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Abstract. In this paper we measure how much a linear optimization problem, in Rn, has to
be perturbed in order to lose either its solvability (i.e., the existence of optimal solutions) or its
unsolvability property. In other words, if we consider as ill-posed those problems in the boundary
of the set of solvable ones, then we can say that this paper deals with the associated distance to
ill-posedness. Our parameter space is the set of all the linear semi-infinite programming problems
with a fixed, but arbitrary, index set. In this framework, which includes as a particular case the
ordinary linear programming, we obtain a formula for the distance from a solvable problem to
unsolvability in terms of the nominal problem’s coefficients. Moreover, this formula also provides the
exact expression, or a lower bound, of the distance from an unsolvable problem to solvability. The
relationship between the solvability and the primal-dual consistency is analyzed in the semi-infinite
context, underlining the differences with the finite case.
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1. Introduction. Different concepts of distance to ill-posedness have recently
acquired remarkable prominence in different settings related to linear programming.
Besides providing quantitative measures of the stability of a problem, they are related
to several theoretical and numerical issues, namely, stability of the feasible set [3], [6],
[19]; measures of conditioning [10], [17], [20]; complexity analysis of certain algorithms
for computing solutions [9], [11]; size of the feasible set [3], [8]; metric regularity of
mappings [6], [7], [15]; etc.

An instance of a problem is ill-posed with respect to a certain property if arbitrar-
ily small perturbations of the data defining the problem instance can yield problem
instances with and without the property. In this way, the respective boundaries of
the sets of consistent problems (i.e., with nonempty solution set), bounded problems
(i.e., with finite optimal value), or solvable problems (i.e., having optimal solutions)
can be seen as examples of sets of ill-posed problems. The distance from a problem
to any of these boundaries is referred to as its distance to ill-posedness with respect
to the considered property.

The distance to ill-posedness with respect to consistency has been thoroughly
studied, for example, in the contexts of conic linear systems [16], [18], [19] and linear
semi-infinite inequality systems [3].

This paper is concerned with the distance to ill-posedness with respect to the
boundedness and solvability of linear optimization problems, in Rn, of the following
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form:

π : Inf c′x
s.t. a′tx ≥ bt, t ∈ T,

(1)

where c, x, at ∈ Rn, bt ∈ R, and y′ denotes the transpose of y ∈ Rn. The index set,
T , of the constraint system, σ = {a′tx ≥ bt , t ∈ T}, is arbitrary. The feasible set of
π is denoted by F , its optimal value by v, and its optimal set by F op, adopting the
convention v = +∞ when F = ∅.

When T is finite π is nothing else but an ordinary linear programming problem,
whereas π is a linear semi-infinite programming problem when T is infinite. In the
latter case the problem of determining the distance to the ill-posedness with respect
to the solvability is not reducible to the problem of determining the distance to the
ill-posedness with respect the consistency of the combined system of primal and dual
constraints [5], since the dual problem is infinite-dimensional and there might exist
a duality gap (see [12, Chap. 8]). Nevertheless, in section 6 the relationship between
solvability and primal-dual consistency is explored.

The parameter space of all the linear optimization problems π = (c, σ) in the
form (1), and whose constraint systems have the same index set T , is denoted by Π.
When different problems are considered in Π, they and their associated elements will
be distinguished by means of sub- or superscripts. Thus, if π1 also belongs to Π, we
write π1 = (c1, σ1) and σ1 := {(a1

t )
′x ≥ b1t , t ∈ T}, and its feasible set, optimal value,

and optimal set are accordingly denoted by F1, v1, and F op
1 , respectively.

Πc will denote the subset of Π formed by all the consistent problems, while Πi :=
Π\Πc represents the subset of all the inconsistent problems. Πb denotes the subset of
the bounded problems, and Πs the subset of the solvable ones, that is, those problems
with nonempty optimal set (F op �= ∅). Obviously Πs ⊂ Πb ⊂ Πc.

Associated with two arbitrary norms in Rn and Rn+1, both denoted by ‖·‖, the
extended distance δ : Π × Π → [0,+∞] given by

δ (π1, π) := max
{∥∥c1 − c

∥∥ , d (σ1, σ)
}
,(2)

where

d (σ1, σ) := sup
t∈T

∥∥∥∥(a1
t

b1t

)
−
(
at
bt

)∥∥∥∥ .
This extended distance endows Π with the topology of the uniform convergence of
the coefficients vectors (see [12, Chapter 10] for details). The space Π locally behaves
as a normed space.

Given π ∈ Π and Π̃ ⊂ Π, we will write, as usual,

δ(π, Π̃) := inf
{
δ (π, π̃) , π̃ ∈ Π̃

}
∈ [0,+∞].

If ∅ �= Π̃ and π /∈ Π̃, one has δ(π, Π̃) = δ(π, bd(Π̃)).
If X is a subset of any topological space, int(X), cl(X), and bd(X) denote the

interior set, the closure, and the boundary of X, respectively. By ext(X) we represent
the exterior of X, i.e., the complementary set of cl(X).

In [4, Thm. 1], it is proved that the set of ill-posed problems with respect to
solvability, bd (Πs), coincides with bd (Πb). Moreover, this set is characterized there
by means of some results which we gather, among other preliminaries, in section 2.
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DISTANCE TO SOLVABILITY/UNSOLVABILITY 631

In fact, in order to achieve our goal of finding an expression for the distance to ill-
posedness δ(π, bd(Πs)), we appeal to a collection of results about the stability and
well-posedness established in [2], [3], [4], [12], and [13]. In section 3 we provide (via
Theorems 1 and 2) an explicit formula (5) for the distance to unsolvability from a
solvable problem. Specifically, this formula consists of the minimum of two distances
in Rn and Rn+1, respectively, which depend only on the problem’s data. We point out
that the first of these distances turns out to be the distance to (primal) inconsistency
for the given problem, whereas the second one is, as we prove in Theorem 6, the dis-
tance to dual inconsistency. On the other hand, Theorems 3 and 4 establish that the
previous formula can be extended to certain unsolvable problems. Theorem 1 gathers
all the cases for which the formula holds. In the remaining cases we show that the
right-hand side of (5) still stands as a lower bound for the distance to ill-posedness,
and a general upper bound is also given (Theorem 5), again in terms of the prob-
lem’s data. Section 4 provides more precise upper bounds under certain additional
hypotheses. Section 5 is devoted to presenting some examples and counterexamples
which delimit and illustrate the main results of the paper. Specifically, Examples 5
and 6 show the difficulties in providing a formula of δ(π, bd(Πs)) when Theorem 1 does
not apply. Section 6 approaches the ill-posedness with respect to the dual consistency
and analyzes the relationship between the ill-posedness with respect to the solvability
and with respect to primal-dual consistency. This section, together with section 7,
integrates the contributions of the paper within the related literature on conditioning
in linear optimization, paying attention to the backgrounds in the finite case (with T
finite) traced from [5], [10], and [20]. We emphasize the differences between the finite
case and the general one (T arbitrary). These two last sections show how formula (5)
generalizes to our semi-infinite context the corresponding result for finite solvable lin-
ear programming problems. Moreover, (5) extends to a certain subset of unsolvable
problems, providing new results even for finite linear programming.

2. Preliminaries. This section presents the necessary notation and some basic
definitions, results, and tools used in this paper. Given ∅ �= X ⊂ Rk, conv(X) and
cone(X) denote the convex hull of X and the conical convex hull of X, respectively. It
is assumed that cone (X) always contains the zero-vector 0k, and thus cone(∅) = {0k}.
If Λ ⊂ R, we introduce the set ΛX := {λx : λ ∈ Λ and x ∈ X}.

If we consider any norm in Rk, ‖.‖, the corresponding open unit ball will be rep-
resented by B. Given a sequence {μr}, limr μr should be interpreted as limr→+∞ μr.

Associated with π = (c, σ), the following sets are relevant in our analysis:

A := conv ({at, t ∈ T}) , M := cone ({at, t ∈ T}) = R+A,

Z+ := conv ({at, t ∈ T ; c}) , Z− := conv ({at , t ∈ T ; −c}) ,

C := conv

({(
at
bt

)
, t ∈ T

})
, H := C + R+

{(
0n
−1

)}
,

where R+ := [0,+∞[ . The sets M and H are, respectively, called the first moment
cone and the hypographical set.

The existence of infinitely many coefficient vectors when T is infinite gives rise to
the following pathological subset of problems (see [3, sect. 3]):

Π∞ := {π ∈ Π | δ(π, bd(Πc)) = +∞} .
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632 M. J. CÁNOVAS, M. A. LÓPEZ, J. PARRA, AND F. J. TOLEDO

The problems in Π∞ are characterized by the property that
(
0n

1

)
belongs to the

recession cone of cl(C); in other words,
(
0n

1

)
= limr μrz

r, with {zr}∞r=1 ⊂ C and
{μr} ↓ 0. Moreover, Π∞ ⊂ Πi.

The following proposition gathers different results which are applied throughout
the paper.

Proposition 1. Given π = (c, σ) ∈ Π, the following statements hold:
(i) [2, Lem. 4.1] If π ∈ int (Πc), then π ∈ int (Πs) if and only if c ∈ int (M).
(ii) [12, Thm. 8.1(iv)] If π ∈ Πb, then c ∈ cl (M).
(iii) [4, Lem. 1(iv)] If π ∈ Πc and c ∈ cl (M), then π ∈ cl (Πs).
(iv) [4, Lem. 1(i) and Prop. 5] If π ∈ bd (Πc) ∪ (Πi\Π∞), then 0n ∈ cl (A).
(v) [4, Lem. 1(ii)] If π ∈ bd (Πc) ∩ Πi, then 0n ∈ bd (A).
(vi) [12, Thm. 6.3] If π ∈ Πi and M = Rn, then π ∈ int (Πi).
Along the lines of [8] and [10] (which deal with conic linear systems), bd(Πc) is

considered as the set of ill-posed problems with respect to the consistency, and ac-
cording to [19], the distance to ill-posedness is δ(π, bd(Πc)). The following proposition
describes the position of π ∈ Π relative to bd (Πc) in terms of the relative position
between 0n+1 and the boundary of the hypographical set, bd (H).

Proposition 2 (see [3, Thms. 4, 5, and 6]). Let π ∈ Π�Π∞. Then, the following
statements hold:

(i) π ∈ int (Πi) ⇔ 0n+1 ∈ int (H);
(ii) π ∈ int (Πc) ⇔ 0n+1 ∈ ext(H);
(iii) π ∈ bd (Πc) ⇔ 0n+1 ∈ bd(H);
(iv) δ(π, bd(Πc)) = d (0n+1, bd (H)).
Observe that (iv) translates the problem of measuring the distance to ill-posedness

with respect to the consistency, posed in the infinite-dimensional space Π, into the
problem of calculating a distance in the (n + 1)-dimensional Euclidean space.

The following proposition describes the position of π ∈ int (Πc) relative to bd (Πs)
in terms of the relative position between 0n and the boundary of the set Z−.

Proposition 3 (see [4, Thm. 2]). Given π ∈ int (Πc), one has
(i) π ∈ int (Πs) ⇔ 0n ∈ int(Z−);
(ii) π ∈ bd (Πs) ⇔ 0n ∈ bd(Z−);
(iii) π ∈ ext (Πs) ⇔ 0n ∈ ext (Z−).
The next result characterizes those problems that, being ill-posed with respect to

the consistency, are also ill-posed with respect to the solvability.
Proposition 4 (see [4, Thm. 3]). Let π ∈ bd (Πc). Then π ∈ bd (Πs) if and only

if either π ∈ cl (bd (Πc) ∩ Πc) or 0n ∈ bd(Z+).
The following proposition explores the relationship between the condition π ∈

cl (bd (Πc) ∩ Πc) and the data-set C.
Proposition 5 (see [4, Thm. 4]). Let π ∈ bd (Πc). If π ∈ cl (bd (Πc) ∩ Πc), then

0n+1 ∈ bd (C). The converse statement holds when {bt , t ∈ T} is bounded.
The following proposition, which is a straightforward consequence of Propositions

3, 4, and 5, provides a complete characterization of the ill-posed problems whose
constraint systems have a bounded right-hand side.

Proposition 6 (see [4, Thm. 5]). Let π ∈ Π, and suppose that the set {bt , t ∈ T}
is bounded. Then, π ∈ bd (Πs) if and only if some of the following statements hold:

(i) 0n+1 ∈ ext (H) and 0n ∈ bd (Z−);
(ii) 0n+1 ∈ bd (H) ∩ bd (C);
(iii) 0n+1 ∈ bd (H) and 0n ∈ bd (Z+).
The following results admit straightforward proofs.
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DISTANCE TO SOLVABILITY/UNSOLVABILITY 633

Proposition 7. The sets M , A, Z+, and Z− satisfy the following relations:

c ∈ int (M) ⇔ 0n ∈ int
(
Z−) and −c ∈ int (M) ⇔ 0n ∈ int

(
Z+

)
.

In particular, if c = 0n, then Z+ = Z− and

0n ∈ int
(
Z−) ⇔ 0n ∈ int (A) ⇔ 0n ∈ int (M) ⇔ M = Rn.

Proposition 8. Let S �= ∅ be an arbitrary index set and let X := {xs , s ∈ S}
and Y := {ys , s ∈ S} be two subsets of Rk such that sups∈S ‖xs − ys‖ ≤ ε for certain
ε ≥ 0. Then one has the following:

(i) If ρcl (B) ⊂ cl (conv (X)) for some ρ ≥ ε, then

(ρ− ε) cl (B) ⊂ cl (conv (Y )) .

(ii) If ρcl (B) ∩ cl (conv (X)) = ∅ for some ρ ≥ ε, then

(ρ− ε) cl (B) ∩ cl (conv (Y )) = ∅.

Figure 1 summarizes the information we have already presented about the struc-
ture of Π\Π∞ in relation to the properties of consistency and solvability.

π∈int(Π ) 

0 ∈int(Z ) ∧
0 ∈ext(H) 

π∈bd(Π ) ∩∩∩∩ int(Π ) 0 ∈bd(Z ) ∧ 0 ∈ext(H)

0 ∈bd(H) ∧
0 ∈int(Z ) ∧

π∈ext(Π ∩bd(Π ))

π∈ext(Π ) ∩ bd(Π ) 

π∈Π   ∧
0 ∈bd(Z ) 

π∈ext(Π ) ∩ int(Π ) 

0 ∈ext(Z ) ∧
0 ∈ext(H) 

π∈int(Π ) 

0 ∈int(H) 

 0 ∈int(Z ) 

π∈bd(Π ) ∩∩∩∩ bd(Π ) 

∈

0 ∈bd(H) ∧ (0 ∈bd(Z ) ∨ π∈cl(Π ∩bd(Π ))) 

0 ∈bd(C)

0 ∈bd(Z ) ∨ π∈cl(Π ∩bd(ΠΠ ))

0 ∈bd(H)

0 ∈bd(Z )

0 ∈ext(C)

∈

Fig. 1. Structure of Π\Π∞.
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Throughout the paper we assume that the norm ‖·‖ considered in Rn+1 verifies∥∥∥∥(ab
)∥∥∥∥ =

∥∥∥∥( a

−b

)∥∥∥∥ for all

(
a

b

)
∈ Rn+1.(3)

Observe that any p-norm, but not any norm (see [21, Thm. 15.2]), verifies this condi-
tion. In Rn the norm (also denoted by ‖·‖) given by

‖a‖ :=

∥∥∥∥(a0
)∥∥∥∥ for all a ∈ Rn(4)

will be considered. Note that if the norm considered in Rn+1 is a p-norm, p ∈ [1,+∞],
the norm in Rn is also a p-norm (with the same p).

Remark 1. Property (3) implies that ‖
(
a
b1

)
‖ ≤ ‖

(
a
b2

)
‖ when |b1| ≤ |b2|. The proof

is a straightforward consequence of the fact that
(
a
b1

)
is a convex combination of

(
a
b2

)
and

(
a

−b2

)
.

3. Distance to solvability/unsolvability. In the present section we approach
the problem of determining the distance to ill-posedness, δ (π, bd (Πs)), for a given
problem π ∈ Π\Π∞. The case π ∈ Π∞ is obvious as far as Π∞ ⊂ Πi, and then
δ (π, bd (Πs)) ≥ δ (π, bd (Πc)) = +∞. We will analyze different cases obtaining either
an exact expression (see Theorem 1) or lower and upper bounds (see Theorem 5 and
the subsequent results) for this distance in terms of the problem’s data.

The following theorem is the main result in this paper and partially synthesizes
the statements of Theorems 2, 3, 4, and 5 in relation to the exact formula for the
distance to ill-posedness mentioned in the previous paragraph.

Theorem 1. Let π = (c, σ) ∈ Π\Π∞. Suppose that at least one of the following
conditions holds:

(i) π ∈ cl (Πs);
(ii) π ∈ ext (Πs) and d (0n+1, bd (H)) �= d (0n, bd (Z−));
(iii) d (0n+1, bd (H)) = d (0n, bd (Z−)) ≥ ‖c‖.

Then one has

δ (π, bd (Πs)) = min
{
d (0n+1, bd (H)) , d

(
0n, bd

(
Z−))} .(5)

Proof. (i) See Theorem 2.
(ii) π ∈ ext (Πs) implies either π ∈ int (Πc), in which case Theorem 3 applies,

or π ∈ Πi, and Theorem 4 applies, since otherwise one has π ∈ bd (Πc) ∩ Πc and
Proposition 4 yields a contradiction.

(iii) See Theorem 5.
Remark 2. Note that, by virtue of Proposition 2, one has d (0n+1, bd (H)) =

δ (π, bd (Πc)); that is, the distance to ill-posedness with respect to the solvability
depends on the distance to ill-posedness with respect to the consistency, as one would
expect.

Remark 3. Formula (5) for the distance to ill-posedness does not hold, in general,
in the remaining case corresponding to the problems π ∈ ext (Πs) such that

d (0n+1, bd (H)) = d
(
0n, bd

(
Z−)) < ‖c‖ ,

even in ordinary linear programming in R with “few” constraints, as we can see
in Examples 3, 4, and 5. Nevertheless, in this case one has, as a straightforward
consequence of Theorem 5, that

d (0n+1, bd (H)) ≤ δ (π, bd (Πs)) ≤ ‖c‖ .
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DISTANCE TO SOLVABILITY/UNSOLVABILITY 635

The next lemma will be used later on.
Lemma 1. Given π ∈ Π, one has the following:
(i) If 0n ∈ bd (A) and c ∈ cl (M), then 0n ∈ bd(Z+).
(ii) If π ∈ bd (Πc) and c ∈ cl (M), then π ∈ bd (Πs).
(iii) If 0n ∈ int (Z− ∩ Z+), then 0n ∈ int (A).
Proof. (i) Since 0n ∈ bd (A), we have 0n ∈ cl (Z+). If 0n ∈ int (Z+), then

−c ∈ int (M) (see Proposition 7) and, since c ∈ cl (M) by assumption, Theorem 6.1
in [21] ensures that 0n ∈ int (M) and, then, we get the contradiction 0n ∈ int (A)
(again by Proposition 7).

(ii) We distinguish two cases. If π ∈ Πc, one has π ∈ bd (Πs) by virtue of Proposi-
tion 4. If π ∈ Πi, then 0n ∈ bd (A) from Proposition 1(v); thus, the previous statement
implies 0n ∈ bd (Z+) and therefore π ∈ bd (Πs), again by virtue of Proposition 4.

(iii) Under this hypothesis we have, by Proposition 7, c ∈ int (M) and −c ∈
int (M); thus, by convexity of int (M), 0n ∈ int (M) and Proposition 7 again leads
us to 0n ∈ int (A).

The following theorem establishes that (5) is valid for a problem in the closure of
the set of solvable problems.

Theorem 2. Let π ∈ cl (Πs). Then (5) holds, i.e.,

δ (π, bd (Πs)) = min
{
d (0n+1, bd (H)) , d

(
0n, bd

(
Z−))} .

Proof. First let us consider the case π ∈ bd(Πs) and let us see that the right-
hand side in (5) is zero. Indeed, if π ∈ int(Πc), Proposition 3(ii) ensures that
d(0n, bd(Z

−)) = 0, and if π ∈ bd(Πc), Proposition 2(iii) guarantees that d(0n+1, bd(H))
= 0.

From now on we will suppose π ∈ int (Πs). In order to establish the ≤ inequality,
let us see that the following inequalities are simultaneously satisfied:

(a) δ (π, bd (Πs)) ≤ d (0n+1, bd (H)), and
(b) δ (π, bd (Πs)) ≤ d (0n, bd (Z−)).
Since π ∈ int (Πs), we have

δ (π, bd (Πs)) ≤ δ (π, bd (Πc)) = d (0n+1, bd (H))

and (a) holds. On the other hand, (b) is trivial if Z− = Rn. Otherwise, the distance
d (0n, bd (Z−)) will be attained at certain a ∈ bd (Z−). Consequently we have 0n ∈
bd (Z− − a).

If we consider the problem π0 := (c + a, σ0), where

σ0 :=
{
(at − a)

′
x ≥ bt, t ∈ T

}
,

then Z−
0 = Z−−a and Proposition 7 entails c + a /∈ int(M0) (with M0 = cone({at−a,

t ∈ T})). Now Proposition 1(i) ensures that π0 /∈ int (Πs). Therefore

δ (π, bd (Πs)) ≤ δ (π, π0) = ‖a‖ ,

which establishes (b).
Now let α := min {d (0n+1, bd (H)) , d (0n, bd (Z−))}, and take as before a point

a ∈ bd (Z−) at which the distance d (0n, bd (Z−)) is attained, supposing for the
moment that Z− �= Rn. From (a) and (b) we have δ (π, bd (Πs)) ≤ α (for all
π ∈ int (Πs)). To see that equality (5) holds, it is sufficient to prove that every
problem π1 := (c1, σ1) ∈ Π such that δ (π, π1) < α is still in int (Πs).
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636 M. J. CÁNOVAS, M. A. LÓPEZ, J. PARRA, AND F. J. TOLEDO

Take π1 ∈ Π in the previous conditions. Since π ∈ int (Πc) and δ (π, π1) <
d (0n+1, bd (H)), we have π1 ∈ int (Πc) (Proposition 2). On the other hand, since
π ∈ int (Πs), one has c ∈ int (M) by virtue of Proposition 1(i), and then 0n ∈
int (Z−) (by Proposition 7). Indeed ‖a‖ cl (B) ⊂ cl (Z−) and α ≤ ‖a‖. Writing
δ (π, π1) = α − ε for some 0 < ε ≤ α, Proposition 8(i) entails ε cl (B) ⊂ cl

(
Z−

1

)
,

and then 0n ∈ int(cl(Z−
1 )) = int(Z−

1 ). So, taking into account that π1 ∈ int (Πc),
Proposition 3(i) ensures that π1 ∈ int (Πs).

Finally, in the case Z− = Rn one has α = d (0n+1, bd (H)), and then if δ (π, π1) <
α, one has π1 ∈ int (Πc) and, trivially, 0n ∈ int(Z−

1 ), because Z−
1 = Rn (by Proposi-

tion 8). Thus π1 ∈ int (Πs).
Examples 1 and 2 illustrate formula (5) for the problem π ∈ cl (Πs). In the

first example, one has δ (π, bd (Πs)) = d (0n, bd (Z−)) < d (0n+1, bd (H)), while in the
second example δ (π, bd (Πs)) = d (0n+1, bd (H)) < d (0n, bd (Z−)). In both cases, a
perturbation for obtaining a problem where the distance to ill-posedness is attained
will be indicated.

Now we approach the distance to ill-posedness for the problem π ∈ ext (Πs) ∩
int (Πc).

Theorem 3. Let π ∈ ext (Πs) ∩ int (Πc). Then
(i) d (0n, bd (Z−)) ≤ d (0n+1, bd (H));
(ii) δ (π, bd (Πs)) ≥ d (0n, bd (Z−));
(iii) if d (0n, bd (Z−)) < d (0n+1, bd (H)), one has

δ (π, bd (Πs)) = d
(
0n, bd

(
Z−)) .

Proof. (i) Since π ∈ ext (Πs) ∩ int (Πc), Proposition 3(iii) ensures that 0n ∈
ext (Z−). Take a ∈ bd (Z−) such that d (0n, bd (Z−)) = ‖a‖.

For every
(
a
b

)
∈ bd (H) we have a ∈ cl (A) ⊂ cl (Z−) and ‖

(
a
b

)
‖ ≥ ‖a‖ ≥ ‖a‖ (see

Remark 1). The arbitrariness of
(
a
b

)
entails d (0n+1, bd (H)) ≥ ‖a‖ as we aimed to

prove.
(ii) π ∈ ext (Πs) ∩ int (Πc) entails, by virtue of Propositions 2(ii) and 3(iii),

0n+1 ∈ ext(H) and 0n ∈ ext(Z−). Let π1 ∈ Π with δ(π1, π) < d(0n, bd(Z
−));

then Proposition 8(ii) and part (i) ensure that 0n ∈ ext(Z−
1 ) and 0n+1 ∈ ext (H1).

Now, again by Propositions 2(ii) and 3(iii), π1 ∈ ext (Πs) ∩ int (Πc) and therefore
δ (π, bd (Πs)) ≥ d (0n, bd (Z−)).

(iii) From (ii) we need only prove δ (π, bd (Πs)) ≤ d (0n, bd (Z−)). Take again
a ∈ bd (Z−) such that d (0n, bd (Z−)) = ‖a‖ and consider the same perturbation as in
the proof of Theorem 2; i.e., we consider the problem π0 = (c + a, σ0), where

σ0 :=
{
(at − a)

′
x ≥ bt, t ∈ T

}
.

On the one hand, we have 0n ∈ bd(Z−
0 ) = bd (Z− − a). On the other hand, since

π ∈ int (Πc), Proposition 2(ii) guarantees that 0n+1 ∈ ext (H), and the fact that
δ (π, π0) = ‖a‖ < d (0n+1, bd (H)) by the current assumption, together with Propo-
sition 8(ii), ensures that 0n+1 ∈ ext (H0). Again by virtue of Proposition 2(ii) one
has π0 ∈ int (Πc). Therefore π0 ∈ bd (Πs) by Proposition 3(ii) and, consequently,
δ (π, bd (Πs)) ≤ δ (π, π0) = ‖a‖.

Example 3 shows that formula (5) for the problem π ∈ ext (Πs) ∩ int (Πc) does
not hold in general when d (0n, bd (Z−)) = d (0n+1, bd (H)).

The next result is devoted to approaching the distance δ (π, bd (Πs)) for the prob-
lem π ∈ Πi\Π∞.
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DISTANCE TO SOLVABILITY/UNSOLVABILITY 637

Theorem 4. Let π ∈ Πi\Π∞. Then
(i) d (0n+1, bd (H)) ≤ d (0n, bd (Z−));
(ii) δ (π, bd (Πs)) ≥ d (0n+1, bd (H));
(iii) if d (0n+1, bd (H)) < d (0n, bd (Z−)), one has

δ (π, bd (Πs)) = d (0n+1, bd (H)) .

Proof. (i) If π ∈ Πi\Π∞, Proposition 1(iv) ensures that 0n ∈ cl (A) ⊂ cl (Z−).
Moreover, Proposition 2 implies 0n+1 ∈ cl (H). Thus,

d (0n+1, bd (H)) = d (0n+1, ext (H)) ≤ d (0n+1, ext (A× R))

= d (0n, ext (A)) ≤ d
(
0n, ext

(
Z−))

= d
(
0n, bd

(
Z−)) .

(ii) It is immediate as far as Πs ⊂ Πc, and then if π ∈ Πi\Π∞, one has, by virtue
of Proposition 2(iv),

δ (π, bd (Πs)) ≥ δ (π, bd (Πc)) = d (0n+1, bd (H)) .

(iii) From the previous statement it is sufficient to prove that

δ (π, bd (Πs)) ≤ d (0n+1, bd (H)) .

If H = Rn+1, the reader can easily prove that π ∈ Π∞, and thus we can take(
a
b

)
∈ bd (H) such that d (0n+1, bd (H)) = ‖

(
a
b

)
‖. Consider, then, the problem π1 :=

(c + a, σ1), where

σ1 :=
{
(at − a)

′
x ≥ bt − b; t ∈ T

}
.

Let us see that π1 ∈ bd (Πs). We have π1 ∈ bd (Πc) (see Proposition 2(iii)). We shall
distinguish two possibilities:

(a) In the case when π1 ∈ Πc, Proposition 4 ensures that π1 ∈ bd (Πs).
(b) If π1 ∈ Πi, by Proposition 1(v) 0n ∈ bd (A1) ⊂ cl(Z+

1 ).
Let us proceed by supposing that, in the latter case, 0n ∈ int(Z+

1 ). Since π ∈ Πi,
Proposition 1(iv) gives 0n ∈ cl (A) ⊂ cl (Z−) and, because of the current assumption

‖a‖ ≤
∥∥∥∥(ab

)∥∥∥∥ < d
(
0n, bd

(
Z−)) ,

it must be the case that a ∈ int (Z−) and, then, 0n ∈ int
(
Z−

1

)
. Thus, from

Lemma 1(iii) we obtain 0n ∈ int (A1), which is a contradiction and makes us conclude
0n ∈ bd(Z+

1 ). Therefore π1 ∈ bd (Πs), again by virtue of Proposition 4. Thus, we have

δ (π, bd (Πs)) ≤ δ (π, π1) = max

{
‖a‖ ,

∥∥∥∥(ab
)∥∥∥∥} =

∥∥∥∥(ab
)∥∥∥∥ .

Example 4 shows that formula (5) for a problem π ∈ Πi\Π∞ does not hold in
general when d (0n+1, bd (H)) = d (0n, bd (Z−)).

Now we establish an upper bound for the distance to ill-posedness, which coincides
with it under certain conditions. We emphasize the fact that this bound works for
any π ∈ Π\Π∞.
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638 M. J. CÁNOVAS, M. A. LÓPEZ, J. PARRA, AND F. J. TOLEDO

Proposition 9. Let π = (c, σ) ∈ Π\Π∞. Then

δ (π, bd (Πs)) ≤ max {d (0n+1, bd (H)) , ‖c‖} .

Proof. We know that H �= Rn+1 because π ∈ Π\Π∞. Let
(
a
b

)
∈ bd (H) be such

that d (0n+1, bd (H)) = ‖
(
a
b

)
‖. Consider the problem π2 := (0n, σ2), where

σ2 :=
{
(at − a)

′
x ≥ bt − b; t ∈ T

}
.

Let us see that π2 ∈ bd (Πs). We have that π2 ∈ bd (Πc) (see Proposition 2(iii)).
In the case that π2 ∈ Πc, Proposition 4 ensures that π2 ∈ bd(Πs). Assuming π2 ∈
Πi, Proposition 1(v) ensures 0n ∈ bd (A2) ⊂ cl(Z+

2 ). If 0n ∈ int(Z+
2 ), the second

statement in Proposition 7 entails 0n ∈ int (A2), which is a contradiction. Thus,
0n ∈ bd(Z+

2 ), and then π2 ∈ bd(Πs), again by Proposition 4. Thus we have

δ (π, bd (Πs)) ≤ δ (π, π2) = max {d (0n+1, bd (H)) , ‖c‖} .

The following result can be obtained as a straightforward consequence of the
previous statements and establishes bounds on the distance to ill-posedness.

Theorem 5. Let π = (c, σ) ∈ Π\Π∞. If we denote

α := min
{
d (0n+1, bd (H)) , d

(
0n, bd

(
Z−))} and

β := max {d (0n+1, bd (H)) , ‖c‖} ,

then we have

α ≤ δ (π, bd (Πs)) ≤ β.

Figure 2 synthesizes the main results about the distance to ill-posedness with
respect to the solvability provided in this paper. The reader should analyze the
information provided in this figure together with that given in Figure 1. We use the
same notation as in Theorem 5 for α and β.

4. Other upper bounds. The goal of the following result is to obtain, under
additional hypotheses, some refinements of the upper bound given in Proposition 9.

Proposition 10. Let π = (c, σ) ∈ ext (Πs). The following statements hold:
(i) If π ∈ cl (Πc), then

δ (π, bd (Πs)) ≤ d (c, bd (M)) ≤ ‖c‖ .

(ii) If π ∈ bd (Πc), then

δ (π, bd (Πs)) ≤ d (c, bd (−M)) ≤ d (c, bd (M)) .

(iii) If π ∈ bd (Πc) and there exists t0 ∈ T such that at0 = 0n, then

δ (π, bd (Πs)) ≤ d
(
0n, bd

(
Z+

))
≤ d (c, bd (−M)) .

Proof. (i) First observe that M �= Rn since, otherwise, either π ∈ cl(Πs) (when
π ∈ Πc and applying Proposition 1(iii)) or π ∈ int(Πi) (when π ∈ Πi and applying
Proposition 1(vi)).

Let a ∈ bd (M) such that d (c, bd (M)) = ‖c− a‖ and consider the problem π3 :=
(a, σ). We have π3 ∈ cl (Πc) and a ∈ bd (M3) = bd (M). If π3 ∈ Πc, Proposition 1(iii)
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DISTANCE TO SOLVABILITY/UNSOLVABILITY 639

π∈int(Πs) 

δ (π,bd(Πs))=α 

π∈int(Πi) 

δ 
(π

,b
d

(Π

s

))
=

α 

π∈ext(Πs) ∩int(Πc)

δ 
(π

,b
d

(Π

s

))
=

α 

π∈
ex
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Π

s

) 
∩
b
d

(Π

c
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π∈bd(Πs) ∩ int(Πc) 

d(0
n+1,bd(H)) > d(0

n
,bd(Z

 -

))

d
(0

n
+
1

,b
d
(H

))
  

=
 d

(0

n

,b
d

(Z

 
-

))
 

d
(0

n
+
1

,b
d
(H

))
 ≤

  
δ 

(π
,b
d
(Π

s

))
 ≤

 β
 

d(0
n+1,bd(H)) < d(0

n
,bd(Z

 -

))π∈bd(Πs) ∩ bd(Πc) 

Fig. 2. Distance to ill-posedness in Π\Π∞.

ensures that π3 ∈ cl (Πs). If π3 ∈ bd (Πc), then π3 ∈ bd (Πs) by Lemma 1(ii). In any
case, π3 ∈ cl (Πs), and then

δ (π, bd (Πs)) ≤ δ (π, π3) = ‖c− a‖ = d (c, bd (M)) .

Finally, and since M �= Rn, one has 0n ∈ bd (M), which implies

d (c, bd (M)) ≤ ‖c‖ .

(ii) Obviously we have again M �= Rn. Let d ∈ bd (−M) satisfying that d (c, bd (−M))
= ‖c− d‖ and consider the problem π4 := (d, σ). Obviously π4 ∈ bd (Πc) and we see
that π4 ∈ bd (Πs). In the case when π4 ∈ Πc, Proposition 4 ensures π4 ∈ bd (Πs). If
π4 ∈ Πi, from Proposition 1(v) one has 0n ∈ bd (A4) ⊂ cl(Z+

4 ).
If 0n ∈ int(Z+

4 ), then −d ∈ int (M4) = int (M) (see Proposition 7), i.e., d ∈
int (−M), which is a contradiction. Then 0n ∈ bd(Z+

4 ) and, again by Proposition 4,
π4 ∈ bd (Πs). So, in any case, π4 ∈ bd (Πs), and then

δ (π, bd (Πs)) ≤ δ (π, π4) = ‖c− d‖ = d (c, bd (−M)) .

Because of Proposition 1(iv) we have 0n ∈ cl (A) ⊂ cl (Z+), and 0n ∈ bd (Z+)
leads us to the contradiction π ∈ bd(Πs) (by Proposition 4). Hence we have that, under
the current hypothesis, 0n ∈ int (Z+) or, equivalently, −c ∈ int (M) ⇔ c ∈ int (−M).
Since M �= Rn, there will exist u �= 0n such that M and −M are, respectively,
contained in the half-spaces S+ := {x ∈ Rn | u′x ≤ 0} and S− := {x ∈ Rn | u′x ≥ 0}.
Therefore

d (c, bd (−M)) ≤ d (c, S+) ≤ d (c, bd (M)) .
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640 M. J. CÁNOVAS, M. A. LÓPEZ, J. PARRA, AND F. J. TOLEDO

(iii) Remember that under the current hypotheses 0n ∈ int (Z+). Take a ∈
bd (Z+) such that d (0n, bd (Z+)) = ‖a‖. Since a ∈ bd (Z+), one has 0n ∈ bd(Z+ − a).

Consider the problem π5 := (c− a, σ5) where σ5 :=
{
(a5

t )
′x ≥ bt; t ∈ T

}
with

a5
t := at − a if t ∈ T\ {t0} and a5

t0 := at0 = 0n. From the definition of π5 one has,

obviously, 0n ∈ cl(Z+
5 ). If we had 0n ∈ int(Z+

5 ), then we would obtain the following
contradiction:

0n ∈ int (conv ({at − a , t ∈ T\ {t0} ; c− a})) ⊂ int
(
Z+ − a

)
.

Then 0n ∈ bd(Z+
5 ) and, in particular, 0n+1 /∈ int(H5) (otherwise 0n ∈ int(A5) ⊂

int(Z+
5 )). Thus, Proposition 2 yields π5 ∈ cl (Πc) and we have the following discus-

sion. If π5 ∈ bd (Πc), then Proposition 4 leads us to conclude that π5 ∈ bd (Πs). If
π5 ∈ int (Πc), since 0n ∈ A5 ⊂ cl(Z−

5 ), Proposition 3 entails π5 ∈ cl (Πs). In any case,
we have π5 ∈ cl (Πs), and then

δ (π, bd (Πs)) ≤ δ (π, π5) = ‖a‖ = d
(
0n, bd

(
Z+

))
.

Remember that under the current hypotheses we have −c ∈ int (M), i.e., 0n ∈
int (M + c), and the latter implies μ (M + c) ⊂ M + c for every 0 ≤ μ ≤ 1, due to
the convexity of M + c. Now we will prove that Z+ ⊂ M + c. In fact, if x ∈ Z+ there
exist a ∈ A and λ ≥ 0, μ ≥ 0, with λ + μ = 1, such that x = λa + μc. If μ > 0, we
can write

x = μ

(
λ

μ
a + c

)
∈ μ (M + c) ⊂ M + c,

and if μ = 0, we have x = a ∈ A ⊂ M ⊂ M + c, where the latter inclusion is due to
the fact that −c ∈ M . Thus, we have

d
(
0n, bd

(
Z+

))
≤ d (0n, bd (M + c)) = d (0n, bd (M) + c)

= d (−c, bd (M)) = d (c, bd (−M)) .

5. Examples and counterexamples. In this section we present different ex-
amples in order to show the usefulness of formula (5) for obtaining the distance to
ill-posedness for problems satisfying the hypothesis of Theorem 1. Moreover, some of
these examples show that this formula does not generally provide the desired distance
when the hypotheses of Theorem 1 are not fulfilled. Different situations illustrate that
certain redundant constraints may considerably affect the distance to ill-posedness,
even for ordinary linear programming problems with “few” constraints. In fact, we
provide two linear optimization problems in R2 (Examples 5 and 6) with the same
associated sets A, M , Z−, Z+, C, and H, and different distances to ill-posedness.
These examples show that the sets A, M , Z−, Z+, C, and H alone are not sufficient
to characterize the distance to ill-posedness in all cases. The norm considered (in Rn

and Rn+1) in all the examples is ‖·‖∞.
The following examples illustrate formula (5) of Theorem 2 for the problem π ∈

cl (Πs).
Example 1. Consider the linear optimization problem in R2,

π : Inf 1
2x2

s.t. −x1 + x2 ≥ 0,
x1 + x2 ≥ 0.
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DISTANCE TO SOLVABILITY/UNSOLVABILITY 641

One has

H = conv
{
(−1, 1, 0)

′
, (1, 1, 0)

′}
+ R+{(0, 0,−1)

′}

and

Z− = conv
{
(−1, 1)

′
, (1, 1)

′
, (0,−1/2)

′}
.

Since 03 ∈ ext (H), then π ∈ int (Πc) (Proposition 2(iii)) and then, since 02 ∈
int (Z−), one obtains π ∈ int (Πs) (Proposition 3(iii)). It is easy to check that

1

5
=

∥∥∥∥∥
( 1

5
−1
5

)∥∥∥∥∥
∞

= d
(
02, bd

(
Z−)) < d (03, bd (H)) = 1.

Then, δ (π, bd (Πs)) = d (02, bd (Z−)) = 1/5.
As in the proof of Theorem 2, a problem belonging to bd (Πs), where this distance

is attained, is given by

π0 : Inf
(
0 + 1

5

)
x1 +

(
1
2 − 1

5

)
x2

s.t.
(
−1 − 1

5

)
x1 +

(
1 + 1

5

)
x2 ≥ 0 − 0,(

1 − 1
5

)
x1 +

(
1 + 1

5

)
x2 ≥ 0 − 0.

We have 02 ∈ bd(Z−
0 ) and 03 ∈ ext (H0). Consequently π0 ∈ int (Πc) ∩ bd (Πs)

(Propositions 2(ii) and 3(ii)).
Example 2. Consider now the linear optimization problem in R2,

π : Inf 2x2

s.t. −x1 + x2 ≥ 0,
x1 + x2 ≥ 0,

1
4x2 ≥ 0.

Now we have

H = conv
{
(−1, 1, 0)

′
, (1, 1, 0)

′
, (0, 1/4, 0)

′}
+ R+{(0, 0,−1)

′}

and

Z− = conv
{
(−1, 1)

′
, (1, 1)

′
, (0, 1/4)

′
, (0,−2)

′}
.

As in the previous example one has π ∈ int (Πs). Again it is easy to check that

1

2
= d

(
02, bd

(
Z−)) > d (03, bd (H)) =

∥∥∥∥∥
(

0,
1

4
, 0

)′
∥∥∥∥∥
∞

=
1

4
,

and δ (π, bd (Πs)) = d (03, bd (H)) = 1/4.
Now, the problem π0 ∈ bd (Πs) where this distance is attained, is given by

π0 : Inf 2x2

s.t. (−1 − 0)x1 +
(
1 − 1

4

)
x2 ≥ 0 − 0,

(1 − 0)x1 +
(
1 − 1

4

)
x2 ≥ 0 − 0,

(0 − 0)x1 +
(

1
4 − 1

4

)
x2 ≥ 0 − 0.
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642 M. J. CÁNOVAS, M. A. LÓPEZ, J. PARRA, AND F. J. TOLEDO

We have 03 ∈ bd (H0). In fact 03 ∈ bd (C0), and then we conclude that π0 ∈ bd (Πs)
(by virtue of Proposition 6(ii)).

Examples 3 and 4 (see also Example 5) show that formula (5) of Theorem 1 cannot
be extended to the case π ∈ ext (Πs) when d (0n, bd (Z−)) = d (0n+1, bd (H)) < ‖c‖,
not even in the context of ordinary linear programming in R. The characterization of
bd(Πs) given in Proposition 6 is used in the remaining examples.

Example 3. Consider now the ordinary linear programming problem in R,

π : Inf −10x
s.t. x ≥ 9, x ≥ 10, 4x ≥ 9, 4x ≥ 10.

One has that π ∈ int (Πc)∩ext (Πs) and d (0, bd (Z−)) = 1 = d (02, bd (H)). Moreover,
δ (π, bd (Πs)) = 4 > d (02, bd (H)), and this is attained in the problem

π1 : Inf −10x
s.t. −3x ≥ 9, −3x ≥ 10, 0x ≥ 9, 0x ≥ 10.

Indeed, if π2 ∈ Π is such that δ (π, π2) < 4, Proposition 8 guarantees that 0 ∈ int(Z+
2 )

and 02 ∈ ext (C2). The coefficients of the problem imply that 02 ∈ ext (H2) only if
H2 ⊂ ]0,+∞[ × R, in which case one also has 02 ∈ ext(Z−

2 ). So it is impossible to
have π2 ∈ bd (Πs) according to Proposition 6.

Observe that, in this case, the problems of bd (Πs) at which the distance δ (π, bd (Πs))
is attained verify the third condition in Proposition 6.

Example 4. Consider the linear programming problem in R,

π : Inf −3x
s.t. −x ≥ 5, 2x ≥ 5, −x ≥ 4, 2x ≥ 4.

One has that π ∈ int (Πi) and d (02, bd (H)) = d (0, bd (Z−)) = 1. It is easy to check
that

δ (π, bd (Πs)) = δ (π, π1) = 2 > d (02, bd (H)) ,

where

π1 : Inf −3x
s.t. −3x ≥ 5, 0x ≥ 5, −3x ≥ 4, 0x ≥ 4.

In the following examples, the considered problems have the same sets A, M ,
Z−, Z+, C, and H, but their distances to ill-posedness are different. Moreover, in the
second example the distance to ill-posedness obeys formula (5), although the problem
does not satisfy the hypotheses of Theorem 1.

Example 5. Consider the problem

π : Inf 6x1 − 3x2

s.t. 3x1 + x2 ≥ 10, t = 1,
3x1 + 3x2 ≥ 10, t = 2,

−2x1 + 3x2 ≥ 10, t = 3,
−2x1 + x2 ≥ 10, t = 4.

It is easy to check that π ∈ int (Πc)∩ext (Πs) and d (02, bd (Z−)) = 1 = d (03, bd (H)).
Now let us see that δ (π, bd (Πs)) > 1. The choice of bt = 10, t = 1, . . . , 4, allows us

D
ow

nl
oa

de
d 

04
/3

0/
18

 to
 1

93
.1

45
.2

30
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



DISTANCE TO SOLVABILITY/UNSOLVABILITY 643

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
=

3

6
c

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1

3

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
1

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛−
3

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

3

3

Projection of C

+
Z

Plane 103 =y Plane 

103 =y

Projection of C1

+
1Z

1
81/11

18/11
c

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

Fig. 3. Perturbation of π to obtain condition (iii) of Proposition 6.

to see that the nearest problem to π, π1 ∈ bd (Πs) does not verify the condition
03 ∈ bd (C1). Thus, we will look for a problem π1 = (c1, σ1), with σ1 = {(a1

t )
′x ≥

b1t , t = 1, . . . , 4}, as the one presented in Figure 3 below, where we illustrate graph-
ically the sets C and Z+, associated with π, as well as the ones associated with π1.
It can be proved that the minimum perturbation (in ‖·‖∞) for which c1 is a multiple

of a1
1 corresponds to the vectors c1 =

(
81/11
−18/11

)
and a1

1 =
(

18/11
−4/11

)
, both colinear with(

9
−2

)
. Now we modify a4 to get 03 ∈ bd (H1) and 02 ∈ bd(Z+

1 ), taking for exam-

ple a1
4 =

(−27/11
6/11

)
. The remaining coefficients stay unchanged. For simplicity, and

since b1t = bt = 10, for t = 1, . . . , 4, we represent the figures projected in the plane{
y ∈ R3 | y3 = 10

}
.

Next we will check that if π2 = (c2, σ2) ∈ Π verifies δ (π2, π) < δ (π1, π) = 15
11 ,

then π2 /∈ Πs. Indeed, in other case and appealing to Proposition 1(ii), we will obtain
c2 ∈ M2 (which is a closed cone because it is finitely generated). Moreover, one can
easily check that the following inequalities relative to σ2 = {(a2

t )
′x ≥ b2t , t = 1, . . . , 4}

hold: (
a2
1

)′ ( 9
−2

)
> 0,

(
a2
2

)′ ( 9
−2

)
> 0,

(
a2
3

)′ ( 9
−2

)
< 0,

(
a2
4

)′ ( 9
−2

)
< 0,(6) (

a2
1

)′ (2
9

)
> 0,

(
a2
2

)′ (2
9

)
> 0,

(
a2
3

)′ (2
9

)
> 0,(7) (

c2
)′ ( 9

−2

)
> 0,(8) (

c2
)′ (2

9

)
< 0.(9)

The condition c2 ∈ M2, together with (7) and (9), implies that (a2
4)

′(2
9

)
< 0; then

the vectors a2
1, a2

3, a2
4, and c2 are, respectively, in the interior of the first second,

third, and fourth quadrants determined by the (orthogonal) vectors
(

9
−2

)
and

(
2
9

)
,

from where one deduces that M2 = R2. That is, 02 ∈ int(conv({a2
t , t = 1, . . . , 4})),

and since b2t ≥ 10 − 15
11 > 0 for all t = 1, . . . , 4, we conclude that 03 ∈ int (H2), and

then π2 ∈ int (Πi) (Proposition 2(i)), in contradiction with the assumption π2 ∈ Πs.
Thus we conclude that δ (π, bd (Πs)) = δ (π, π1) = 15

11 .
Example 6. Consider the linear programming problem π in R2, obtained by

adding to the problem of the previous example the constraint 0x1 + x2 ≥ 10 (for
t = 5), whose coefficient vector is a convex combination of the vectors associated with
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Fig. 4. Perturbation of π to obtain condition (iii) of Proposition 6.

the first and fourth constraints (in particular, the new constraint is redundant). This
problem still verifies the conditions π ∈ int (Πc) ∩ ext (Πs) and d (02, bd (Z−)) = 1 =
d (03, bd (H)). However, now one has δ (π, bd (Πs)) = d (03, bd (H)), since d (03, bd (H))
is a lower bound for the distance from π to bd (Πs) (see Theorem 3) and the problem
π1, coming from replacing the last constraint of π by the new one “0x1 + 0x2 ≥ 10,”
verifies that π1 ∈ bd (Πs) (since 0n+1 ∈ bd(H1) and 0n ∈ bd(Z+

1 )) and δ (π, π1) = 1.
In Figure 4 we illustrate graphically these elements, projecting them on the plane
y3 = 10 (note that bt = 10, for all t = 1, . . . , 4).

6. A primal-dual approach to the distance to solvability/unsolvability.
Let us consider the dual of problem (1), which is given by

πd : Sup
∑
t∈T

λtbt

s.t.
∑
t∈T

λtat = c,

λ ∈ R(T )
+ ,

(10)

where R(T )
+ is the convex cone of all the functions λ : T → R+ taking positive values

only at finitely many points of T . When T is infinite, πd is also a linear semi-infinite
programming problem having, in this case a finite number of constraints but an infinite
number of variables. In this case, πd is called the dual of π in the sense of Haar. The
subset of Π formed by those problems whose dual is consistent will be denoted by Πd

c ;
in other words, Πd

c := {π ∈ Π | c ∈ M}.
In the finite case (T finite) it is well known from linear programming duality

that the problem π is solvable if and only if it is both primal and dual feasible; i.e.,
Πs = Πc ∩ Πd

c . Hence, for solvable instances the distance to unsolvability is given by

δ (π, bd (Πs)) = min
{
δ (π, bd (Πc)) , δ

(
π, bd

(
Πd

c

))}
.(11)

The finite case is actually a particular case of the conic linear context studied in [5],
[10], [16], [18], [19], and [20], among others. In section 7, which is specifically devoted
to the finite case, we show how some results of [10], [19], and [20] may be used to
derive, for π ∈ Πs, the expressions

δ (π, bd (Πc)) = d (0n+1, bd (H)) and δ
(
π, bd

(
Πd

c

))
= d

(
0n, bd

(
Z−)) .
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DISTANCE TO SOLVABILITY/UNSOLVABILITY 645

The first equality is a particular case of Proposition 2(iv), and the second is extended,
in Theorem 6, to the semi-infinite case and for problems without any consistency
requirements.

First of all, let us point out that when T is infinite, solvability may not be identified
with primal-dual feasibility. In fact, none of the inclusions Πs ⊃ Πc ∩ Πd

c and Πs ⊂
Πc∩Πd

c holds, as the following examples show. Despite this fact, Corollary 1 will show
that (11) remains valid for problems in cl (Πs) as well as for some subset of insolvable
problems.

Example 7. Πs � Πc ∩ Πd
c . Let us consider the linear semi-infinite programming

problem in R2,

π : Inf x1

s.t. t x1 +
1

t
x2 ≥ 2, t ∈ ]0,+∞[ ,

x1 ≥ 0.

One can easily check that F = {(x1, x2)
′ | x2 ≥ x−1

1 , x1 > 0} and then π is bounded
but not solvable. However, π ∈ Πc ∩ Πd

c .

Example 8. Πs � Πc ∩ Πd
c . Let us consider the problem in R2,

π : Inf x1

s.t. x1 + t x2 ≥ 0, t ∈ ]0,+∞[ .

The feasible set of π coincides with [0,+∞[
2

and then it is immediate that π ∈ Πs.

However, M = ]0,+∞[
2 ∪ {02} and then c = (1, 0)

′
/∈ M , i.e., π /∈ Πd

c .

The following theorem is a dual version of Proposition 2. It characterizes the ill-
posedness with respect to the dual consistency and provides the associated distance
to ill-posedness.

Theorem 6. Let π ∈ Π. The following statements hold:

(i) π ∈ int
(
Πd

c

)
if and only if 0n ∈ int (Z−);

(ii) π ∈ bd
(
Πd

c

)
if and only if 0n ∈ bd (Z−);

(iii) π ∈ ext
(
Πd

c

)
if and only if 0n ∈ ext (Z−);

(iv) δ
(
π, bd

(
Πd

c

))
= d (0n, bd (Z−)).

Proof. (i) Theorem 5 in [14] establishes that π ∈ int(Πd
c) if and only if c ∈ int (M),

which is equivalent to 0n ∈ int (Z−) (see Proposition 7).

(ii) Let us start with the “only if” part. Take π ∈ bd(Πd
c) and a sequence

{πr} ⊂ Πd
c converging to π. We have, on the one hand, cr ∈ Mr for each r ∈ N

and consequently 0n ∈ Z−
r . On the other hand, 0n /∈ int (Z−) because π ∈ bd

(
Πd

c

)
.

Assume by contradiction that 0n /∈ bd (Z−). Then 0n ∈ ext (Z−) and, since {πr}
converges to π, Proposition 8 ensures that 0n ∈ ext (Z−

r ) for r large enough, which
represents a contradiction. Therefore, 0n ∈ bd (Z−).

In order to prove the “if” condition, assume that 0n ∈ bd (Z−) and take a sequence
{ur} ⊂ Z− converging to 0n. We can write

ur =
∑
t∈T

λr
tat − μrc, r = 1, 2, . . . ,

for some sequences {λr} ⊂ R(T )
+ and {μr} ⊂ R+ verifying

∑
t∈T λr

t +μr = 1. For each
r ∈ N, define the problem πr := (cr, σr) by distinguishing two cases:
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(1) If μr = 0, let cr := c and

σr :=

{(
at − ur +

1

r
c

)′
x ≥ bt , t ∈ T

}
.

Note that in this case
∑

t∈T λr
t = 1 and

∑
t∈T λr

t (at − ur + 1
r c) = 1

r c, so cr = c ∈ Mr.

(2) If μr > 0, defining cr := c + ur and

σr :=
{
(at − ur)

′
x ≥ bt , t ∈ T

}
,

one has
∑

t∈T λr
t (at − ur) = μr (c + ur) and, again, cr ∈ Mr.

Thus, in any case, πr ∈ Πd
c and, since {πr} converges to π, then π ∈ cl(Πd

c).
Finally, under the current hypothesis, π /∈ int(Πd

c) and then π ∈ bd(Πd
c).

(iii) This is a straightforward consequence of (i) and (ii).

(iv) If π ∈ bd(Πd
c), the desired equality comes trivially from (ii). Assume that

π ∈ int(Πd
c), and let us see first the inequality “≥.” If π1 ∈ Π satisfies δ(π, π1) <

d(0n, bd(Z
−)), then Proposition 8 implies 0n ∈ int(Z−

1 ) and thus π1 ∈ int(Πd
c). In

order to establish the inequality “≤,” take u ∈ bd (Z−) such that d (0n, bd (Z−)) = ‖u‖
and define π1 := (c + u, σ−u), where σ−u :=

{
(at − u)

′
x ≥ bt , t ∈ T

}
. In such a way

Z−
1 = Z− − u, and then 0n ∈ bd(Z−

1 ), which entails π1 ∈ bd
(
Πd

c

)
. Thus,

δ
(
π, bd

(
Πd

c

))
≤ δ (π, π1) = ‖u‖ = d

(
0n, bd

(
Z−)) .

In the case π ∈ ext
(
Πd

c

)
one obtains the desired equality just by replacing int by

ext in the previous argument.

The following corollary comes directly from Theorem 1, Proposition 2, and state-
ment (iv) of Theorem 6.

Corollary 1. Let π = (c, σ) ∈ Π\Π∞. Suppose that at least one of the following
conditions holds:

(i) π ∈ cl (Πs);

(ii) π ∈ ext (Πs) and d (0n+1, bd (H)) �= d (0n, bd (Z−));

(iii) d (0n+1, bd (H)) = d (0n, bd (Z−)) ≥ ‖c‖.
Then one has

δ (π, bd (Πs)) = min
{
δ (π, bd (Πc)) , δ

(
π, bd

(
Πd

c

))}
.(12)

Bounds on δ (π, bd (Πs)) in terms of δ (π, bd (Πc)) and δ
(
π, bd

(
Πd

c

))
may be ob-

tained by reformulating Theorems 3 and 4. The results in these theorems also pro-
vide the inequalities δ

(
π, bd

(
Πd

c

))
≤ δ (π, bd (Πc)), for π ∈ ext (Πs) ∩ int (Πc), and

δ(π, bd(Πc)) ≤ δ(π, bd(Πd
c)), for π ∈ Πi\Π∞. See [5, section 2.4] for a counterpart in

the finite case.

The following proposition clarifies the relationship between Πs and Πc ∩ Πd
c in

our context. It shows that although both sets do not coincide, the ill-posedness with
respect to the solvability may be identified to the ill-posedness with respect to the
primal-dual consistency. We make use of the inclusion

Πc ∩ Πd
c ⊂ Πb,

which comes from the following standard argument on duality.
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DISTANCE TO SOLVABILITY/UNSOLVABILITY 647

If π ∈ Πc ∩ Πd
c and we take any feasible point λ ∈ R(T )

+ of the dual problem, i.e.,∑
t∈T

λtat = c, we have

c′x =
∑
t∈T

λta
′
tx ≥

∑
t∈T

λtbt for all x ∈ F.(13)

Proposition 11. The following statements hold:
(i) int (Πs) = int

(
Πc ∩ Πd

c

)
;

(ii) bd (Πs) = bd
(
Πc ∩ Πd

c

)
;

(iii) ext (Πs) = ext
(
Πc ∩ Πd

c

)
.

Proof. We shall prove conditions (i) and (ii), and then (iii) follows. Condition (i)
is a consequence of Proposition 3 and Theorem 6, taking into account that int (Πc)∩
int

(
Πd

c

)
= int

(
Πc ∩ Πd

c

)
.

(ii) If π ∈ bd
(
Πc ∩ Πd

c

)
⊂ cl (Πb) = cl (Πs), where the last equality comes from

[4, Thm. 1], then it must be π ∈ bd (Πs), taking into account the previous condition.
Assume now that π ∈ bd (Πs) and take πr = (cr, σr) ∈ Πs with {πr} converging to π.
By Proposition 1(ii), cr ∈ cl (Mr) for each r. Then, for each r, there exists c̃r ∈ Mr

with ‖c̃r − cr‖ ≤ 1
r . Therefore the problem π̃r = (c̃r, σr) ∈ Πc ∩ Πd

c for all r. Since
{π̃r} converges to π, we have π ∈ cl(Πc∩Πd

c) and then, under the current hypothesis,
π ∈ bd(Πc ∩ Πd

c).
Remark 4. In general cl(Πc ∩ Πd

c) ⊂ cl(Πc) ∩ cl(Πd
c), but the opposite inclusion

does not hold, even in the finite case. Just consider the problem in R given by
π := Inf {−x | 0x ≥ 1, x ≥ 1}. Since d (02, bd (H)) = 0 = d (0, bd (Z−)), π ∈ Πi ∩
cl (Πc) ∩ cl

(
Πd

c

)
. However, π /∈ bd (Πs) (see Proposition 6), and then π /∈ cl (Πs).

7. The finite case. In the finite case (T finite), the distances to inconsistency
(primal and/or dual) are studied in [5], [10], [16], [18], [19], [20], etc. In particular
[10], following the steps of [20], deals with a conic linear system σ = (A, b),

σ : b−Ax ∈ CY ,
x ∈ CX ,

(14)

where CX ⊂ X and CY ⊂ Y are closed convex cones in X and Y , respectively. X
and Y are an n-dimensional and an m-dimensional normed space, respectively, and
the norms in both spaces are represented by ‖·‖. Here b ∈ Y and A : X −→ Y is a
linear operator, with norm ‖A‖ := sup {‖Ax‖ | ‖x‖ ≤ 1}. The parameter space of all
systems (14) is endowed with the product norm

‖σ‖ = ‖(A, b)‖ := max {‖A‖ , ‖b‖} .(15)

This model includes our primal constraint system if T is finite (particularly if
|T | = m) just by taking CX := Rn and CY := −Rm

+ . As a consequence of this fact,
finite-dimensional versions of our distances to inconsistency are obtained by applying
Theorems 1 and 2 in [10]. Unfortunately the tools developed in [10] and [20] do not
apply in our context, in which Y = RT is not a normed space when T is infinite and
arbitrary.

With respect to the aim of relating our results to [10, Thms. 1 and 2] and [20,
Thm. 3.5], and if we identify a ∈ Rn with the linear operator x �→ a′x, a suitable
norm to be used in Rn+1 would be∥∥∥∥(ab

)∥∥∥∥ = max {‖a‖∗ , |b|} .(16)
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Observe that this norm satisfies conditions (3) and (4). Moreover, the norm ‖·‖
in X = Rn will be arbitrary, whereas in Y = Rm we shall use the norm ‖·‖∞.

Specifically, when T is finite, our system {a′tx ≥ bt , t ∈ T} can be rewritten in the
matrix form Ax ≥ b (where the tth row of the matrix A is a′t, and the tth component
of the vector b is bt). Then, and thanks to the fact that in Y we chose the infinite-norm
‖·‖∞,

‖σ‖ = max

{
max
‖x‖≤1

‖Ax‖ , ‖b‖
}

= max
t∈T

max {‖at‖∗ , |bt|} = max
t∈T

∥∥∥∥(atbt
)∥∥∥∥ .

For system σ in (14), [10] presents different mathematical programs, each of whose
optimal values provides either the exact distance to inconsistency, denoted by ρ (σ),
or an approximation of ρ (σ) to within certain constants. In particular, if X = Rn

and Y = Rm, Theorem 2 in [10] establishes, when σ is consistent, that ρ (σ) coincides
with the optimal value of the program,

Infy,q,g max {‖A′y − q‖∗ , |b′y + g|}
s.t. y ∈ C∗

Y , ‖y‖∗ = 1, q ∈ C∗
X , g ≥ 0,

(17)

where A′ and b′ are the transposes of A and b, respectively.
In our framework CX := Rn, CY := −Rm

+ and, writing λ := −y, program (17) is
equivalent to

Infλ,g max
{∥∥∑

t∈T λtat
∥∥
∗ ,

∣∣∑
t∈T λtbt − g

∣∣}
s.t. λ ≥ 0m, ‖λ‖1 = 1, g ≥ 0.

By defining wn+1 :=
∑

t∈T λtbt − g, and according to (16), we get another equivalent
program:

Infλ

∥∥∥∥( w
wn+1

)∥∥∥∥
s.t. λ ≥ 0m, ‖λ‖1 = 1,

w =
∑

t∈T λtat, wn+1 ≤
∑

t∈T λtbt.

In this way we conclude that, for σ consistent, the distance to the primal inconsis-
tency ρ(σ) coincides with d(0n+1, H), where H is the hypographical set introduced in
section 2. Hence, we recover a partial result in Proposition 2(iv), limited to (primal)
consistent problems in the finite case.

On the other hand, the dual problem (10) may be rewritten in the finite case as

πd : Sup b′λ
s.t. A′λ = c,

λ ∈ Rm
+ .

Assuming that this dual problem is consistent (i.e., π ∈ Πd
c), the distance to dual

inconsistency δ(π, bd(Πd
c)) is, according to Theorem 3.5 in [20],

inf {‖q‖ | {q = A′λ− sc, λ ≥ 0m, s ≥ 0, ‖λ‖1 + |s| ≤ 1} is inconsistent}
= inf {‖q‖ | q /∈ conv ({at, t ∈ T ; −c, 0n})} = d

(
0n, bd

(
Z−)) ,D
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where we have taken into account the fact that 0n ∈ Z− (due to the consistency of πd).
Hence, we also recover a partial result in Theorem 6(iv), limited to dual-consistent
problems in the finite case.

Finally, let us recall that the specification of inequality (i) in Theorems 3 and 4
for the finite case can be traced from section 2.4 in [5]. Concerning the distance from
unsolvable instances to solvability, statements (ii) and (iii) in Theorem 1 are new even
in the finite case.
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