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Abstract
We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic
phases of a spin-2 Bose–Einstein condensate. These skyrmions exhibit exceptionally highmapping
degrees resulting from the versatile symmetries of the corresponding order parameters.We showhow
these structures can be created in existing experimental setups and study their temporal evolution and
lifetime by numerically solving the three-dimensional Gross–Pitaevskii equations for realistic
parameter values. Although the biaxial nematic and cyclic phases are observed to be unstable against
transition towards the ferromagnetic phase, their lifetimes are long enough for the skyrmions to be
imprinted and detected experimentally.

1. Introduction

Topological defects in spinor Bose–Einstein condensates (BECs) have been the subject ofmany theoretical and
experimental studies over the past decade [1–4]. The types of supported defects are determined by the
topological properties of the order parameter space in a given phase and classified by its homotopy groups [5, 6].
While BECs in the spin-1 state only exhibit polar and ferromagnetic ground-state phases, spin-2 condensates
permit a rich variety of phases and, consequently, offer a platform for various new kinds of topological
objects [3, 7, 8].

The experimental detection of quantized vortices has become routine in studies of superfluidity in gaseous
BECs: the types of observed line defects in three dimensions include singly andmultiply quantized vortices
[9–13], coreless [14, 15], polar-core [16], solitonic [17] and half-quantumvortices [18], and vortex lattices
[19, 20]. The interest in topological defects of dimensionality other than one has grown in recent years: the
creation of two-dimensional skyrmions [15, 21, 22]was followed by the observation of point-like defects
analogous toDirac [23, 24] and ’tHooft–Polyakov [25]monopoles.

Three-dimensional skyrmions andknots are topologicalfield configurations classifiedby thenontrivial elements
of the thirdhomotopy groupπ3.Knots are identifiedby an S S3 2 mapping and characterized by a linkingnumber.
Inparticular, a knot soliton consists of an infinite numberof linked loops, each corresponding to adistinct point of
the order parameter space [3, 26, 27]. Thefirst experimental observationof knot solitonswithunit linkingnumber
was achievedbyHall et al [28]by imprinting the topological structure into theorder parameter of a polar-phase spin-
1BEC.Three-dimensional skyrmions, on theotherhand, are identifiedby an S G3  mapping and characterized by
amappingdegree that counts thenumberof times the order parameter spaceG is covered.Originally introducedby
Skyrme in a classicalfield theory [29], the skyrmionic textures are predicted to appear in condensedmatter systems
such as liquid 3He-A [30–32], liquid crystals [33], quantumHall systems [34], andmulticomponentBECs [2, 35–38].
Despite their longhistory andubiquity, three-dimensional skyrmionshave beenobserved experimentally only very
recently [39], in the formof Shankar skyrmions [31] in a ferromagnetic spin-1BEC.
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Spin-2 BECs exhibit twomagnetic phases that have no spin-1 counterparts, namely, the biaxial nematic
(BN) and the cyclic (C) phases. To date, research on topological defects in these phases has been restricted to the
study of surface solitons [15] and non-Abelian vortices, the latter of which exhibit noncommutative
reconnection dynamics [40–42]predicted to result in exotic quantum turbulence [43]. However, there have
been no detailed studies of three-dimensional skyrmions in these phases. The existence of such skyrmions is
permitted by the nontrivial nature of the third homotopy groups of both the BN and theC order parameter
spaces [2, 44]. In this paper, we introduce exotic skyrmion configurations that are found to exhibit highmapping
degreesQBN=16 andQC=24 for the BN andCphases, respectively.We simulate their dynamical creation,
discuss their topological properties, and examine their lifetimes, which are ultimately limited by the stability of
the underlyingmagnetic phase. Our numerical results suggest that it is possible to create and observe these
unique topological entities with currently available experimental setups.

The remainder of this article is organized as follows. In section 2, we characterize the symmetries of the
mean-field ground states by employing theMajorana representation and formulate theGross–Pitaevskii
equation that governs the temporal evolution of the spin-2 BEC. Section 3 describes themethod for creating the
skyrmions, which are subsequently analyzed in section 4. Finally, we provide our conclusions in section 5.

2.Magnetic phases in a spin-2 condensate

2.1.Mean-field ground states of a spin-2 condensate
A spin-F atomic BEC can be described by amean-field order parameter that takes a vectorial formwith F2 1+
components. Specifically, wewrite the order parameter field of a spin-2 condensate as nr r re ri xY = j( ) ( ) ( )( ) ,
where n = Y Y† is the particle density,j is the global phase, and 5x Î is a normalized spinor obeying

1x x =† . In order to understand the different types of ground-statemagnetic phases of a spin-2 BEC in the
absence of an externalmagnetic field, it is sufficient to consider theminimization of the spin-dependent
interaction energy functional

E
n

c c A r
r

S r r
2

d , 1int
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1
2

2 20
2 3òY = +[ ] ( ) { ∣ ( )∣ ∣ ( )∣ } ( )

where c1 and c2 arematerial constants and S Fx x= † is the spin vector based on spin-2matrices satisfying
F F F, i ;a b abc c=[ ] here òabc is the Levi-Civita symbol and a b c x y z, , , ,Î { }. In comparison to the spin-1 case,
the interaction energy includes an additional term c A 22 20

2∣ ∣ , where

A a
1

5
2 2 5 220 2 2 1 1 0

2
20x x x x x= - + º- -( ) ( )

is the amplitude of the spin-singlet pair.We are particularly interested in phases absent in spin-1 condensates:
the Cphase characterized by aS 0, 020= =(∣ ∣ ∣ ∣ ) and the BNphase characterized by aS 0, 120= =(∣ ∣ ∣ ∣ ).

The BNphase, whichminimizes Eint[Ψ] for c1>0 and c2<0, is represented by the reference spinor

1, 0, 0, 0, 1 2 . 3h
BN Tx = ( ) ( )

In the absence of an externalmagnetic field, the BNphase and the uniaxial nematic (UN) phase,
0, 0, 1, 0, 0UN Tx = ( ) , are energetically degenerate within themean-field theory [45, 46], and can be

distinguished by the amplitude of spin-singlet trio formation, A 3 630
2

2 1
2

1
2

2 0 0
2x x x x x x= + + -- -∣ ∣ ∣ ( ) (

3 6 21 1 2 2
2x x x x-- - ) ∣ [2, 47].

TheC phase appears as the ground-state when both c1 and c2 are positive. In this case, the representative
spinorminimizing the energy functional Eint[Ψ] can bewritten as

1 3 , 0, 0, 2 3 , 0 . 4n
C Tx = ( ) ( )

This phaseminimizes the spin length and simultaneously breaks the spin-related time-reversal symmetry, i.e.,
0n

C
n
Cx x =† . Here,  is the time-reversal operator such that [2]

1 , 5m
m

mz
z

z
 Y = - Y-

*( ) ( )

where m 2, 1, , 2z Î ¼ -{ } is the spin index in the z-quantized basis. Thus theCphase has no analog in the
spin-1 case.

2.2.Majorana representation
In order to characterize the symmetry of the order parameter, it is convenient to employ a geometric
representation, sometimes also referred to as theMajorana representation [48–51]. Here, we express the spin-2
state as totally symmetrised four spin-1/2 states, whichwe associate with Bloch vectors on the 2-sphere. The
polar coordinates (θ,f) of the Bloch vectors are given by the stereographicmapping u tan 2 eiq= f( ) , where u is

2
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one of the four roots of the polynomial
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TheMajorana representation of the BN spinor h
BNx of equation (3) is shown schematically infigure 1(a). This

state breaks the cylindrical symmetry of the polar phase into the discrete symmetry of a square, yielding the order
parameter space G DU 1 SO 3BN 4= ´( ) ( ) , whereD4 is the dihedral group of order 4. In particular, each of the
orientations shown in figures 1(a) and 1(b) corresponds to all Bloch vectors lying in the xy plane. Owing to their
geometric orientation, wewill refer to such states as horizontal states.We further define another configuration of
the BN spinor, obtained from h

BNx as

F Fi exp i
2

exp i
4

0, 1, 0, 1, 0 2 , 7y zv
BN

h
BN Tx

p p
x= - - - =⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠ ( ) ( )

which is the representative spinor of the vertical state corresponding to two of the Bloch vectors being aligned
with the z axis as infigure 1(c).

The geometric representation of theC phase is shown infigure 1(d). The symmetry of theCphase
corresponds to the largest discrete isotropy group among the spin-2 phases, namely, a tetrahedral groupT.
The correct cyclic order parameter space is therefore G TU 1 SO 3C = ´( ) ( ) . TheC state possesses three
twofold symmetry axesC″

2 and four threefold symmetry axesC3, as shown infigure 1(e). Since one of the vertices
of the tetrahedron points up, wewill refer to such states as north-pole states. Finally, we obtain the representative
spinor of the so-called south-pole spinor by a spin rotation through an angle ofπ as

Fexp i 0, 2 3 , 0, 0, 1 3 . 8xs
C

n
C Tx p x= - =( ) ( ) ( )

The correspondingMajorana representation is shown infigure 1(f).We also note that all the horizontal, vertical,
north-pole, and south-pole states defined above refer to not only the representative spinors, but to any spinor
obtained by continuous rotation of h

BNx , v
BNx , n

Cx , or s
Cx about the z axis.

The third homotopy groups of the BN and theCorder parameters are both known to be isomorphic to the
group of integers, G G3 BN 3 C p p@ @( ) ( ) [2, 44].We therefore generalize the notion of skyrmions, originally
defined as S3

3 p @( ) , to the appropriate topological space.

Figure 1. (a)Biaxial nematic and (d)cyclic order parameters represented as symmetric configurations of spin-1/2 states shownwith
black dots (•) on the Bloch sphere. Panels (b, c, e, f) explicitly show the (b)horizontal and (c)vertical orientations of the BN state,
(e)north-pole and (f)south-pole orientations of theC state, and the corresponding symmetry axes.Here, the vertices correspond to
the black dots in (a) and (d). The orientation of the coordinate axes is the same for all panels.

3
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3. Skyrmion creation in a trapped condensate

To imprint the skyrmions, we apply themethod used in [28] for the experimental creation of a knot soliton in
the polar phase of a spin-1 BEC [26]. The 87Rb condensate is initially prepared in the spin state m 2z = ñ∣ and
then transferred to either the BNor theCphase using, for instance, two-photon Landau–Zener transitions [52].

The externalmagneticfield assumes the form t tB r B r B, q b= +( ) ( ) ( ), where B x y zB r x y z2q q ^ ^ ^= + -¢( ) ( )
is a quadrupolemagneticfield and t B tB zb b=( ) ( ) ˆ is a uniformbiasfieldwhichmoves thefield zero along the z

axis.We assume that initially B B R2b q TF
¢ , whereRTF is the axial Thomas–Fermi radius of the condensate. This

renders the spinor ξ roughly uniformwithin the condensate prior to the skyrmion creation. In thefirst stage of the
creationprocedure, the biasfield is ramped to zero in a highly nonadiabaticmanner, ideally leaving theBEC
unchanged.8 Subsequently, the spinor tends to rotate in the spin space such that

tr r, e , 0 , 9tr B r Fi L qx x= w-( ) ( ) ( )( ) ˆ ( )·

where gr B rFL B q w m=( ) ∣ ( )∣ is the position-dependent Larmor frequency, Bm is the Bohrmagneton, gF is the

Landé g-factor, and B B Bq q q=ˆ ∣ ∣. The duration of the Larmor precession before imaging the BEC,TL, is chosen
such that the spinor assumes its initial orientation on the boundary of the condensate, whereωLTL=2π, and
the enclosed volume can therefore be compactified into the 3-sphere S3 [6]. Inside this volume, the order
parameter space is covered an integer number of times, whichwe identify as themapping degree of a three-
dimensional skyrmion. The Larmor precession corresponds to the rotations of theMajorana geometric
configurations about the direction of the localmagnetic field, ideally resulting in the structures shown
schematically infigures 2(a) and 3(a).

Equation (9) takes into account only the linear Zeeman coupling to the externalmagnetic field. In order to
verify the feasibility of the proposedmethod in the presence of kinetic energy and interactions between the
condensate atoms, we carry out three-dimensional simulations based on the spin-2Gross–Pitaevskii equation

t
t tr ri , , . 10 

¶
¶

Y = Y Y( ) [ ] ( ) ( )

The nonlinearHamiltonian reads [2] 9

m
U c n g t c n c Ar r B r r S r F r

2
, , 11F

2 2

0 B 1 2 20


 mY = -


+ + + + +⎡
⎣⎢

⎤
⎦⎥[ ] ( ) ( ) ( ) ( ) ( ) · ( ) ( )

where the time-reversal operator  is defined in equation (5) and the spin-independent trapping potential is
assumed to be cylindrically symmetric and harmonic,U m x y zr 2z

2 2 2 2 2w w= + +r( ) [ ( ) ] , withωρ andωz

being the radial and axial trapping frequencies, respectively. The interaction constants are defined as

Figure 2. Skyrmion-like state observed after 0.5msof rotation of the horizontal biaxial nematic spinor h
BNx . Panel (a) schematically

shows the orientations of the order parameter along the three coordinate axes and the ring formed by theπ rotation of the initial state
in the xy plane. Preimages of horizontal and vertical states are shown in (b) and (d), respectively. The preimage of the horizontal state
in (b) consists of the inner ring in the plane z=0 (shown) and all the points corresponding to 2π rotations that constitute the
boundary of the skyrmion (not shown). The color represents the rotation angle about the symmetry axes (b)C4 and (d)C2. Panels (c)
and (e) show the isosurfaces 0.42

2x =∣ ∣ and 0.41
2x =-∣ ∣ , respectively. All images correspond to t=0.5 ms after the start of the

nonadiabatic creation ramp described in section 3.

8
Itmay be experimentally preferable to turn the quadrupole field on during the creation ramp.Our additional numerical calculations show

that both schemes result in identical skyrmionic structures.
9
Inelastic losses are not included in theHamiltonian but are not expected to be important on the timescale of the skyrmion creation [53, 54].

4

New J. Phys. 20 (2018) 055011 KTiurev et al



c
m

a a
c

m

a a
c

m

a a a4 4 3

7
,

4

7
,

4 7 10 3

7
, 120

2
2 4

1

2
2 4

2

2
0 2 4  p p p

=
+

=
-

=
- + ( )

where afis the s-wave scattering length corresponding to the scattering channel with total two-atomhyperfine
spin f.

We set the simulation parameters identical to those used in the experimental creation of knot solitons [28]:
The particle number is N 2.1 105= ´ , the optical trapping frequencies are 2 124 Hzw p= ´r and

2 164 Hzzw p= ´ . During the nonadiabatic creation ramp, the axial biasfield is decreased from10mG to zero

in 60 μs and the quadrupolefield gradient is kept constant at B 4.3q =¢ G cm–1. The s-wave scattering lengths for
87Rb are a0=87.4×aB , a2=92.4×aB , a4=100.4×aB , where a 5.292 10B

11= ´ - m is the Bohr
radius [55].

To calculate the initial state of the condensate, we firstfind the natural ferromagnetic ground-state using the
successive overrelaxation algorithm. The ferromagnetic spinor is then instantaneously transferred to either h

BNx
or s

Cx , which simulates the two-photon Landau–Zener transition typically used in experiments. The subsequent
dynamics are explored by numerically integrating equation (10)with theCrank–Nicolson algorithm [56] and a
time step of 2 10 4 w´ r

- . The simulated region is a cube of volume a24 r
3( ) , where

a m 1.02 mr  w m= =r( ) .We use 200 grid points per dimension in order to keep the grid spacing
significantly smaller than the condensate healing length.

4. Results

Weapply the creation protocol described above to the initial biaxial nematic h
BNx and cyclic s

Cx states given by
equations (3) and (8), respectively. Figure 2 illustrates the skyrmion that appears after 0.5 ms of the Larmor
precession applied to a spin-2 BEC initially in the horizontal BN state. Figures 2(b) and 2(d) show the preimages
of the horizontal and vertical BN states with the color representing the rotation angle of geometric state about
the z axis. One can deduce themapping degree directly from figures 2(b) and 2(d). The preimage of the vertical
state infigure 2(d), for example, consists of four loops; the geometric state rotates about its symmetry axisC2

four times as one traverses each of four loops, resulting in the totalmapping degreeQBN=16. According to
equations (3) and (7), the preimages of the horizontal and vertical states are filledwith m 2z =  ñ∣ and
m 1z =  ñ∣ , respectively. Therefore, the preimages of h

BNx and v
BNx can be resolved from their component

densities in the z-quantized basis, as shown infigures 2(c) and 2(e), respectively. This establishes ameans for the
experimental detection of the skyrmionic structure directly from the spin-resolved images of the BEC.

When applied to a BEC initially in the south-pole C state, an identical creation scheme to that described
above generates the skyrmion illustrated infigure 3. The preimages of the south-pole [figure 3(b)] and north-
pole [figure 3(d)] states aremostly filledwith m 1z = ñ∣ and m 1z = - ñ∣ components, respectively, in agreement
with equations (8) and(4). As one traverses each of the four rings infigure 3(d), the north-pole state rotates
about the threefold symmetry axisC3 six times. Therefore, themapping degree of the cyclic-state skyrmion is
QC=24.

Figure 3. Skyrmion-like state observed after 0.5msof rotation of the south-pole cyclic spinor s
Cx . Panel (a) schematically shows the

orientations of the order parameter along the coordinate axes and the ring formed by theπ rotation of the initial state in the xy plane.
Preimages of south-pole and north-pole states are shown in panels (b) and (d), respectively. The color represents the rotation angle
about the threefold symmetry axisC3, which is pointing either (d)up or (b)down. Panels (c) and (e) show the isosurfaces 0.41

2x =∣ ∣
and 0.41

2x =-∣ ∣ , respectively. All images correspond to t = 0.5 ms after the start of the nonadiabatic creation ramp described in
section 3.

5
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Being topologically protected field configurations, the skyrmions are observed to be robust against small
perturbations applied to the initial state. However, we emphasize that the skyrmion states are transitory states
that appear and decay during the temporal evolution.We therefore study the stability of the underlyingmagnetic
phases during the Larmor precession on timescales beyond the skyrmion creation time.

Figure 4(a) illustrates the temporal evolution of the expectation values of the normalized spinmagnitude,
t n t t r Ns r S r, , d 23òá ñ =∣ ∣ ( ) ( )∣ ( )∣ ( ), and spin-singlet amplitude, a t n t a t r Nr r, , d20 20

3òá ñ =∣ ∣ ( ) ( )∣ ( )∣ .We

observe the destruction of the initialmagnetic phase, which begins during the nonadiabatic creation ramp and
continues gradually during the Larmor precession. For comparison, figure 4(b) shows the evolution of the
systemwhen the skyrmion is imprinted using a significantly strongermagnetic field gradient than that depicted
infigure 4(a). This causes the initial phase to be destroyed faster, but also enables a faster creation of the
skyrmion due to the increased Larmor precession rate. As a result, themagnetic phase of the condensate ismore
accurately in the initial phase at the time the skyrmion is createdwhen using a stronger gradient. Qualitatively
similar behaviour is observedwhen the quadrupolemagnetic field is rapidly turned off after timeTL of Larmor
precession and the skyrmion configuration is kept either in the identically zeromagnetic field (data not shown)
or in a uniformmagnetic field of 0.5 G that is ramped up during the switching off of the quadrupole field
[figure 4(c)].

In addition to the short-time dynamics, figure 4(d) shows the relaxation of the initialmagnetic phases over
timescalesmuch longer than those required for skyrmion creation. Both the BN andCphases are observed to
decay towards the ferromagnetic configurationwhen the quadrupolemagnetic field ismaintained. In contrast,
the initial uniform states s

Cx and h
BNx in the absence of themagnetic field gradient are observed to be stable

during thewhole time interval studied (data not shown), in good agreement with results of [53].

5. Conclusions

Wehave introduced exotic skyrmionconfigurations that can emerge as transitory states in the cyclic and biaxial
nematic phases of three-dimensional spin-2BECs.We simulated the creation of these three-dimensional
skyrmions numerically for realistic parameter values corresponding to experimentally produced 87Rb condensates.
We found that the created skyrmions are gradually destroyed during the temporal evolution of the trapped
condensate due to the instability of theunderlying initialmagnetic phase.However, the lifetimes of the initial
phases are long enough for the skyrmions to be imprinted andpossibly detected in state-of-the-art experiments.

Figure 4. (a)Expectation values of the average spin length tsá ñ∣ ( )∣ (solid lines) and the spin-singlet amplitude a t20á ñ∣ ( )∣ (dashed lines)
for a condensate initially in either the BN (shown in blue) or theC (shown in red) state.Here t=0 corresponds to the beginning of the
nonadiabatic creation rampwhich places thefield zero into the condensate and initiates the Larmor precession. The vertical line

indicates the appearance of the skyrmions shown infigures 2 and 3. (b)As (a), but for stronger gradient, B 8.6 G cmq
1=¢ - . (c)As (a),

but the quadrupole field is turned off after the creation ramp, and the skyrmions are left to evolve in a uniformmagnetic field of 0.5G.
(d)As (a), but for a longer, logarithmic timescale.
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