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Abstract. We present a theoretical model that explains the optoelectronic response of nano-
devices based on large quantum dot (QD) arrays. The model is grounded on rate equations
in the self-consistent field regime and it accurately describes the most important part of the
system: the tunnel junctions. We demonstrate that the ratio between the optical terms and the
transport rates determines the final device response. Furthermore, we showed that to obtain a
net photocurrent the QD has to be asymmetrically coupled to the leads.

1. Introduction
Silicon quantum dots (Si QD), embedded in insulator matrices such as SiO2, have opened a
new branch of possibilities in the electronics due to the novel electronic properties based on the
quantum confinement. Discrete energy states appear inside the wide band gap of the insulator
matrix, making possible tunable band gap devices. Concerning opto-electronic devices, the
possibility to modify the energy band gap as a function of the QD radius can be exploited in
order to build light absorbers for photovoltaic applications.
In order to generate a net photocurrent, the photo-generated electron has to be extracted before
recombining. Thus, the charge transport from the location of photo-generation to the leads
becomes a crucial point that governs the response of the system. These transport mechanisms
depend on the tunneling processes being strongly dependent on the insulator material and also
on the geometrical arrangement of the QDs.

2. Theoretical model
A compact model to explain ballistic electrical transport in the self-consistent field regime in
these kind of systems was reported by the authors previously [1, 2]. The transport formalism was
compared to Non Equilibrium Green’s Function Formalism (NEGFF) obtaining similar results
[3] and it also showed the possibility to combine it with Density Functional Theory (DFT)
[4]. The general framework describes the electrical transport between N QDs embedded in a
dielectric matrix coupled to two electrodes (L lead and R lead) as a network of multi-tunnel-
junctions under external bias voltage polarization. It is based on the Transfer Hamiltonian
formalism [5] to describe the currents between the different parts of the system. Assuming that
the QDs are independent, the non-equilibrium distribution functions can be obtained solving a
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set of non-coherent rate equations [6]. Moreover, the effect of the trapped charge in the QDs has
been included solving the transport equations and the Poisson equation self-consistently, within
the self-consistent field regime, explaining a first order the Coulomb blockade effects [7]. From
the previous developed formalism, large systems based on QD arrangements can be simulated
in a great detail taking into account the particular properties of the QDs.
In the spirit of the rate equation type model, we assume that the optical and transport processes
are independent [8]. Thus, the rate equations have been modified in order to reflect the
stimulated generation/recombination carrier processes. For each energy level, they read as

dnij
dt

=
2πq

h̄
|TLj |2ρLρij(fLj − nij)︸ ︷︷ ︸

Left lead contribution

+
2πq

h̄
|TRj |2ρRρij(fRj − nij)︸ ︷︷ ︸

Right lead contributions

+
∑
k,i′ 6=i

2πq

h̄
|T ii′

jk |2ρijρi
′
k (ni

′
k − nij)︸ ︷︷ ︸

Neighboring QDs contribution

+
∑
k

qRkj
ρik
ρij
nik(1− nij)−

∑
k

qRjkn
i
j(1− nik)︸ ︷︷ ︸

Light terms

, (1)

where the superscript i and i′ refer to the ith and i′th QDs, respectively. j and k refer to the jth

and kth energy level of the corresponding QD. nij is the non-equilibrium distribution function of

the jth level in the ith QD. ρL and ρR are the density of states (DOS) of the leads evaluated at
the energy of the energy level j, and ρij is the degeneracy of the jth energy level of the ith QD.
The QD DOS includes the local potential in each QD as the solution of the Poisson equation
(see Ref. [1]). fLj and fRj are the distribution functions of the leads (left and right, respectively)
described by the Fermi Dirac distribution function taking into account that the external bias
voltage (V ) modifies the electrochemical potentials µL − µR = −qV .
|TLj | and |TRj | are the transmission coefficients between the QD and the leads whereas, |T ii′

jk |
is the transmission coefficient among the ith and i′th QDs. For the description of the tunneling
processes through the oxide, we have used the WKB approximation [9] as we have described
previously in Ref. [2].

The QD is treated as a finite spherical potential well within the effective mass approximation
[10]. The height of the potential well is the difference between the conduction/valence band
energy level of the dielectric matrix and the ones that form the QD. The width of the well is 2R,
where R is the QD radius. The carriers effective masses are assumed to have different values in
the QD and in the dielectric matrix.

Concerning the optical transition rates Rjk, they were calculated using the Fermi’s Golden
Rule in the dipole approximation within the strong confinement regime [11, 12]. This is the
usual treatment of the light interaction and a formal derivation can be found in many text
books [13, 14].

Solving Eq. 1 in the steady state condition, the QD non-equilibrium distribution function for
each energy can be obtained. Therefore, the charge stored in the ith QD is Ni =

∑
j 2ρijn

i
j , where

we take into account the spin factor 2. Once the charge has been calculated, the Poisson equation
is solved and the self-consistent solution of the local potential and the charge is imposed [1].
From the non-equilibrium distribution functions, the current through the device can be obtained

as I =
∑N

i

∑
j

2q2

h̄ |T
i
Lj |ρLρij(fLj − nij) where the current sums over all the N QDs (i) and the

corresponding energy levels of each QD (j).

3. Si QDs optical simulations: the role of the QD arrangement
Here, we are going to focus on the specific case of silicon QDs (Si QDs) embedded in a SiO2

matrix (Si/SiO2 QDs). The inputs needed to describe this system are: the carrier effective
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masses, the confinement potentials, the Si bulk band gap and the dielectric constants. The
value of the parameters can be found elsewhere [2].

Figure 1. Photocurrent as a function of the energy of the incident light with an external
applied bias voltage for (a), the symmetric case (d = d′ = 1.78nm) and (b), asymmetric case
(d = 1.47nm and d′ = 2.09nm). The scheme of the single Qd of R = 1.05nm placed between
the two electrodes is shown in the inset.

Figure 2. Total I(V) curve (in absolute value) for the symmetric (a) and asymmetric (b) cases
in dark and under different illumination conditions.

The system under study is a single Si QD embedded in SiO2 under illumination connected
to two electrodes with a constant external bias voltage applied. We present two scenarios: the
QD symmetrically connected d = d′ to the leads and in asymmetric configuration d 6= d′.
The obtained photocurrent as a function of the energy of the incident photons for different
external bias voltages for the symmetric and asymmetric cases are shown in Fig. 1(a-b),
respectively. For the V=0 case, in the symmetrically coupled system (a), the current is zero
since the incoming hole currents for each side equal the outgoing electron currents. This analysis
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is inferred from the sum of all current terms; for the electron energy levels Iopt − ILe − IRe = 0
and for the hole levels ILh + IRh − Iopt = 0; where Iopt is the optical flux created among the
electron/hole energy levels. ILe and IRe are the electron fluxes whereas ILh and IRh are the
hole fluxes from the left and right leads, respectively. For the symmetrical coupling to both
leads, ILe = IRe and ILh = IRh. Therefore, ILe = ILh and the total current is zero since the
hole currents compensate the electron ones. For the asymmetrical case (b), ILe 6= ILh and a net
photocurrent is generated in the V=0 case.
When an external bias voltage is applied, the transmissions coefficient between the QD and the
two leads change. Thus, the system becomes asymmetric and a net current appears. The current
peaks are related to the maximum transition probabilities for an incident photon reflecting the
absorption spectra. When the voltage increases, the current tends to be independent of the
incident photon energy.
In Fig. 2(a-b), the obtained current voltage curves I(V) under external illumination as a function
of the incident photon energies are shown for the symmetric and asymmetric cases. For the
illuminated case, the main differences appear for small voltages when the optical terms dominates
in Eq. 1 and the electrical response of the system differs from the dark case. Recovering the dark
trend for higher voltages, when the current terms in Eq. 1 dominate again. Thus, the electrical
response of the system is a competition between the two processes: the pure light current term
and the external bias voltage term.

4. Conclusions
In conclusion, we present a theoretical framework based on non-coherent rate equations combined
with the Transfer Hamiltonian approach to explain the transport properties of the next
generation of optoelectronic devices based on the QDs properties. From a simple example based
on a single Si QD embedded in SiO2, we have demonstrated that the QD tunneling couplings
to the leads play an important role in the final photoresponse of the system, being zero the net
photocurrent when the QD is symmetrically coupled to he leads. The photocurrent response
recover the shape of the absorption spectra. Concerning the I(V) curves in dark and illumination
conditions, we have shown that the main differences appear due to the ratio between the optical
and electrical terms.
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