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Highlights

• We tackle the task of graph language learning.
• We extend the classes of k-testability and k-TSS languages to directed graph languages.
• We propose a grammatical inference algorithm to learn this class of languages.
• The algorithm runs in polynomial time.
• The algorithm identifies this class of languages from positive data.
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In this paper we study the learning of graph languages. We extend the well-

known classes of k-testability and k-testability in the strict sense languages to

directed graph languages. We propose a grammatical inference algorithm to

learn the class of directed acyclic k-testable in the strict sense graph languages.

The algorithm runs in polynomial time and identifies this class of languages

from positive data. We study its efficiency under several criteria, and perform

a comprehensive experimentation with four datasets to show the validity of the

method. Many fields, from pattern recognition to data compression, can take

advantage of these results.

Keywords: Graph languages, graph automata, grammatical inference,

k-testable languages

Among the different approaches to machine learning, inductive learning can

be roughly defined as the inductive search for a model that represents the sup-

plied (training) data. Formal languages are suitable models under this approach.

When formal languages are used, the inductive learning process is known as
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grammatical inference (GI). This approach to automatic learning is usually fo-

cused on the learning of regular languages or their subclasses. Regular string

language inference is usually applied in many fields, from natural language pro-

cessing [46] or script recognition [38] to bioinformatics [48, 42, 32, 33]. See [16]

for a bibliographic study.

Even though regular language inference has been widely applied, it is impor-

tant to note that in many contexts structural information is of great importance.

This kind of information is not easy to model with subclasses of the regular lan-

guage class. Nevertheless, context-free grammars can easily model this kind of

information. In this line of work, Sakakibara presented the first algorithms for

learning context-free languages with polynomial time complexity [40, 41]. Some

other results for non-regular language inference study the inference of context-

free languages, for instance, [43, 30, 7, 8], or the inference of context sensitive

ones [44].

Looking also to enhance the possibilities of language inference, several works

study the task of tree language inference [14, 6, 23], as well as its application to

real tasks [31, 36, 46, 20]. In the grammatical inference framework, when more

general graphs are considered, the main problem that arises is computational

complexity, and, usually, graphs are reduced to less complex representations

(usually some kind of graph traversal).

Our paper considers graphs as elements of some formal language. In this

framework, and concerning general graphs, the handbook on graphs and graph

transformations edited by Rozemberg [39], summarizes, among other results,

the two main formalisms used to generate graph languages (node and hyper-

edge replacement grammars) as well as many theoretical results that relate graph

grammars with logic. But, although the generating paradigm has been widely-

studied and various graph automata models have been proposed [35, 5, 2], there

does not exist a recognizing device that properly fits all the different character-

ized classes of graph languages.

Usually, the results concerning the inference of graph grammars are based

on the problem of isomorphism on general (unrestricted) graphs, and therefore,
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have high time complexity [17, 18, 21]. Some works consider results on mining in

graphs in order to propose graph grammar inference methods [3, 11]. There also

exist works devoted to estimate the parameters of stochastic graph grammars

[29] or the definition of new learnable classes of graph grammars [10].

In this paper, we first extend the notion of k-testability [27] to directed-

graph languages. Thus, the classes of k-testable and k-testable in the strict sense

(k-TSS) graph languages are defined. Briefly, k-testable and k-TSS language

definitions take into account a finite set of structures of size k that are allowed

to appear in the elements of the language. We also prove some lemmas that

show that the main features of the class of k-TSS languages are still applicable

to graph languages. This fact is important in order to be able to use this class

in applied tasks, as has been done before with string and tree languages.

Second, we propose a polynomial grammatical inference algorithm to learn

the class of k-TSS directed acyclic graph languages from positive data. Let

us note that the k-testable structures our approach takes into account help to

bound the above mentioned high complexity of graph isomorphism. Besides, the

consideration of directed acyclic graphs also helps to further ease the general

complexity. Finally, we study the time complexity of this algorithm and prove

its polynomial behavior.

This work is structured as follows. In the next section some definitions

and notation of graph languages and multisets are presented. In Section 3

we define the classes of k-testable and k-TSS graph languages. Some lemmas

concerning the class of k-TSS graph languages are also proved. The model of

graph automata used for directed acyclic graphs is defined in Section 4. Next,

in Section 5, we propose the new inference algorithm and include a running

example. We prove that it identifies the class of directed acyclic k-TSS graph

languages from positive data. Section 6 examines the efficiency of this algorithm

based on different criteria, and Section 7 shows the experimental results. We

end the paper with the conclusions and some lines of future work.
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In the following, if not stated otherwise, we will consider node-labeled di-

rected graphs, which we refer to as graphs, and which can be defined by a tuple

g = (V,E, μ), where V is a finite set of nodes (or vertexes), E ⊆ (V × V )− idV

is the set of edges (where idV denotes the smallest reflexive relation), and

μ : V → Σ is the node labeling function. Note that the definition does not

allow a single node to be the two components of the same edge (i.e. loops are

not allowed). When necessary, we will refer to the components of a graph g as

Vg, Eg and μg. An acyclic graph is such that the reflexive-transitive closure of

E is a partial order. Two graphs g = (V,E, μ) and g′ = (V ′, E′, μ′) are iso-

morphic if there is a bijection f : V → V ′ such that, for any nodes u, v ∈ V ,

μ(v) = μ′(f(v)) and (u, v) ∈ E if and only if (f(u), f(v)) ∈ E′.

For any given node v, an edge (u, v) is called incoming (resp. outgoing for

edges of the form (v, u)). The incoming degree of a node v (resp. outgoing

degree) is the number of incoming (resp. outgoing) edges of v will be denoted

by idg(v) and defined as idg(v) = |{(u, v) ∈ E}| (resp. the outgoing degree is

defined as odg(v) = |{(v, w) ∈ E}|). For any graph g = (V,E, μ), let V n
m(g) be

defined as the set of nodes with incoming degree n and outgoing degree m. In

the following, two sets of nodes will be of special interest: the set of nodes with

zero incoming degree and the set of nodes with zero outgoing degree of a graph

g, which we will denote respectively with V 0(g) and V0(g).

We define a typed alphabet Σr as the association of an alphabet Σ with a

finite relation r ⊆ (Σ × N × N). This relation allows to establish the allowed

incoming and outgoing degrees for each label in the alphabet. Thus, the typed

alphabet plays the same role as the plain alphabet in string languages or the

ranked alphabet in tree languages. In order to explicitly refer to the subset of

symbols of the ranked alphabet with a given input and output degree, we will

denote with Σn
m the set: {s ∈ Σ : (s, n,m) ∈ r}. Note that the fact that r is a

finite relation implies that Σn
m is non-empty for only a finite number of pairs of

n and m.
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Note that, once the typed alphabet is defined, the set of all possible con-

sistently labeled graphs can be defined. Formally, let G(Σr) denote the set of

graphs over Σr. A graph language is any set LG ⊆ G(Σr).

Given a typed alphabet Σr, let the extended alphabet Σ̂ be the alphabet

defined as the set:

Σ̂ = {anm : a ∈ Σ, (a, n,m) ∈ r}

Taking into account the extended alphabet, given a graph g = (V,E, μ), we

define its extended graph as ĝ = (V,E, μ̂), where μ̂ : V → Σ̂, and such that

for each node v in V n
m(g), if μ(v) = a, then μ̂(v) = anm. Intuitively, the use of

the extended alphabet allows the labels of the nodes of the extended subgraph

ĝ to explicitly include the incoming and outgoing degrees. Figure 1 shows an

example.

g:

σσ σ

σ

σ

σa b

ĝ:

σ0
2σ1

2 σ1
1

σ1
1

σ1
1

σ2
2a20 b10

Figure 1: Example of a graph g and its corresponding extended graph ĝ.

In order to provide simple graph representations to illustrate our results,

from now on we will consider skeletal graphs and skeletal graph languages

(graphs where the nodes v such that odg(v) �= 0 (internal nodes) are labeled

with the same symbol). We will use Greek symbols to label internal nodes and

Latin symbols to label frontier nodes (those with outgoing degree zero).

For any given sequence of nodes w1, w2, . . . , wk such that (wi, wi+1) ∈ E for

1 ≤ i < k, we say that there exists a path from w1 to wk. We define the length

of the path as the number of nodes in the sequence, including the starting and
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ending nodes of the path. A graph may have more than one path between a

pair of nodes u and v. Thus, let |u �→ v| denote the length of the (possibly

multiple) shortest path. This is consistent with assigning infinite to the length

of a non-existent path and |u �→ u| = 1. We define the diameter of a graph

g = (V,E, μ) as the length of the shortest path between the two more distant

connected nodes of the graph. More formally:

diameter(g) = max
u,v∈V

{|u �→ v| : |u �→ v| < ∞}

Given a graph g = (V,E, μ), the subgraph of g rooted in the node v with

radius k is defined as Rg(v, k) = (W,E′, μ′) such that:

W = {u ∈ V : |v �→ u| ≤ k}

and where E′ = E ∩ (W ×W ), that is, the set of edges restricted to the nodes

in W . In the same way, μ′ is the restriction of μ to the nodes in W . We extend

this definition to consider, for any graph g = (V,E, μ), the subgraph of g rooted

in the node v, denoted by Rg(v) = (W,E′, μ′) where:

W = {u ∈ V : |v �→ u| < ∞}

with the set E′ and the labeling function μ′ defined as above.

Multisets

We now recall some definitions from multiset theory [45] that will be used

in the transition function of a new graph automata model and in the inference

algorithm. For any given set D, a multiset over D is a pair 〈D, f〉 where f :

D → N is an enumeration function and N denotes the set of natural numbers.

That is, for any a ∈ D, the function f(a) denotes the number of elements a in

the multiset. The size of a multiset A = 〈D, f〉 is denoted with |A| and defined

as |A| = ∑
a∈D f(a).

Two multisets, A = 〈D, f〉 and B = 〈D, g〉, are equal (A = B) if and only if,

for all a ∈ D, f(a) = g(a). In the same way, A is a subset of B (A ⊆ B) if and
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only if, for all a ∈ D, f(a) ≤ g(a). Let also the sum of two multisets (A ⊕ B)

be defined as the multiset C = 〈D,h〉 where for all a ∈ D, h(a) = f(a) + g(a).

A very useful concept for dealing with multisets is the Parikh mapping.

Formally, a Parikh mapping can be viewed as the application Ψ : D∗ → Nn

where D = {d1, d2, . . . , dn} and D∗ is the set of strings over D. For any x ∈ D∗,

this mapping is defined as Ψ(x) = (#d1 ,#d2 , . . . ,#dn) where #di denotes the

number of occurrences of di in x. Note that this allows to represent a multiset

using whichever string with the correct Parikh mapping. In the following, we

will denote with Mn(D) the class of multisets whose size is equal to a constant

n and with M(D) the class of multisets (of any size) over D.

k

Testable and testable in the strict sense languages [27] are defined by a

vector (I, S, F ) which represents those structures that are allowed to appear in

the members of the language. These families have been defined over string and

tree languages [13, 14]. In this section, we extend the definition to consider

graph languages.

Given a typed alphabet Σr and the corresponding set of graphs over it G(Σr),

for any g = (V,E, μ) ∈ G(Σr) and any k ≥ 2, let us define the k-testability

vector Tk(g) = (Ik−1(g), Pk(g), Fk−1(g)) where:

Ik−1(g) =
{
Rĝ(v, k − 1) : v ∈ V 0(g)

}
Pk(g) = {Rĝ(v, k) : v ∈ V, diameter(Rg(v)) ≥ k}

Fk−1(g) = {Rĝ(v, k − 1) : v ∈ V, diameter(Rg(v)) ≤ k − 1}

Note that Pk(g) = ∅ if diameter(g) < k. Note also that the nodes of

the graphs in each component of the k-testability vector are labeled with the

extended function μ̂. Examples 1 and 2 show the k-testability vector of some

graphs. Note that it is not necessary for the graph to be acyclic in order to

obtain the k-testability vector. Example 2 illustrates this fact.
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Given the graph in Figure 1, Figure 2 shows the components of the

3-testability vector. For each node, this extended labeling function depicts what

the neighborhood was in the mother graph. For instance, note that the nodes

labeled a20 in Figure 2 do not always have two incoming edges. The extended

labeling allows relevant structural information to be dealt with in a straightfor-

ward way. This labeling will play an important role in our grammatical inference

algorithm.

I2(g) =

⎧⎪⎪⎨
⎪⎪⎩

σ0
2

σ1
2 σ1

1

⎫⎪⎪⎬
⎪⎪⎭ ; F2(g) =

⎧⎪⎪⎨
⎪⎪⎩

σ1
1

a20

;

σ2
2

a20 b10

; a20 ; b10

⎫⎪⎪⎬
⎪⎪⎭ ;

P3(g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ0
2

σ1
2 σ1

1

σ1
1 σ1

1 σ2
2

;

σ1
2

σ1
1 σ1

1

a20 σ2
2

;

σ1
1

σ2
2

a20 b10

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

Figure 2: The components of the 3-testability vector for the graph in Figure 1 are shown.

Figure 3 shows a directed non-acyclic graph and its 2-testability

vector. Note that, in this case, the set V 0(g) is empty, and therefore the set

I1(g) is empty as well.

The functions Ik, Fk and Pk can be extended in a natural way to a set G of

graphs:

Ik(G) =
⋃
g∈G

Ik(g);

Pk(G) =
⋃
g∈G

Pk(g);

Fk(G) =
⋃
g∈G

Fk(g)

For any pair of graphs g and g′, it is possible to define an equivalence relation

≡k over G(Σr) taking into account the k-testability vector, where g ≡k g′ if and
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g: σ σ σ σ

σ b σ σ

σ σ σ σ

I1(g) = ∅; F1(g) =

{
b10

}
;

P2(g) =

⎧⎪⎪⎨
⎪⎪⎩

σ1
1

σ2
1

;

σ2
1

σ2
2

;

σ2
2

σ1
2 σ1

2

;

σ1
2

b10 σ1
2

;

σ1
2

σ2
1 σ1

1

;

σ1
1

σ1
1

⎫⎪⎪⎬
⎪⎪⎭

Figure 3: Directed graph and its corresponding 2-testability vector.

only if Tk(g) = Tk(g
′). This equivalence relation is key in defining the classes

of k-testable and k-testable in the strict sense graph languages.

A graph language G is k-testable (k ≥ 2) if it results from the

union of a finite number of equivalence classes of the relation ≡k.

Intuitively, and in the same way it happens with string or tree languages, if

g is a graph in a k-testable graph language G, then, every graph g′ such that it

has the same k-testability vector as g is also in G.

For any k ≥ 2, a graph language G is k-testable in the strict

sense (k-TSS) if there exist three finite sets of graphs (B,S,E) such that, g ∈ G

if and only if Ik−1(g) ⊆ B, Pk(g) ⊆ S and Fk−1(g) ⊆ E.

According to the definition, and a shared feature of string and tree k-TSS

languages, the membership to a k-TSS graph language of graphs with diameter

smaller than k depends on Fk−1(g). This is because for those graphs Pk(g) = ∅
and Ik−1(g) ⊆ Fk−1(g).

We note here the importance of the graph isomorphism problem for directed

acyclic graphs in the application of the results we present. Some papers in

the literature state that the graph isomorphism problem has polynomial time
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complexity for some graph families that include the graphs we use in our re-

sults. Among those papers, in [4] and [24] graphs with bounded tree-width and

bounded degree are studied, and in [28] the author studies the class of graphs

with bounded genus. In all these cases, it is proved that isomorphism of such

graphs can be determined with polynomial time complexity.

Note that, for a given set of graphs G, the k-testability vector defines a k-

TSS language when the sets of graphs B, S and E are set to Ik−1(G), Pk(G)

and Fk−1(G), respectively. Let this language (obtained from the set of graphs

G) be denoted by Lk(G). Note that, as well as for the case of string and

tree languages, given a k value and a typed alphabet, the class of k-TSS graph

languages is finite. We now prove some results related to this class of languages.

Let G be a finite set of graphs and k ≥ 2, then G � Lk(G).

Proof. Let g ∈ G, trivially Ik−1(g) ⊆ Ik−1(G), Pk(g) ⊆ Pk(G) and Fk−1(g) ⊆
Fk−1(G). The language Lk(G) is defined by the vector Tk(G) = (Ik−1(G),

Pk(G), Fk−1(G)); therefore, g ∈ Lk(G).

To prove that the inclusion is strict, note that any disconnected graph ob-

tained by joining graphs in the set G will belong to the k-TSS language Lk(G).

This implies that every k-TSS graph language, except the empty one, is infi-

nite.

In string [13] and tree languages [14], it is proved that, when the value of k

is greater than the maximum length (depth in the case of trees) of the elements

in a set S, then the k-TSS language obtained from that set (of strings or trees)

equals S. A consequence of Lemma 1 is that this fact does not hold when graph

languages are taken into account because the minimum k-TSS of a set of graphs

always generalize the set G.

We note that, in some cases, it is possible to build new graphs taking into

account the graphs rooted in the set of nodes with zero incoming degree. As an

example, let us consider a set of graphs containing only the graph g shown in

Figure 4 (with diameter(g) = 3) and its corresponding 4-testable vector. Note

that the graph g′ shown in the same figure belongs to the language L4({g}).
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g:

σ a a

σ σ σ
g′:

σ σ σ

a a a

σ σ σ

I3({g}) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ0
2

σ1
1 σ2

2

a20 a10

;

σ0
1

σ2
2

a20 a10

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

; P4({g}) = ∅

F3({g}) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σ0
2

σ1
1 σ2

2

a20 a10

;

σ0
1

σ2
2

a20 a10

;

σ1
1

a20

;

σ2
2

a20 a10

; a20 ; σ1
0

⎫⎪⎪⎬
⎪⎪⎭

Figure 4: The components of the 4-testability vector for L4({g}) are shown. Note that the

graph g′ belongs to the language L4({g}).

For any set of graphs G and a given k ≥ 2, the language Lk(G) is

the smallest k-TSS language that contains G.

Proof. We will prove that, for any given k-TSS language T , if G ⊂ T , then

T �⊂ Lk(G).

We first note that if G ⊂ T , then all the structures into the k-testability

vector Tk(G) are also into the vector that characterizes the language T , and

therefore T and L(G) cannot be incomparable.

Let (BT , ST , ET ) be the sets that define the language T . Let us suppose that

T ⊂ Lk(G); then there is a graph g ∈ Lk(G)− T . On the one hand, g ∈ Lk(G),
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then Ik−1(g) ⊆ Ik−1(G), Pk(g) ⊆ Pk(G) and Fk−1(g) ⊆ Fk−1(G). On the other

hand, g �∈ T , therefore, Ik−1(g) �⊆ BT or Pk(g) �⊆ ST or Fk−1(g) �⊆ ET .

In other words, there are some structures in the k-testability vector of Lk(G)

that are not present in the one of T . From this, it follows that there exists a

graph g′ such that g′ ∈ G and g′ �∈ T ; therefore, G �⊆ T , which contradicts the

previous assumption.

Let G and G′ be two sets of graphs and k ≥ 2. If G ⊆ G′, then

Lk(G) ⊆ Lk(G
′).

Proof. It is easy to see that, if G ⊆ G′, then Ik−1(G) ⊆ Ik−1(G
′), Pk(G) ⊆

Pk(G
′) and Fk−1(G) ⊆ Fk−1(G

′). Therefore, Lk(G) ⊆ Lk(G
′).

For any set of graphs G and k ≥ 2, Lk+1(G) ⊆ Lk(G).

Proof. We need to prove that, for every g ∈ Lk+1(G), g is also in Lk(G), in

other words, we need to prove that for any g ∈ Lk+1(G), Ik−1(g) ⊆ Ik−1(G),

Fk−1(g) ⊆ Fk−1(G) and Pk(g) ⊆ Pk(G) hold.

Note that the sets Ik−1(G) and Fk−1(G) can be obtained from the sets Ik(G)

and Fk(G) as follows:

Ik−1(G) = Ik−1(Ik(G))

Fk−1(G) = Fk−1(Fk(G))

Concerning Pk(G) and Pk+1(G), for every graph g ∈ Lk+1(G), we distinguish

two cases:

• if diameter(g) ≤ k, then Pk+1(g) = ∅, which is a subset of Pk(G)

• if diameter(g) > k, then Pk(g) = Pk(Pk+1(g)) ⊆ Pk(Pk+1(G)) = Pk(G)

Thus, as mentioned above, any graph fulfilling the conditions fixed by the

(k + 1)-testability vector also fulfills those fixed by the k-testability vector.

Therefore, we conclude that Lk+1(G) ⊆ Lk(G)
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We remark here the important role the incoming and outgoing degrees have

in order to obtain different graphs with the same diameter over a given typed

alphabet. We also remark that, for any given typed alphabet and k values, the

number of distinct graphs that can appear in a k-testability vector depends on

the symbols that are in the typed alphabet.

We recall that every k-TSS graph language (and every k-testable graph lan-

guage as well) is related to a k-testability vector. Taking into account the (finite)

number of different elements that can appear in a k-testability vector, it follows

that the class of k-TSS graph languages is finite, although the number of lan-

guages in the class can be dramatically high (in fact, exponentially high, because

every subset of such elements potentially defines a different k-TSS language).

This should neither be considered as a drawback nor as an advantage. It

is a shared feature with k-TSS string and tree languages, for which there exist

results that support their interest in many fields.

In the next section, we propose a new model of graph automata for directed

acyclic graphs and use this model to propose a grammatical inference algorithm.

In [22] a non-deterministic automata model for directed and acyclic graph

languages is presented. That model takes into account the work by Potthoff et

al. in [35], where the authors present three models of finite graph automata.

All three models consider node-labeled graphs together with a coloring over the

edges. The authors restrict this class of graphs to those graphs where, on the

incoming (resp. outgoing) edges of a node, each color appears at most once.

Thus, as the authors state, they are dealing with some kind of ordered acyclic

graph class. The order induced by the edge coloring helps in the processing of

the transitions.

The main difference of the automata model in [22] with respect to the previ-

ous models commented above consist in the definition of the transition function

of the automata, which takes into account a multiset which permits the graphs

13



to be processed without taking into account any order among the nodes ex-

cept for the partial one induced by the directed edges. Another difference is the

consideration of a set of final states. Previous automata models consider the ex-

istence of a run over the graph as the criterion to accept it. In [22], the authors

present a model that traverses the graph with a bottom-up scheme (in a simi-

lar way a bottom-up tree automaton analyzes a tree), but taking into account

that there does not exist any order among the siblings. A state is assigned to

each node v taking into account a multiset of states and the extended label of

the node. The multiset of states is the result of processing the nodes reached

by the outgoing edges from v. The use of the extended labels allow graph-like

structures to be considered in a straightforward way. Once the analysis ends,

a state has been assigned to each node with zero incoming degree. The graph

belongs to the language accepted by the automaton if all the states assigned to

the nodes with zero incoming degree are final.

In this paper we consider a deterministic version of the model in [22], i.e.

the automaton has (at most) only one transition for any symbol in Σ̂ and any

multiset over the set of states. For the sake of simplicity, multisets will be repre-

sented in the following using whichever string with the correct Parikh mapping.

Definition 3 describes the automata model.

Let Σr be a typed alphabet where w denotes the maximum out-

going degree in Σ̂. A (non-deterministic) graph automaton for a language over

Σr is defined as the tuple GA = (Q, Σ̂, δ, F ), where Q is a finite set of states, Σ̂

is the extended alphabet of Σr, the set F ⊆ Q contains the final states and δ is

a set of transition functions defined as follows:

δ =
⋃

0 ≤ j ≤ w

j : ∃n > 0,Σn
j �= ∅

δj

where each δj is defined as:

δj : Σ̂
n
j ×Mj(Q) → Q, 0 ≤ j ≤ w

where, as defined above, Mj represents the class of multisets of size j.
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Please, note that the definition of the domain of the transition function

considers the extended alphabet instead of the original one. This allows the

graph to be processed taking into account both the outgoing degree (the size of

the multiset) and the incoming degree of the node (captured in the symbol of

the extended alphabet).

In order to extend the transition function to operate on graphs, the intuitive

idea consists of a recursive analysis over each zero-incoming degree node. The

multisets returned by these analyses are then summed (⊕ operator). Formally,

for any given graph g the function δ is extended as follows:

δ : G(Σ) ∪ G(Σ̂) → M(Q)

δ(g) = δ(ĝ) =
⊕

vi∈V 0(ĝ)

δ(Rĝ(vi))

where, assuming that the outgoing degree of node vi is m:

δ(Rg(vi)) = δm(μĝ(vi),Mi1 ⊕ . . .⊕Mim) :

Mij = δ(Rg(wj)), (vi, wj) ∈ E

For any graph g the extended version ĝ is isomorphic, thus, there is no

problem in reducing the parsing of a graph to its extended version. The language

accepted by the automaton is defined as follows:

L(GA) = {g ∈ G(Σr) : ∀q ∈ δ(ĝ), q ∈ F}

Thus, any graph g is accepted by the automaton GA if and only if the

extended transition function returns a multiset that contains only final states.

When necessary, we will refer to these multisets as final multisets.

The model of graph automata we propose is not able to process general di-

rected graph languages, that is, languages with graphs that may contain cycles.

The main problems to extend this model to those general graphs is the need to

establish a processing order, since it is possible for the graph to have no node

with zero incoming degree. Another, closely related problem is to establish an

acceptance criterion for general graphs because, again, the graph may have no

node with zero outgoing degree.
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δ(a20, λ)= q1

δ(b10, λ)= q2

δ(σ2
2 , q1q2)= q1

δ(σ1
1 , q1)= q2

δ(σ1
2 , q2q2)= q1

δ(σ0
2 , q1q2)= q1, where q1 ∈ F

Figure 5: An example of graph automaton.

δ(σ0
2 , q1q2) = q1

δ(σ1
2 , q2q2) = q1 δ(σ1

1 , q1) = q2

δ(σ1
1 , q1) = q2 δ(σ1

1 , q1) = q2

δ(σ2
2 , q1q2) = q1

δ(a20, λ) = q1 δ(b10, λ) = q2

Figure 6: Example of the parsing of the graph in Figure 1.

Taking into account the graph shown in Figure 1 and the automa-

ton in Figure 5, a representation of the analysis of the graph is depicted in

Figure 6.

We recall that the strings in the transition function denote multisets accord-

ing the Parikh function. Thus, the string q1q2 represents the multiset with one

element q1 and one element q2. The graph is recursively traversed to reach those

nodes with zero outgoing degree, therefore, the first nodes that are related to a

state are those for which no recursive call is needed (nodes with zero outgoing

degree). Figure 6 shows the order of the parsing process once those nodes are
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reached.

As we mentioned above, the processing of a graph reminds the processing of

a tree in a bottom-up tree automaton. Please note that, in this case, the use of

multisets permits not to take into account the order of the siblings.

k

We now propose Algorithm 5.1 to infer the class of k-TSS graph languages

from positive presentation. The algorithm follows the same scheme used pre-

viously to infer k-TSS string or tree languages [13, 14]. The algorithm first

establishes the set of states taking into account the graph structures of diame-

ter k − 1 in the k-testability vector of the input sample. The set of final states

is also established. Then, the algorithm creates the transitions using the graphs

in Fk−1(G) and Pk(G). Let us recall here that the definition of the transition

function considers a symbol of the extended alphabet and a multiset of states,

and, for the sake of simplicity, multisets are represented by a string (of states)

with the correct Parikh mapping (lines 8 and 11 in Algorithm 5.1). An example

of run is given below.

Let us consider k = 2, and the set G of graphs shown in Figure

7. The extracted elements of the 2-testability vector are shown in Figure 8.

G =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ

σ σ

σ

σ

σ

a b

;

b σ a σ b

σ σ σ

σ σ

σ
⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Figure 7: Set of graphs example.
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Grammatical inference algorithm from positive sample for the

class of k-TSS graph languages.

Input: A set G of graphs. A value k ≥ 2

Output: A graph automaton that recognizes the language Lk(G)

Method:

1: Compute (Ik−1(G), Pk(G), Fk−1(G))

2: Let Σr be the typed alphabet from G and ̂Σr be the extended one

3: for g ∈ {Ik−1(G) ∪ Fk−1(G) ∪ Ik−1(Pk(G))} do

4: Let Q[g] be a new state related to g

5: end for

6: F = {Q[g] : g ∈ Ik−1(G)}
7: for all g ∈ Fk−1(G), v ∈ V 0

m(g), where (v, wi) ∈ Eg, 1 ≤ i ≤ m do

8: δm(μ(v), Q[Rg(w1)] . . . Q[Rg(wm)]) = Q[g]

9: end for

10: for all g ∈ Pk(G), v ∈ V 0
m(g), where (v, wi) ∈ Eg, 1 ≤ i ≤ m do

11: δm(μ(v), Q[Rg(w1, k − 1)] . . . Q[Rg(wm, k − 1)]) = Q[Rg(v, k − 1)]

12: end for

13: return (Q, ̂Σr, F, δ)

EndMethod:

I1(G) =

⎧⎨
⎩ σ0

2

⎫⎬
⎭ ; F1(G) =

⎧⎨
⎩ a20 ; b10

⎫⎬
⎭ ;

P2(G) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ0
2

σ1
2 σ1

1

;
σ1
2

σ1
1 σ1

1

;
σ1
1

σ1
2

;
σ1
1

σ2
2

;
σ1
1

a20

;

σ2
2

a20 b10

;
σ0
2

σ1
1 σ1

1

;
σ2
2

σ1
1 σ1

1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Figure 8: Elements of the 2-testability vector for the graphs example.
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First, the algorithm constructs the set of states taking into account I1(G),

F1(G) and I1(P2(G)):

Q [ a20 ] = q1; Q [ b10 ] = q2; Q [ σ2
2 ] = q3;

Q [ σ1
1 ] = q4; Q [ σ1

2 ] = q5; Q [ σ0
2 ] = q6

The algorithm obtains the set of final states, which is F = {q6}. Then, the

algorithm considers the graphs in Fk−1(G). Note that the diameter of the graphs

is 1. Therefore, the transitions δ(a20, λ) = q1 and δ(b10, λ) = q2 are added to the

automaton. Note that λ denotes the empty string. The algorithm now processes

the graphs in Pk(G). As an example, let us consider the following graph in

P2(G):

σ0
2σ1

2 σ1
1

The algorithm takes into account the subgraphs of diameter k − 1 rooted at

the nodes below the node σ0
2 and the graph of diameter k− 1 rooted at the node

σ0
2. Thus, the algorithm adds the transition δ(σ0

2 , q5q4) = q6.

Once all the structures in the k-testability vector have been processed, the

following automaton is obtained:

δ(a20, λ)= q1

δ(b10, λ)= q2

δ(σ0
2 , q5q4)= q6, where q6 ∈ F

δ(σ1
2 , q4q4)= q5

δ(σ1
1 , q3)= q4

δ(σ1
1 , q5)= q4

δ(σ1
1 , q1)= q4

δ(σ2
2 , q1q2)= q3

δ(σ0
2 , q4q4)= q6, where q6 ∈ F

δ(σ2
2 , q4q4)= q3

As an example, Figure 9 shows two graphs that were not in the input set and

that belong to the 2-TSS graph language.
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a

σ

σ

σ

σ σ

σ

a

σ σ

σ

Figure 9: Two graphs not provided in the input set that belong to the example 2-TSS graph

language.

We now prove that the algorithm identifies in the limit the class of k-TSS

directed acyclic graph languages from positive presentation.

Algorithm 5.1 identifies the class of k-TSS graph languages from

positive sample.

Proof. We first prove that, given a set of graphs G, the algorithm returns a

graph automaton GA that accepts the language Lk(G). Note that, on the one

hand, for any graph g, its membership to the language of the automaton output

by Algorithm 5.1 implies to analyze each of the p nodes with zero incoming

degree. In order to accept the graph g, all these analyses should return a final

multiset. On the other hand, the membership of any graph g to Lk(G) implies

that, among other criteria, for every node v in V 0(g), Rĝ(v, k − 1) ∈ Ik−1(G).

Thus, for the sake of clarity, and without loss of generality, we will consider

graphs with just one node with zero incoming degree.

Lk(G) ⊆ L(GA): We will prove by induction on the diameter of the graphs,

that, if g ∈ Lk(G), then δ(g) returns a final state. First, if diameter(g) < k

and v ∈ V 0(g), then g is isomorphic to ĝ = Rĝ(v) ∈ Ik−1 ∩ Fk−1, and the

algorithm sets δ(Rĝ(v)) = Q[Rĝ(v, k − 1)] = Q[Rĝ(v)], which is a final state.

Let us suppose that, for any graph g such that diameter(g) = n, it is fulfilled

that δ(g) = Q[Rĝ(v, k − 1)] where v is in V 0(g). Note that Q[Rĝ(v, k − 1)] is a

final state because of the definition of Ik−1 and the construction of the set of

final states (line 6 in Algorithm 5.1). Now let g be a graph with v ∈ V 0
m(g), such

that, for 1 ≤ i ≤ m, there exists (v, wi) ∈ E and diameter(Rg(wi)) ≤ n, and
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where at least one of the graphs Rg(wi) has diameter n. Then, δ(Rĝ(wi)) =

Q[Rĝ(wi, k − 1)] for each i, and therefore:

δ(g) = δ(ĝ) =δm(μĝ(v), δ(Rĝ(w1))⊕ δ(Rĝ(w2))⊕ . . .⊕ δ(Rĝ(wm)))

=δm(μĝ(v), Q[Rĝ(w1, k − 1)]Q[Rĝ(w2, k − 1)] . . .

. . . Q[Rĝ(wm, k − 1)])

Note that there is an edge in g from v to each wi. Thus, the resulting joint

graph with all the Rĝ(wi, k − 1) is such that δ(g) = Q[Rĝ(v, k − 1)]. Note also

that the state is final, because Rĝ(v, k − 1) is in Ik−1(g).

L(GA) ⊆ Lk(G): We will prove that, for any graph g ∈ L(GA), it is fulfilled

that Fk−1(g) ⊆ Fk−1(G), Pk(g) ⊆ Pk(G) and there is graph q ∈ Ik−1(g) such

that δ(g) = Q[q] (a final state). We will prove the result by induction on the

diameter of the graph.

First, if diameter(g) < k with v ∈ V 0(g), then ĝ ∈ Fk−1(g) ⊆ Fk−1(G),

Pk(g) = ∅ and Rĝ(v, k − 1) is in Ik−1(G).

Let us suppose by induction hypothesis that, for any graph g ∈ L(GA) such

that diameter(g) = n ≥ k, it is fulfilled that Fk−1(g) ⊆ Fk−1(G), Pk(g) ⊆
Pk(G) and δ(g) = Q[Rĝ(v, k − 1)], where v ∈ V 0(g).

Now let g be a graph such that v ∈ V 0
m(g), with (v, wi) ∈ E and where

diameter(Rg(wi)) ≤ n for all 1 ≤ i ≤ m, with at least one of the graphs Rg(wi)

of diameter n. Therefore:

δ(g) = δ(ĝ) =δm(μĝ(v), δ(Rĝ(w1))⊕ δ(Rĝ(w2))⊕ . . .⊕ δ(Rĝ(wm))) =

=δm(μĝ(v), Q[Rĝ(w1, k − 1)]Q[Rĝ(w2, k − 1)] . . .

. . . Q[Rĝ(wm, k − 1)]) =

=Q[Rĝ(v, k − 1)]

where Rĝ(v, k) ∈ Pk(g) because (v, wi) ∈ E for all 1 ≤ i ≤ m. Besides,
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Q[Rĝ(v, k − 1)] = q. Moreover:

Fk−1(g) =
⋃

1≤i≤m

Fk−1(Rĝ(wi)) ⊆ Fk−1(G)

Pk(g) =

⎛
⎝{Rĝ(v, k)} ∪

⋃
1≤i≤m

Pk(Rĝ(wi))

⎞
⎠ ⊆ Pk(G).

Also, if g ∈ L(GA), then Q[Rĝ(v, k − 1)] is a final state. Therefore Rĝ(v, k − 1)

is in Ik−1(G) and g ∈ Lk(G).

Given the fact that, for any k given, the elements in the components of the

k-testable vector are finite, we conclude that the proposed algorithm identifies

the class of k-TSS directed acyclic graph languages.

Gold’s seminal learnability success criterion states that a class of languages is

identifiable in the limit with respect to a learning algorithm if, for any language

in the class there is a training set S such that, when supplied to the algorithm, it

outputs a correct hypothesis that does not change when the algorithm considers

supersets of S [15].

As we remark at the end of Section 3, each k-TSS graph language is related

to a k-testability vector, and, therefore, for every language in the class, there

always exists a set of graphs that can be processed to obtain the k-testability

vector. From this fact, it follows that the class of k-TSS graph languages is

identifiable in the limit.

From the seminal Gold’s success criterion, many time efficiency conditions

have been proposed in the literature. It is worth to be noted here that efficiency

criteria usually consider an incremental framework, that is, they assume that the

inference algorithms iterate on the input set, and modify a hypothesis to adapt

it to the new sample. We note that Algorithm 5.1 processes the input set of

graphs and outputs the graph automaton that accepts the smallest k-TSS graph
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language that contains the input set. Nevertheless, it seems rather natural to

think of an incremental version of this algorithm that forgets the input set of

graphs and keeps the current hypothesis. In the following, we will consider such

an incremental version of the algorithm in order to study the behavior of the

algorithm in this (incremental) framework.

Angluin and Smith [1], among some other criteria, define the mind changes

errors for evaluating inference algorithms. Given x as an admissible presenta-

tion and M an identification method, let DH(M,x) be the number of distinct

hypotheses output by M , and MC(M,x) be the number of mind changes, that

is, times when the hypothesis that is output changes.

Yokomori [49] also says that, in order to be useful in applied tasks, a given

inference method should run using positive presentation. Thus, motivated by

a question posed by Angluin and recalling a previous definition by Pitt [34],

Yokomori proposes a definition of polynomial time identification in the limit

from text as follows:

(Yokomori [49]) A class of grammars (languages) L is polynomial-

time identifiable in the limit from text if and only if there is an algorithm M

which, given l ∈ L, identifies l′ ∈ L equivalent to l in the limit from positive

presentation, with the property that there exist polynomials p and q such that

for any n, for any l of size n, the number of times M makes a wrong conjec-

ture is at most p(n), and the time for updating a conjecture is at most q(n,N)

where N is the sum of lengths of data provided.

We note that, when a new sample is processed, our algorithm modifies the

automaton only when the current sample is not accepted. Therefore, we can

identify a wrong conjecture and a mind change. We also note that, in the worst

case, each input sample modifies just one transition rule in the automaton,

therefore, it can be concluded that the number of mind changes of Algorithm

5.1 is bounded by the size of the automaton that represents the target language.

In order to prove that the proposed algorithm is efficient in the sense of

Yokomori, we prove that the time for updating a conjecture is polynomial.
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The time our algorithm takes to updating a conjecture is polynomial.

Proof. Let G denote the input set of graphs. Also, let w denote the greatest

outgoing degree of the graph nodes in G. Finally, let Σr be the typed alphabet

of the graphs in G.

For a given value of k, the time complexity to obtain each transition is

bounded by O(w · |Σ̂r| · wk−1) (that is, the biggest outgoing degree times the

size of the alphabet times the size of the greatest subgraph that can be reduced

to a state).

Each inference step implies at most the creation of as many transitions as

the number of nodes of the sample graph. Let n denote that number. Thus,

the time for updating a conjecture is bounded by O(n · |Σ̂r| · wk).

Thus, we have the following:

The proposed algorithm identifies in the limit, in polynomial time

from text the class of k-TSS graph languages.

In this section we show some experimental results to illustrate the suitabil-

ity of the k-TSS graph language class to model data. To do so, we have tested

the proposed inference algorithm with four datasets: the first one is synthetic

generated according to the properties of RNA hairpin loops; the second dataset

is a collection of architectonic and electronic symbols; the third dataset con-

tains information related to chemical compounds; and the fourth is related to

handwritten symbols. We have used six different algorithms in order to model

these data using graphs.

In this section, we first describe the datasets and parameters used to assess

the behavior of the learning algorithm. Then we perform an experiment to

study the inter-class discrimination capabilities (ie., each class from the rest)

of the k-TSS automaton. The good results obtained show that the learning of

24



k-TSS graph languages is useful to efficiently distinguish between the different

classes in each dataset.

7.1. Datasets

7.1.1. Hairpin RNA molecules dataset

The function of nucleic acid molecules is usually determined by their sec-

ondary structure. This secondary structure is due to bonds between some ele-

ments in an RNA strand (nucleotides) with other elements that are not adjacent

in the strand. The creation of these bonds is possible because the RNA bases

(adenine, guanine, uracil, and cytosine) are complementary two by two (ade-

nine is complementary to uracil as well as cytosine to guanine). The simplest

secondary structures that are present in RNA molecules are called hairpin loops

or hairpins.

A hairpin loop is an unpaired loop of (messenger) RNA that is created when

an RNA strand folds because some nucleotide bases of the strand form pairs.

Hairpins are a common type of secondary structure in RNA molecules and are

of importance in the cell processes (from the interaction of the RNA molecule

with a ribosome or the protection of the RNA molecule from degradation, to its

role in enzymatic reactions). In Figure 10 we show a graphical representation

of a (synthetic) RNA molecule with two hairpin loops.

Figure 10: Example of RNA hairpin graph representation. The RNA sequence AAAUCGC-

CGGAAAAGGCAAU with two hairpin loops is shown. The 5′ → 3′ order has been used to

orient the edges of the graph.

A dataset of 10,000 samples of hairpin graphs was generated synthetically fol-

lowing a series of simple rules modeling the formation of hairpin RNA molecules
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and taking into account the following criteria:

• The length of the loops was randomly chosen taking into account a normal

distribution with a mean of 6 bases and a standard deviation of 1.5 bases.

• The length of the RNA molecules was randomly chosen with a minimum

length of 10 and a maximum of 60.

• The position of the hairpin was also randomly generated. Non-hairpin

sequences were allowed (they occur with a probability of 0.2%).

Biologically, the molecular structure of the RNA provides an order on the

sequence (from the so-called 5′ end to the 3′ end). We take this ordering into ac-

count to obtain directed acyclic graph representations of hairpin RNAmolecules.

We note that, when this biological feature of the RNA strands is considered the

graphs obtained are acyclic.

It is worth noting that some of the biological structures (for instance, pseudo-

knots in RNA molecules) are beyond the class of context-free languages [25].

Nevertheless, these structures can be easily modeled using directed acyclic

graphs.

7.1.2. IAM graph datasets

The IAM-Graph DB is a publicly accessible repository freely available for

non-commercial research purposes [37]. From the set of databases available in

this repository we have chosen two that are appropriate for the task at hand:

GREC and Mutagenicity datasets. The rest were discarded well for being syn-

thetic or similar to those already tested.

GREC dataset. The GREC dataset consists of graphs representing symbols

from architectural and electronic drawings [9]. The images occur at five dif-

ferent distortion levels. Figure 11 shows some examples of drawings for each

distortion level. Depending on the distortion level, either erosion, dilation, or

other morphological operations are applied. The result is thinned to obtain lines
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of one pixel width. Finally, graphs are extracted from the resulting denoised im-

ages by tracing the lines from end to end and detecting intersections as well as

corners. A depth-first traversal of the graphs were used to orientate the edges of

the representation. The selection of the initial node (node with zero incoming

degree) was made randomly.

Nodes are labeled representing three possible classes: intersections, corners

and ending points. This dataset contains 1,110 graphs uniformly distributed in

22 classes.

Figure 11: Examples of drawings from the GREC dataset for each of the distortion levels.

Mutagenicity dataset. Mutagenicity is a dataset of molecular structures with

several chemical compounds classified as mutagenic or not mutagenic [19]. The

term “mutagenicity” refers to one of the numerous adverse properties of a com-

pound that hampers its potential to become a marketable drug. Toxic properties

can often be related to chemical structure, more specifically, to particular sub-

structures, which are generally identified as toxicophores. Figure 12 shows some

examples of different compounds classified as mutagenic and non-mutagenic. In

this dataset, molecules are converted into graphs in a straightforward manner by

representing atoms as nodes and the covalent bonds as edges. As for the GREC

dataset, the orientation of the edges was set using the depth-first traversal of

the graphs, and the initial node was randomly chosen.

Nodes are labeled with the number of the corresponding chemical symbol,

which can be one of the following fourteen classes: Br, C, Ca, Cl, F, H, I, K,

Li, N, Na, O, P, and S. This dataset contains 4,337 samples divided into two

classes: 2,401 mutagen elements and 1,936 non-mutagen elements.
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Figure 12: Examples of chemical compounds classified as mutagenic (compound B) and non-

mutagenic (compounds A and C).

7.1.3. NIST dataset

The NIST SPECIAL DATABASE (NIST) [47] consists of a huge dataset

of images of isolated handwritten characters, including upper and lower case

letters and digits. For the extraction of graphs we have considered a subset of

randomly chosen samples from the digits’ section of the dataset. Three of the

algorithms proposed in [12], namely: neighborhood, grid, and skeleton graphs

were used to model the images. These methods are a natural generalization

of similar tree-representation methods and have shown good performance in

graph-representation of images.

Briefly speaking, the neighborhood method considers the quadtree represen-

tation of the image and calculates the neighborhood of regions up to a certain

level of depth ‘d’ using the obtained q-tree to generate the graphs. The grid

algorithm reduces the image to a structural grid of a certain size ‘g’ and cre-

ates the graph by assigning as nodes the regions with the foreground color and

as edges the adjacency between the foreground regions. Only four plane direc-

tions (north, east, south and southeast) were considered. The skeleton method

takes into account the skeleton of the binarized image to build the graph. Pixels

of the obtained contour are followed according to their neighborhood to create

the nodes and the arcs of the graph every ‘ws’ pixels (window size). Figure

13 shows an example of the extraction of each of these type of graphs from an

image with the digit 6.

Using these three methods and the images from the NIST dataset at a res-

olution of 64 × 64 pixels, we generated three datasets of graphs with 60,000
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Figure 13: Examples of the three types of graphs extracted from the NIST dataset. From

left to right it can be seen the result obtained for the digit 6 using neighborhood graphs, grid

graphs and skeleton graphs.

samples each one (6,000 samples of each digit). The tuning parameter of each

algorithm were fixed to d = 4, g = 8, and ws = 15. Other parameter values

were also tested obtaining a similar performance but obtaining bigger models

due to the increased size of the generated graphs.

7.2. Experimental results

In this section we summarize the results of the experiments carried out.

These experiments show the good behavior of the learning algorithm we pro-

pose 1. For each dataset we used Algorithm 5.1 to obtain a graph automaton to

model each class. The models are then used to classify a set of non-overlapping

test samples using the strategy one-vs.-rest. That is, each automaton must cor-

rectly classify the samples of the class that the automaton models (that we will

name positive class from now on) and reject the samples from other (negative)

classes as well.

In order to evaluate the performance of the experiment we use the F-measure

(F-m). This is a common metric widely used for two-class classification prob-

1For the sake of reproducible research, the code of the experiments, the Hairpin RNA

molecules dataset, and the collection of graphs extracted from the NIST dataset are available

at http://github.com/ajgallego/grammatical-inference-of-graphs under the conditions

of the GNU General Public License version 3. The rest of the datasets are publicly available

for download.
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lems. F-m can be defined by means of Precision and Recall as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F-measure = 2 · Precision · Recall
Precision + Recall

where TP (True Positives) denotes the number of correctly classified samples

from the positive class, FN (False Negatives) the number of misclassified samples

from the positive class, and FP (False Positives) the number of negative samples

classified as positive.

We note that the Hairpin dataset contains only one class. Thus, we added

another heterogeneous class using a selection of 10,000 samples from the other

datasets (1,110 samples from the GREC dataset, 4,337 from Mutagenicity, and

4,553 randomly selected samples from the NIST datasets).

We applied a three-fold cross-validation scheme using the datasets previously

described. Each dataset was divided into two non-overlapping sets, considering

80% of the samples in each class as training set, using the remaining 20% of

the samples in each class as test set. We generate a k-TSS graph automaton

per class taking into account k values from 2 to 4. The precision and recall

measures were obtained according the description above.

Structural information is sometimes enough to successfully solve applied

tasks (for instance, document recognition [31]). In order to illustrate that our

approach is also suitable in this situation, we modified the samples of Hairpin,

GREC and Mutagenicity datasets in order to erase the labels of the internal

nodes. The NIST dataset was not considered because the internal nodes of the

graphs obtained were not labeled with discrete values. We used these processed

datasets and followed the same scheme explained above.

Table 1 shows the results in terms of Precision, Recall, and F-m (%) obtained

for each of the values of k considered together with the number of rules learned

by the automaton. The information shown averages the results for all the classes

in the dataset and the three folds.
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Dataset Hairpin GREC Mutagen. Neighbour Grid Skeleton

Node labels? Yes No Yes No Yes No No No No

k = 2

#rules 314.51 152.43 34.77 30.82 840.58 321.75 113.89 105.74 97.83

Prec. 85.96 82.79 87.55 81.25 81.4 78.68 87.13 85.8 89.49

Recall 90.44 91.64 90.91 91.82 85.52 86.44 92.5 91.83 92.92

F-m 88.14 86.99 89.2 86.21 83.41 82.38 89.73 88.71 91.17

k = 3

#rules 3527.15 1278.41 42.68 37.64 3016.24 1815.75 237.19 234.48 204.81

Prec. 88.96 85.45 89.48 85.17 84.29 81.74 93.87 93.85 95.79

Recall 88.9 90.69 89.09 90.91 85.29 86.21 90.67 90 91.75

F-m 88.93 87.99 89.29 87.95 84.79 83.91 92.24 91.89 93.73

k = 4

#rules 5487.23 3421.65 43.91 40.82 4873.35 3474.62 354.65 376.12 246.34

Prec. 91.77 86.56 89.48 85.17 86.79 85.43 95.58 94.18 96.81

Recall 88.75 90.59 89.09 90.91 84.83 85.75 90.17 89.83 91.33

F-m 90.23 88.53 89.29 87.95 85.8 85.59 92.79 91.96 93.99

Table 1: Average results in terms of Precision, Recall, and F-m (%) obtained by the algorithm

of inference using the one-vs.-rest strategy. For each dataset, the results for each value of k

next to the number of rules learned by the automaton are included.

As it can be checked, in all cases a similar behavior is observed: when

increasing the value of k, the automaton has to learn a larger number of rules.

This is due to the fact that the elements of the k-testability vector that represent

the graph language have greater variability. Nevertheless, we note that this

particularity allows the automaton to better discriminate among the different

classes. We note that, in the case of the GREC dataset, similar results were

obtained for k = 3 and k = 4. This is because the average graph diameter is

close to 3, and, therefore, few rules related to graphs of diameter 4 are generated.

It can also be checked that, the use of structural information lead to obtain

automata with a fewer number of rules. This is due to the number of possible

elements in the k-testability vector is more reduced. This also causes Precision

and F-m to worsen, and Recall to increase, which is due to the fact that the

automaton is giving more false positives.

This experiment shows how the proposed inference algorithm is able to

model, at the class level, the different types of graphs considered and to distin-

guish them from the rest of the samples in the same dataset. Evaluating the

quality of the classification by class or the probability of belonging to a class is
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out of the scope of this paper and is left as future work.

Graphs are used in many applied tasks because of their power of represen-

tation. For instance, trees, as the simpler class of graphs, have been widely

applied in pattern recognition. Statistical tree language inference is also the ba-

sis of a good compression algorithm [36]. Nevertheless, when general graphs are

used, they are usually reduced or represented by simpler formalisms because of

their high operational complexity.

Stochastic models based on k-grams output the probability of the next ele-

ment in a sequence taking into account the last k−1 elements already observed.

This approach to pattern recognition has proved to be fruitful in many tasks.

From a theoretical point of view, these models can be regarded as a probabilistic

extension of strictly locally testable string languages [26].

In this paper, we extend the well-known families of k-testable and k-TSS

languages to directed-graph languages. As far as we know, this is the first

result that characterizes a graph language class taking into account features of

the elements in the language, instead of the properties of the language generating

machine (graph grammar).

The definition of k-testable and k-TSS languages support general directed

graph languages (those that may contain cycles), nevertheless, the automata

model proposed, as well as the inference algorithm do not so, and are focused

to directed acyclic graphs. The main problems to extend the results to general

directed graphs are the need to establish a processing order and the accepting

criterion (because both the zero-incoming and zero-outgoing sets of nodes may

be empty).

The experimentation carried out shows the suitability of the proposed in-

ference algorithm to model different types of graphs. In this experimentation,

a synthetic datatset and three real-data datasets were processed to model with

graphs the information contained in them. Further improvements of the graph
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model (such as an error correcting parser, a smooth procedure or the addition

of probabilities) would indeed be very useful in applied tasks.

In this paper we do not tackle the task of generating graphs of a given k-

TSS graph language. Of course, both the definition of k-TSS graph grammars,

as well as the task of obtaining, from a given k-TSS graph automaton, an

equivalent graph grammar, are quite interesting, and would help to propose a

proper stochastic extension.
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This article does not contain any studies with human
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[13] P. Garćıa and E. Vidal. Inference of k-testable languages in the strict

sense and application to syntactic pattern recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 12:920–925, 1990.
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[22] D. López, J. Calera-Rubio, and A. Javier Gallego-Sánchez. Inference of

k-testable directed acyclic graph languages. Journal of Machine Learning

Research: Workshop and Conference Proceedings, 21:149–163, 2012.
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