
shev interpolator of g(λ), denoted g̃(λ) in the sequel, rather
than g(λ) proper. For P interpolation nodes, the interpolator
g̃(λ) can be written as

g̃(λ) ≡
P∑
n=1

g(λn)φn(λ), (10)

where λn and φn(λ) are the set of nodes and weight functions
in the Chebyshev interpolation scheme respectively. [λn and
φn(λ) will be defined later in (17) and (18).]

Obviously, this strategy is useful only if the following
conditions hold:

1) The number of nodes P in (10) must be reasonably
small.

2) g̃(λ) must be a good approximation to g(λ).
3) There must be efficient techniques for obtaining the

value of g̃(λ) at arbitrary λ.
The first two conditions hold in most cases in practice, given
that the typical functions g(λ) belong to a specific class of
smooth functions, (like the class of differentiable or analytic
functions, for example), and Chebyshev interpolation performs
very well for such classes [20, Sec. 6.2]. And we present in the
next sub-subsections efficient methods for fulfilling condition
3), thus making the whole strategy viable in practice.

In the rest of this section, we present several methods related
with the evaluation of g̃(λ). First, we show in the next sub-
section that g̃(λ) can be transformed into a cosine polynomial,
denoted g̃2(t), through a change of variable. Additionally,
we show that g̃2(t) can be efficiently evaluated in a grid of
abscissas using the DCT. Afterward, we show in sub-section
IV-B that if g̃2(t) is known in a proper grid of abscissas, then
it can be evaluated at any t in a small number of arithmetic
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operations by means of a barycentric interpolator. Finally, we
combine all these results in Sub-sec. IV-C, where we present
an efficient method for computing g̃(λ) in a small number of
arithmetic operations, thus fulfilling condition 3) above.

A. Chebyshev interpolation and its relation with the DCT

We proceed to introduce three different forms of the same
Chebyshev interpolator [20, Ch. 6]. For this, let us employ
two new variables, x and t, which depend on λ through the
following invertible variable changes. x is selected to vary in
range [−1, 1] and is related with λ through the equation

λ = η(x), (11)

where η is the linear mapping of [−1, 1] onto [a, b] given by

η(x) ≡ a+ b

2
+
a− b
2

x. (12)

And in turn, t is related with x through the equation

x = cos(πt), (13)

and t varies in the range [0, 1].
(11) and (13) allow us to define two new functions from

g(λ), denoted g1(x) and g2(t),

g1(x) ≡ g(η(x)),
g2(t) ≡ g1(cos(πt)) = g(η(cos(πt))).

Also, if g̃1(x) denotes the Chebyshev interpolator of g1(x),
then the changes in (12) and (13) allow us to define interpo-
lators for g(λ) and g2(t) respectively,

g̃(λ) ≡ g̃1(ηi(λ)), g̃2(t) ≡ g̃1(cos(πt)),

where ηi(λ) is the inverse of η(x) in (12),

ηi(λ) ≡
2

a− b

[
λ− a+ b

2

]
.

The Chebyshev interpolator is conventionally introduced
in the x domain [−1, 1] for g1(x), and is defined in two
equivalent ways. In the first definition, it is viewed as the
Lagrange interpolator with kernel TP (x),

g1(x) ≈ g̃1(x) ≡
P∑
n=1

g1(xn)
TP (x)

T ′P (xn)(x− xn)
, (14)

where T ′P (x) the derivative of TP (x) and xn is the set of roots
of TP (x),

xn ≡ cos
(
π
2n− 1

2P

)
, n = 1, . . . , P.

And in the second definition, the Chebyshev polynomials are
viewed as elements of a vector space and it consists of two
basic formulas. The first expresses the interpolator g̃1(x) as
an element of the linear space spanned by the polynomials
Tp(x). The formula is

g1(x) ≈ g̃1(x) ≡
P−1∑′

p=0

cpTp(x), (15)

where the prima (′) means that the summand for p = 0 must be
divided by 2, and cp is a set of coefficients. And the second

formula states the fact that the Chebyshev polynomials are
orthogonal when restricted to the abscissas xn, and allow us
to compute the coefficients cp,

cp ≡
2

P

P∑
n=1

g1(xn)Tp(xn). (16)

All these formulas, specially (14), (15) and (16), have their
equivalents in the λ and t domains, which can be readily
obtained using the variable changes in (11) and (13). We
will require in the rest of the paper the equivalents of the
interpolation nodes xn in the λ and t domains,

λn ≡ η(xn), tn ≡
2n− 1

2P
, n = 1, . . . , P, (17)

and the equivalent of the Lagrange formula in (14) in the λ
domain, which is (10) with weight functions given by

φn(λ) ≡
TP (ηi(λ))

T ′P (ηi(λn))(ηi(λ)− ηi(λn))
. (18)

An interesting link between Chebyshev and trigonometric
interpolation is the fact that the equivalents of (15) and (16) in
the t domain are cosine sums, that can be efficiently evaluated
using the discrete cosine transform (DCT). Specifically, since

Tp(x) = Tp(cos(πt)) = cos(πpt),

we have that (15) translates into a cosine sum

g2(t) ≈ g̃2(t) ≡
P−1∑′

p=0

cp cos(πpt). (19)

Besides, since tn varies through the regular sampling grid in
(17), we have that (19), restricted to the sampling points tn,
is a type-3 DCT,

g̃2(tn) =

P−1∑′

p=0

cp cos
(
πp

2n− 1

2P

)
. (20)

And as to the formula in (16), since g1(xn) = g2(tn), we have
that its t-domain equivalent is a type-2 DCT,

cp ≡
2

P

P∑
n=1

g2(tn) cos
(
πp

2n− 1

2P

)
. (21)

(20) and (21) allow us to oversample the sequence of
values g̃2(tn), n = 1, . . . , P , by any integer factor α > 1
using a method akin to the zero-padding FFT algorithm, [29].
For this, compute cp using the type-2 DCT in (21), append
P (α− 1) zeros, and finally compute the type-3 DCT in (20)
with αP in place of P . The outcome of these operations is
the oversampled sequence g̃2(t′n) where

t′n ≡
2n− 1

2αP
, n = 1, 2, . . . , αP. (22)
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B. Barycentric interpolation for band-limited functions

A known fact in sampling theory is that if a band-limited
function (or signal) is sampled at a rate above its Nyquist rate,
then it can be interpolated from a small number of samples
surrounding the evaluation abscissa with high accuracy. In
more precise terms, if the signal has two-sided bandwidth B,
is bounded by a constant A, and is sampled with period T ,
then there are accurate formulas that employ 2Q+1 samples,
whose error is bounded by

A

sinh(π(1−BT )Q)
≈ A

2
e−π(1−BT )Q. (23)

(See [30].) We can see in this formula an exponential trend, i.e,
the error converges to zero exponentially with Q. In practice,
(23) implies that we may interpolate a band-limited function
with high accuracy from just a few of its values surrounding
the evaluation abscissa.

In the previous section, g̃2(t) is a band-limited function to
which such accurate formulas can be applied. Specifically, we
have the following:
• From (19), g̃2(t) has two-sided bandwidth P − 1.
• The oversampling method by the end of the previous

section allows us to sample g̃2(t) above its Nyquist rate
with, for example, oversampling factor α = 2 (or more)
in the grid t′n in (22).

• g̃2(t) is obviously bounded and since it approximates
g2(t) and in turn g(λ), any bound A for g(λ) is roughly
valid for g̃2(t).

Among the accurate formulas, the barycentric one intro-
duced in [21] additionally computes the interpolated value in
a small number of arithmetic operations, and also gives the
values of successive derivatives, if required. More precisely,
it just requires 5 arithmetic operations for each input sample
[roughly 5(2Q+ 1) flops in total].

In order to introduce this interpolator for g̃2(t), let us extend
first the definition of t′n to any integer n, i.e, define

t′n ≡
2n− 1

2αP
, integer n.

Also, let n denote the index of the t′n lying closest to t, and u
the shift of t relative to t′n, but normalized to the grid spacing,

u ≡ αP (t− t′n).

The barycentric interpolator is

g̃2(t) ≈ g̃3(t) ≡

g̃2(t
′
n) + u

Q∑
q=−Q
q 6=0

w|q|(−1)q g̃2(t′n−q)
q + u

1 + u

Q∑
q=−Q
q 6=0

w|q|(−1)q

q + u

. (24)

where wq is a set of samples of the Fourier transform of the
Kaiser-Bessel window,

wq ≡
sinc

(
(1− 1/α)

√
q2 − (Q+ 1)2

)
sinc(j(1− 1/α)(Q+ 1))

.

As can be readily seen in (24), g̃3(t) can be computed in a
small number of operations and it interpolates g(λ) because,
if λ, x, and t are related through (11) and (13), then we have

g(λ) ≈ g̃(λ) = g̃1(x) = g̃2(t) ≈ g̃3(t).

C. Proposed function evaluation method

We now combine the results in the previous two sub-
sections in an efficient evaluation method for a generic g(λ).
The method has a set-up stage in which g(λ) is directly
evaluated, and an evaluation step in which arbitrary values of
g(λ) can be obtained through interpolation. The set-up stage
consists of two steps:

1) Compute the P values g2(tn), which actually are values
of g(λ) due to (11) and (13),

g2(tn) = g(η(cos(πtn)). (25)

In this step, P is selected so that g̃(λ) approximates g(λ)
with enough accuracy. We may expect a rather small P
to be sufficient, given that the Chebyshev interpolator is
near-minimax, [20, Sec. 6.5].

2) Upsample the sequence g2(tn) by factor α ≥ 2, obtain-
ing the values of g̃2(t) at the αP abscissas t′n in (22).
This can be done efficiently using the DCT method
explained at the end of Sub-sec. IV-A.

In the evaluation stage, there are three operations that can be
performed on demand with low complexity. We denote them
with the acronyms Op1, Op2, and Op3 for latter reference:

Op1 Coarse localization of maxima or minima of g(λ).
This can be done by scanning the available sequence
g̃2(t

′
n), given that it is also a sequence of values of

g̃(λ),

g̃2(t
′
n) = g̃(η(cos(πt′n))) ≈ g(η(cos(πt′n))).

Op2 Computation of g(λ) at an arbitrary t. Simply eval-
uate the barycentric interpolator g̃3(t), where

t =
1

π
arccos(ηi(λ)).

Op3 Refine a coarse estimate of a local maximum or
minimum of g(λ). This can be done using Newton’s
method but applied to g̃3(t) rather than g(λ). More
precisely, if the peak is approximately at t = τ0 and
we denote the r iteration in Newton’s method as τr,
then we may iteratively approach the local maximum
through the iteration

τr+1 = τr −
g̃′3(τr)

g̃′′3 (τr)
,

where g̃′3(τr) and g̃′′3 (τr) are delivered by the
barycentric interpolator, as explained in [21]. Usu-
ally, just three iterations suffice. If τ is the final
abscissa, then the corresponding abscissa of g(λ) is
λ = η(cos(πτ)).
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V. APPLICATION TO LINE SEARCHES

We show in the sub-sections that follow the way in which
the interpolation techniques in IV reduce the complexity of
the line searches appearing in the estimators discussed in Sec.
III.

A. IC-MUSIC

The efficient computation of the IC-MUSIC consists of
particularizing the evaluation method in Sec. IV-C for the
pseudo-spectrum LMU(γ) in (4). More precisely, first we
identify the generic function g(λ) in Sec. IV with LMU(γ)
in the domain [a, b] = [−1, 1], i.e, we take λ = γ and

g(γ) = LMU(γ).

From (12), we have that for the domain [−1, 1] it is η(x) =
−x.

And second, we carry out the steps in the set-up stage in
Sec. IV-C, and exploit some of the evaluation operations in
that section as follows:

1) Compute the P values LMU(− cos(πtn)), n = 1, . . . , P ,
using the initial formula in (4), where tn was defined
(17). Recalling the changes of variables in Sec. IV, these
values can be interpreted as samples of g2(t) through the
formula

g2(tn) = LMU(− cos(πtn)), n = 1, . . . , P, (26)

which is the translation of (25).
2) Upsample the sequence in (26) by factor α > 1, [step

2) in set-up stage], using the DCT method in Sub-sec.
IV-A.

3) Coarsely locate the K main local minima of g(λ) using
Op1.

4) Refine each of the previous local minima using Op3.
The resulting values are the final IC-MUSIC estimates.

B. TOPS

The computation of the TOPS estimates is identical to
that of the IC-MUSIC estimates just explained, but replacing
LMU(γ) with LT (γ), [defined in (5)].

C. Minimization of LML([γK,α; γ]) in (8)

This minimization is performed in the γ variable only and is
required in the detection step for the DML estimator in Sub-
Sec. III-A. It can be computed using the method explained
in Sub-sec. V-A for IC-MUSIC. The only difference is that
we only require the global minimum of LML([γK,α; γ]) rather
than a number of its main local minima.

VI. REDUCTION OF THE NUMBER OF DML COST
FUNCTION SUMMANDS

Let us see how the DML cost function in (7) can be
compressed, so that its large number of summands R is
ruduced to a small number P . For this, notice three key
features of (7). The first is that LML(γ) depends linearly on
the projection matrices P⊥(r,γ). The second is that P⊥(r,γ)

is evaluated a large number of times R, given that R must
be large in order to obtain a small FFT mismatch. And the
third is that P⊥(r,γ) varies smoothly with r, given that to
pass from a given frequency r/(NT ) to its nearby frequency
(r + 1)/(NT ) produces a small change in the array matrix
A(r,γ) and, in turn, on P⊥(r,γ). This last feature suggests
that the Chebyshev interpolator of the whole matrix P⊥(r,γ)
may be accurate for a small number of nodes P and over the
whole index range (or frequency band) [r1, r1 +R− 1].

As we proceed to show, the Chebyshev interpolator of
P⊥(r,γ) is able to exploit these three features in order to
reduce the large number of summands R in LML(γ) to a small
number P . For this, first define the Chebyshev interpolator
of P⊥(r,γ), by performing the following replacements (or
identifications) on (10):

• The equivalent of the variable λ is the frequency index
r, but viewed as a real parameter, (i.e, not necessarily an
integer).

• The function’s domain is [r1, r1+R−1], i.e, we identify
a with r1 and b with r1 +R− 1.

• The equivalent of the linear mapping in (12) is now

η1(x) ≡ r1 +
R− 1

2
(1− x)

and its inverse is

η1,i(r) ≡ 2
r1 − r
R− 1

+ 1.

• The function g(λ) is now the full matrix P⊥(r,γ).
• The equivalents of the abscissas λn are denoted ρn ≡
η1(xn). So the ρn are the real values of r at which
P⊥(r,γ) is evaluated.

• The weight functions φn(λ) for P⊥(r,γ) are now de-
noted φ1,n(r), and can be readily obtained from (18) by
replacing ηi with η1,i.

These replacements allow us to define the Chebyshev interpo-
lator of P⊥(r,γ),

P⊥(r,γ) ≈ P̃⊥(r,γ) ≡
P∑
n=1

P⊥(ρn,γ)φ1,n(r),

in which we may expect P � R. Next, let us substitute this
formula into (7):

LML(γ) =

r1+R−1∑
r=r1

tr{P⊥(r,γ)Rr} ≈
r1+R−1∑
r=r1

tr{P̃⊥(r,γ)Rr}

=

r1+R−1∑
r=r1

tr
{ P∑
n=1

φ1,n(r)P⊥(ρn,γ)Rr

}
=

P∑
n=1

tr
{
P⊥(ρn,γ)

r1+R−1∑
r=r1

φ1,n(r)Rr

}
.

Finally, defining the correlation matrices

RI,n ≡
r1+R−1∑
r=r1

φ1,n(r)Rr,
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we obtain a new cost function LML,I(γ) with just P summands

LML(γ) ≈ LML,I(γ) ≡
P∑
n=1

tr{P⊥(ρn,γ)RI,n}.

We will refer to this formula as the “interpolated DML cost
function” in the rest of the paper. The computation method
in Sec. III for the Direct DML cost function can be applied
to LML,I(γ) without any variation. However, we may expect
its computational burden to be much smaller when applied to
LML,I(γ) rather than LML(γ), roughly smaller by factor R/P .
This is so because these two cost functions return the same
values, except for the interpolation error LML(γ) − LML,I(γ)
that is negligible, already for small values of P . As will be
shown in Sec. VIII, R/P can be a large number.

VII. EXPECTED REDUCTIONS IN COMPLEXITY

A detailed analysis of the complexity of any wideband DOA
estimator is difficult, due to the iterative methods and line-
searches involved in them, whose complexity depends on the
smoothness of the functions optimized or scanned. We can
see this in the estimators in Sec. III. The R eigendecomposi-
tions involved in IC-MUSIC and TOPS implicitly require an
iterative method, and the DML estimators are computed by
iterating (9) a few times (usually 3 to 5 times). And, as we have
already commented, IC-MUSIC, TOPS and DML respectively
require line searches on LT (γ), LMU(γ), and LML([γK,α; γ]).

We may, however, draw several conclusions from the pre-
vious sections:
• The function evaluation method in Sub-sec. IV-C em-

ploys a reasonably small number of evaluations of g(λ)
(those required by the Chebyshev interpolator), and then
performs any additional operation through interpolation
using the DCT and the barycentric interpolator. Probably,
the main complexity reduction lies in the fact that the
number of evaluations of g(λ) is limited by the number of
nodes required by the Chebyshev interpolator, though this
obviously depends on the complexity of each evaluation
of g(λ). We assess the number of such evaluations in the
numerical example in Sub-sec. VIII-A.

• The interpolated DML estimator requires an increase of
the data processing complexity, given that it is necessary
to obtain the compressed matricesRI,n from the matrices
Rr. However, this increase is just a small percentage of
the total burden of the data processing. We can check
this by evaluating the complexities of the three main
data processing operations, which are the FFTs, the
computation of the covariance matrices Rr, and the final
computation of the compressed matrices RI,n:

Step Cost (complex flops)

1) DFTs: 5
4MJN log2N

2) Matrices Rr: 1
2JRM(M + 1) +M2(JR− 1)

3) RI,n from Rr: 1
2P (RM

2 + (R− 1)M2)

In a typical example, we have J = 100, N = 256,
M = 10, R = 204 and P = 6, and the resulting costs

of 1), 2) and 3) in mega flops are, 2.56, 3.16 and 0.122
respectively. Thus, the additional step 3) just involves a
2.13% complexity increase.

• The direct computation of the wideband DML estimator
involves a very high complexity, given that LML(γ)
has a very large number of summands R (hundreds or
thousands). This number must be large because it is
proportional to the DFT length N in (1), (R ≈ NBT ),
and N is in turn large in order to obtain a small DFT
mismatch. Actually, the implementations in the literature
of this estimator attempt to reduce the complexity by
considering only the frequencies at which the signal
power is high, [13, Sec. 4].

• However, the minimization of the interpolated cost func-
tion LML,I(γ) is far less complex, given that it has a
small number of summands P ; (P varies from 4 to 7 in
the numerical examples for Bτmax = 0.45, where τmax is
the maximum array delay). Actually, using the method in
Sub-secs. III-A and III-B, the complexity is reduced by
factor R/P if we employ LML,I(γ) rather than LML(γ),
because these two functions are the same except for the
negligible interpolation error. In the numerical example
is Sub-sec. VIII-C it is, at least, R/P = 51.

• The number of Chebyshev nodes P is roughly propor-
tional to the product Bτmax and it must be selected to en-
sure a sufficiently small interpolation error for P⊥(r,γ).
See Sub-sec. VII.B.

VIII. NUMERICAL EXAMPLES

We have performed several numerical examples following
the signal model in Sec. II, which are presented in the sequel.
In them, the main parameters were the following:

Central frequency. The signals’ central frequency was
fo = 2.4 GHz.

Received signals. There were two simulation scenarios, that
we term “independent-signals” (IS) and “correlated-signals”
(CS). In the IS scenario, the lowpass equivalents of the
received signals were three linearly-modulated signals so,k(t)
with raised-cosine modulating pulse (roll-off 0.2). The mod-
ulation sequences in the three were variance-one independent
and complex white. The corresponding lowpass signals at the
sensor array reference point were a′kso,k(t− τ ′k), with

Amplitudes a′k: 0.626 + j0.7798, −0.4432− j0.552,
0.3138 + j0.3908,

Delays τ ′k/(2fo): 0, 0.6, 37.53.

In the CS scenario, the lowpass equivalents were generated
as in the IS scenario, except for the fact that the three initial
signals so,k(t) were the same one.

Signals’ bandwidths relative to the maximum array
delay. All signals had two-sided bandwidth B. The product
of B with the maximum array delay τmax was Bτmax = 0.45.

DFT length and number of slots. The DFT length was
N = 256 and the number of slots was J = 100. The sampling
period T followed BT = 0.8. The frequency index range was
[r1, r1 + R − 1] = [−102, 102], where index 0 was exactly
placed at frequency fo.
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Sensor array. Nonuniform linear array with M = 10 sen-
sors and isotropic patterns, [bm(γ) = 1 for all sensors].
The sensors were placed in two co-linear arrays formed by
5 sensors each. Their positions were mλ and (m + 0.4)λ,
m = 0, 1, . . . , 4, where λ denotes the wavelength.

Angles of arrival. −0.7895, −0.6816, and 0.2734 rads.
Corresponding parameters in γ: −0.71, −0.63, and 0.27.

Signal-to-noise ratio (SNR). Ratio of the signal and noise
powers in (1), averaged over all the values of r and m in that
equation.

Estimators. We have evaluated four estimators:
• IC-MUSIC.
• TOPS.
• Direct DML. DML estimator computed by minimizing
LML(γ) using the method in Sub-secs. III-A and III-B.

• DML-P . Interpolated DML estimator computed by min-
imizing LML,I(γ) for a specific number of interpolation
nodes P and using the method in Sub-secs. III-A and
III-B.

Number of Monte Carlo trials. The estimators’ perfor-
mances were evaluated in 1000 Monte Carlo trials.

A. Interpolation of one-dimensional pseudo-spectra

The performances of the Chebyshev interpolator for the
functions LMU(γ), LT (γ), and LML([γK,α; γ]) are similar and,
therefore, we present in this section a numerical evaluation of
LMU(γ) only.

Fig. 1(a) shows a realization of the IC-MUSIC pseudo-
spectrum and its Chebyshev approximation for number of
nodes P = 20 and 40. In this figure, the mismatch between
the exact pseudo-spectrum and its approximation for P = 20
is clear, though the interpolator is able to follow the main
variations of the pseudo-spectrum. For P = 40 (crosses ’+’),
the interpolation error is too small to be visible. Fig. 1(b)
shows this last error (difference between the exact and the in-
terpolated pseudo-spectra for P = 40). Comparing the vertical
axis of Figs. 1(a) and 1(b), we can readily see that the P = 40
interpolator roughly gives between 5 and 6 decimal digits of
accuracy.

Fig. 1(c) shows the relative interpolation error versus the
number of Chebyshev nodes P . In this figure, the relative error
is defined as the quotient between the maximum absolute error
for γ in [−1, 1] and the pseudo-spectrum’s maximum ampli-
tude. Note the exponential error decrease for a sufficiently
large P . In the simulations performed for the next section, P
was set equal to 50 for the three functions LMU(γ), LT (γ),
and LML([γK,α; γ]), which is a conservative choice.

B. Projection matrix interpolation performance

Fig. 2 shows the Chebyshev interpolation error in the
approximation of the whole projection matrix P⊥(r,γ) for
several values of P . The error measure in this figure is

max
r,m,m′

∣∣[P⊥(r,γ)− P̃⊥(r,γ)]m,m′ ∣∣
max
r,m,m′

∣∣[P⊥(r,γ)]m,m′ ∣∣ ,
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Fig. 1. Chebyshev interpolation of the IC-MUSIC pseudo-spectrum. (a) Exact
pseudo-spectrum and interpolated ones for P = 20 and 40. (b) Absolute
interpolation error for P = 40. (c) Relative interpolation error versus number
of Chebyshev nodes P .
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Fig. 3. Error in approximating LML([−0.71; γ]) with LML,I([−0.71; γ]).
Increasing P shifts the curve downward and the curves for odd P are
discontinuous.

where the maxima are taken for indices r, m, and m′ varying
in ranges r1 ≤ r ≤ r1 + R − 1 and 1 ≤ m, m′ ≤ M respec-
tively. As can be readily seen in this figure, the Chebyshev
interpolation error decreases very fast with P . Actually, P = 6
already gives 5 digits of accuracy.

Fig 3 presents the error in approximating LML(γ) with
LML,I(γ) in one specific example. Specifically, this figure
shows the error measure

|LML([−0.71; γ])− LML,I([−0.71; γ])|
|LML([−0.71; γ])|

in approximating LML([−0.71; γ]) with LML,I([−0.71; γ]) for
varying γ and several values of P . Note that the error
decreases fast with P .

C. Effect of the projection matrix interpolation on the estima-
tion performance

In this sub-section, we evaluate the effect of the projection
matrix interpolation on the estimation performance. We start
assuming incoherent signals (IC scenario). Fig. 4 shows the
RMS error in the estimation of the first component of γ using
IC-MUSIC and TOPS, and Fig. 5(a) shows the same error
for Direct DML and DML-P . These last estimations were
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Fig. 4. Log-10 of RMS error in the estimation of γ1 for IC-MUSIC and
TOPS, an Cramer Rao (CR) bound.

Estimator Timing (sec.)
IC-MUSIC 0.228
TOPS 0.303
Direct DML 2.823
DML-1 0.09703
DML-2 0.1094
DML-4 0.1254
DML-5 0.1416
DML-6 0.1558
DML-7 0.1714

TABLE I
COMPUTATION TIMES OF THE ESTIMATORS IN SECONDS FOR THE

EXPERIMENT CORRESPONDING TO FIG. 4, AVERAGED OVER 100 TRIALS.

computed using the method in Sub-secs. III-A and III-B. In
Fig. 5(a), the curves have been labeled with the corresponding
value of P . In Fig. 4, it is clear that IC-MUSIC and TOPS are
not efficient statistically [do not reach the Cramer-Rao (CR)
bound for high SNRs] and, comparing Fig. 4 with 5(a), it is
also clear the the DML estimators perform far better than IC-
MUSIC and TOPS. Figs. 5(b) and 5(c) show the RMS error
of the DML estimators for the other two components of γ,
γ2 and γ3. The conclusions are similar to those for the first
component. Note that in Figs. 5(a) to 5(c) the RMS error for
P = 1 may be either smaller or larger than for P = 2, for
different components of γ. This phenomenon is a consequence
of the poor and similar accuracy achievable for P = 1 and
P = 2 [Fig. 3], that produces a high bias, which in turn is the
main component of the RMS error at high SNRs.

The performance of DML-P is roughly the same as that
of the direct DML method already for P = 4. Note that this
implies a very large complexity reduction, given that the DML
cost function has R = 204 summands while DML-4 only has
P = 4, i.e, the complexity reduction is roughly factor R/P =
204/4 = 51.

The DML-1, DML-2 and DML-3 have a high RMS floor in
Figs 5(a) to 5(c). This behavior is caused by the interpolation
error given that, for too low values of P , the cost function
is not interpolated with enough accuracy (Fig. 3), and this
translates into a bias.

Another phenomenon is the floor reached by the DML
estimators at high SNRs, that seems to contradict the statistical
efficiency of the DML estimator. However, this floor is just
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(a) Log-10 of RMS error in the estimation of γ1 for Direct DML and DML-P ,
and Cramer Rao (CR) bound. (N = 256, J = 100.)
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(b) Log-10 of RMS error in the estimation of γ2 for Direct DML and DML-P ,
and Cramer Rao (CR) bound. (N = 256, J = 100.)

-10 0 10 20 30 40 50 60
Signal-to-noise ratio (dB)

-8

-6

-4

-2

0

L
o
g
-1
0
o
f
R
M
S
e
rr
o
r

P = 1

P = 2

P = 3
�
��

6

P = 4, 5, . . .

———- DML-P
© © © © Direct DML
+ + + + CR bound

(c) Log-10 of RMS error in the estimation of γ3 for Direct DML and DML-P ,
and Cramer Rao (CR) bound. (N = 256, J = 100.)

Fig. 5. RMS error performance of Direct DML and DML-P in the estimation
of γ1, γ2, and γ3. (a), (b), and (c) correspond to γ1, γ2, and γ3 respectively.
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(a) Repetition of Fig. 5(a) but for DFT length N = 1024 and J = 25 slots.
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(b) Repetition of Fig. 5(a) but for DFT length N = 25600 and J = 1 slot.
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(c) Repetition of Fig. 5(a) but in the CS scenario and for DFT length
N = 25600 and J = 1 slot.

Fig. 6. Repetition of Fig. 5(a) for (a) IS scenario, N = 1024 and J = 25;
(b) IS scenario, N = 25600 and J = 1; and (c) CS scenario, N = 25600
and J = 1.
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the mismatch produced by the too-small FFT length, since
it is only N = 256. Fig. 6(a) is a repetition of Fig. 5(a) but
for DFT length N = 1024 and J = 25 slots. Note that the
floor appears at higher SNRs than in Fig. 5(a). Fig. 6(b)
is another repetition of Fig. 5(a) but with the highest DFT
length, N = 25600, J = 1. Here the mismatch is negligible.
Note that, in this last case, IC-MUSIC and TOPS are not
usable, given that there is a single snapshot and, besides, the
Direct DML estimator is intractable, because its cost function
has R = 20480 summands, while DML-4 gives the same
performance with just P = 4 summands. So, the compression
ratio of the DML cost function is R/P = 5120.

Table I shows the computation times for a single estimate,
averaged over 100 trials. Note that Direct DML is the one
taking longer, due to the many terms in its cost function.
The timings for the DML-P estimates follow a linear trend
approximatey, whose least squares fit is

Timing ≈ 0.08143 + 0.01482P (sec).

This linear fit suggests that the time required for computing
the DML estimate is 0.08143 sec, while the rest of the time
is consumed in evaluating the cost function. Also, it suggests
that each additional node involves an increase of 0.01482 sec.
The computation times of IC-MUSIC and TOPS are larger
than those of the DML-P estimates.

Finally, we evaluate the CS scenario. As is well-known, IC-
MUSIC and TOPS are not applicable to coherent signals, and
the conclusions for the Direct DML and DML-P estimators
are the same as in the IS scenario. Fig. 6(c) is a repetition of
Fig. 6(b) but in the CS scenario, (N = 25600, J = 1).

IX. CONCLUSIONS

We have presented a function evaluation method applica-
ble to the usual line-search tasks in DOA estimation, both
narrowband and wideband. The method is a combination of
the Chebyshev and barycentric interpolators, and employs
the DCT. It allows one to reduce the number of function
evaluations required in the usual line-search tasks. A second
contribution is a method to compress the DML cost function,
so that it is formed by just a few narrowband-like components,
with the associated reduction in complexity. The methods in
the paper have been assessed numerically.
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