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In this thesis, we examine a fairly novel area of physics that concerns topological materials, and in

particular, topological superconductivity. A goal in the research of topological materials is realizing

applications in quantum computing, which could be aided by the emergent quasiparticles that

exhibit non-Abelian exchange statistics. These are called Majorana bound states, and they are

elusive quasiparticles predicted to be found on the boundary of topological superconductors.

We first study a one-dimensional chain of potential impurities placed on the surface of a two-

dimensional p-wave superconductor. As is usually the case, such chains are composed of perfect

lattice structures, which is very challenging to achieve in any laboratory setting. Nevertheless,

they serve as a good example of systems where an analytical solution can be well established.

We investigate the model without employing any deep-dilute approximation, which gives us an

accurate description even far away from the gap center. This is done by formulating the problem

as a non-linear eigenvalue equation, which complicates it significantly, but also extends the region

of applicability of our theory. We use reciprocal space calculations of two topological invariants

to obtain the topological phase diagram of the system. The model is shown to host topological

quasiparticle excitations at the ends of the chain, with multiple distinct topological phases. The

near-perfect localization of the excitations makes them good candidates for probing Majorana bound

states in experimental setups.

We then move on to study topological superconductivity in random lattices, as opposed to regular

structures which assume arbitrary precision. We frame our work starting with the mathematics of

random numbers. Our work is thus in stark contrast with previous studies on topological materials

that start off with a perfect lattice structure, and investigate some degree of disorder as perturba-

tions to the regular lattice case. Our work establishes a first-ever realistic candidate for realizing

topological superconductivity in an amorphous material. This could enable a novel approach to

creating topological materials, and drastically aid in the development of fault-tolerant quantum

computing.
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1. Introduction

Topology is the branch of mathematics concerned with sets or spaces where some

properties stay invariant under continuous deformations of those spaces. The pro-

cess of stretching and bending a material (more precisely, deforming a mathematical

space) is a continuous transformation, while tearing or puncturing is not. Topologi-

cal materials exhibit quantum phases of matter which in some sense have non-trivial

topology. The phases of matter hosted in this kind of matter have then an intrinsic

robustness, meaning that any continuous transformation on it (or a small pertur-

bation) will not get rid of the underlying topology.

The robustness against changes in the topological phase makes these topolog-

ical materials interesting for applications in quantum computing, where the biggest

issue is sustaining the interplay between phases of matter which is so easily lost due

to quantum decoherence.1 Of course, you could imagine setting up a superposition

of quantum states, such as two wave functions of an electron, in a completely closed

system, and it would remain in that superposition forever — but as soon as you

want this system to communicate with the outside world, you inevitably introduce

a means for it to break apart, and your information will likely be lost. Studying

topological matter is not only interesting from the point of view of fundamental

research, it could offer major breakthroughs in quantum information processing. In-

deed, the study of topological phases has attained much attention during the last

1By this we mean the loss of information into the environment, which is difficult to prevent

due to the overwhelming number of constituents in a macroscopic system.

1



2 CHAPTER 1. INTRODUCTION

few decades. The 2016 Nobel Prize in Physics was awarded to Thouless, Haldane

and Kosterlitz for their contributions to the study of topological phases and phase

transitions.

Above we mentioned that topological spaces have certain properties that stay

invariant under continuous transformations. The character of these features is cap-

tured by what are known as topological invariants. They are usually given by

a mathematical formula which only takes on integer values – these integers only

change when moving between topologically distinct spaces, and in particular, they

cannot change under continuous transformations, since in that case we remain in a

topologically equivalent space.

One can very simply make topology appear in everyday materials by creating

what is known as a Möbius strip. The way to construct one is by taking a ribbon of

paper and connecting the two loose ends, but with carefully twisting the different

ends of the ribbon such that the twisting makes up half a rotation. Now there is in

fact no way to get to a “normal” band by only performing continuous manipulations

on the strip. Instead, one has to cut it – but this is not a continuous transformation

– so the two strips are topologically distinct.2

In the remainder of this thesis, we will not talk about topological spaces, but

rather about topological phases of matter. The difference is subtle; the topology

of the phases is rooted in the quantum-mechanical operators that live in the corre-

sponding Hilbert spaces. So at the deepest level, the topology lives in the mathe-

matical spaces given by the physical theory of quantum mechanics. But, as we will

see, topologically non-trivial phases can exhibit physical realizations that free us up

to think about the topology in much easier terms.

An important concept that we will encounter frequently in this thesis is the

2By instead twisting the ends any number of times before connecting them, you can reach

multiple configurations that are all topologically distinct. In the language of the above paragraph,

this system is described by an integer topological invariant.
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energy gap. It is the energy difference separating the excited states from the ground

state. Thus the energy gap is the minimum energy that an electron needs to move

to an unoccupied, higher-energy state. The highest energy of the occupied states is

called the Fermi energy. Throughout this thesis, we have set the Fermi energy to

zero, and we can thus simply talk about energies when we mean energy differences

to the ground state. Now, it is a well-known fact that topologically inequivalent

phases are described by Hamiltonians that cannot be continuously transformed to

each other without closing the gap.3 We will encounter topological phase diagrams

where between all different phases there is a boundary with zero energy in the cor-

responding spectrum diagram. In addition to having gap closings at all boundaries

between different topological phases, the magnitude of the gap serves as a measure

of the robustness of the topological phase.

Topological phases have recently been shown to exist in systems that lack

a regular lattice structure [2]. The prospect of topological materials being real-

ized in glassy systems is exciting, because it could open up a whole new approach

to bringing about applications for topological phases. There is a large difference

between assembling impurities in perfect lattice structures and simply gathering

enough impurities in a certain system. Indeed, as we will see in subsequent chap-

ters, our model of amorphous topological superconductivity supports a topological

phase simply above a critical impurity density. As the need for precision when con-

structing topological matter decreases, the change in the engineering involved may

at best lead to a completely new industry of producing materials with topological

quantum properties.

In this thesis, we investigate two highly contrasting models of topological su-

perconductivity. The first concerns one-dimensional (1D) chains of scalar impurities

3Technically, the gap does not have to close in a topological phase transition, provided that

during the process, the symmetry of the system changes. [1] However, these cases will not concern

us in this thesis.
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deposited on a two-dimensional (2D) p-wave superconductor, and the second con-

cerns 2D magnetic lattices which completely lack any spatial order, derived from

a model known to host a rich structure of topological phases. The structure of

the thesis is as follows: After briefly introducing the role of topology in physics,

in Sec. 1.1, we discuss the importance of quantum-mechanical effects in condensed

matter physics and their role in quantum information processing. In Ch. 2, we

concern ourselves with superconductivity and its connection to topological super-

conductivity. In Sec. 2.1, we give a brief introduction to superconductors within

the BCS theory, tying it to topological superconductivity in Sec. 2.2. We present

a classic example of a toy model of topological superconductivity, which illustrates

non-trivial topological properties in condensed matter systems without too many

complications.

In Ch. 3, we begin with the system of one-dimensional chains of scalar im-

purities deposited on a two-dimensional spinless p-wave superconductor. We derive

the energy spectrum of the system by first expressing the problem as a non-linear

eigenvalue equation and going over to reciprocal space in Sec. 3.1. In Sec. 3.2,

we investigate the topological properties of the system, and present two relevant

topological invariants, and in Sec. 3.3, we generalize the results to a spinful super-

conductor. In Sec. 3.4, we present the energy gap and topological phase diagrams,

and justify a physical interpretation of the topological invariants in Sec. 3.4.1.

In Ch. 4, we present our work on topological superconductivity in two-dimen-

sional random lattices, beginning with the underlying model in Sec. 4.1. In Sec.

4.2, we concern ourselves with the topology of this random system, presenting an

applicable topological invariant in Subsec. 4.2.1. In Subsec. 4.2.2, we expand on the

connection between energy gaps and robustness of the topological phases, and argue

why the true energy gap of this system is not applicable in a direct way, and show

how the mobility gap actually signifies the stability of the phases. We present the
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topological phase diagram of the system in Sec. 4.3, and show the emergence of edge

modes in finite 2D lattices. We end the chapter with Sec. 4.4, where we discuss a

possible explanation for the emergence of non-trivial topological phases in systems

lacking spatial order.

In the final chapter, we give a summary of the presented works and discuss

some future applications. In addition to these chapters, we include three appendices

in this thesis. Important technicalities are moved to the appendices; in Appendix

A, we derive the non-linear eigenvalue problem of Ch. 3, in Appendix B we solve

the related energy spectrum, and in Appendix C we present the Hamiltonian of the

underlying superconducting model employed in Ch. 4 in more detail.

Ch. 3, which focuses on the 1D chain of scalar impurities, is based on research

conducted by the author and collaborators, and is contained in Ref. [3]. Also, as of

this writing, the authors have submitted a preprint [4] of a work on the topology

in amorphous lattice systems, encapsulating the work of Ch. 4 on random lattices

presented in this thesis.

1.1 Quantum computing

The theories describing essentially all static and dynamic properties of solids, liquids

and gases at long wavelengths4 were formulated by the end of the nineteenth century.

It was the theories of quantum mechanics that led physicists to a more complicated,

microscopic investigation of condensed matter. In his famous 1972 paper titled

“More is different” [5], P. W. Anderson describes why it is crucial that we give

importance to research on all scales including solid state or many-body physics.

It is not enough to just investigate physics on the most fundamental level as in

elementary particle physics, since even perfect knowledge in that area does not lead

4As is customary in condensed matter physics, by this we mean long compared to atomic length

scales.
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us to know how a macroscopic number of particles interact with each other. In

essence, the interplay between a large number of particles gives rise to entirely new

physics. Condensed matter physics is the study of just these kinds of new phenomena

that do not exist on the atomic scale; it is the study of different many-body states

of matter.

In stark contrast to classical physics, because we cannot keep track of particles

in quantum mechanics, there is no way to fundamentally define distinguishability.

Instead of always describing each particle separately, many particles are then de-

scribed by common wave vectors (or wave functions). When we talk about exchange

statistics, we mean the change to the common wave vector that occurs when the

positions of two indistinguishable particles are swapped. Now, in three dimensions,

this indistinguishability leads to only two types of particles: bosons and fermions. In

two dimensions, however, the exchange of two particles can depend on the particular

path traversed by the particles. In such cases, the particles are called anyons. Even

though they were first studied as theoretical curiosities, anyons can be encountered

in effectively two-dimensional physical systems. [6]

Majorana bound states (MBSs) are quasiparticle excitations that have ex-

otic properties, most notably their non-Abelian braiding statistics. We will en-

counter MBSs later in this thesis. Topological quantum computers hold consider-

able promise, since the quantum information is embedded non-locally – in a way

that is intrinsically decoherence-free. Topological quantum computing relies on the

braiding of anyons in a 2D lattice; the non-Abelian exchange statistics of the MBSs

leads to protected operations on quantum information. [7, 8]

Quantum computing caught the interest of the physics community in the early

1980s. Richard Feynman was among the first to introduce the principles for why

quantum computers could theoretically be superior to conventional computers. [9]

In the recent decades, there has been active research in the area of quantum comput-
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ing, which exploits the quantum-mechanical properties of small systems to perform

calculations. Quantum computing has the potential to revolutionize the modern

world, which is increasingly filled with electronic devices. It is, however, likely to

first impact research and industry, with calculations that require much more re-

sources, due to the immense size of current quantum computers and the difficulty

of scaling them down.

Recently, quantum computers have begun to overtake conventional comput-

ers in certain computations, albeit in very restricted environments. [10] Quantum

computers are based on so-called qubits, which differ drastically from the classical

bits that can only have one of two values – 0 or 1. Currently, decoherence poses

the biggest obstacle in the development of useful quantum computing systems. One

elegant way to circumvent this problem is the use of topological phases, and in

particular, the quasiparticle excitations that are hosted by these phases. An im-

portant detail to appreciate about these excitations is that they are protected by

the topological phases, and thus carry an inherent robustness towards the loss of

information. The non-Abelian braiding statistics of the quasiparticle excitations

allow for topologically protected qubits. The encoding of the quasiparticle states

are non-local, which protects a topological quantum computer from errors due to

local perturbations. [11,12] The fact that they are localized at the boundary of the

material is also useful; as we will see in Subsec. 3.4.1, our model of the 1D chain

of impurities hosts essentially perfectly localized pairs of MBSs at the ends of the

chain. This is considerably helpful when it comes probing and manipulation of such

quasiparticle excitations.
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2. Theory

In this chapter, we will concern ourselves with simple models of superconductivity

and topological superconductivity. In Sec. 2.1, we briefly discuss superconductiv-

ity as a phenomenon, and introduce the BCS theory of superconductivity and the

Bogoliubov-de Gennes formalism. In Sec. 2.2, we move on to present a toy model

of topological superconductivity proposed by Kitaev, and tie it to knowledge gained

in the preceding section.

2.1 BCS theory of superconductivity

We begin with the phenomenon of superconductivity itself. It refers to the com-

pletely new form of conductivity where the aptly named superconductor has van-

ishing electrical resistance at very low temperatures. Just over a century ago, in

1911, K. Onnes discovered [13] that when various metals were cooled below a crit-

ical temperature Tc which depends on the cooled material, they would lose their

electrical resistance completely. However, a strong applied magnetic field destroyed

the perfect conductivity. But it was not just perfect conductivity that was discov-

ered: Meissner and Ochsenfeld discovered [14] that superconductors, in the presence

of an applied magnetic field, completely expelled all interior magnetic fields, and did

so as they were cooled through their critical temperature.1 Superconductivity was

thus demonstrated to be more than just perfect conductivity, which would prevent

1This phenomenon is now known as the Meissner effect.

9
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the magnetic flux through the surface of the conductor from changing, i.e. instead

trapping the magnetic flux in. [15] Now, at first superconductors seem to be the per-

fect materials for use in transmission lines and electronic devices, since they would

get rid of any heat losses. The caveat to this is that superconductors require very

low temperatures, and even the so-called high-temperature superconductors (HTS)

require temperatures far below room temperature. An obvious advantage of the

HTSs is that no liquid helium is required to cool the material, but on the other

hand thermal fluctuations are much more prominent, leading to resistance. A mi-

croscopic theory for the mechanism behind superconductivity at high temperatures

remains elusive. To date, the highest Tc observed is 203 K in hydrogen sulfide. [16]

Now we will briefly introduce the BCS theory of superconductivity by Bardeen,

Cooper and Schrieffer. [17, 18] Nearly 50 years after the intial discovery of the phe-

nomenon, the 1957 theory by BCS was the first theoretical microscopic description

of superconductivity. It accounts for the properties of conventional superconductors

with remarkable success. (It does not completely explain the properties of high-

temperature superconductivity, and there is ongoing research for a suitable, modi-

fied theory.) The starting point for the superconducting state is a non-interacting

electron gas. With an attractive interaction between pairs of electrons, quasiparti-

cle excitations called Cooper pairs form near the Fermi level. They are composite

bosons of zero momentum and zero spin – electrons of opposite momenta and spin

are coupled. With a phonon-mediated interaction coupling these quasiparticles, we

can write down the BCS Hamiltonian as

H =
∑
kσ
ξkc
†
kσckσ +

∑
kk′

Vkk′c†k↑c
†
−k,↓c−k′,↓ck′↑, (2.1)

where ξk = k2/2m − µ stands for the single-particle energy relative to the Fermi

energy, and the latter sum is our interaction term, with Vkk′ specifying the nature of

the interaction. The c†,c are the creation and annihilation operators for an electron
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of momentum2 k and spin σ. It is an effective Hamiltonian written in the language

of second quantization that describes the interaction between the Cooper pairs near

the Fermi level. As such, the interaction is non-zero only for |ξk|, |ξk′ | < ωD, where

ωD is the Debye frequency. [19]

The assumption by BCS is that in the superconducting state, the electrons

condense into Cooper pairs, so we have a non-zero expectation value for the oper-

ator c†k↑c
†
−k,↓. Additionally, well below the critical temperature Tc, the fluctuations

around this mean value are small. Then, the so-called mean-field approximation

relies on the following identity:

0 ≈ (X − 〈X〉)(Y − 〈Y 〉) = XY − 〈X〉Y −X〈Y 〉 − 〈X〉〈Y 〉, (2.2)

which is valid if deviations from the mean value of the operators X, Y are small3;

the error made in the approximation is of second order in the deviations. Applying

this approximation on the operators c†k↑c
†
−k,↓ and c−k′,↓ck′↑, we obtain the mean-field

BCS Hamiltonian

H =
∑
kσ
ξkc
†
kσckσ +

∑
kk′

Vkk′

(
〈c†k↑c

†
−k,↓〉c−k′,↓ck′↑ + c†k↑c

†
−k,↓〈c−k′,↓ck′↑〉

)
+const. (2.3)

Now, ignoring the additive constant (which only amounts to shifting the energy

eigenvalues) and defining ∆k = −∑k′ Vkk′〈c−k′,↓ck′↑〉, we can write our Hamiltonian

in the form

H =
∑
kσ
ξkc
†
kσckσ +

∑
k

∆kc
†
k↑c
†
−k,↓ +

∑
k

∆∗kc−k,↓ck↑ + const. (2.4)

=
∑
kσ
ξkc
†
kσckσ +

∑
k

(
∆kc

†
k↑c
†
−k,↓ + h.c.

)
. (2.5)

This Hamiltonian describes a non-interacting system, since it is bilinear in the cre-

ation and annihilation operators c, c†. These are somewhat unusual terms, but
2We will set ~ = 1 throughout this thesis, rendering momentum and wave vector the same

quantity.
3meaning that the difference between acting with an operator on whatever objects we are

considering, compared to just multiplying by the mean value of that operator, is small.
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including only quadratic terms in the operators c, c†, the Hamiltonian should now

be readily solvable. Let us write it in the form

H = 1
2
∑

k
A†kHkAk + const., (2.6)

where

Ak =

 ck↑

c†−k↓

 , Hk =

 ξk −∆k

−∆∗k −ξk

 . (2.7)

The matrix Hk is called the BdG Hamiltonian, and possesses so-called particle-hole

symmetry (PHS). What this means is that all energies are found in pairs ±E.

Mathematically, particle-hole symmetry means that there exists an operator C s.t.

C−1HC = −H∗. In our case, this operator is given by C = τyK, where K is the

complex conjugate operator, which acts on each complex number by flipping the

sign of its imaginary part. Note that we can think of the Nambu spinors Ak that the

BdG Hamiltonian acts on as being composed of annihilation operators for electrons

and their corresponding holes – we have now doubled the degrees of freedom of the

system. As such, the PHS follows by construction.

Next, we diagonalize the Hamiltonian using what is called a Bogoliubov trans-

formation: We define new fermionic operators as linear combinations of the original

operators:  c̃k↑

c̃†−k,↓

 =

 ak bk

−b∗k a∗k


 ck↑

c†−k,↓

 (2.8)

Requiring that this transformation be unitary, and that the operators c̃k,σ satisfy

fermionic anticommutation relations, we obtain constraints on the coefficients ak, bk.

We forego the tedious algebra, and just state that we end up with the diagonalized

Hamiltonian

H =
∑

k
Ek

(
c̃†k,↑c̃k,↑ + c̃†−k,↓c̃−k,↓

)
(2.9)

=
∑
kσ
Ekc̃

†
k,σ c̃k,σ (2.10)
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where Ek =
√
ξ2

k + |∆k|2. The c̃k,σ describe fermionic elementary quasiparticle

excitations, sometimes called Bogoliubons.

It is instructive to first consider the normal, non-superconducting metal, cor-

responding to the case ∆k → 0. We then have for the above dispersion Ek = |ξk|,

i.e. it any fermionic excitations have positive energy except at the Fermi level ξk. If

we “turn on” a non-zero ∆k, i.e. consider a superconductive metal, we have opened

up an energy gap |∆kF
|,4 the “superconducting gap”, a non-zero minimum energy

for the fermion excitations. Since the operators c̃ are superpositions of the operators

c, c†, the quasiparticle excitations can be thought of as particle-hole superpositions.

The energy eigenvalues Ek decrease with increasing |k| until the Fermi momentum

kF (where the minimum value ∆ is attained) and increases after that. This gapped

spectrum is ultimately responsible for the superconductivity. The gap ∆ is almost

constant in the limit T → 0, and only when a significant amount of Bogoliubons are

excited does it start to vary. [15] It decreases with increasing temperature, and as

mentioned previously, the gap vanishes completely as the temperature reaches the

critical temperature Tc.

2.2 Toy model of topological superconductivity

In this section we briefly tie the above theory of superconductivity to topological

superconductivity. It is perhaps most instructive to take a look at the toy model

proposed by Kitaev in 2001. [20] We note that there are no known candidates which

could be used to construct such a toy model, but it remains useful due to its relative

simplicity. [21] We will even use some of the tools introduced in the previous chapter

to analyze this model. We start out with the second-quantized Hamiltonian

H =
∑
j

[
−t(c†jcj+1 + c†j+1cj)− µc

†
jcj + ∆(c†j+1c

†
j + cjcj+1)

]
, (2.11)

4The kF label comes from recognizing that ξ2
k is smallest at the Fermi surface.
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which describes a 1D lattice chains with N lattice points. The operators aj,a†j are

annihilation and creation operators at the lattice site j, and the sum runs over all

lattice points,5 ∑j = ∑N
j=1. The first term is a simple hopping term, while the last

term denotes a superconducting pairing term (∆ is the superconducting gap). Now,

∆ remains a real parameter in this analysis, but the results derived here are also

valid for the complex ∆ case.6 We assume that aj+N = aj, i.e. that the system

obeys periodic boundary conditions. This is equivalent to inspecting an infinite

chain. Since we now have a discrete translational symmetry in the chain, we can

apply a lattice Fourier transform, defined through the relations7

ck = 1√
N

∑
j

cje
ilkj (2.12)

cj = 1√
N

∑
k

cke
−ilkj, (2.13)

where l = N/L is the lattice constant, and L is the length of the chain. The momenta

k lie within lk ∈
{
−π + 2π

N
,−π + 4π

N
, . . . , π

}
. A straightforward transformation into

reciprocal space brings our Hamiltonian (2.11) in the form

H =
∑
k

[
−(2t cos kl + µ)c†kck + ∆eikl(c†kc

†
−k + ckc−k)

]
. (2.14)

The original creation and annihilation operators cj of the chain, being fermionic

operators, obey the usual anticommutation relations {cj, c†j′} = δjj′ ; {cj, cj′} =

{c†j, c
†
j′} = 0. From this we can easily show that identical anticommutations hold for

our reciprocal-space operators ck, c†k. We would now like to massage this expression
5This is actually not quite true; the sum depends on the boundary conditions at hand. We

will take into account the slight difference in the case of open boundary conditions below.
6The complex phase can actually be neatly hidden in the operators introduced below – see the

original paper by Kitaev [20] – but our approach differs from it slightly, so we will simply state

that the results remain the same.
7It is customary to place additional tildes or other symbols above the Fourier transformed

quantities, but we will forego that here with no risk of confusion – they will simply have momenta

k as indices.
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further into a more useful form. Following the strategy laid out in the previous

section, and by employing the above anticommutation relations, we can write the

Hamiltonian in the form

H = 1
2
∑
k

Ψ†kHBdG,kΨk + const., (2.15)

where we have introduced the Nambu spinor Ψk = (c, c†−k)T (cf. Eq. (2.7)). In this

case, the BdG Hamiltonian is

HBdG,k =

−(2t cos kl + µ) 2i∆ sin kl

−2i∆ sin kl 2t cos kl + µ

 . (2.16)

As usual, we ignore the constant shift to the energy spectrum, and can focus entirely

on HBdG,k. By noticing that it can be written using two Pauli matrices: HBdG,k =

Akσy +Bkσz, we can employ the following useful trick: By squaring the HBdG,k, we

end up with a matrix proportional to unity, H2
BdG,k = A2

k+B2
k, so we can immediately

write down the energy spectrum as

Ek = ±1
2

√
(2t cos kl + µ)2 + 4∆2 sin2 kl. (2.17)

This expression looks similar to the one obtained for the conventional superconduc-

tor in Sec. 2.1 – we can either have or not have a gapped spectrum for the given

parameter values. There is a critical point separating the two gapped superconduct-

ing phases: if µ = −2t, the gap closes at k = 0. But in this case, as we will see

shortly, this gap closing separates two topologically distinct phases.

Let us define a new set of operators γj, called the Majorana operators, which

will let us discern the different topological phases more clearly.

γ2j−1 = c†j + cj

γ2j = i(c†j − cj)
(2.18)

Note that these are all Hermitian operators, γ†j = γj, i.e. they correspond to particles

which are their own antiparticles. We will now instead assume open boundary



16 CHAPTER 2. THEORY

conditions. Then, using this transformation on the operators cj, the Hamiltonian

(2.11) takes the form

H = i

2
∑
j

[(∆ + t)γ2jγ2j+1 + (∆− t)γ2j−1γ2j+2 − µγ2j−1γ2j] . (2.19)

Next, we are going to look at two limiting cases, which turn out to be topologically

inequivalent. First, we set t = ∆ = 0, which gives

H = − i2

N∑
j=1

µγ2j−1γ2j. (2.20)

Here we have a coupling only between pairs of Majorana operators for each lattice

site as defined in the original setup. If we instead set µ = 0 and ∆ = t, the

Hamiltonian becomes

H = i
N−1∑
j=1

tγ2jγ2j+1. (2.21)

Since the labels 2j − 1, 2j on the Majorana operators correspond to the lattice site

j in our chain, this Hamiltonian couples Majorana operators from different lattice

sites. Despite the conventional notation, the terms including t and ∆ were in this

case summed only up to N −1 due to open boundary conditions, and we have made

that distinction explicit here.

Now, two Majorana operators, γ1 and γ2N , are left out of the Hamiltonian

completely – they are unpaired. We thus see the emergence of two unpaired Majo-

rana fermions at the ends of the chain. This quasiparticle is, in particular, highly

delocalized. Inverting the set of equations (2.18), we know how to create a perfectly

suitable fermionic operator out of these two Majorana operators: cM = (γ1+iγ2N)/2,

which satisfies the anticommutation relations along all the other operators cj. Since

these operators are absent from the Hamiltonian (2.21), a state corresponding to

cM does not change the energy of the system. Thus the ground state is two-fold

degenerate, since such a zero mode is either present or missing.

The critical point mentioned above separates these two cases, and indeed these

Majorana modes persist unless the system crosses a critical point, during which the
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Figure 2.1: Illustration of the lattice chain for the case N=6. The fermionic operators cj cor-

respond to two Majorana operators γ2j−1, γ2j . (a) The parameters chosen are ∆ = t = 0, cor-

responding to the trivial phase. The couplings between the Majorana operators are all local to

the lattice site (indicated by solid lines). (b) In this case µ = 0 and ∆ = t, corresponding to the

non-trivial phase. Here, the couplings are between neighboring lattice sites (dashed lines), leaving

two unpaired operators at the ends of the chain. Figure taken from Ref. [21].

bulk gap is closed. The two phases, |µ| > 2|t| (trivial) and |µ| < 2|t| (non-trivial

phase), were illustrated here with special choices for the parameters which made the

analysis quite straightforward. However, if we move away from the limiting cases

outlined above, we will have interactions in the chain which couple both operators

on the same lattice site and on different lattice sites. The localization of the zero

mode to the ends of the chain spreads out over the bulk lattice sites, and decays

exponentially in the length of the chain. [20]
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3. 1D chain on a superconductor

The model we present here concerns scalar impurities on a two-dimensional p-wave

superconductor. The treatment is based on the research that went into Ref. [3].

We will later reduce the model to a one-dimensional chain. There is a possibility

of higher energy gaps than in full two-dimensional systems, and such topological

subsystems may offer better access to the exotic particle excitations. By also taking

into account energies far away from the gap center, our aim is to derive a theoret-

ical foundation which will allow us to accurately calculate the spectrum all subgap

energies.

In Sec. 3.1, we restrict our model to a periodic lattice, which will allow us

to make analytical progress in reciprocal space due to the translational symmetry.

Then we present the topology of the system in Sec. 3.2. We first consider a spinless

superconductor, and in Sec. 3.3, we generalize our work to the corresponding system

including spin, making use of the following treatment.

The system under consideration is described by the Bogoliubov-de Gennes

(BdG) Hamiltonian1

H = ξkτz + ∆(kxτx − kyτy) + U
∑
i

τzδ(r− ri), (3.1)

where ξk = k2/2m − µ is the kinetic energy of the electrons, µ = k2
F/2m is the

chemical potential, and m denotes the effective mass of the electrons. ∆ is, as

1While this is a Hamiltonian density, we will follow the usual convention of just calling this

the Hamiltonian.

19
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Figure 3.1: One-dimensional chain of scalar potential impurities on top of a p-wave supercon-

ductor. This system will be shown to host topological phases, and their nature is reflected in the

bound states localized at the ends of the chain.

before, the gap of the underlying superconductor, and U is the potential of the

impurities. The Pauli matrices τi, i = x, y, z, act in the particle-hole space; later

we will also introduce the symbols σi for the same matrices acting in spin space.

The Hamiltonian (3.1) is expressed in the Nambu basis Ψ(r) = (ψ(r), ψ†(r))T . The

energy spectrum can be solved by inserting (3.1) into the BdG equation HΨ = EΨ,

which we can rearrange to obtain

[E − ξkτz −∆(kxτx − kyτy)] Ψ(r) = U
∑
j

τzδ(r− rj)Ψ(rj), (3.2)

where we have isolated all impurity terms to the right hand side. Moving to mo-

mentum space using Ψ(r) =
∫

[dk/(2π)2]eik·rΨk, we obtain

[E − ξkτz −∆(kxτx − kyτy)] Ψk = U
∑
j

e−ik·rjτzΨ(rj). (3.3)

Now, in order to obtain Ψk by itself, we simply multiply by the inverse of the matrix

preceding it. Then, defining the following shorthand notation,

JE(r) = U
∫ dk

(2π)2 [E − ξkτz −∆(kxτx − kyτy)]−1 eik·r (3.4)
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we move back to real space, evaluate the obtained equation at r = rj, leading to

[1− JE(0)τz] Ψ(ri) =
∑
j 6=i

JE(rij)τzΨ(rj), (3.5)

where rij = ri − rj, and where we have for convenience separated the term j = i

from the sum. We will not bother with the technicalities any further than this,

and we will move the rest of the details to the appendices. Note that we have now

formulated the original BdG eigenvalue problem as an eigenvalue problem for N

coupled 2×1 spinors Ψj. The positions for the N impurities have thus far been

completely arbitrary; now we will restrict the problem to a one-dimensional chain

of impurities. We do this by simply setting y = 0 for all rj in the above expressions.

The calculations for the integrals JE are found in Appendix A; here we just present

the results: Defining γ = 1 + ∆2

v2
F
, β = ∆2k2

F − γE2, and ∆̃ = ∆2 kF

vF γ
, the obtained

expressions can be reduced to

JE(x = 0) ≈ α√
β

[
∆̃τz − E

]
(3.6)

JE(x 6= 0) ≈α
[
−E√
β

Re (Φ0) +
( ∆̃√

β
− 1
γ

Im (Φ0)
)
τz

− i∆sgn(x)
γ

( 1
vF

[ 2
π
− Re (Φ1)

]
+ kF√

β
Im (Φ1)

)
τx

]
(3.7)

where α = πν0U characterizes the strength of the potential and where we have

defined the shorthand Φn = In(xΩ)−Ln(xΩ), with Ω = 1
γ

(√
β

vF
+ ikF

)
. Here In(x)

and Ln(x) are the modified Bessel and Struve functions of the first kind, respectively,

and vF is the Fermi velocity.

After inserting the obtained expressions (3.6) and (3.7) for the integrals JE

into Eq. (3.5), writing it in a matrix form, and grouping together terms with the

same prefactors, we finally arrive at

1√
β

(ε− 1)A B

B (ε+ 1)A

Ψ =

C − α−1 D

D α−1 − C

Ψ, (3.8)
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where we have defined a reduced energy ε = E/∆̃, ΨT = [Ψ(x1)T . . .Ψ(xN)T ] is a

2N ×1 spinor, and the expressions for the N ×N Hermitian submatrices A,B,C,D

are given in Appendix A. We have a 2N × 2N matrix structure since the N im-

purity sites are each described by two-component BdG spinors Ψj = Ψ(xj). Eq.

(3.8) is a non-linear eigenvalue problem describing a long-range tight-binding model,

and the hopping elements between different impurity sites decay asymptotically as

exp(−r/ξE)/
√
kF r for coherence length ξE = γvF/

√
β. We also note that for low

energies ξE ≈ γvF/|∆|kF ≡ γξ. The full solution to the matrix eigenvalue problem

(3.8) consists of 2N energy states and their corresponding eigenspinors. The math-

ematical structure of the problem is closely related to those studied in Refs. [22–24]

for magnetic chains. The non-linear energy dependence through β and Φn com-

plicates the solution considerably, but as we will see in the later analysis, these

obstacles can also be circumvented, and we maintain a high precision for the energy

solutions.

3.1 Momentum space analysis

Up to Eq. (3.5), the system was not specific to any particular arrangement of the

impurities, and Eq. (3.8) only demands that the impurities are aligned along one

direction. While this is more general, it is hardly a helpful feature of the system. As

with any quantum mechanical problem involving many particles at arbitrary loca-

tions, finding an exact solution specific to all constituents involved is implausible at

best. By considering a periodic lattice of impurities, we gain translational invariance

in the system, which can be exploited by going over to reciprocal space. The goal

is to attempt to solve the eigenvalue problem given by Eq. (3.8). To this end, we

define the Fourier transforms of the submatrices, given by

ak =
∑
j

Aije
ika(i−j), (3.9)



3.1. MOMENTUM SPACE ANALYSIS 23

with analogous expressions for bk, ck, and dk. Looking at the explicit expressions

for the submatrices of Eq. (3.8), we see that they have energy-dependent parts only

within the special functions Φn. This separation of energy dependence into factors

outside the submatrices makes the transformation into reciprocal space straightfor-

ward. We simply end up with

1√
β

(ε−1)ak bk

bk (ε+1)ak

ψk=

ck−α−1 dk

dk α−1− ck

ψk, (3.10)

with the real-space submatrices replaced by their Fourier-transformed counterparts

as defined above. It is now possible to express the non-linear eigenvalue equation

in a more accessible form. Moving all terms in the above equation to the left hand

side, we obtain an equation of the form G−1
k ψk = 0, with

G−1
k =

(ε−1)ak −
√
β(ck− 1

α
) bk −

√
βdk

bk −
√
βdk (ε+1)ak +

√
β(ck− 1

α
)

 . (3.11)

The energy bands can now be solved from the condition det(G−1
k ) = 0 for each k.

The steps are detailed in Appendix B; here we just provide the closed form equation

for the energy bands Ek:

P2,kβ(Ek) + P1,k

√
β(Ek) + P0,k = 0. (3.12)

with the expressions for the coefficients Pn also moved to the appendix. Clearly, this

equation is easily solved for the energies by use of the quadratic formula, and sub-

sequent transformation from β(E) to E. However, we should note that by simply

presenting this equation as-is, we would gloss over the unpleasant energy depen-

dence hidden in the coefficients Pn. They originate from the integral (3.7), or more

precisely, in the real part of Ω which sits inside the special functions Φn = Φn(xΩ).

We deal with this problem by simply setting the energies inside the coefficients Pn to

zero as a first approximation. We can obtain the true eigenvalues using an iterative

process, where the resultant energies Ei obtained by solving Eq. (3.12) are used as



24 CHAPTER 3. 1D CHAIN ON A SUPERCONDUCTOR

the new starting points in the coefficients Pn. However, this process converges so

quickly, that the change in the energies turns out to be essentially negligible. Such

a procedure is employed in Ref. [24], with a detailed discussion for the interested

reader. So the effect of neglecting the inner energy dependencies all but evaporates,

and we can safely set E = 0 in the coefficients of Eq. (3.12), and directly solve for

the energy eigenvalues using the good old quadratic formula.

Now that we have solved the eigenvalue problem, we can compute the energy

gap of the system in order to estimate the robustness of the topological phases

hosted by this model. Note that had we employed a low-energy limit in the above

analysis, the obtained energy gap would only be accurate for very low energies, and

higher-energy solutions would be somewhat arbitrary and could not be relied on for

an accurate estimate of the energy gap. Since β is a function of E2, we see directly

that the energy solutions come in pairs ±Ek, as is expected due to the particle-hole

symmetry of the system.

3.2 Topology

Use of the Hamiltonian is central to the investigation of the topological character of

the system. However, above we formulated our problem as a non-linear eigenvalue

problem, so it is not immediately obvious what our Hamiltonian should be (cf. Eq.

(3.8)). Luckily, we can study the topological effects using an effective Hamiltonian.

We follow the treatments of Refs. [23, 24]. We would like the effective Hamiltonian

to possess the same topological properties as our system, and so, as discussed below,

we can define it through Eq. (3.11) as Heff ≡ G−1(0). Substitution into the definition

of G−1 immediately gives

Heff =
[
ãk + |∆| kF

(
c̃k −

1
α

)]
τz +

[
|∆| kF d̃k − b̃k

]
τx, (3.13)
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where we have introduced the notation ãk = limE→0 ak for all ak, ..., dk. There

are a few key properties to appreciate about Heff . First, it clearly has a simpler

mathematical structure than G−1, making analytical and numerical computation a

significantly easier task. Second, by construction, all of its zero-energy solutions are

also (zero-energy) solutions of the original Hamiltonian. This is to say that the gap

closings of the effective Hamiltonian and the parent model coincide exactly. Any

borders between topologically different regions are thus the same for both models.

So even though we have spoiled the energy dependence of Heff as a predictor of the

energy eigenvalues of the system, it is still useful in studying its topological features.

Next, we need to identify the relevant symmetries of the model if we are to

extract its topological properties, and ultimately, a topological phase diagram. The

particle-hole symmerty, which emerged automatically once we employed the BdG

formalism in the above analysis, puts our system in the Altland-Zirnbauer class D

[25,26]. Thus there exists a Z2-valued topological invariant for this system. But since

we reduced the model to be effectively one-dimensional, we now also have a chiral

symmetry in our system. This is manifested through the anti-commutation relation

{C,H} = 0 for some operator C called the chiral symmetry operator. This puts

our model in the BDI class, which supports a Z-valued topological invariant. The

Z2-valued invariant distinguishes phases with different fermion parity [20], which we

will also see in Sec. 3.4 when we present the results for the two different topological

invariants.

We begin the discussion with the Z-valued invariant. For 1D systems, a topo-

logical invariant called the winding number can be calculated through the formula

ν = 1
4πi

∫ π/a

−π/a
dk tr

[
CH−1∂kH

]
, (3.14)

where C is the chiral symmetry operator mentioned above. [27] Now, instead of using

a more complicated Hamiltonian describing the system, we can use the effective
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Hamiltonian Heff . As discussed above, this does not change the result, but due to

its simpler form, this is a computationally more efficient method. In this case, our

chiral symmetry operator is C = τy. We postpone the presentation of the topological

phase diagrams to Sec. 3.4, but let us mention that formula (3.14) gives us three

distinct topological invariants: ν = 0,−1,−2. Now, the magnitude of the winding

number represents the number of Majorana bound states (MBSs) localized at the

ends of the chain; ν = 0 corresponds to the topologically trivial phase. We will

justify this interpretation in Subsec. 3.4.1. Since only the magnitude of ν is of any

importance, we clearly have a sign ambiguity in Eq. (3.14). Let us make the purely

aesthetic change – which will manifest itself only in the figures presented below –

and redefine our topological invariant ν → −ν:

ν = i

4π

∫ π/a

−π/a
dk tr

[
CH−1∂kH

]
. (3.15)

It is important to note that for systems which arrive at both positive and negative

topological invariants, opposite invariants are not at all equivalent. The invariants

could for instance correspond to edge states moving around a 2D surface in opposite

directions. We make this change because the parameter regions investigated in our

work only attain winding numbers of the same sign. It is unclear whether our model

could attain topological invariants of both signs; perhaps only at unphysical regions

in the parameter space. Nonetheless, the sign of the topological invariant can always

be flipped globally.2

As mentioned above, our system supports a Z2-valued topological invariant,

which measures fermion parity. It can change its value only when the energy gap

closes at points k = 0, π/a. We can now obtain the boundaries between different

phases of the Z2 invariant by imposing the gap closing condition on the effective

Hamiltonian Heff, since, by construction, it is just G−1 with all its energy dependen-
2such that all winding numbers, i.e. all points in the parameter space, are affected by this

change.
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cies set to zero. This provides an independent consistency check for the boundaries

where the winding number (3.15) changes parity. Now, since the submatrices B,D

of Eq. (3.8) (given in Appendix A) are antisymmetric matrices, we know that the

Fourier transformed coefficients b̃k, d̃k vanish identically at the points k = 0, π/a.

Thus we obtain our phase boundary condition in the form3

α−1 =
(

ãk
|∆| kF

+ c̃k

)∣∣∣∣∣∣
k=0,π/a

(3.16)

Keeping other parameters constant, we can then plot this as a curve α = α(kFa)

together with the winding number ν = ν(α, kFa), and as we will see, the two different

ways of establishing the parity-changing phase boundaries are consistent with one

another.

3.3 Spinful superconductor

So far we have considered a system consisting of a spinless chiral p-wave supercon-

ductor decorated with potential impurities, but in this section we will generalize our

results to the model including spin. We consider both a chiral and a helical super-

conductor. We parametrize the 2D p-wave models by writing the BdG Hamiltonian

of the superconductor as

HSC =

 ξk ∆d · σ

∆(d · σ)† −ξk

 , (3.17)

where d determines the spin structure of the superconductor, and σ is now a vector

of the matrices σi, which are Pauli matrices acting in spin space.

The first case we consider is d = (0, 0, kx + iky), which describes a chiral

superconductor. It is the main candidate for describing the pairing in Sr2RuO4 [28].

3Presumably due to a technical error, this equation was published with a typographical mistake

in Ref. [3], but appears here in the correct form.
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Substituting the d-vector into Eq. (3.17) and including the impurity terms as before,

we obtain

Hc = ξkτz + ∆σz(kxτx − kyτy) + U
∑
i

τzδ(r− ri). (3.18)

Evidently, this Hamiltonian has the matrix structure of that of two spinless Hamil-

tonians as the two blocks, but they differ in the sign of ∆. Exactly because Hc is

diagonal in spin space, we can generalize the results of the previous sections in a

straightforward manner. Indeed, the calculations proceed almost identically for the

spinful case. In fact, just by looking at Eq. (3.13) and checking the explicit expres-

sions for the submatrices in Eqs. (A.20)-(A.23), we see that the left and the right

terms are symmetric and antisymmetric, respectively, with respect to the change

∆→ −∆. This immediately gives us the effective chiral Hamiltonian

H̃c,eff =
[
ãk + |∆| kF

(
c̃k −

1
α

)]
τz +

[
|∆| kF d̃k − b̃k

]
τxσz. (3.19)

Now we can define our chiral symmetry operator to be C = τyσz, and so immediately

see that the winding number (3.15) acquires the change ν → 2ν, since the contribu-

tions from each block are simply added together. So the topological invariants are

merely doubled, and thus the topological phase diagrams to be presented in Sec. 3.4

remain identical to the spinless case.

Now, it is possible to access additional winding numbers through further in-

teraction terms in the Hamiltonian. We can do this by lifting the spin degeneracy

while keeping the chiral symmetry intact, e.g. by a Zeeman field Hc → Hc + Bσx.

To see this, we note that using the unitary operator U = exp(iπτzσy/4), we can

transform just the new term to obtain

HB
c = (ξk +Bσz)τz + ∆σz(kxτx − kyτy) + U

∑
i

τzδ(r− ri). (3.20)

This is due to the anticommutativity of the Pauli matrices, which neatly leaves all

the other terms invariant in the unitary transformation Hc → UHcU †. Evidently,

the addition in the first term amounts to the change of the chemical potential µ =
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k2
F/2m→ k2

F/2m∓B, or simply the shift4 kF →
√
k2
F ∓ 2mB. Now the boundaries

between topologically distinct regions for the separate blocks are shifted in different

directions in the parameter space. As discussed above, the winding number formula

(3.15) effectively adds together the “bare” winding numbers for the different blocks,

and so the resulting topological invariant now also attains the odd values ν = 1, 3.

For the other spinful case we consider a helical superconductor, described by

the in-plane vector d = (kx, ky, 0). Substitution again yields a new Hamiltonian of

the form

Hh = ξkτz + ∆τx(kxσx + kyσy) + U
∑
i

τzδ(r− ri). (3.21)

We can now perform a change of basis (ψ↑, ψ↓, ψ†↓,−ψ
†
↑)T → (ψ↑, ψ†↑, ψ↓, ψ

†
↓)T

to obtain our helical Hamiltonian in the form

Hh = ξkτz −∆σz(kxτx + kyσzτy) + U
∑
i

τzδ(r− ri) (3.22)

which differs from the previous chiral Hamiltonian (3.18) only in the sign of ∆, and in

the σz multiplying ky. Following the derivation of the non-linear eigenvalue problem

(3.8) given in Appendix A, we see that the contribution from the ky term vanishes

when we restrict our system of impurities to be one-dimensional. Thus the effective

difference of Hh to the bare chiral Hamiltonian Hc is just the change ∆→ −∆. This

difference is mostly inconsequential, so for practical purposes, we are now dealing

with the same Hamiltonian. Therefore the above discussion on the energy gaps and

the topological phase diagrams extends toHh as well; they coincide with the spinless

case. Again, the winding number is simply doubled, ν → 2ν, resulting in the same

three distinct topological phases as above.

We can again access the odd topological invariants ν = 1, 3 by applying a

magnetic field in the z-direction. When we apply the same change of basis as above

4We stick to the convention of the ±-sign that the upper sign is, in some obvious sense, “first”

in order. In this case, the upper signs correspond to the upper left blocks of the matrix.
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on an additional term Bσz, we obtain the helical Hamiltonian in the form

HB
h = (ξk +Bσz)τz −∆σz(kxτx + kyσzτy) + U

∑
i

τzδ(r− ri), (3.23)

that is, the desired term is obtained automatically. Thus it has the same effect on

the phase diagrams as we saw above for the chiral case, shifting the Fermi wave

number kF →
√
k2
F ∓ 2mB.

There is still one more thing to note about the magnetic fields applied to the

two spinful Hamiltonians. In the chiral case, we could have chosen any magnetic

field that points in the xy-plane. This is because we can rotate it back to the

x-direction by use of a unitary transformation, and then obtain the same effect

as we saw above. To see this, just note that eiϕ
2 σzB(σx cosϕ + σy sinϕ)e−iϕ

2 σz =

eiϕσzB(σx cosϕ+ σy sinϕ) = Bσx. For the helical case, however, this is not the case

anymore. The magnetic field must point in the z-direction; otherwise we will either

not achieve the splitting of kF → k±F , or we will destroy some of the symmetries

necessary for achieving non-trivial topology in our model.

3.4 Results

In this section, we present the topology of the one-dimensional chain of potential

impurities, presenting first the energy gap diagram, and then the corresponding

topological phase diagram. We also give the phase diagram for the case of a spinful

superconductor, and are able to access additional topological phases, as was detailed

in Sec. 3.3. In Subsec. 3.4.1, we justify the physical interpretation of the winding

number invariant as the number of Majorana bound states localized at the ends of

the chain.

We commented on the different symmetry classes of this model in Sec. 3.2, and

we expect the system to support two distinct topological invariants that are closely

interrelated. The main focus is the Z-valued topological invariant given in Eq. (3.15),
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Figure 3.2: a) Lowest positive energy eigenvalue as a function of kFa and α−1. The values used

for the coherence length is ξ = 20a, with ∆/vF = 1/(kF ξ). For this plot, we have set vF = 100.

b) Same as in a) except for a narrower range of kFa values. The plots in c) and d) are the same

as in a) and b), but for yet other parameter ranges, and with vF = 15.

since it gives the topological character of each phase, while the information extracted

from the other invariant only reveals the boundaries between phases of different

parity. However, as mentioned before, it serves as an important consistency check

for the topological phase diagram presented below.

The energy eigenvalues of the system were calculated in Sec. 3.1, with the

final result for the energy bands given in Eq. (3.12). The gap provides important

information regarding the robustness of the topological phases. In Fig. 3.2, we have

plotted the minimum energy solution mink |Ek| as a function of kFa, where a is the

lattice constant of the impurity chain, and of the dimensionless impurity strength

α = πν0U . From the figure we can see that the system has distinct gapped regions

which are separated by gap closings. Note that the energy gap can reach a significant

fraction of the underlying superconducting gap, even more than ∼ 0.5∆kF in regions

which, as we will see shortly, turn out to be topological. In particular, these values

are so high as to be well outside the validity of any low-energy approximations.
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Figure 3.3: a)-d) Winding number invariant as a function of kFa and α−1, over equivalent

parameter ranges as in Fig. 3.2; the fixed parameters of these subfigures correspond exactly to the

parameters used for the energy gap calculations. The analytical k-space solution (see Eq. (3.16))

for boundaries between different parity phases is given by the red graphs.

Upon inspection, we notice a peculiarity in the plots of Fig. 3.2. Instead of α itself,

the plots are constructed in terms of α−1, so we ought to discuss the limit α−1 → 0±,

corresponding to an infinite attraction and repulsion, respectively. The spectrum

is continuous across this limit, which is highly counterintuitive. This feature stems

from the properties of the single-impurity bound states, which coincide in the limit

of infinite repulsion and attraction.

In Fig. 3.3, we have plotted the winding number (3.15) as a function of the

same parameters as the energy gap diagram Fig. 3.2, with the chiral symmetry

operator C = τy for the spinless case. As mentioned above, we expect the topological

invariant to be Z-valued, and we find for it three distinct values: ν = 0, 1, 2. These

winding numbers each correspond to the number of MBSs located at the ends of

finite chains, as we will see below. In the same figure, we have also included the

Z2-valued invariant. It is seen as a red curve on the boundaries between the different



3.4. RESULTS 33

Figure 3.4: Topological phase diagram for the case of a spinful superconductor and an applied

Zeeman field of magnitude B; as detailed in Sec. 3.3, this figure represents both chiral and helical

superconductors. The range of parameter values corresponds to Fig. 3.3b), and the parameters are

also identical, except additionally, 2Bm = 8 · 103/ξ2.

phases, but only between those that have different parity.5

We note that any transition between the different topological phases occurs

in the corresponding region of Fig. 3.2 where the energy gap closes, as it should.

Now, there is an apparent discrepancy between some topological phases, but this

only occurs for regions where the energy gap is extremely low. Here the numerical

winding number becomes unreliable. Indeed, in those regions, the topological phase

is quite meaningless, since there is practically no separation between the different

phases due to the vanishing gap.

It is also evident that whenever kFa is an integer multiple of π, we have a topo-

logical phase boundary between the phases ν = 1, 2 for large negative values of α−1.

These may persist infinitely far down, but the breadth of the ν = 1 phase becomes

increasingly narrow. As expected, in the low potential limit U → 0 (|α−1| → ∞),

the topologically trivial phase starts to dominate.

5As seen below, this corresponds to the parity of the winding number ν.
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Figure 3.5: a) Dependence of the bulk and MBS energy in the ν = 1 phase on the length N of

the impurity chain in blue and red, respectively. b) Localization of the MBS wavefunction in the

ν = 1 phase, with chain length N = 500. Parameters used in the calculations for these plots are

∆/vF = 1/(kF ξ), with ξ = 20a, kFa = 8.5π, and α−1 = 0.2.

In Fig. 3.4, we have plotted the winding number invariant as above, except for

a spinful superconductor and an applied Zeeman field, now with C = τyσz as the

chiral symmetry operator. We showed in Sec. 3.3 that such a field with strength B

leads to a shift in the Fermi wave vector kF →
√
k2
F ∓ 2mB, depending on the spin

direction. Thus we have two “bare” phase diagrams as in Fig. 3.3b) added together,

but shifted in opposite directions. This creates overlaps of different topological

invariants, and so we also have clear regions for the winding numbers ν = 1, 3. In

particular, the phase boundaries for large negative α−1 that seem to approach integer

values of kFa/π in Fig. 3.3 are now split evenly on both sides of the corresponding

integers. There are some regions where there is significant noise in the winding

number between two different phases, but these correspond, as before, to regions of

very low energy gap.

3.4.1 Majorana bound states

In Fig. 3.5a), we have plotted the two lowest wave function energies as a function

of the length of the chain. Since the next higher energies are almost exactly the
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Figure 3.6: a) Same as Fig. 3.5a), except for the ν = 2 phase. The bulk energy dependence

is still in blue, and the two MBS energies are in red and orange. b) Localization of the MBS

wavefunction in the ν = 2 phase, with chain length N = 800. This wave function corresponds to

the red, lowest-energy graph seen in a). Parameters used in the calculations for these plots are

identical to Fig. 3.5, except that α−1 = −0.2.

same as for the blue graph, we have simply called it the bulk energy. For infinite

systems, we would expect to find one zero-energy mode in this ν = 1 phase, but in

finite systems, this is not exactly true. The lowest energy differs from the bulk by

at least a few orders of magnitude, and is clearly seen to decrease with increasing

chain length, while the bulk energy stays constant. In Fig. 3.5b), we have plotted

the magnitude of the wave function at different locations in the chain. The wave

function is several orders of magnitude more pronounced at the ends of the chain

than throughout the rest of the chain, i.e. it is highly localized to the edges. This is

precisely how we expect MBSs to behave, justifying the interpretation of the winding

number invariant mentioned above.

In Fig. 3.6, we have plotted similar graphs to Fig. 3.5, except for parameters

that correspond to the topological phase with ν = 2. In this case, we have two low-

energy modes, one of which has an even smaller energy than in the ν = 1 phase. Up

to a chain length of N∼60, both MBSs have almost exactly the same energy, after

which one keeps decreasing faster than the other. The wave function localization

plotted in Fig. 3.6b) corresponds to this lower-energy mode, and as before, it is
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strongly localized at the ends of the chain. Since the same plot for the other MBS

is almost exactly like the plot for the MBS in the ν = 1 phase in Fig. 3.5b), we

have omitted it entirely. The general features for the MBSs in the last two figures

are the same; the only real difference being that these two characteristics are even

more pronounced for the lowest-energy mode in the ν = 2 phase than in the ν = 1

phase.



4. Random lattice topology

The mathematics of random numbers concerns the (un)predictability of events, and

is useful in the research of materials that represent real-world counterparts to ideal

systems. For instance, a perfect chain of lattice points is perhaps easier to investigate

theoretically than it is to even create such a material in the first place. We are

always restricted by our ability to manipulate small-scale components, whereas the

starting point for a theory-based discussion is that the accuracy of creating such a

material is perfect. But what if we could circumvent the whole notion of striving for

perfectly engineered systems? The recent work by Agarwala and Shenoy [2] shows

that topological phases can be realized in amorphous systems, where the positions

of the lattice sites themselves are highly non-regular. This could open up a new

approach to realizing topological materials, as the restrictions on the construction

of such materials would be a lot looser.

When it comes to engineering materials that have random lattice structures,

impurities could ideally be placed on a surface quite casually, without any careful

placement1 – and we should expect our results to be described by a treatment in

terms of random numbers. Even if you move around the different lattice points, it

is difficult to bring a truly random lattice into a less random state. Thus, if we

find features that are general to random lattices, the connection between theory

and experimental realization would arguably be even stronger than for lattices that

1loosely speaking, imagine the spreading of the pellets shot from a shotgun

37
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require high precision.

Previous studies trying to address the problem of disorder in a lattice start

out with a crystalline structure, and then impose some small degree of disorder with

respect to the fixed lattice sites as a “perturbation”. If the obtained lattice differs

from a regular one too much, the results will not be valid, since the deviation from the

assumed crystalline structure is by no means small. Kobayashi et al. [29] investigated

a three-dimensional topological insulator, and found that the topological state shifts

to a metal with increasing onsite disorder.

Random numbers can be used to describe amorphous materials, whose lattice

configurations are almost completely irregular. Our starting point is the construc-

tion of the random lattices included in Ref. [2]. We develop the description of the

random lattice as follows. A region of two-dimensional space of area A is filled with

uniformly distributed lattice points. The number of sites is N , such that the lattice

is characterized by a lattice surface density ρ = N/A. Without risk of confusion,

we will simply call ρ the density. Now, consider a two-dimensional lattice of size

Lx × Ly, where the lattice sites are placed randomly.2 We draw both coordinates

x and y for all lattice points from a uniform distribution, i.e. the x-coordinates are

described by a stochastic variable X ∼ U(0, Lx), and likewise for y. This approach

is in stark contrast to disorder calculations, where the lattices sites are fixed in a reg-

ular structure, and only deviations are drawn from a random distribution. We note

that our work describes a model system of an amorphous material; in particular, no

minimum distance between the randomly placed lattice sites is enforced.

In Sec. 4.1, we present the model of topological superconductivity on which

our work is based, and in Sec. 4.2, we get into topology of the amorphous system.

In Subsec. 4.2.1, we present the topological invariant applied to our system, and

2Lx and Ly are integers that stand for the number of lattice sites in a corresponding regular

lattice. In fact, the lattice size is given in units of some lattice constant a, which we promptly set

equal to 1.
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in Subsec. 4.2.2, we discuss the importance of the energy gap for the robustness of

the topological phases, and why a direct energy gap approach is not applicable for

random lattice configurations. In Sec. 4.3, we present the topological phase diagram

of the system, and an example of an edge mode localized at the boundary of the

2D random lattice. Finally, in Sec. 4.4, we briefly discuss the possible mechanism

behind the emergence of topological phases in random lattices.

4.1 Model of topological superconductivity

Before we get to the topology of the glassy material mentioned above, we must take

a moment to present the model on which our work is based. Our starting point is

the main Hamiltonian of Ref. [30] which concerns two-dimensional superconducting

surfaces decorated by ferromagnetic adatom lattices. The work culminates in the

topological phase diagram – the Chern mosaic – and demonstrates that the model

supports a rich texture of topologically distinct phases with very high topological

invariants.

We include the relevant expressions for the effective low-energy Hamiltonian

here, with the background and details moved to Appendix C:

Hmn =

 hmn ∆mn

(∆mn)† −h∗mn

 , (4.1)

where hmn and ∆mn are N ×N blocks, and are given by

hmn =


ε0, m = n

∆
2 [I−

1 (rmn) + I+
1 (rmn)]〈↑m | ↑n〉

+ i
∆
2 [I−

3 (rmn)− I+
3 (rmn)]

[
〈↑m |σx ↑n〉

ymn

rmn
− 〈↑m |σy ↑n〉

xmn

rmn

] , m 6= n
(4.2)

and

∆mn =


0, m = n

−∆
2 [I−

2 (rmn) + I+
2 (rmn)]〈↑m | ↓n〉

− i∆2 [I−
4 (rmn)− I+

4 (rmn)]
[
〈↑m |σx ↓n〉

ymn

rmn
− 〈↑m |σy ↓n〉

xmn

rmn

] , m 6= n
(4.3)
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Above, rm = (xm, ym), rmn = |rm − rn| is the distance between two (Shiba) lattice

sites, and likewise xmn and ymn are the corresponding coordinate differences. The

definitions of the functions I±n are given in Appendix C. | ↑n〉, | ↓n〉 denote eigenstates

of the magnetic moments, Sm · σ| ↑n〉 = +|Sm|| ↑n〉, and likewise for | ↓n〉 with the

opposite sign, and ε0 is the onsite energy.

This model supports a vast sea of distinct topologically non-trivial phases.

The lattices investigated for the above model in Ref. [30] are regular, and what we

embark on next is the analysis of such systems which instead have irregular lattice

configurations.

4.2 Topology

Since topological phases have previously only been found in cases where you start

out with a regular structure, it is certainly a surprise to discover them also in truly

random lattices. Before we get to the topology of our random lattice system, we need

an appropriate topological invariant to assess the topology. After that we can start

investigating the quality of the topological phases, and to see if it is conceivable to

realize them in practice. Although it is difficult to answer this question directly, we

find strong arguments for the emergence of topological phases which are protected

by a high gap energy.

4.2.1 Bott index

In order for us to analyze the topology of our model, we need to identify a topo-

logical invariant, much like the winding number encountered in Sec. 3.2 for our

one-dimensional chain of potential impurities. But for the 1D chain, we were able

to employ symmetry considerations that allowed simple calculation of the topolog-

ical invariant – we presented the whole section on topology in k-space. Now, for
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our two-dimensional lattices, we have no symmetries whatsoever. The problem with

calculating the Chern number that was used in [30] is that for random lattice config-

urations, numerical calculations can become quite hefty, especially for large system

sizes.

Loring and Hastings [31] applied the theory of almost commuting matrices

to quantify different topological phases. The treatment is not based on reciprocal

space, but on the states occupied in the system, which makes it well suitable for

lattices lacking any symmetries.3 The topological invariant used is called the Bott

index. It has been thought that it coincides with the Chern number on a torus, if

we do not impose any other symmetries on the system. Indeed, D. Toniolo recently

submitted a preprint [32] of a proof of the equivalence between the Bott index and

the Chern number4 for such a two-dimensional system.

4.2.2 Energy gap

We will now discuss the robustness of the topological phases found for the random

lattices by considering the energies for the nearest unoccupied states in a particular

phase. As mentioned in Ch. 3 for the 1D chain, the key feature of the energy gap

is that it serves as a measure for how protected a topological phase is. Since we

have now been dealing with random lattice structures, for any large enough system

there will likely be regions of high density that act as their own “subsystem”. The

same can happen with regions of low density, which act as a hole, or boundary, for

the surrounding lattice. Such a finite part of the system can then have a low-energy

3We will not go into further details on the mathematics of almost commuting matrices, since

it is beyond the scope of this thesis – instead we just refer the interested reader to the article by

Loring and Hastings.
4in the thermodynamic limit
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edge mode going around it.5 This affects the calculation of our energy gap, and

must be taken into account. We do this by simply including such relevant states in

the calculation of the Bott index, up to a certain energy within the gap, and check

if the topology of our system has changed. If it has not, then it had no effect on the

topology of our lattice, but only on the energy gap.
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Figure 4.1: a) Bott index as a function of the Fermi energy EF for a typical configuration of a

ferromagnetic random lattice, revealing the mobility gap which is higher than the energy gap. The

calculation was performed for a system of size 36×36, with the number of adatom sites N = 1296.

Parameters used are ξ = 6, kFa = 4π/10, and ε0 = 0. b) Same as in a), except averaged over 100

random lattice configurations.

In Fig. 4.1 we have plotted the Bott index as a function of the reduced Fermi

energy EF/∆. The Bott index for zero Fermi energy is −1, and stays the same

for increasing energy up to a value of ∼ 0.7∆. This translates to this particular

5In the limit of an infinite (sub)system, the energy of such an edge mode is zero, but for very

small subsystems, they can have essentially any subgap energy value.
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phase having a mobility gap6 of ∼ 0.7. After increasing the Fermi energy enough,

the Bott index becomes zero, i.e. the topology becomes trivial, with some noise at

the transition point. The topological phases are the most stable close to the gap

center, and we expect the Bott index to go to zero far from the gap center. When

the Fermi energy is increased, previously unoccupied states can also be occupied,

possibly affecting the topological character of the phase, and ultimately destroying

it.

What makes the above graph important is that the energy gap of the system is

usually much lower than the mobility gap obtained above. It is, however, important

to note that the gaps protecting the topological phases are usually higher than given

by the energy solutions. The topological phases are thus more robust than expected

based on only an energy gap diagram.

We should note that the graph in Fig. 4.1a) is “unusually clean”; as can be seen

in the graph below it, for a generic random lattice configuration, the noise persists

long after the phase becomes trivial. In fact, as we increase the Fermi energy further,

the quantity calculated above becomes quite meaningless. This is because the ran-

dom positions of a large number of lattices sites give rise to a huge number of states

that are then occupied, and lead to quite arbitrary topological invariants. They by

no means describe robust topological phases, but rather “fluctuations” caused by

small subsystems, and so high oscillations are expected. What is meaningful is that

the Bott index stays exactly constant to a significant fraction of the underlying gap,

supporting the conclusion that, for these parameters, the topological phase is robust

in a general random lattice.

6Henceforth we will forego the ∆ in expressions involving energy gaps, and we will just give

the energies in units of the underlying superconducting gap ∆.
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4.3 Results

In this section, we present the results of the calculations for the model of topological

superconductivity on a random lattice. The main result will be the topological phase

diagram, which shows that for high enough particle density, the model supports

a topologically non-trivial phase. We observe this phase even if we let the local

spin directions deviate from the ferromagnetic case.7 We performed calculations for

corresponding phase diagrams, where the configurations for the spin deviations θj

from the plane are given by Boltzmann weights e−βEZ cos θj . This corresponds to

having a Zeeman field EZ polarizing the spins in a perpendicular direction to the

lattice plane, and the spin directions being disordered by thermal fluctuations at

inverse temperature β. At β = 10E−1
Z , the phase diagram stays qualitatively the

same as the ferromagnetic case (Fig. 4.2), and there is minimal change to the critical

density, which diminishes further with increasing system size.

We will give the density in units of some arbitrary reference point ρ0, as an

increase in the density only means that we reduce the distances between the lattice

sites. By a particular choice of this reference density, we can give it a more refined

meaning, on which we elaborate below.

In Fig. 4.2, we have plotted the Bott index for a random lattice with ferromag-

netic spins, as a function of the lattice site density ρ and the onsite energy ε0. For

low densities, the Bott index oscillates between different integers around zero, but

is not non-zero in any larger region of the parameter space. For a different random

configuration, the spots of non-zero Bott index may be in very different locations in

this parameter subspace, and so the conclusion is clear: The topology of this model

is trivial for low densities. When the density becomes larger than the reference

7It is not obvious that interactions between the randomly placed magnetic moments are ferro-

magnetic. For our model system, however, in a large part of the topological region, a ferromagnetic

ordering is favored (see the discussion in Ref. [4]).
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Figure 4.2: Topological phase diagram as a function of the density of lattices sites and the

onsite energy ε0, The calculation was performed for N = 1296 randomly placed adatoms with

ferromagnetic spins for a system of size 36×36. Parameters used are kFa = π/2, ξ = 6 and

λ = 0.2.

point ρ0, the Bott index becomes −1, and stays that way for even larger densities.

Thus the random lattice model clearly has some critical density, above which the

system is in a topologically non-trivial phase.8 For the parameter regions inspected

in this work, no other topological invariants were found, except some fluctuations in

the low-density regime. Note that the critical density is almost independent of the

onsite energy, with minor deviations for non-zero ε0. For different random config-

urations, the deviations may be positioned differently on the ε0-axis, but for these

parameters, the general trend is that this particular ρ0 defines the critical density.

Thus any density higher than that generally leads to the topological phase.

For our purposes, the corresponding energy gap diagram is meaningless, since

it only shows the real minimum energy which, as we have seen, is not representative

of the mobility gap protecting the topological phase. Indeed, the energy gap diagram

includes energies on the order of a few hundredths of the underlying superconducting

gap, even far away from any transition point. In principle, one could create a

8The ρ-axis is just relabeled to make the appearance of this critical density clearer.
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Figure 4.3: Local density of states for a 50 × 50 square lattice of 2500 randomly distributed

ferromagnetic adatom sites, integrated over subgap energies |E| < 0.1∆. The magnitude of the

LDOS is represented through the area of the orange disks, except where the LDOS is negligible,

where the lattice sites are represented with a grey dot. Parameters used are kFa = π/5, ξ = 8 and

λ = 0.2.

mobility gap diagram corresponding to the above phase diagram. However, since

the procedure for finding the mobility gap is done for a single point at a time,

and essentially requires checking every point by hand, this would require significant

amounts of time and large numerical resources. For this treatment, it is enough to

conclude that for a point well in the topological phase, the mobility gap protecting

the phase can be a large fraction of the underlying superconducting gap. In Subsec.

4.2.2, we determined the mobility gap for a fixed point in the topological phase (see

Fig. 4.1). This point corresponds to the point (ρ/ρ0, ε0)≈ (1.5, 0) in Fig. 4.2, and

we found for it a mobility gap of about 0.7, roughly two orders of magnitude higher

than the corresponding energy gap.

Finally, like the one-dimensional impurity chain discussed in the previous sec-

tion, also this model exhibits edge modes whenever the topological invariant attains

non-zero values. In Fig. 4.3, we have plotted the subgap local density of states

(LDOS) in a square lattice with ferromagnetic random lattice sites, in the non-
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trivial phase. The magnitude of the LDOS is substantially higher on the boundaries

of the square lattice, and is in fact negligible in the middle of the lattice, where

each lattice site is represented with a grey dot. This figure shows the emergence of

an edge state enclosing this finite system, as is expected in the topological phase.

Signatures of these edge modes can be observed in standard scanning tunneling

microscopy experiments.

4.4 Discussion

We have already seen that robust topological phases can be hosted by completely

random lattices, which is in stark contrast to the usual starting point of regular

structures for finding non-trivial topology. As we saw in the previous section, this

topological phase persists for high densities independently of the onsite energy ε0.

In fact, for the parameter regions investigated in this work, the non-trivial phase

emerges above some critical density. It is quite remarkable that we can find such a

general feature for realizing topological phases. The procedure for creating random

lattices is thus far easier than many regular lattice models proposed to date. This

could open up new ways of engineering materials used for quantum computing, and

in general allow easier probing of topological phases.

How could we explain what is going on in the random lattice? It seems that

we could change the positions of the lattice sites quite freely, and still retain the

topological phase. One hypothesis for the observed effect is that the underlying

mechanism is reminiscent of percolation theory. In this branch of mathematics, the

main focus of study are random graphs, and in particular connected clusters within

them. When studying percolation theory, one is almost invariably dealing with

critical phenomena. The models are mainly controlled by some natural parameter

which has a critical value, above (below) which the behavior of the system changes

drastically.
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Percolation theory can help quantify the spreading of a strain of flu, depending

on how infectious the flu is, or the spreading of a forest fire, depending on how far

apart the trees are positioned. There is some basic interaction between the individual

constituents, and none of them are solely responsible for the state achieved beyond

the critical point. In the example of a forest fire, there is some probability that a

tree will be “infected” – lit on fire – by a neighboring blighted tree. The problem is

then to determine what distances between the trees will lead to fire being lit on a

significant portion of the trees, or all of them. [33]

In our case, the variable displaying a critical value is the density. Due to the

construction of the model, the particular value of the density is not of importance,

but instead, the mere fact that there exists a critical value is meaningful, and it

supports percolation theory as a viable possibility. It could be that when it comes

to the topological phases of random lattices, there is some fundamental percolation

mechanism at play. The topological phases occur when we have edge modes that

move on the boundary of the lattice. It is certainly a challenge to describe the

problem entirely in terms of percolation theory, since there is no clear way to connect

the interaction of a few lattice sites to a certain state of the system.

Future work may be able to bring a new perspective on the problem of non-

trivial topology in random lattices. Perhaps this will further enhance our abilities

to physically realize topological phases. Further investigation is still needed in order

to justify this approach in terms of percolation theory, so at this level, we are not

left with much more than speculation.



5. Conclusions

This thesis has been concerned with topological superconductivity in two highly

contrasting situations: lattice structures of perfect chains of scalar impurities, and

two-dimensional lattices of complete random character. Actual engineering of the

former is a challenge, as one needs a mechanism for planting potential impurities

on top of a superconducting surface with ideal precision, and indeed any physical

realization will highly depend on the machinery used for its implementation. The

latter case concerns a system that has no crystalline order whatsoever, which opens

up a whole new approach to realizing topological superconductivity, in particular,

one without the need to pay attention to the details of individual constituents.

Ideally, regular deposition methods which are used to produce e.g. thin films could

thus also be used to construct topological matter.

We found that one-dimensional impurity chains placed on the surface of a

p-wave superconductor can host topological excitations at the ends of the chain,

with up to 4 non-trivial topological phases. The work was published in Ref. [3].

We investigated the problem even far away from the deep-dilute regime. This was

achieved by formulating the problem in terms of a non-linear eigenvalue problem, a

method first employed in Ref. [22]. The topological gaps protecting the phases were

found to be a significant fraction of the underlying superconducting gap, promising

good robustness of the phases if the system were to be physically realized. The near-

perfect localization of the MBSs to the ends of the chain may offer easy probing and
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manipulation of the exotic quasiparticle excitations.

In our work on random lattices, we investigated ferromagnetic spins positioned

on a lattice with the coordinates drawn from a uniform distribution. The underlying

model of superconductivity is presented in Ref. [30]. We observed that our model

supports one topologically non-trivial phase, which emerges seemingly only above

a critical density value. As such, we presented the first-ever realistic candidate for

an amorphous topological superconductor, lacking any crystalline order. This could

have many potential applications in future fabrication of topological materials for

use in quantum computers. The very simple and general behavior of the topology

depending on the lattice density gives unprecedented flexibility for the engineering

of topological phases.



Appendix A

Non-linear eigenvalue problem

In Ch. 3, we concerned ourselves with a one-dimensional chain of potential

impurities placed on top of a two-dimensional p-wave superconductor. In this ap-

pendix, we present the explicit expressions left out of the main text, and derive the

relevant equations, with the goal of ultimately obtaining Eq. (3.8).

Our starting point is the Bogoliubov-de Gennes (BdG) Hamiltonian

H = ξkτz + ∆(kxτx − kyτy) + U
∑
i

τzδ(r− ri), (A.1)

where ξk = k2/2m − µ is the kinetic energy of the electrons, µ = k2
F/2m is the

chemical potential, and m is the effective mass of the electrons. The τi are Pauli

matrices acting in the particle-hole space; even though we will not encounter any

other such matrices in this appendix, the Pauli matrices σi found elsewhere in the

thesis act in the spin space. Inserting this into the BdG equation HΨ = EΨ, we

obtain

[E − ξkτz −∆(kxτx − kyτy)] Ψ(r) = U
∑
i

τzδ(r− ri)Ψ(ri) (A.2)

Next we use the two-dimensional Fourier transform:

Ψk =
∫
dre−ik·rΨ(r) ⇐⇒ Ψ(r) =

∫ dk
(2π)2 e

ik·rΨk
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Multiplying Eq. (A.2) by e−ik·r and integrating over dr, we get

[E − ξkτz −∆(kxτx − kyτy)] Ψk = U
∑
j

τz

∫
d2rδ(r− rj)Ψ(rj)e−ik·r

= U
∑
j

e−ik·rjτzΨ(rj)

⇐⇒ Ψk = U
∑
j

e−ik·rj

E − ξkτz −∆(kxτx − kyτy)
τzΨ(rj) (A.3)

Now, going back by multiplying by eik·r and integrating over dk then yields

Ψ(r) = U
∫ dk

(2π)2

∑
j

eik·(r−rj)

E − ξkτz −∆(kxτx − kyτy)
τzΨ(rj). (A.4)

Defining

JE(r) ≡ U

(2π)2

∫
dk [E − ξkτz −∆(kxτx − kyτy)]−1 eik·r, (A.5)

this becomes (evaluated at r = ri)

Ψ(ri) =
∑
j

JE(ri − rj)τzΨ(rj). (A.6)

Separating the term j = i from the sum, we obtain the equation

[1− JE(0)τz] Ψ(ri) =
∑
j 6=i

JE(ri − rj)τzΨ(rj) (A.7)

In anticipation of the final form of the desired matrix equation, we multiply the

BdG equation (A.7) by τz from the left to obtain

[τz − τzJ(0)τz] Ψ(ri) =
∑
j 6=i

τzJ(ri − rj)τzΨ(rj), (A.8)

where moving in the τz is easy due to the properties of the Pauli matrices. Now

for the evaluation of the integral JE(r). We first need to invert the matrix in the

integrand, which is again remarkably facilitated by the anticommutativity of the

Pauli matrices:

(
E + ξkτz + ∆(kxτx − kyτy)

)(
E − ξkτz −∆(kxτx − kyτy)

)
=
(
E2 − ξ2

k −∆2k2
)
12×2



53

and so we can write the integral in the form

JE(r) = U
∫ dk

(2π)2
E + ξkτz + ∆(kxτx − kyτy)

E2 − ξ2
k −∆2k2 eik·r (A.9)

We first note that the integral diverges for r = 0. This is ultimately due to the

limitations of the BCS model as a low-energy theory. As is standard in the field, we

linearize k, assuming it is close to the Fermi level. This is done by expanding ξk to

linear order in (k−kF ): ξk = 0+vF (k−kF )+O(k−kF )2, leading to k ≈ kF +ξk/vF .

We will do this in the integrals throughout this section. For r = 0, the terms with kx

and ky vanish under angular integration, and the remaining terms are independent

of the angle, so we obtain, after linearization,

JE(0) ≈ Uν0

∫ ∞
−∞

dξk
E + ξkτz

E2 − ξ2
k −∆2(ξk/vF + kF )2 , (A.10)

where the density of states ν0 comes from

dk

dξk
=
(
dn

dk

)−1
dn

dξk
≈
(
d

dk

πk2

(2π)2

)−1

ν0 = 2πν0

k
. (A.11)

This integral is readily solved by use of the residue formula, yielding

JE(0) ≈ α√
β

[
∆̃τz − E

]
(A.12)

where α = πν0U , β = ∆2k2
F − γE2 and ∆̃ = ∆2 kF

vF γ
with γ = 1 + ∆2

v2
F
.

For non-zero r, there is now a non-trivial angular part sitting in the term

involving ∆, ∫
dk
E + ξkτz + ∆(kxτx − kyτy)

E2 − ξ2
k −∆2k2 eik·r. (A.13)

We make use of the following integral representation for the Bessel functions J0, J1

of the first kind

J0(x) = 1
2π

∫ 2π

0
dteix cos t J1(x) = −J ′0(x) (A.14)

and so using
∫
dϕikje

ik·r = ∂j
∫
dϕeik·r, the angular integral gives us two Bessel
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functions:

∫
dk
E + ξkτz + ∆(kxτx − kyτy)

E2 − ξ2
k −∆2k2 eik·r =

2π
∫ ∞

0
dkk

(E + ξkτz) J0(kr) + ik∆
r

(xτx − yτy) J1(kr)
E2 − ξ2

k −∆2k2 . (A.15)

After linearization, use of a suitable representation for the Bessel functions brings

the remaining integrals into a form that can readily be solved through residue in-

tegration. Then, using the following representations for the modified Bessel and

Struve functions,

I0(z)− L0(z) = 1
π

∫ π

0
e−z sin tdt (A.16)

I1(z)− L1(z) = 2
π

+ i

π

∫ π

0
eit−z sin tdt, (A.17)

we obtain

JE(x 6= 0) ≈α
[
−E√
β

Re (Φ0) +
( ∆̃√

β
− 1
γ

Im (Φ0)
)
τz

− i∆sgn(x)
γ

( 1
vF

[ 2
π
− Re (Φ1)

]
+ kF√

β
Im (Φ1)

)
τx

]
(A.18)

where we have set y to zero due to the one-dimensional structure of the system, as

in Ch. 3. We have here defined the functions Φn ≡ In(xΩ) − Ln(xΩ), where Ω =
1
γ

(√
β

vF
+ ikF

)
, and In(x) and Ln(x) are the modified Bessel and Struve functions

of the first kind, respectively.

After substituting the obtained expressions for the integrals JE, and grouping

together terms with same prefactors, we finally arrive at

1√
β

(ε− 1)A B

B (ε+ 1)A

Ψ =

C − α−1 D

D α−1 − C

Ψ, (A.19)

where ε = E/∆̃, ΨT = [Ψ(x1)T . . .Ψ(xN)T ] is a 2N×1 spinor. Here we have defined
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the submatrices

Aij = ∆̃[δij + (1− δij) Re Φ0
ij] (A.20)

Bij = i (δij − 1) γ−1∆kF (Im Φ1
ij)
x

r
(A.21)

Cij = (δij − 1) γ−1 Im Φ0
ij (A.22)

Dij = i (1− δij)
∆̃

∆kF

(
2
π
− Re Φ1

ij

) x
r
. (A.23)

Above we use the shorthand x ≡ xij ≡ xi − xj and r ≡ |xij|, and Φn
ij ≡ Φn(xij) for

the special functions. Now, Aij and Cij are real and symmetric under the exchange

i ↔ j, whereas Bij and Dij are antisymmetric, but purely imaginary, so these are

all clearly Hermitian. Thus we have now brought the non-linear eigenvalue equation

into the desired form.
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Appendix B

Solution to the subgap spectrum

In this appendix, we outline the steps only briefly mentioned in Sec. 3.1. As

motivated in the main text, use of a periodic lattice allows us to make analytical

progress by continuing the analysis in reciprocal space. We thus define the Fourier

transforms of the submatrices, given by

ak =
∑
j

Aije
ika(i−j), (B.1)

with analogous expressions for bk, ck, and dk. We could give explicit expressions

for the four coefficients, but they do not simplify meaningfully, and give no further

useful information, so we will stick to the defining identity (B.1). This brings us to

the equation

1√
β

(ε−1)ak bk

bk (ε+1)ak

ψk=

ck−α−1 dk

dk α−1− ck

ψk, (B.2)

the Fourier space equivalent of Eq. (A.19). Note that this equation is valid for all

N values of k; it will suffice to write it for a generic k. Now we can express our

previous eigenvalue equation in a more workable form. Moving everything to the

left hand side, the equation takes the form G−1
k ψk = 0, where

G−1
k =

(ε− 1)ak −
√
β(ck − 1

α
) bk −

√
βdk

bk −
√
βdk (ε+ 1)ak +

√
β(ck − 1

α
)

 . (B.3)
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As with any matrix equation of this form, we seek non-trivial solutions by requiring

that the matrix G−1 be singular; the energy bands can be solved from the condition

det(G−1
k ) = 0 for each k. Now, the energy dependence in the Fourier transformed

coefficients is negligible, as discussed in Sec. 3.1. Thus we will approximate these

coefficients by setting their energy arguments to zero: ak → ãk ≡ limE→0 ak, and so

on. However, we will forego the unnecessary ãk notation, and just keep the notation

as it is with no risk of confusion. There is one more thing to note about the energy

dependence of the above matrix. Incidentally, expanding the determinant det(G−1)

explicitly, we have a cancellation of terms linear in ε, and so we see that the only

energy dependence outside of β is a single term ε2a2
k, which we promptly rewrite in

terms of β = ∆2k2
F − γ∆̃2ε2. The condition det(G−1) = 0 then takes the form of a

quadratic equation in
√
β:

P2β + P1

√
β + P0 = 0, (B.4)

with the coefficients

P0,k = a2
k(1− γv2

F/∆2) + b2
k

P1,k = 2(akc′k − bkdk)

P2,k = a2
k/γ∆̃2 + c′2k + d2

k

where we have defined the shorthand c′k = ck−α−1. The quadratic equation (B.4) is

easily solved for β, but we must note that for each k there will be both a positive and

a negative solution for
√
β, only one of which is sensible for a manifestly non-negative

quantity. Thus the energies E can be extracted as

Ek = ±
√

(∆2k2
F − βk)γ−1. (B.5)

Note how the energy eigenvalues come in pairs ±Ek, which is, of course, to be

expected of a system equipped with PHS. This concludes our treatment of the

momentum space analysis for the non-linear eigenvalue problem and the energy

eigenvalues extracted from it.



Appendix C

Model of topological superconduc-
tivity

In Ch. 4, we briefly introduced a model of topological superconductivity in two

dimensions involving ferromagnetic impurities. Our work on topological phases in

random lattices is based on this model, and in this appendix we supply the details

for it that we previously left out. The model describes a two-dimensional super-

conductor decorated with a 2D lattice of ferromagnetic impurities on its surface,

presented in Refs. [30, 34]. For regular lattices, this model gives rise to a sea of dif-

ferent topological phases, and we apply it to amorphous materials, where the lattice

sites are given at random.

The bulk electrons of the system in question are described by the Bogoliubov-

de Gennes Hamiltonian

Hbulk = ξkτz + αR(σ × k)zτz + ∆τx, (C.1)

where ξk = k2/2m− µ is the kinetic energy of the electrons as before, and µ is the

Fermi energy. αR denotes the Rashba spin-orbit coupling strength, and ∆ stands

for the superconducting pairing amplitude. Similarly to the Hamiltonian used for

the one-dimensional system in Ch. 3, we also have an impurity term Himp in our
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Hamiltonian, so that H = Hbulk +Himp, with

Himp = −J
∑
i

Si · σδ(r− ri). (C.2)

The magnetic adatoms interact with strength J , Si is the spin of the impurity on

site i, and the sum runs over all impurity sites. The delta functions on each lattice

site ri embody the localization of the impurities to fixed sites.

We now define the dimensionless impurity strength α = πJSN , where S = |Si|

is the magnitude of the spins, and N is the spin-averaged density of states. We also

make the simplifying assumption that α ≈ 1, which means that the energy of the

individual Shiba states ε0 = ∆(1 − α) lies close to zero, i.e. close to the center

of the superconducting gap. Moreover, we assume that the lattice constant a for

the impurities is large enough, kFa � 1, so that the impurity band is well within

the gap. In this deep-dilute limit, we can now obtain an effective low-energy tight-

binding Hamiltonian. This is done by similar analysis of the Hamiltonian (C.1),

(C.2) as done in Ch. 3, but also expanding the relevant equations to linear order in

E, that is, in (1− α). The resulting Hamiltonian is given by

Hmn =

 hmn ∆mn

(∆mn)† −h∗mn

 , (C.3)

where hmn and ∆mn are N ×N blocks, whose expressions are given by

hmn =


ε0, m = n

∆
2 [I−

1 (rmn) + I+
1 (rmn)]〈↑m | ↑n〉

+ i
∆
2 [I−

3 (rmn)− I+
3 (rmn)]

[
〈↑m |σx ↑n〉

ymn

rmn
− 〈↑m |σy ↑n〉

xmn

rmn

] , m 6= n
(C.4)

and

∆mn =


0, m = n

−∆
2 [I−

2 (rmn) + I+
2 (rmn)]〈↑m | ↓n〉

− i∆2 [I−
4 (rmn)− I+

4 (rmn)]
[
〈↑m |σx ↓n〉

ymn

rmn
− 〈↑m |σy ↓n〉

xmn

rmn

] , m 6= n
(C.5)

Above, rm = (xm, ym), rmn = |rm − rn| is the distance between two lattice sites

m and n, and likewise xmn = xm − xn and ymn = ym − yn are the corresponding
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coordinate differences. Also, | ↑n〉, | ↓n〉 denote eigenstates of the magnetic moments,

Sm ·σ| ↑n〉 = +|Sm|| ↑n〉, and likewise for | ↓n〉 with the opposite sign, and ε0 is the

onsite energy, which comes from the decoupled impurity energy. The functions I±n

appearing in the expressions for hmn, ∆mn are defined by use of

Î±1 (r) = −Re
[
J0(ζ±r) + iH0(ζ±r)

]
(C.6)

Î±2 (r) = Im
[
J0(ζ±r) + iH0(ζ±r)

]
(C.7)

Î±3 (r) = Im
[
iJ1(ζ±r) +H−1(ζ±r)

]
(C.8)

Î±4 (r) = Re
[
iJ1(ζ±r) +H−1(ζ±r)

]
(C.9)

where ζ± = k±F + i/ξ, the k±F are Fermi wave numbers altered due to SOC, k±F =

(
√

1 + λ2 ∓ λ)kF , where λ = αR/vF is the dimensionless Rashba coupling. The I±n

are related to these auxiliary functions through I±n = (1∓ λ/
√

1 + λ2)Î±n .

We should also mention that in the case of ferromagnetic spins, the spin vectors

Si all point in the same direction, say, Si = Sêz. This leads to most of the brackets

such as 〈↑m | ↓n〉 appearing in expressions (C.4), (C.5) to vanish, and we are left

with a simpler Hamiltonian, consisting of the submatrices

hmn =


ε0, m = n

∆
2

[
I−1 (rmn) + I+

1 (rmn)
]
, m = n

, (C.10)

∆mn =


0, m = n

∆
2

[
I−4 (rmn)− I+

4 (rmn)
]
xmn−iymn

rmn
, m = n

. (C.11)

These are only valid in the case of spins pointing in exactly in the same direction.

Even for spins only nearly polarized in the same direction, these equations become

approximations, and one is forced to use Eqs. (C.4), (C.5) for a more precise anal-

ysis.
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