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Abstract

The insulin/TOR signal transduction pathway plays a critical role in determining such impor-

tant traits as body and organ size, metabolic homeostasis and life span. Although this

pathway is highly conserved across the animal kingdom, the affected traits can exhibit

important differences even between closely related species. Evolutionary studies of regula-

tory regions require the reliable identification of transcription factor binding sites. Here we

have focused on the Insulin Receptor (InR) expression from its P2 promoter in the Drosoph-

ila genus, which in D. melanogaster is up-regulated by hypophosphorylated Drosophila

FOXO (dFOXO). We have finely characterized this transcription factor binding sites in vitro

along the 1.3 kb region upstream of the InR P2 promoter in five Drosophila species. More-

over, we have tested the effect of mutations in the characterized dFOXO sites of D. melano-

gaster in transgenic flies. The number of experimentally established binding sites varies

across the 1.3 kb region of any particular species, and their distribution also differs among

species. In D. melanogaster, InR expression from P2 is differentially affected by dFOXO

binding sites at the proximal and distal halves of the species 1.3 kb fragment. The observed

uneven distribution of binding sites across this fragment might underlie their differential con-

tribution to regulate InR transcription.

Introduction

The insulin receptor (INR) of the insulin/TOR signal transduction pathway is one of the key

sensors of nutrient availability that plays an important role in the control of cellular prolifera-

tion, cell size determination, and the response to nutrient availability in metazoans. This

pathway is critical for determining body and organ size [1,2]—via regulation of growth and

proliferation [3]—as well as metabolic homeostasis and life span [4,5] in Drosophila, Caenor-
habditis and mammals. In Drosophila melanogaster, INR constitutes the first step of the insu-

lin/TOR signal transduction pathway. The expression of the InR gene is controlled by a set
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of three distinct promoters (P1, P2, and P3) spread over a rather long region [6] (Fig 1-A).

Expression from the P1 promoter that drives the highest basal level of InR transcription was

initially considered to be stable [6]. Recent work has, however, revealed that the regulation of

InR expression from P1 is actually more complex as it is influenced by four intronic enhancers,

with two of them activating transcription in response to dFOXO and the other two repressing

it [7].

In D. melanogaster, transcription of InR from P2 is up-regulated by hypophosphorylated

Drosophila FOXO (dFOXO)—a homologue of Caenorhabditis elegans DAF-16 and a mamma-

lian orthology group that includes FOXO4 and other duplications (e.g., FOXO1, FOXO3 and

FOXO6) [8]. This regulation is conducted through a feedback mechanism triggered by the

absence of the insect insulin-like peptides (dILPs) when the nutrients availability is limited

[9] and the cellular growth and proliferation are consequently inhibited. dFOXO recognizes,

like its homologues, the DAF-16 family-member Binding Element (DBE) and the Insulin

Responsive Element (IRE) that had been characterized in the mouse, where their consensus

Fig 1. Constructions and analyses of transgenic flies. (A) Schematic representation of the InR gene and its upstream region in Drosophila

melanogaster with promoters P1, P2 and P3 coordinates from FlyBase (Release 6). The 1.3 kb fragment upstream of P2 is enlarged to show the location

of the dFOXO footprints in this region. (B) Schematic representation of the 1.3 kb fragment upstream of the InR P2 promoter of wild type and mutated-

insert transgenic lines. A discontinuous vertical line indicates the nucleotide position (-650) that divides the fragment into two halves. Grey and brown

boxes indicate wild type and mutated footprints, respectively, with their width varying according to the extent of the footprint. (C) Expression level of the

eGFP reporter gene in the different transgenic lines relative to that of the two endogenous genes. RRGE, relative reporter gene expression. * P<0.05;

** P<0.01; *** P<0.001.

https://doi.org/10.1371/journal.pone.0188357.g001
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sequences are 5’-TTRTTTKK and 5’-TTRTTTAC, respectively [10–13]. In D. melanogaster,
the bioinformatic analysis of dFOXO targeted regions by ChIP revealed a certain enrichment

in FORKHEAD (FKH)-like motifs [14] as well as in the dFOXO binding motif—TKTTYACY

—derived from 25 genes [15]. The binding of dFOXO upstream of promoter P2 was partially

characterized by band shift analysis, which revealed five 100–150 bp fragments bound by

dFOXO spanning a 1.4 kb region. Also occupancy by dFOXO in a 1.5 kb fragment upstream

of the P2 promoter has been observed in vivo [7,16]. Each of these fragments contains putative

FOXO4 recognition elements. This region is also known to respond to dFOXO activation in

S2 cells [16].

The insulin/TOR pathway is highly conserved across the animal kingdom. The traits

affected by this pathway (e. g., body size and life span) exhibit, nevertheless, differences even

between closely related species of the Drosophila genus [17,18]. Since the number of INR mol-

ecules in the cell membrane determines the magnitude of the response to the concentration of

nutrients [19], it seems plausible that the number and/or organization of dFOXO binding sites

in the InR P2 promoter could influence its rate of transcription and consequently, the number

of INR molecules that can bind dILPs. This differential binding could underlie the observed

differences in the multiple traits affected by the insulin/TOR pathway in Drosophila.

Mutations that modify the activity of transcription factors as well as mutations in the TFBSs

can change gene expression and, thus, contribute to evolution. Work in yeast [20], Drosophila

[21] and in mice [22] among others suggests that mutations affecting cis-regulatory sequences

constitute the prevalent source for gene expression divergence between species. However, the

comparative analysis of experimentally identified binding sites in some genes of a variety of

species has provided substantial evidence for binding site turnover, where the loss of a con-

served TFBS would be enabled by the previous gain of a functionally redundant one [23–26].

In those cases where binding site turn over has had no effect on gene expression despite

sequence divergence (e. g., in the Drosophila eve stripe 2 enhancer; [27]), stabilizing selection

has been proposed to maintain phenotypic constancy and the observed turnover explained by

the fixation of neutral compensatory mutations [27]. There is, however, also evidence for posi-

tive selection favoring the double mutant [28].

The high turnover of transcription factor binding sites (TFBSs) through evolutionary time

[24] and the scarcity of genes with regulatory regions experimentally characterized at the base-

pair level, even in most model species and relatives, have so far hampered the development of

bioinformatic tools for their identification in a phylogenetic context. Nevertheless, some efforts

have been done in this field [29,30]. Only the experimental characterization of the fine structure

of the regulatory region of multiple genes in multiple species across a phylogeny might signifi-

cantly facilitate this endeavor. In Drosophila, most efforts during the last decade have focused:

i) on the experimental characterization of TFBSs identified in D. melanogaster genes and sum-

marized in the DNase I footprint database that does not contain TFBSs for the InR gene [31]

and ii) on the effect in D. pseudoobscura and in species of the melanogaster group of TFBS turn-

over in the well characterized eve stripe 2 enhancer of D.melanogaster [27,32]. One major chal-

lenge in investigating cis-regulatory evolution is the proper alignment of non-coding sequences.

This problem has generally been minimized studying closely related sibling species such as D.

melanogaster and D. simulans [26,28]. Even in this case, the comparative analysis of nucleotide

polymorphism and divergence has focused on a set of TFBSs identified by DNase I footprinting

since those identified by methods involving genome wide scans, such as ChIP-seq, generally

include a large fraction of false positives [28]. DNase I footprinting has also allowed the charac-

terization of the TFBSs present in regulatory regions of distantly related species, which has

revealed changes in organization of the ADF-1 binding sites between species of the Sophophora

and Drosophila subgenera that had led to temporal changes in Adh expression [33].

dFOXO binding sites upstream of InR P2 promoter in Drosophila
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DNase I footprinting leads to the identification of regions of local DNA protection from

DNase I cleavage and it is the method of choice to identify TFBSs at the base-pair resolution

level [34] with its automation enabling the scan of long regions. Here, we have identified the

dFOXO binding sites at the 1.3 kb fragment upstream of the P2 promoter of the InR gene in D.

melanogaster and tested their functionality in transgenic flies. Moreover, the extremely high

conservation of the FORKHEAD (FKH) DNA Binding Domain (DBD) of FOXO proteins

across the animal kingdom and particularly across the Drosophila genus, has allowed us to use

the D. melanogaster dFOXO protein to experimentally characterize the dFOXO binding sites

in the 1.3 kb fragment upstream of the InR promoter P2 in four species across the Drosophila

phylogeny: three species of the Sophophora subgenus—D. simulans, D. yakuba and D. pseu-
doobscura—and one species of the Drosophila subgenus—D. virilis. Our work has revealed

that binding sites at the downstream (proximal) half of the D. melanogaster 1.3 kb fragment

have a higher effect on InR expression from P2 than those at its upstream (distal) half. It has

also revealed i) that the number of binding sites in footprinted sequences varies across the 1.3

kb region of any particular species, and ii) that their distribution differs among species. Our

results would therefore suggest that the uneven distribution of dFOXO binding sites across the

1.3 kb fragment detected in D. melanogaster might underlie the different contribution to InR
expression from the P2 promoter of sites at the proximal and distal halves of the 1.3 kb frag-

ment in this species, and possibly also across the Drosophila genus.

Results

dFOXO footprints in the Drosophila melanogaster upstream of the InR

promoter P2 region

In order to understand how dFOXO binding regulates InR expression in D. melanogaster, we

finely characterized the InR P2 promoter region. DNA footprinting of the 1.3 kb fragment

upstream of this promoter was performed using several overlapping fragments (300–500 bp

long) covering this region. Each strand of these fragments was FAM labeled and subsequently

incubated with either dFOXO or BSA. dFOXO binding sites are protected from DNase I cleav-

age, which results in clusters of protected residues in each FAM labeled strand that can be

identified by a DNA analyzer machine. Automated footprinting of the 1.3 kb region upstream

of P2 revealed that dFOXO produces 18 footprints in this region, which include a total of 444

bp. The heterogeneity detected in the number of protected residues within and outside foot-

prints (χ2-test, P = 1E-20) would support the threshold used to consider a residue protected

(see Materials and methods). These footprints that were named M18 to M1 from the 5’ to 3’

end of the region forward strand (Fig 1-B) differed not only in length—from 9 to 44 bp—but

also in the number and distribution of protected sites (S1 Fig). In order to characterize the

binding sites of the different footprints, we searched in both the forward and reverse strands

for the 5’-TTGTTT and 5’-TTATTT motifs–hereafter named DBE cores–that are shared by

the previously identified mouse FOXO binding elements DBE [10,11] and IRE [12,13]. Eight

of the here established footprints (M1, M3, M4, M6, M10, M14, M17 and M18) contain the

TTGTTT motif, which is repeated either in the same or in different strands of footprints M1

and M6 (Fig 2 and S1 Fig). The TTATTT motif was found in footprints M2, M5 and M15.

Moreover, two sequences (TTGTTG and TTTTTT) that deviate by one nucleotide from the

consensus DBE and IRE cores were highly protected in two (M5 and M15) and three (M6,

M7 and M16) footprints, respectively. We also searched for the 5’-TRTTK core consensus

sequence recognized by all FKH proteins [35]. One or more copies of this consensus sequence

are present outside the DBE motifs in either the forward or reverse strand, or in both strands

(Fig 2 and S2 Fig). It should be noted that footprints M11, M12 and M13 exhibit none of the

dFOXO binding sites upstream of InR P2 promoter in Drosophila
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above reported motifs even though they show clustered protected residues. The DBE and FKH

motifs are unevenly distributed across the 1.3 kb region. Indeed, 25% and 66% of these motifs

are present, respectively, in the ~0.26 kb and ~0.65 kb most upstream and downstream parts

of this region, with the remaining 9% distributed across its ~0.39 kb central part (Fig 2 and

S2 Fig).

Effect of mutations introduced in the dFOXO footprints detected

upstream of the InR promoter P2 of Drosophila melanogaster

The functionality of the detected dFOXO footprints was tested in five transgenic lines that dif-

fered by the presence or absence of mutations in protected residues of the footprints reported

above (Fig 1-B): wt (wild type), Dmut_Pmut (mutations in all footprints detected, i.e., in both

its distal [D] and proximal [P] halves), Dwt_Pmut (mutations only in the footprints detected

in the proximal half of the 1.3 kb fragment), Dmut_Pwt (mutations only in the footprints

detected in the distal fragment) and finally mut_ChIP (with mutations in the footprints within

Fig 2. dFOXO footprints upstream of the InR P2 promoter across the Drosophila phylogeny. Schematic representation of the 1.3 kb fragment used

to identify footprints in each of the five species studied (M, D. melanogaster; S, D. simulans; Y, D. yakuba; P, D. pseudoobscura; V, D. virilis). Grey boxes

show the location of footprints with their width varying according to the extent of the footprint. Vertical black and red bars indicate the presence of DBE and

FKH core sequences, respectively, detected in footprint areas. In species other than D. melanogaster, footprints that give reliable alignments are indicated

with the same number than in D. melanogaster, with the remaining footprints in D. pseudoobscura and D. virilis indicated with the species initial and a

correlative small letter. Marks (a) and (b) on the bp ruler correspond to the points used as limits to calculate the local densities of DBE and FKH motifs

(-1042 and -650, respectively). Limit (b) was used for that purpose because of its former use in transgenic constructs (see Fig 1). Limit (a) was established

at the midpoint between footprints 14 and 13 given that the latter footprint and footprints 12 and 11 are the only ones in D. melanogaster that do not harbor

any core motifs.

https://doi.org/10.1371/journal.pone.0188357.g002
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the regions previously found to be bound by dFOXO in ChIP experiments [16]). In these lines

as well as in the line with only the eGFP reporter gene, the segments containing the miniwhite
and the different versions of the 1.3 kb region controlling the expression of the eGFP reporter

gene were flanked by gypsy insulators [36]. In the different lines, constructs were inserted at

the same nucleotide position in section 51C (see Materials and methods). The identical genetic

background of all lines and the protection of the reporter gene expression from position effects

by flanking gypsy insulators [36] set the stage for comparing the different transgenes expres-

sion levels. Moreover, examination of the Dmut_Pmut sequence in TRANSFACT revealed

that the mutations introduced in the 1.3 kb fragment did not disrupt any binding site for other

transcription factors expressed in 22–24 hours embryos (Flybase, http://flybase.org [37]) nei-

ther did they generate any new binding site, which would indicate that the effect of the muta-

tions on the different transgenes expression levels would be due to differences in dFOXO

binding. The effect of mutations was determined by measuring the expression of the eGFP
reporter gene relative to that of endogenous genes InR and elF-1A, in embryos 22–24 hours

after egg deposition.

Amplicons for eGFP, InR and eIF-1A have efficiencies ranging from 0.98 to 1.05 (S1 Table)

as required to quantify by RT-PCR the reporter (eGFP) gene expression relative to a reference

gene. In the four lines with mutations in the transgene, the relative expression level of the

eGFP reporter gene (S2 Table and Fig 1C) is greatly reduced as compared to that of the wild

type (wt) transgenic line irrespective of the endogenous gene considered. Indeed, a significant

effect of the line (construct) on the reporter gene expression is detected (ANOVA P = 6.1E-9),

which can be mainly attributed to differences between the wild type line and the mutated lines

(pairwise 2-tailed t-tests, P<0.002 in the four cases). This clearly indicates that at least some,

if not all, of the mutations introduced in the dFOXO binding sites of the transgene—in the

distal and proximal halves of the 1.3 kb InR P2 upstream region—significantly decrease tran-

scription from its P2 promoter. The Dwt_Pmut line exhibits in all cases the most reduced

expression of the eGFP reporter gene relative to the wt line. Expression is indeed significantly

lower in the Dwt_Pmut line than in any other of the three mutated transgenic lines (1-tailed t-

tests, P<0.001 for the 3 comparisons with InR as reference gene, and P equal to 0.007, 0.005

and 0.034 for those with eIF-1A). The significantly more reduced expression detected in the

Dwt_Pmut than in the Dmut_Pwt line points to a lesser role of the dFOXO binding sites

located in the distal half of the 1.3 kb InR P2 upstream region on levels of expression from this

promoter. Moreover, the significantly more reduced expression detected in the Dwt_Pmut

line than in either the Dmut_Pmut or mut_ChIP lines would suggest that in the latter lines the

effect of mutations in the distal half of the 1.3 kb region might compensate for the effect of

mutations in its proximal half.

dFOXO binding sites across the Drosophila phylogeny

The multiple alignment of the 110-aminoacid dFOXO DNA-binding domain sequences [38]

of the five species here studied–D. melanogaster, D. simulans, D. yakuba, D. pseudoobscura and

D. virilis–revealed their identity except for one amino-acid difference in D. virilis. The high

conservation detected allowed us to use the D. melanogaster protein for the automated foot-

printing of the 1.3 kb region upstream of the InR P2 promoter in each of the other four Dro-

sophila species that exhibit increasing times of divergence to D. melanogaster. The number of

footprints produced by dFOXO in these four species is 19, 19, 14 and 17, respectively (Fig 2

and S1 Fig). These footprints include a total of 387, 417, 405 and 405 bp, respectively.

Sequences of the 1.3 kb region upstream of the P2 promoter could only be reliably aligned

along their complete length in the three species of the melanogaster group (S3 Fig). In D.

dFOXO binding sites upstream of InR P2 promoter in Drosophila
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pseudoobcura and D. virilis, only small regions that encompass some of the detected footprints

could be reliably aligned with the remaining sequences through BLAST search (S3 Fig). The

MultiZ alignments on the genome UCSC browser (http://genome.ucsc.edu) of the 1.3 kb frag-

ment confirmed these results except for the distal part of D. pseudoobscura sequence that is

inverted in this species. Footprints and binding motifs in reliably aligned regions can be con-

sidered homologous but not those in other regions. Homologous footprints are numbered

according to the D. melanogaster footprint number (Fig 2). In the melanogaster group species,

footprint position is conserved in 15 out of 18 cases, and an additional aligned footprint is

shared by D. simulans and D. yakuba. In D. pseudoobscura, footprint sequences P1 and P4

align with M1 and M4 in the same position of the multiple alignment whereas the fragment

spanning footprints P14, P15 and P18 is inverted relative to that of the three melanogaster
group sequences, and footprint P15 is present twice (labeled P15 and P15’). In D. virilis, only

two footprints (V1 and V15) can be confidently aligned with all other sequences, and V15 is

also present twice (labeled V15 and V15’).

In order to characterize the binding sites of the different footprints, we searched for the

presence of DBE core motifs as well as of FKH consensus sequences (S2 Fig). In the three spe-

cies of the melanogaster group, nine footprints (1, 3, 5, 6, 7, 14, 15, 16 and 18) have DBE motifs

in the three species but only in five footprints (1, 3, 14, 15 and 16) are these motifs aligned in

all three. Relative to D. melanogaster, four and eight of the footprinted regions exhibit an addi-

tional DBE motif in D. simulans (S8, S12, S16 and S18) and D. yakuba (Y6, Y7, Y8, Y8b, Y9,

Y12, Y16 and Y18) respectively, whereas three in D. simulans (S5, S6 and S10) and six in D.

yakuba (Y2, Y6, Y7, Y10, Y15 and Y17) exhibit one less. In D. pseudoobscura, DBE motifs are

present in the six alignable footprinted regions (P1, P4, P15’, P18, P15 and P14) and in four of

the eight non-alignable footprints (Pa, Pe, Pf and Pg). Also in D. virilis, they are present in the

three alignable footprinted regions (V1, V15 and V15’) and in ten of the fourteen non-align-

able footprints (Va, Vb, Vc, Vf, Vi, Vj, Vk, Vl, Vm and Vn). Furthermore, and as shown in Fig

2, some footprints contain additional FKH motifs.

The number of DBE core motifs detected in the 1.3 kb region of the five species with char-

acterized dFOXO footprints ranges from 20 to 22, and that of the additional FKH motifs from

6 to 15 (Fig 2, S2 and S4 Figs). These motifs are unevenly distributed along the 1.3 kb region.

In the three species of the melanogaster group, the central part of this region exhibits the lowest

density of motifs (Table 1). The relative density of motifs in its two flanking segments varies

among the three species: rather similar in D. melanogaster and D. simulans but not in D.

yakuba. In D. virilis, the density of motifs is also lowest in the central part of the 1.3 kb region,

but its most upstream part exhibits a much higher motif density than any of the melanogaster
group species do. The distribution of DBE and FKH motifs across the 1.3 kb region of D. pseu-
doobscura is the most discordant as it exhibits the highest density of motifs in its central part.

Table 1. Densities of DBE and FKH motifs in three fragments of the 1.3 kb region.

Fragment 1* 258 bp Fragment 2 392 bp Fragment 3 650 bp

D. melanogaster 31.0 7.7 32.3

D. simulans 34.9 10.2 26.2

D. yakuba 19.4 10.2 43.1

D. pseudoobscura 23.3 35.7 10.8

D. virilis 46.5 15.3 27.7

Values correspond to the number of DBE+FKH motifs per kb.

*See Fig 2 for fragment limits

https://doi.org/10.1371/journal.pone.0188357.t001
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From 105 DBE sites experimentally detected in the five species here analyzed, a new Dro-

sophila DBE consensus sequence can be derived: 5’-TTDTTKNB (S4 Fig). Interestingly, our

results indicate that dFOXO can recognize this motif with a thymine base at position 3 and

also that thymine is the most frequent base in the two nucleotides at the 3’ end of the motif.

This motif differs at some positions from that based in a collection of dFOXO ChIPed genes

not including InR that were analyzed in adult females—5’-TKTTYMCY—[15].

Discussion

The identification of the TFBSs contained in cis-regulatory elements constitutes the first step

to elucidate the genetic and molecular mechanisms responsible for cis-regulatory divergence

among species. We focused on the regulation of the InR gene transcription from its P2 pro-

moter, despite that its transcript yield is much lower than from its P1 promoter, because a sig-

nificant direct activation of P2 by dFOXO has been confirmed both in vitro and in vivo [7,16]

whereas dFOXO also indirectly activates or represses additional enhancers located within

introns of InR gene [7]. Previous band-shift studies had shown that in D. melanogaster
dFOXO binds to four fragments upstream of this promoter [16], but these studies provided no

sequence information on the actual binding sites. The automated DNase I footprinting here

performed circumvents this limitation as it allows the identification of TFBSs at the base-pair

resolution level in vitro. Our work revealed multiple dFOXO binding sites in each of the frag-

ments previously found to be bound by dFOXO in vitro. Additionally, our footprinting results

allowed us to uncover, relative to the band-shift work, eight new and strong footprints: five dis-

tal footprints (M14 to M18) and three proximal footprints (M1 to M3) flanking the TATA

box. It should be, however, added that footprints M14 and M15 are in the region that had been

previously reported to be bound by dFOXO in vivo [16]. Most of the characterized footprints

contain sequences TTRTTT (S2 Fig) as in the mouse DBE consensus sequence [10,11] but

footprints containing TTTTTK were also found to be strongly protected from DNase I diges-

tion. The observed nucleotide differences between the motif sequences present in the foot-

prints and in the mouse consensus core sequence could be plausibly explained by the amino

acid substitutions that have occurred since the divergence of the mouse and Drosophila line-

ages outside the totally conserved canonical FOXO base-contacting residues in the recognition

helix. Thus, conformational rearrangements [39] of the dFOXO DBD would have led to the

modified consensus recognition sequence 5’-TTDTTKNN for Drosophila dFOXO. According

to Lynch and Hagner [40], such variation in TFBSs is expected to be a natural consequence

of the degrees of freedom associated with binding interfaces, the diminishing advantages of

increased affinity and the limits to the power of natural selection.

In D. melanogaster, FKH core sequence TRTTK is present not only in some footprints with

DBE but also in some footprints lacking this element. The distribution of DBE and FKH core

motifs is not homogeneous across the 1.3 kb region. Indeed, its most proximal (~0.65 kb) and

distal (~0.26 kb) parts exhibit higher densities of DBE motifs (Fig 2, S2 Fig, and Table 1) than

the central part (~0.39 kb). When the motifs in the 0.65 kb proximal half were mutated, the

expression of the eGFP reporter gene in transgenic D. melanogaster flies was even lower than

that of transgenic flies carrying mutated motifs along the complete 1.3 kb region. However, the

expression of the reporter gene relative to endogenous genes was in all cases lower in trans-

genic flies with mutated motifs only in the proximal half of the 1.3 kb region than in those

with mutated motifs only in its distal half. This result would indicate that even though the nor-

mal expression of the InR gene from promoter P2 requires motifs with the consensus sequence

in the distal half, these motifs have a lesser effect on transcription from this promoter than

motifs present in the proximal half, which might be related to their relative numbers in both
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segments. Moreover, transgenic flies with mutated motifs only in the proximal half exhibit the

lowest level of reporter expression relative to the InR and eIF-1A endogenous genes (Fig 1-C).

This observation suggests that at least some mutations introduced in the distal half might com-

pensate the effect on gene expression of mutations introduced in the proximal half. The minor

differences observed in the relative expression of the reporter gene between transgenic lines

with mutated motifs in all footprints (Dmut_Pmut) and those with a subset of mutated motifs

in both the distal and proximal halves (mut_ChIP) suggests i) that the compensatory muta-

tions would be either in the M14 or M15 footprints, and ii) that mutations in footprints M1,

M6 and M7 might play a major role in the extreme reduction detected in transgenic flies

with mutated motifs only in the proximal half (Dwt_Pmut). The presence of an nc-RNA gene

embedded in the 1.3 kb region used in transgenic constructs might raise the question of its

putative effect through transcriptional interference in our in vivo results. Although the lack

of information on how this nc-RNA gene expression is regulated, and more importantly on

where its regulatory elements are located, precludes evaluating this possibility, its putative

interference might only have a minor effect on our results. Indeed, any effect on the endoge-

nous InR gene transcription would be similar in the five transgenic lines.

The characterization of DBE motifs by DNase I footprinting upstream of the InR P2 pro-

moter in D. melanogaster and the subsequent ascertainment that mutations in these motifs

reduce transcription from this promoter led us to characterize the corresponding dFOXO

binding sites in a 1.3 kb fragment upstream of the P2 promoter in four additional species

across the Drosophila genus in order to get new insights in binding site evolution. The 1.3 kb

fragment of the five species studied can be considered homologous despite that only parts of

the D. pseudoobscura and D. virilis sequences could be reliably aligned with those of the three

species of the melanogaster group because i) its proximal part that encompasses the TATA

box can be reliably aligned throughout the five species, ii) the distal part of the D. pseudoobs-
cura sequence can be reliably aligned when reverse-complemented given that it is inverted in

this species, and iii) the homology revealed by the MultiZ alignment (http://genome.ucsc.edu)

across the five species at the beginning of the second exon of the nc-RNA gene that is present

~300-bp from the 1.3 kb distal end.

The number of DBE and FKH core motifs in footprinted sequences varies among the five

species studied from 27 in D. pseudoobscura to 36 in D. virilis. These motifs distribution is

rather uneven both within any given species and among species. The core motifs detected in

footprinted sequences are most similarly distributed in D. melanogaster and D. simulans. In

these species as well as in D. yakuba and D. virilis, it is the central part of the 1.3 kb region that

exhibits the lowest density of motifs (Fig 2, S2 Fig and Table 1). In D. pseudoobscura, the DBE

and FKH core motifs distribution differs from that observed in the other four species. The

comparison of dFOXO binding sites in the region upstream of the P2 promoter across the five

species studied has revealed that only two of them are conserved across the Drosophila genus,

whereas 15 are only conserved in the more closely related species of the melanogaster group.

Although TFBS conservation across distantly related species is most easily explained by the

action of purifying selection, both stabilizing selection and positive selection have been pro-

posed to underlie TFBS turnover [27,28]. It should be, however, noted that one limitation of

footprinting analysis by automated DNAse I is that not all bound sites by a transcription factor

in vitro are necessarily also bound in vivo. Our work sets the ground for additional experiments

with transgenic flies carrying mutations in the dFOXO binding sites detected in vitro in the

four additional species, which would reveal if and how their distribution affects the expression

and feedback regulation [16] of the InR gene from promoter P2 in those species.

In summary, our experimental characterization of dFOXO binding sites upstream of the

InR P2 promoter in five Drosophila species with different divergence times has revealed that
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their number varies among species. Most importantly, it has shown that they exhibit an

uneven distribution along the 1.3 kb fragment studied, distribution that is only similar in the

three more closely related species, with D. pseudoobscura exhibiting an even more discordant

pattern relative to these species than D. virilis does. Also, our analysis of expression in trans-

genic flies with mutations at subsets of the dFOXO binding sites upstream of the gene P2 pro-

moter in D. melanogaster has revealed that InR expression is more affected in this species by

binding sites at the proximal than at the distal half of the 1.3 kb fragment studied. The uneven

distribution of DBE motifs might account, at least partly, for this differential effect.

Material and methods

Drosophila strains and sequences

The D. melanogaster, D. simulans, D. yakuba, D. pseudoobscura and D. virilis strains (accession

nos. 14021–0231.36, 14021–251.216, 14021–261.01, 14011–0121.94 and 15010–1051.87,

respectively) used in the initial Drosophila genome projects [41–43] were obtained from the

UCSD Drosophila species stock center. The orthologous sequences of the InR promoter 2

upstream region as well as the orthologous sequences of the dFOXO DNA-binding domain

were obtained from FlyBase (http://flybase.org) [37].

DNase I footprinting

Cloning and sequencing. For each of the five species, an ~3 kb fragment upstream of the

InR P2 promoter was amplified from purified DNA (QIAGEN, Hilden, Germany) using the

AmpliTaq Gold polymerase (AB Applied Biosystems, Thermo Fisher Scientific, Waltham,

MA, USA), and primers designed to directionally clone the fragment in the pET101/D-TOPO

plasmid vector (Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA). From each species

clone, overlapping 300 to 500 bp long subclones were obtained through the amplification of

the corresponding fragment with AmpliTaq Gold polymerase and suitable primers (S3 Table)

and its subsequent cloning in the same vector.

All clones and subclones inserts were sequenced with the ABI PRISM version 3.2 cycle-

sequencing kit (AB Applied Biosystems) according to manufacturer’s conditions. Sequencing

products were separated on an ABI PRISM 3730 sequencer (Applied Biosystems). All

sequences were obtained on both strands and assembled using the DNASTAR package [44].

Sequences have been deposited in the EMBL/GenBank Data Libraries under accession num-

bers LT838814-LT838818.

Automated footprinting. The four steps required for automated footprinting [45] are

described below with the modifications introduced in the present study.

For FAM labeling (step 1), forward (5’-AGGGTTAGGGATAGGCTTACCT) and reverse

(5’-AGCGGATAACAATTCCCCTCTA) primers were designed to anneal at the pet101/

D-TOPO vector regions flanking the subcloned insert. 5’-6 FAM labeled and unlabeled prim-

ers were synthesized by SIGMA (St. Louis, MO, USA). In order to label each fragment at either

end, fragments were amplified alternating which primer was 5’-6-FAM labeled. PCR reactions

were performed at the same conditions for all fragments (50 μl total reaction volume, dNTP

2.5 mM each, MgCl2 25mM, PCR buffer II, Amplitaq Gold 0.4 μl, forward and reverse primers

10 μM each, DNA from the corresponding subclone 5 ng; 95˚C 5 min., 35 cycles 95˚C 15 sec.,

58˚C 15 sec., 65˚C 30 sec., and 65˚C 7 min.). The amplified fragments were purified with QIA-

quick PCR columns (QIAGEN) and its concentration quantified with Qubit (Invitrogen).

Binding reactions (step 2) were performed in a 20 μl total volume using a modified version

of the Brent (2008) buffer (5% glycerol, 0.2 mM EDTA, 50 mM KCl, 2 mM MgCl2, 20 mM

Tris HCl pH = 8, 0.2 mM DTT) and 20nM DNA. Four reactions were performed: two with
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BSA at either a 600 nM or 1200 nM concentration, and two with dFOXO purified by Gen-

Script (Piscataway, NJ, USA) at either of those concentrations. Reactions were incubated at

20˚C for 30 min.

DNase I reactions (step 3) were performed by adding 20 μl of DNase I dilution buffer (10

mMTris-HCl, 10 mM CaCl2, 10 mM MgCl2, 10% Glicerol) containing 0.03 Katz units of

DNase I (Amersham, GE Healthcare Life Sciences) to each binding reaction and posterior

incubation at 20˚C for 1 min. Reactions were stopped with 40 μl of 0.5 M EDTA and placed on

ice. DNA was extracted with phenol: chloroform, chloroform and purified with a QIAquick

PCR column (QIAGEN). Digested DNA concentration was quantified with Qubit and diluted

to 0.6 ng/μl.

Automated footprinting (step 4) was performed adding 3.75 μl autoclaved water, 5.85 μl

HiDiFormamide and 0.15 μl 600 LIZ (Applied Biosystems) to 1.25 μl of digested DNA. Five

replicates of each DNA sample were run in an ABIPRISM 3730 DNA analyzer (injection time

30 sec. and voltage 3.0 kV) with the Genemapper50_POP7 and DFACE software. Results were

analyzed with the Peak Scanner (Applied Biosystems) version 1.0 software package (S1-S25

Datasets and S5 Fig). As all the 5’FAM_forward labeled and 5’FAM_reverse labeled fragments

have, respectively, the first 69 and the last 48 vector residues in common, the peaks corre-

sponding to the first and last residues of the InR fragment are easily identified in the electro-

pherograms. Upon exporting the sizes and heights provided for all peaks in each sample, those

of each sample were aligned with the corresponding fragment sequence using a script designed

for that purpose. This script aligns the sequence of the fragment with the position (size) of

each peak across the five replicates of each sample both for standards and experimental DNA,

and it then calculates the mean height for each peak. The mean height of all standard peaks in

a particular sample was used to normalize the values of mean height of each experimental peak

in that sample. The BSA/dFOXO ratio was calculated for each peak. In order to define a foot-

print, it should be first noted that DNase I does not recognize sequence per se and its cutting

rates vary along a given DNA sequence depending on global variation in helix groove width

and radial asymmetry, and local variation in phosphate accessibility [46]. It should be also

noted that the observed footprinted sequence in one strand can overlap or be slightly offset

from that in the other strand. We therefore considered protection at both strands and defined

a footprint according to the following criteria: i) taking into account that a BSA/dFOXO ratio

value equal to one means no protection, only residues with a BSA/dFOXO ratio� 2 in the

experiments performed with either 600 nM or 1200 nM protein concentrations were consid-

ered to be protected, ii) protected residues had to be clustered, iii) when the footprinted

sequence in one strand overlapped that in the complementary strand, the footprint extent was

defined in the strand with the longest footprinted sequence; and iv) when the footprinted

sequences in both strands were slightly offset, the limits of the footprint were defined by the 5’

protected residues of each strand.

Construction of transgenic lines and expression analysis

The pGreen Rabbit reporter vector that contains insulator (gypsy) elements—effective in pre-

venting position effects—flanking the mini-white gene, and the reporter eGFP gene [36] was

used for cloning and PhiC31 integrase-mediated transgenesis. Three types of recombinant vec-

tors were obtained according to their insert: i) with no insert, ii) with the D. melanogaster wild

type 1.3 kb fragment upstream of the InR P2 transcription start site (TSS), and iii) with differ-

ent mutated versions of the 1.3 kb fragment. Sequences with changes relative to the wild type

were synthesized by Gene Script (NJ, USA).
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The different transgenic lines were generated by Genetic Services (MA, USA) by injection

into the attP 51D platform line. For each transgenic line, insert location was verified through

PCR amplification—using primers flanking the integration site (at section 51D) and the corre-

sponding insert—, and subsequently sequencing the amplification product. Insert identity was

similarly verified through its PCR amplification and subsequent sequencing (Accession num-

bers LT838819 –LT838822).

Real Time RT-PCR was used for gene expression quantification taking into account

MIQUE guidelines [47]. Total RNA was purified from 22–24 hours embryos developed at

22˚C using the RNeasy Plus Mini kit (QIAGEN). This stage was chosen because it shows the

highest expression of the endogenous InR and dFoxo genes (modENCODE Development

RNA-Seq in FlyBase) [37]. An additional step of on-column DNase I, RNase-free digestion

was introduced into the procedure to get RNA free of DNA. RNA integrity was established

with Bioanalizer (Agilent Technologies, CA, USA) and RNA concentration was determined

with Qubit (Invitrogen, Thermo Fisher Scientific). The optimal primers and MGB probes (S4

Table) were designed with the Primer Express Program (Applied Biosystems, Foster City, CA,

USA).

Three technical replicates of transgenic line RNA samples were analyzed in a 7900HT

Sequence Detection System (Applied Biosystems). The RNA samples were first diluted to 200

ng / 4.43 μl. Subsequently, either four or three 1:4 dilutions were obtained depending on the

construct. In each experiment, the standard curve for each gene was obtained from the pGR

line, using four total RNA dilutions (equivalent to 200, 50, 12.5 and 3.125 ng of total RNA per

sample) (S5 Table). Amplification efficiencies for each gene were estimated using three dilu-

tions (equivalent to 200, 50 and 12.5 ng of total RNA per sample, S1 Table). For any particular

gene, transcript amount in transgenic lines was calculated using 200 ng total RNA and the

standard curve generated for the same gene with total RNA from line pGR (S5 Table). Real

Time RT-PCR was performed with the TaqMan RNA-to CT kit (Applied Biosystems, Thermo

Fisher Scientific, Waltham, MA, USA). Reactions of 14 μl total volume contained 900 nM of

each primer, 250 nM MGB probe, 4.43 μl of the appropriate RNA dilution and amounts of

Taqman RT-PCR mix and Taqman Enzyme mix as indicated by the supplier. In order to nor-

malize the level of expression of the eGFP reporter gene in each transgenic line, the expression

of two endogenous genes (InR and elF-1A) was also measured. The expression of the InR gene

from promoter P2 was determined because the 1.3 kb region upstream of this promoter should

bind the same transcription factors (other than dFOXO) than the InR insert in the tested con-

structions, which would therefore allow to correct for any minor differences in developmental

stage that might occur among embryo samples. Endogenous gene elF-1A, was used because of

its previously reported high expression stability value [48].

Software used

The MUSCLE software was initially performed to obtain the multiple alignment of the 1.3 kb

fragment in the five species. This alignment was refined manually with the help of the outputs

obtained from the Align Sequences Nucleotide BLAST utility (NCBI webpage) that was used

to search for similarities between the D. melanogaster footprinted sequences and those of the

other species. Indeed, results from BLAST, allowed us to notice that D. pseudoobscura has a

microinversion in this sequence.

The Peak Scanner (Applied Biosystems) version 1.0 software package was used to display

the electropherogram images (S5 Fig) and to export the sizes and heights provided for all

peaks in each sample. Visual inspection of the superimposed images of electropherograms

for the BSA and FOXO experimental conditions allowed a preliminary identification of the
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footprinted sequences that was then confirmed by the precise comparison of their peak relative

heights. For this purpose, a couple of homemade R scripts were used (available upon request).

One- and two-tailed t tests as well as ANOVA were performed using the R package [49].

Supporting information

S1 Data. Numerical outputs from Peak Scanner.

(ZIP)

S1 Fig. Sequences of the dFOXO footprints detected in the 1.3 kb region upstream of the

InR P2 promoter in five Drosophila species.

(PDF)

S2 Fig. DBE and FKH core motifs identified in the dFOXO footprints of Drosophila.

(PDF)

S3 Fig. Multiple sequence alignment of the 1.3 kb fragment upstream of the InR P2 pro-

moter in five Drosophila species.

(PDF)

S4 Fig. DBE motifs in five species of the Drosophila genus.

(PDF)

S5 Fig. Fragment of an electropherogram including a dFOXO footprint.

(PDF)

S1 Table. Amplicon efficiencies in RT-PCR experiments.

(PDF)

S2 Table. eGFP expression relative to the endogenous genes.

(PDF)

S3 Table. Oligonucleotides used to amplify the different fragments upstream of the InR P2

promoter that were cloned into the pET101/D-TOPO vector.

(PDF)

S4 Table. Oligonucleotides used for RT-PCR experiments.

(PDF)

S5 Table. Results of RT-PCR experiments.

(PDF)

Acknowledgments

We thank David Salguero and Clara Esteban for technical assistance in cloning and sequenc-

ing, and Amaya Amador from Servei de Genòmica, Universitat de Barcelona for assistance

with Genemapper50_POP and DFACE software. We also thank two anonymous reviewers

and the editor for insightful comments. Finally, we thank Servei de Genòmica, Serveis Cienti-

fico-Tècnics, Universitat de Barcelona, for automated sequencing facilities.

Author Contributions

Conceptualization: Elvira Juan.

Formal analysis: Dorcas J. Orengo, Montserrat Aguadé, Elvira Juan.

Funding acquisition: Montserrat Aguadé.
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