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ABSTRACT 

Obesity remains a major health problem, partly due to our limited understanding of this complex 
disease. Obesity carries with it the risk of many other diseases including type 2 diabetes, 
cardiovascular disease, hyperlipidemia and some types of cancer. The variability in the disease as 
well as its related comorbidities makes it a complex, multi-factorial condition that is not easily 
categorised and treated. 
 
‘Omics technologies and bioinformatics tools allow for the investigation of the complex biology 
behind obesity. These technologies enable production of complex multivariate datasets that can be 
investigated using bioinformatics tools to identify patterns in the data as well as associations between 
different features of the data. However, while advances in ‘omics technologies have allowed 
production of large amounts of data from biological samples, extraction of useful information from 
the data remains a huge challenge. Choosing the correct methodology and tools to transform 
heterogeneous data into biological knowledge is especially difficult when different methods on the 
same data may yield different results, requiring further statistical or biological validation.  
 
This thesis uses existing bioinformatics tools and methods to first combine and analyse 
transcriptomics and biochemical data and then, separately, metabolomics and biochemical data to 
gain an understanding of obesity. Body mass index (BMI)-discordant as well as BMI-concordant 
monozygotic (MZ) twin pairs were used to investigate the molecular effects of obesity by looking at 
gene expression and metabolite profiles in subcutaneous adipose tissue (SAT) and blood plasma, 
respectively, to gain biological insights into pathways that are associated with obesity and obesity-
related clinical manifestations. The SAT was further interrogated using isolated adipocytes, to 
examine the transcriptomics patterns in obesity of this specific cell type. Using the blood plasma, 
metabolites associating with different cardiometabolic risk factors were also identified. Variations in 
the global profiles were also studied to assess if study participants form different subgroups of obesity 
according to their gene expression or metabolite profiles. Adiposity and blood biochemistry measure 
differences between these obesity subgroups were also examined.  
 
In the first study, using microarray technology and within-twin pair differential analysis, 
downregulation of mitochondria-related pathways and upregulation of inflammation pathways in the 
SAT of heavy compared to lean co-twin within the twin pairs were identified. Because these within-
twin pair differences are not due to genetic effects, these findings represented the effects of acquired 
obesity, pointing to differences in environmental effects (e.g. aspects of diet, exercise and lifestyle) 
between the co-twins. Three subgroups of acquired obesity were identified, each group showing 
distinct within-twin pair differences. Each of these groups represented different profiles of acquired 
obesity, with one group showing benign effects of obesity, the second group showing downregulation 
of mitochondrial functions and the third group showing downregulation of mitochondrial function 
and upregulation of inflammation in the heavy co-twin. The third group also showed significantly 
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higher fasting insulin and larger adipocyte diameter when comparing the heavier to leaner person 
within the twin pairs and hence represented the unhealthiest acquired obesity group compared to the 
other two groups. This study confirms that not all acquired obesities are the same and that identifying 
obesity subgroups and profiling them using clinical traits and gene expression is a feasible means of 
identifying these subgroups. 
 
In the second study, using microarray technology and within-twin pair differential analysis in SAT 
and adipocytes, it was shown that most of the pathways attributed to acquired obesity in the SAT 
originate from the adipocytes. This study also showed that most of these pathways were 
mitochondria-related. 
 
The third study, using mass spectrometry technology and linear regression analysis, investigated 
various adiposity and blood biochemistry measures and their associations with metabolites in the 
plasma. Of all the adiposity and blood biochemistry measures, high-density lipoprotein cholesterol 
(HDL-C) had the strongest association with associating metabolites. This finding highlights that 
(HDL-C)-associating metabolites are highly sensitive to even the smallest changes in HDL-C, making 
HDL-C a suitable measure of early changes in metabolic health. It was also confirmed that measures 
of SAT amount, visceral adipose tissue amount and liver fat percentage associate with metabolites 
that also associate with BMI and body fat percentage making BMI a suitable measure of adiposity. 
Lastly, two groups of people were identified according to their metabolite profiles. Out of the two, 
the unhealthy group showed higher levels of total cholesterol and low-density lipoprotein cholesterol 
(LDL-C). This study showed that metabolite profiles can be used to categorise people into different 
subgroups based on their metabolic health. 
 
All three studies reveal pathways of mitochondrial downregulation and increased inflammation in 
obesity and together link these pathways to findings of insulin resistance, adipocyte size, total 
cholesterol and LDL-C. This research also confirms the variations in gene expression and metabolite 
profiles in obesity and suggests that mapping these profiles may help in fine-characterising obesity. 
This characterisation may pave the way to improved diagnostics and personalised obesity treatment. 
By employing existing bioinformatics methods, it was possible to first explore patterns in the data in 
an unrestrictive hypothesis-free manner in order to identify variations in obesity, and then identify 
the molecular effects of obesity using more targeted data modelling techniques.  
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1. INTRODUCTION 
 
Obesity increases the risk of Type 2 Diabetes Mellitus (T2DM), cardiovascular disease, cancer and 
mortality. However, the inter-individual variation in both obesity and the development of metabolic 
diseases is large. In line with this variation, researchers have identified a range of metabolically 
unhealthy and healthy obese phenotypes (1, 2). While exact definitions differ (3-6), it is generally 
agreed that metabolically unhealthy obese (MUO) people are obese with one or more of the following 
conditions: insulin resistance (IR), lipid disorders, hypertension, and an unfavourable inflammation 
profile (2, 7, 8). The underlying biology behind these different phenotypes remains unclear. 
 
‘Omics technologies and bioinformatics tools provide the means by which to investigate the complex 
biology behind multifactorial diseases like obesity. These technologies allow the production of 
complex multivariate datasets containing, for example, messenger RNA (mRNA), protein and 
metabolite information. Bioinformatics tools are then used to extract the maximum amount of 
information from these complex ‘omics datasets.  
 
Transcriptomics studies allow, for example, the detection of gene expression differences between 
groups, tissues, and time points, as well as different disease stages and treatments. By fitting gene 
expression data in regression models, it is possible to determine if any associations exist between the 
genes in the genome and phenotypes of interest. These associations may extend to a substantial 
number of genes. For easier interpretation of the results, these genes need to be analysed for biological 
relevance and meaning. Hence, gene expression studies are often strengthened using pathway 
analysis. By determining if the genes identified in the analyses are associated with a particular 
biological process, it would be possible to conclude that these biological processes are associated 
with the phenotype of interest. Although many association studies using gene expression data are 
carried out, replicating the results in similar studies remains a challenge, with few hits replicating. 
 
Metabolomics is the study of small molecules that provides an end-point view into metabolism as a 
process. Metabolomics is now actively used to obtain a detailed mechanistic view of the pathology 
of metabolic diseases like obesity in order to identify metabolites as biomarkers for metabolic health. 
Although complex data can refer to any large dataset of multiple variables, in this thesis the term 
‘complex data’ will be used to refer to gene expression and metabolite data that were used in this 
work. 
 
This thesis is comprised of three studies that progressively build towards a deeper understanding of 
obesity. While previous adipose tissue gene expression studies compare obese and lean groups, or 
groups with different clinical health parameters, little is known about whether a hypothesis-free 
transcriptomics analysis can identify distinct groups of individuals by the similarity of their 
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subcutaneous gene expression profiles in obesity and whether these profiles associate with metabolic 
health. Further, the extent of the role of adipocytes in the mitochondrial transcriptomics pathways in 
the subcutaneous adipose tissue (SAT) in obesity has not been studied before. Additionally, because 
most studies focus on older individuals, there is a lack of knowledge about early predictors of 
metabolic health in young, healthy individuals who have not yet developed any strong symptoms that 
can be clinically determined. Lastly, most studies also face the problem of genetic confounding, 
making it difficult to study the effects of acquired obesity.  
 
The studies in this thesis explore the associations between gene expression patterns and metabolite 
levels, and cardiometabolic risk factors by using monozygotic (MZ) twin pairs as: a) co-twins in 
discordance analyses to uncover the gene expression patterns and metabolite profiles associated with 
acquired obesity and b) individuals in metabolite–phenotype association studies. Clustering 
algorithms are employed to find patterns in the transcriptomics and metabolomics data that point to 
distinct subgroups of obesity. The following literature review starts by introducing the biological 
concepts relevant to the findings of the studies in this thesis. The already known disturbances in the 
body caused by obesity are briefly presented. Then, a brief introduction to transcriptomics and 
metabolomics technologies, as well as the various bioinformatics methods available to analyse the 
large datasets used in this thesis is given.  The methods section covers the samples, technology and 
the methods used to analyze the data. The results section details the findings of the three studies. 
Discussion addresses the methodological considerations that were made in order to determine the 
selection of the bioinformatics methods and tools. It also discusses the outcome as a result of choosing 
these methods and tools. The remainder of the discussion discusses the meaning of the findings of all 
three studies. The results of this thesis in light of prior studies are also discussed. In the end, the study 
strengths and limitations are acknowledged and future prospects proposed. 
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2. REVIEW OF THE LITERATURE 
 
This thesis focuses on the molecular (genes and metabolites) aspects of obesity and the use of existing 
bioinformatics methods in studying these molecular elements. The literature review starts with a 
review of the phenotype studied (i.e., obesity) and continues on to introduce the methods used to 
analyse the data.  

2.1. Obesity 
 
Obesity is a condition of excess body fat and widely accepted as exceeding 30kg/m2 in body mass 
index (BMI). Obesity has been associated with several chronic conditions (9) such as cardiovascular 
disease, hypertension, dyslipidaemia, hyperglycaemia (10), T2DM, IR (11, 12), and cancer (13-15) 
as well as an increased risk of premature death (16). Heritability estimates for obesity are high at 
more than 0.70 (17) with both total and regional body fat being highly influenced by genetics (18). 
Single Nucleotide Polymorphisms (SNPs) have been able to explain only about 2% of the variation 
observed in BMI (19). Besides the genetic component to obesity, this complex disorder is also 
influenced by the complex interplay between lifestyle and the environment (20, 21), as well as 
epigenetics, at an interface between genes and the environment (22).  
 
Obesity is mostly associated with an expansion of the adipose tissue which can expand up to more 
than 80% of one’s body weight in obese people (23). The adipose tissue expansion accommodates 
the storage of excess nutrients as triacylglycerol in adipocytes. This expansion, in obesity, often 
brings with it metabolic disturbances caused by disruption to glucose, amino acid (AA) and lipid 
metabolism (24-26).  
 
Figure 1 shows a general overview of the functions of the adipose tissue and changes that occur in 
obesity. These functions and the changes in obesity are covered in further detail in the following 
sections. 
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Figure 1: General overview of adipose tissue and obesity. Excess energy-yielding nutrients that are not used 
for energy production are stored in the various fat depots of the body. Besides being responsible for lipolysis 
and lipogenesis, the adipose tissue is also an endocrine organ that secretes hormones and adipokines. In 
obesity, the adipose tissue undergoes remodelling with increase in number and size of adipocytes.  

2.1.1. Metabolically healthy and unhealthy obesity  
Approximately 10–30% of obese people remain free from the metabolic complications associated 
with obesity, a condition called metabolically healthy obesity (MHO) (Figure 2) (1, 6, 8, 27, 28). 
Symptom-wise, MHO individuals exhibit high levels of insulin sensitivity, low values of low-density 
lipoprotein cholesterol (LDL-C), high values of high-density lipoprotein cholesterol (HDL-C) and 
low values of C-reactive protein (CRP), and they are normotensive (4). Based on 7-years of follow-
up, people with MHO are not at increased risk for cardiovascular disease and all-cause mortality 
compared with healthy non-obese individuals (29-31).  
 
In MUO people (Figure 2), a decreased capacity of adipose tissue to transport glucose and convert 
carbohydrate precursors into triglycerides is associated with adverse effects on metabolic health (32). 
The enlarged adipose tissue shows dysfunction in the mitochondria (21, 33), dysregulated secretion 
of adipokines and increased release of free fatty acids (FFA) (34). The FFAs and pro-inflammatory 
adipokines are transported to metabolic tissues, including skeletal muscle and the liver, and modify 
inflammatory responses as well as glucose and lipid metabolism, thereby contributing to metabolic 
syndrome (34).  
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Figure 2: Profiles of Metabolically Healthy (MHO) and Unhealthy Obese (MUO) people. MHO people show 
high insulin sensitivity and a better lipid profile compared to MUO people. MHO people also store less ectopic 
fat. In the adipose tissue of MUO people, there is dysfunction whereby fatty acid and lipid metabolism is 
affected. There is also more inflammation and an abnormal release of adipokines. HDL-C, high-density 
lipoprotein; LDL-C, low-density lipoprotein 
 

Several underlying reasons may exist for the difference in metabolic health in obese people. One 
reason could be that metabolic health in obesity is influenced by body fat distribution. There is a wide 
range of body fat distribution in both lean and obese adults with some individuals prone to storing 
subcutaneous fat, some prone to storing visceral fat and still others storing fat ectopically for example 
in the liver. While SAT is more protective in nature, an excess of visceral adipose tissue (VAT) 
associates with an increased risk for metabolic complications (35-37). This increased risk has been 
linked to VAT’s production and release of substances that may cause metabolic abnormalities (38, 
39). Individuals with high levels of intrahepatic triglyceride content (>5.5% of liver volume) also 
exhibit adverse metabolic health compared to individuals with normal intrahepatic triglyceride 
content (33, 40).  
 
On a gene expression level, individuals with MHO, in comparison to individuals with MUO, exhibit 
a higher expression of genes involved in glucose uptake, lipogenesis (40, 41), and  lipolysis in both 
VAT and SAT (42). On a metabolite level, circulating amino acids (AA), fatty acids (FA), very-low-
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density lipoprotein (VLDL) and LDL-C particles, and inflammatory markers CRP and interleukin-6 
in MHO individuals is lower than in MUO individuals (43-45).  
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2.1.2. Insulin resistance  
 
Insulin is a hormone that regulates the metabolism of carbohydrates, fats and proteins in the body. 
Insulin stimulates glucose transport, triglyceride synthesis (lipogenesis) and inhibits lipolysis in 
mature adipocytes (46). 
 
When carbohydrates from the diet are digested, glucose is released into the bloodstream, triggering 
the production of insulin. Insulin promotes the absorption of glucose from the blood into adipocytes, 
the liver and skeletal muscle cells (47, 48).  IR is a condition in which there is a diminished ability of 
cells or tissues to respond to normal insulin levels, thereby resulting in a diminished ability of skeletal 
muscles to absorb glucose from the blood and elevated glucose production in the liver (49).  
 
Insulin increases FA uptake from circulating lipoproteins by stimulating lipoprotein lipase activity in 
adipose tissue (46). Hence, increased plasma FFAs concentrations are typically linked to IR and 
T2DM (50-52). When there are available carbohydrates to be oxidised, carbohydrates take 
precedence and the body, via insulin signalling triggered by circulating glucose, supresses the 
oxidisation of FAs. Thus, insulin, which enhances glucose uptake in muscle and adipose tissue, 
inhibits release of FAs in adipose tissue, and increases esterification of FAs in adipose tissue and 
muscle (53).  
 
Adipocytes are highly responsive to insulin (46), with insulin promoting the differentiation of pre-
adipocytes to adipocytes (46). In obesity, adipocyte dysfunction may impair this responsiveness. 
Increased circulating FAs in obesity also impair the glucose FA cycle. Additionally, in obesity, 
increased lipid accumulation in adipocytes, muscle and liver cells, as well as disruption to adipocyte 
function, increase in mitochondrial oxidative stress, inflammation and circulating branched chain 
amino acid (BCAA) levels have all been shown to associate with IR (29, 54-60).  
 
2.1.3. Lipid metabolism 
 
Lipids (triglycerides and cholesterol) are ingested from food or synthesised de novo in the tissues. 
Chylomicrons carry the lipids from the intestine through the bloodstream to the target organs (61). In 
peripheral tissues, FFAs are released from the chylomicrons to be used as energy, converted to 
triglycerides or stored in the target tissues (62, 63). In addition to chylomicrons, the main form in 
which lipids are carried in the plasma is lipoproteins, which are produced by the liver. FFAs can also 
be circulating in the bloodstream bound to albumin (64). The lipoproteins, carrying triglycerides and 
cholesterol, that are produced by the liver are high-density lipoproteins (HDL), low-density 
lipoproteins (LDL), intermediate-density lipoproteins (IDL) or VLDL (65). Triglycerides transported 
in lipoproteins are lipolysed to FFA, which are then taken up by the target tissues (62). Thereby, the 
three main sources of FFA in the peripheral organs are chylomicrons, lipoproteins or FFAs. In the 



  Literature Review
   

Page 8 
 
 
 
 
 

 

lipid-forming tissues, such as the adipose tissue, FFAs are re-esterified to form triglycerides (63). 
Triglycerides can also be synthesised de novo from other carbon sources (carbohydrates and amino 
acids) when excess energy is available (66). 
 
Lipid metabolism is the synthesis (lipogenesis) and degradation (lipolysis/FA oxidation) of lipids in 
cells.  The balance between lipid synthesis and lipid breakdown determines the amount of fat 
accumulation. During lipogenesis, glycerol and acyl-coenzyme A (acyl-CoA) produced in the 
mitochondria are converted to triglycerides/triacylglycerols for storage in the adipocytes. Conversely, 
during lipolysis, triacylglycerols are broken down into FFAs and glycerol for the purpose of energy 
production.  
 
In obesity, lipid metabolism is impaired and there is increased FA release from an expanded fat mass, 
resulting in increased FA concentrations (67, 68). These increased circulating FFAs have been shown 
to inhibit insulin action in peripheral tissues (69, 70) and impair insulin-mediated whole-body and 
hepatic glucose uptake (71). A increased supply of calories also leads to increased triglyceride (TG) 
and VLDL production in the liver, thereby promoting hypertriglyceridaemia (34). 
 
2.1.4. Amino acid metabolism 
 
AA metabolism is the process by which proteins in the diet are first broken down into AAs, then 
absorbed into the bloodstream to form new proteins. Excess AAs are converted by the liver into keto 
acids and urea. The keto acids can be used as an energy source or converted into glucose or lipids for 
storage. Urea is excreted in urine and sweat. During AA metabolism, AAs are degraded into various 
compounds and then ultimately oxidised to release energy. Several metabolite studies have 
consistently shown the association of essential AAs, BCAAs and aromatic amino acids (AAA), with 
obesity (26, 57, 58, 72-75). This section of the literature review will highlight these two types of AAs. 
 
BCAAs have important roles in protein synthesis (76), glucose metabolism and oxidation (77), and 
leptin secretion (78). They are poorly metabolised the first time they pass through the liver (79, 80) 
and thus trigger a signal to the body of the AA content (81). In obesity, increased levels of BCAAs 
have been observed; these levels correlate with both obesity and serum insulin levels (75, 82). 
Accordingly, several studies have identified a downregulation of SAT genes responsible for 
mitochondrial BCAA catabolism in obesity, suggesting that reduced oxidation of BCAAs in tissues 
result in the increase in plasma BCAA levels (21, 33). Newgard et al. (2009) found that BCAAs 
contribute to obesity-related IR and glucose intolerance (58), suggesting a further link between IR 
and the adipose tissue’s capacity to catabolise BCAAs. Twin studies have further confirmed that the 
findings of the association of both BCAA downregulation in tissue and increased circulating BCAAs 
in plasma with obesity are not confounded by shared environment and genetic factors (21, 83).  
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BCAAs can be oxidised in skeletal muscle, whereas other essential AAs are catabolised mainly in the 
liver (79, 84, 85). During adipogenesis (see Section 2.4.1), when mitochondrial mass is elevated, 
leucine catabolism and the expression of enzymes involved in BCAA catabolism is increased (86, 
87). 
 
AAAs include phenylalanine, tryptophan, and histidine, as well as tyrosine which is synthesised from 
phenylalanine. Circulating AAAs have been found to associate with BMI (74, 88) and are suggested 
to be markers of IR development. During AA metabolism (89, 90), AAAs compete with BCAAs for 
transport into cells by large neutral AA transporters (88, 91). 
 
 

2.2. Adipose tissue 
 
The adipose tissue is made of adipocytes, preadipocytes and a variety of other cells including 
fibroblasts, endothelial cells and macrophages (92, 93).  Adipose tissue stores excess energy-yielding 
nutrients as lipids in the form of triacylglycerol; in energy deficit conditions, it supplies energy in the 
form of FAs to other tissues through lipolysis (94). Adipose tissue is also an active endocrine and 
immune organ secreting adipokines, a diverse range of protein factors and signals (92, 95) that 
regulate several metabolic processes in the body. Hence, it follows that adipose tissue plays a role in 
many functions including energy storage and homeostasis, metabolism, insulin secretion, immunity 
and inflammation (96-98). 
  
In lean  (BMI 22–25) people, adipose tissue makes up approximately 20% of total body weight, while 
in obese (BMI > 30) people, adipose tissue makes up almost half of the body weight (92). There are 
two types of adipose tissue in mammals: white and brown adipose tissue. The main function of brown 
adipose tissue is storing lipid droplets for heat production, while white adipose tissue stores excess 
energy as triglycerides and releases them in the form of FFAs.  
 
The adipose tissue is mostly made up of adipocytes. Up to 85% of the weight of adipocytes is made 
of lipids (92). While not the only cell types that contain esterified lipids, adipocytes are unique in the 
quantity of lipids they can store, the rapid release of stored energy in triglycerides, and their collection 
of protein (99). Adipocytes serve as an energy bank with an important role in storage and release of 
FAs (100, 101). Adipocytes also secrete factors that include hormones, cytokines, growth factors and 
play an important role in the regulation of energy balance and insulin sensitivity (102). 
 
Adipocytes are formed from pre-adipocytes during a process called adipogenesis (see Chapter 2.4.1 
below). This process is made up of two phases: a first phase in which the cells are committed to 
triglyceride storage, and a second phase in which the cells grow and become more round due to the 
increase in triglyceride amount (98).  
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The size of adipocytes varies depending on adipose tissue location; adipocyte size associates 
positively with visceral and subcutaneous abdominal fat areas and negatively with lower body fat 
percentage (103). Adipocyte size is also positively associated with, macrophage infiltration, and 
secretion of pro-inflammatory adipokines, contributing to metabolic disturbances (104, 105). 
Adipocytes  are increasingly considered to be directly linked to the pathologies associated with 
obesity (92). While smaller adipocytes respond to insulin by increasing lipid uptake, larger 
adipocytes, as seen in obesity, are less sensitive and insulin resistant (106). 
 
For the remainder of this thesis, all text detailing adipose tissue and adipocytes are in reference to 
only white adipose tissue. Brown adipose tissue is not the subject of this thesis and hence will not 
be discussed any further. 

 
 
2.3. Main fat depots in the body 
 
Adipose tissue is distributed in multiple depots in the body, both subcutaneously and internally, and 
clusters of adipocytes can be found near, or embedded in, other organs such as the lymph nodes and 
skeletal muscle (92). The main fat depots of the human body are the SAT and VAT. SAT is found 
just below the skin while VAT surrounds the inner organs and can be divided into omental, 
mesenteric, retroperitoneal (surrounding the kidney), gonadal (attached to the uterus and ovaries in 
females and epididymis and testes in men) and pericardial adipose tissue (Figure 3). While SAT and 
VAT volume are highly correlated with total body fat (107), they have differences in structure, 
cellular size, and biological function (108).   
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Figure 3: Main fat depots of the body. gonadal (a), mesenteric (b), omental (c), pericardial (d), retroperitoneal 
(e), and SAT (f). 

 

When SAT cannot adequately store triglycerides, ectopic fat accumulation occurs (109, 110). Hence, 
when adiposity increases, fat accumulates in the SAT and VAT, but may also be deposited ectopically 
in individual sites such as the liver. Abnormal accumulation of fat in the liver can cause non-alcoholic 
fatty liver disease (NAFLD) (111-113). The fatty liver, as seen in NAFLD, overproduces glucose, 
VLDL particles, coagulation factors and cytokines, all of which are important in pathological 
cardiometabolic processes (114). Liver fat (LF) has been associated with metabolic syndrome (115, 
116) and when increased in obese people, has been shown to cause continuous release of FFAs into 
the plasma resulting in metabolic disturbances brought on by IR (32). NAFLD can progress to non-
alcoholic steatohepatitis (NASH), whereby, along with fat in the liver, there is inflammation and liver 
cell damage. Chronic inflammation may result in liver fibrosis, where the injured liver tissue is 
abnormally and continuously replaced by fibrotic tissue. Cirrhosis, the most advanced stage of liver 
fibrosis, is caused by the continuous replacement of liver cells by fibrotic tissue, resulting in liver 
damage or complications (117, 118). 

Because fat depots are harder to measure than BMI and total body fat, often the latter two 
measurements are used in adiposity-related studies. Total body fat is a major contributor to metabolic 
health, with specific fat depots having different contributions to metabolic health (119).  
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Many studies have compared SAT, VAT and LF in their associations to metabolic risk factors, 
especially with regards to IR, with contradictory results as to whether they differ in function and 
metabolic activity (38, 40, 107, 120-122). Function-wise, VAT has higher rates of lipolysis than SAT 
(123, 124), thus, when comparing the same amount of VAT and SAT, VAT contributes to an 
increased release of circulating FFAs (37, 125). As a result, VAT has been suggested to be responsible 
for the whole-body IR related to higher FFA flux (37). Additionally, because lipolysis of VAT 
triglycerides drains these FFAs into the portal vein, delivering it to the liver, VAT has been said to 
be more harmful than SAT (39, 126-128), which drains FFAs into the systemic vein. The release of 
FFA from VAT directly into the portal vein and liver, affects glucose (129) and lipid (130) 
metabolism. Compared to SAT and VAT, LF is the most correlated with serum insulin and 
triglycerides, and the association is independent of BMI and the amount of SAT and VAT (131). 
 
While VAT has been suggested to be the most important body fat component for metabolic risk 
factors (38, 121, 123, 132, 133), some studies have pointed to SAT (120) and LF (40) as playing a 
bigger role compared to VAT. Subjects with high LF have impaired insulin action in the liver, adipose 
tissue, and skeletal muscle and increased hepatic Very Low Density Lipoprotein Triglyceride (VLDL-
TG) secretion rates, independent of VAT (40). One study on IR found that deep SAT amount was 
more correlated with IR than superficial SAT or VAT (107), while another found that SAT associated 
just as strongly with IR as VAT with IR (122). 
 
On a gene-expression level, several genes, including those related to inflammation, have been found 
to show depot-related variations (134-137), owing to VAT containing more pro-inflammatory 
immune cells than SAT (138). Additionally, VAT adipocytes have a reduced capacity for lipogenesis 
(139) and a greater capacity for lipolysis than SAT cells (124). Marked hypertrophy of SAT compared 
with VAT adipocytes was observed in obese subjects (140, 141). In morbid obesity, lipogenesis and 
FA oxidation have been shown to be downregulated in SAT, but unchanged in VAT (142). Auguet 
et al. (2014) suggest that in extreme obesity, the presence of SAT but not VAT prevents further 
development of fat mass, thereby decreasing the expression of genes responsible for lipolysis and FA  
oxidation (142). On a metabolite level, SAT and VAT also differ by their metabolite content, with 
VAT displaying higher amounts of AAs, nucleosides, and carbohydrate metabolites than SAT (143). 
SAT, compared to VAT, has higher FFAs (143). These findings are in line with VAT as an active 
endocrine organ and SAT being more active in lipid storage and release (143). 
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2.4. Obesity-related adipose tissue dysfunction 
 
2.4.1. Adipose tissue expansion in obesity 
 
The number of preadipocytes in humans is set during childhood and adolescence and does not 
increase in adulthood (144). From the pool of pre-adipocytes, obese individuals generate significantly 
more adipocytes per year than lean individuals (144). 
 
Two distinct mechanisms can lead to increased adipose tissue size: hyperplasia or hypertrophy. 
Hyperplasia refers to an increase in adipocyte cell number while hypertrophy refers to an increase in 
adipocyte volume (145, 146). Adipocyte hyperplasia requires the recruitment of pre-adipocytes 
present in the vascular stroma of adipose tissue (103), and their proliferation and differentiation 
through a process called adipogenesis. During adipogenesis, extra-cellular matrix (ECM) remodelling 
is also carried out. Along with changes in mitochondrial number and morphology, there is also higher 
oxidative capacity (147, 148), reactive oxygen species (ROS) levels and cell signalling (149) during 
adipogenesis. Adipogenesis has been suggested to be protective against lipid as well as glucose and 
insulin abnormalities in obesity (150). Without the recruitment of pre-adipocytes and subsequent 
adipocyte differentiation, an excess of adipocyte hypertrophy may occur, resulting in insulin-resistant 
adipocytes (151, 152). Excess adipose tissue and adipocyte hypertrophy have both been linked to 
metabolic disturbances, T2DM, hypertension, dyslipidaemia, cardiovascular disease, and a variety of 
cancers (9, 153-155).  
 
2.4.2. Adipocyte mitochondria in obesity 
 
Excess intake of nutrients causes an overload of FFAs, elevated ROS production and a reduction in 
mitochondrial biogenesis, all contributing to mitochondrial dysfunction (156). This dysfunction leads 
to reduced β-oxidation and ATP production and increased ROS production, as well as pro-
inflammatory cytokine production (157) resulting in IR (156). Reduced mitochondrial function in 
obesity is thought to, in turn, impair the mitochondria’s capacity to consume FAs through oxidative 
phosphorylation, leading to an accumulation of triglycerides (158). Reduction of the mitochondrial 
oxidative metabolism in SAT correlates with whole body IR and inflammation (159). Because the 
reduction in oxidative capacity in adipose tissue is similar in obese diabetic versus obese non-diabetic 
patients, it has been suggested that obesity per se impairs mitochondrial function (160). 
 
2.4.3. Adipose tissue inflammation in obesity 
 
Both overweight and obese persons are more likely to have elevated CRP levels (0.22 mg/dL or more) 
than normal-weight people (161), indicating chronic inflammation. This chronic inflammation is 
marked with production of an abnormal amount of adipokines and activation of pro-inflammatory 
signalling (56, 162-164). Inflammation in obesity has been proposed to be due to adipocyte 
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hypertrophy and dysfunction, oxidative stress, toxic lipolysis, and deficient intracellular matrix 
remodelling (165).  
 
As the adipose tissue expands, adipocytes become hypoxic, and an inflammatory response is elicited 
to increase blood flow and to stimulate angiogenesis (166). During early adipose tissue expansion, a 
pro-inflammatory response is activated and the immune response is dominated by anti-inflammatory 
signals (155). Conversely, during chronic obesity, a pro-inflammatory response is triggered by 
adipocyte death, hypoxia, and reduced FA storage capacity in dysfunctional adipocytes (155).  
 
Adipose tissue inflammation is now recognised as an important early event in the development of 
obesity complications, especially T2DM (166-169). Studies have also suggested that the 
inflammatory state may in fact be causal in the development of IR and the other disorders associated 
with obesity, such as hyperlipidaemia and metabolic syndrome (170, 171).  
 
 
2.5. Twin study setting in obesity research 
 
MZ twins share 100% of their genetic polymorphisms as well as some environmental conditions, like 
prenatal and early childhood family environment. However, even MZ twins growing up together have 
experiences that are unique to each twin (i.e. non-shared environment). These differences accumulate 
as the twins grow older and start to live increasingly divergent lives. Twin studies are free from 
genetic and shared environment confounding and highlight environmental effects not common to 
both twins in a pair (e.g. aspects of diet, exercise and lifestyle) as a basis to explain individual 
differences within MZ twin pairs (172).  Comparing the co-twins of a pair to each other, especially 
those discordant for a disease, provides an ideal matched case versus control study. This study setting 
is especially useful when studying environmental effects on a disease or condition. Over the years, 
obesity studies using discordant MZ twin pairs have provided significant insights into acquired 
obesity (i.e., obesity that is due to environmental and not genetic effects) (33, 73, 159, 173-176).  
 
2.6. Transcriptomics  
 
The transcriptome is the entire collection of gene transcripts in a species expressed in a specific cell 
or tissue. Because the genes expressed in different cells and tissues vary, gene expression studies are 
carried out on targeted cells or tissues to ascertain the genes expressed in these specific cells or tissues. 
In this thesis, adipose tissue, adipocytes and plasma blood were used because as obesity develops, 
there are important changes occurring in the adipose tissue and blood. Over the years, transcriptomics 
studies have proven useful in obtaining a biological perspective into gene regulation and gene 
networks (177), comparing tissues and cells (178, 179), classifying sub-types of diseases (180, 181) 
and comparing different developmental stages (182, 183) and different species (184, 185). 
Historically, the study of gene expression has had to rely on technologies like Northern Blots, reverse 
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transcription polymerase chain reaction (PCR), expressed sequence tags (EST) and serial analysis of 
gene expression (SAGE). Various hybridisation- or sequence-based technologies have now been 
developed to identify and quantify the transcriptome. 
 
Sequence-based technology, ribonucleic acid-sequencing (RNA-seq), allows complementary 
deoxyribonucleic acid (cDNA) sequencing on a larger scale (186). This technology allows cDNA 
fragments derived from mRNA to be sequenced in a high throughput manner, resulting in information 
about the transcript structures and levels (amounts) of transcripts (187). Unlike microarray 
technologies, RNA-seq does not rely on prior knowledge of the genome sequence, does not incur 
high background signals from cross-hybridisation (188, 189) and is sensitive enough to detect very 
low and very high amounts of transcripts (187). 
 
Hybridisation-based approaches typically involve incubating fluorescently-labelled cDNA with 
microarrays; the expression of these gene transcripts are then measured based on light intensity (190). 
Hybridisation-based approaches are high throughput and relatively inexpensive compared to 
sequence-based technology (187). Amongst the more widely-used microarray platforms are the 
Affymetrix™ GeneChips, spotted microarrays and Agilent™ microarrays. Spotted microarrays use 
spotted cDNA PCR product probes and measure gene expression as ratios between signal intensities 
from mRNA samples and cDNA (191). These microarrays can be quite noisy due to the various 
processes involved in the experiment (192). Agilent™ microarrays use 60-mer long probes that are 
synthesised in situ on microarray slides (Agilent, Santa Clara, CA, USA). Each of these probes is of 
sufficient length to detect a single gene (193). Both spotted microarrays and Agilent™ microarrays 
use a 2-color scheme, which allows for the interrogation of two samples in the same microarray (193).  
 
In a comparison study conducted by Irizarry et al. (2005), three types of microarrays were compared 
in terms of precision and accuracy. Amongst the Affymetrix™ oligo, 2-color oligo and 2-color cDNA 
microarrays, the Affymetrix™ microarray performed the best (194). The remainder of this section 
concentrates on Affymetrix™ microarrays, which is the technology employed in the study of gene 
expression in this thesis. 
 
Affymetrix™ microarrays utilise short oligonucleotide probes that are of 25-mer length to represent 
areas of interest in the genome (190). An mRNA of interest is usually represented by a probe set made 
of 11-20 probe pairs of these oligonucleotides. Each probe pair is made up of a perfect match and a 
mismatch probe (190). RNA is extracted from samples, labelled with fluorescent dyes, hybridised to 
the arrays, washed and then scanned with a laser (195). Transcripts from the RNA that correspond to 
the oligonucleotide probes will hybridise to these probes. Gene expression is then measured as the 
intensity of light from the fluorescent dyes attached to these sample transcripts (195). The process 
flow is detailed in Figure 4.  
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In order to derive the expression values for each probe set (corresponding to a gene), the probe 
intensities are summarised (196). A popular method of summarising probe information is the log-
scale robust multi-array analysis (RMA) method (197). First, background probe data is removed and 
probe data is normalised across arrays (197). The expression measure is then derived using a log-
scale linear additive model (197). Another popular method for summarising gene expression 
measures is the GeneChip RMA (GC-RMA), which combines a stochastic model algorithm like the 
one used in RMA with physical models that predict mRNA concentrations using the sequence 
information of the probes (198). This model uses the same normalisation and summarisation methods 
as RMA and is more suitable than RMA when gene expression levels are low (198). 
 

 
                      
Figure 4: Affymetrix™ microarray analysis process flow. Affymetrix™ oligonucleotide probes are 25bp long 
and designed to interrogate specific parts of the genome. Labelled RNA is placed on the microarray and 
allowed to hybridise to the probes. Complementary nucleotide sequences between the labelled RNA and probes 
will allow binding of the sample RNA to the probes. Scanning of the microarray provides readings of the light 
intensity indicative of the amount of gene expression. Adapted from 
http://tools.thermofisher.com/content/sfs/brochures/activity2_structure_function.pdf 

 
Affymetrix GeneChips™ eliminate the need to manage cDNA libraries while providing probe 
redundancy whereby multiple probes cover different regions of the same transcript (190). These gene 
chips also have an extensive range with over 50 types of arrays in the GeneChip catalogue (199). The 
downside to the Affymetrix™ microarrays is that shorter oligonucleotides (25-mer in this case) do 
not hybridise as well as longer ones (193). 
 
The Affymetrix™ Human Genome 133 Plus array was used in the studies in this thesis 
(Affymetrix™, Santa Clara, CA, USA). It has probesets representative of sequences taken from 
Genetic Sequence Data Bank (GenBank®), database for "expressed sequence tags" (dbEST) and 
NCBI Reference Sequence Database (RefSeq).  
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2.7. Metabolomics 
 
Metabolomics is the systematic study of small metabolite molecules (<1500 Da) in biological fluids 
(200-203) at a given point in time. Metabolomics provides an integrated profile of metabolism, 
reflecting the net results of genetic and environmental interactions (204, 205).  
 
The human metabolome contains thousands of metabolites (206) including AAs, lipids, organic acids, 
nucleotides, representing a huge challenge to researchers seeking to understand not only the role of 
each of the metabolites but also the interplay between these metabolites in the context of biological 
systems as well as disease. Metabolite distributions are subjected to high temporal and spatial 
variability, and they are influenced by, for example, circadian fluctuations and diet (207, 208). This 
further adds to the complexity of metabolomics studies, requiring researchers to carefully select the 
experimental designs best suited for the study question.  
 
Two key technologies to identify metabolites exist. One is proton nuclear magnetic resonance (1H 
NMR) spectroscopy, another is mass spectrometry (MS). 1H NMR, Gas Chromatography–Mass 
Spectrometry (GC–MS) and Liquid Chromatography–Mass Spectrometry (LC–MS) are well-
established powerful analytical methods for generating metabolomics profiles (209). 
 
In NMR technology, protons and hydrogen ions in molecules are detected based on their magnetic 
properties with different molecules, differentiated using their resulting spectral shapes. The signal 
intensities observed in the magnetic field NMR spectrum are directly proportional to the 
concentration (i.e., molar amount) of that molecule in the sample (210). The advantages of NMR are 
the minimal requirements for sample preparation and preservation of the samples used (207). 
However, this technology identifies only medium to high abundance metabolites.  
 
MS has three components: an ion source, a mass analyser that measures the mass-to-charge ratio 
(m/z) of the ionised analytes, and a detector that quantifies the number of ions at each m/z value 
(211). The MS often requires a liquid or gas chromatography step in order to separate the molecules 
in a sample (212). MS-based techniques usually require a sample preparation step, for example, direct 
injection, liquid–liquid extraction (LLE), solid-phase extraction (SPE) (207). The sample extract 
separates when injected onto a gas chromatograph or liquid chromatograph column (212). Here, the 
ionised metabolites are accelerated and deflected by the magnetic field, with the amount of deflection 
depending on their mass and charge. MS is more sensitive than NMR, but requires a sample 
preparation step, which can destroy the metabolites (207). 
 
Triple quadrupole MS (Figure 5), the technique used in this thesis, consists of two quadrupole mass 
analysers in series, with a (non-mass-resolving) radio frequency (RF)-only quadrupole between them 
as a chamber for collision-induced dissociation. Quadrupole mass analysers use oscillating electrical 
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fields to selectively stabilise or destabilise the paths of ions passing through an RF quadrupole field 
created between 4 parallel rods.  
 

 
Figure 5: Mass spectrometry experiment flow. The first mass analyser allows selection of the targeted 
metabolite, while the second one allows fragmentation of the metabolite. The third one measures the mass per 
charge of the ions produced after the collusion. Adapted from (213) 

 
2.8. Bioinformatics methods in the study of complex data 
 
Bioinformatics methods employ automated, computational data processing to derive meaning from 
biological data. High-dimensional ‘omics data like microarray and metabolite data pose a challenge 
because the number of covariates/features often exceed the sample size (214), complex dependencies 
exist between genes and between metabolites, and the data are non-normally distributed (215). These 
small datasets can introduce data over-fitting, which is when the model fits the data being studied 
well or by chance but does not perform accurately when used on another set of independent data (216, 
217). Common methods to prevent over-fitting include testing the model on a different, independent 
dataset or performing cross-validation using several different partitions of the same dataset to train 
and test the dataset (218) or utilising regularisation methods like least absolute shrinkage and 
selection operator (LASSO) that imposes a penalty on the regression coefficients so that some 
coefficients can be shrunk to zero and subsequently dropped from the regression model (219). 
 
Microarray and metabolite data also suffer from high technical variation in the experiments and high 
levels of noise (220). Additionally, metabolite data is usually right-skewed, those involved in central 
metabolism are usually more constant while those involved in secondary metabolism are more 
susceptible to change depending on the environmental conditions and are prone to fluctuations (220). 
The rest of this chapter covers the data pre-processing and analysis techniques used in this thesis. 
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2.8.1. Data normalisation and transformation 
 
Technical variation in transcriptomics and metabolomics data can be introduced in a variety of ways. 
There can be within-instrument variation (e.g., temperature changes), variations in samples processed 
in different batches (e.g., duration of hybridisation on microarray) and differences introduced by 
human handling (e.g., sample extraction and preparation) (221, 222). Different samples can also have 
differences in the number of cells and concentrations of biofluid (223). These technical variations in 
the samples obscure the interesting biological variations in the data and need to be removed so that, 
as much as possible, only the biological variations remain. 
 
Technical effects can be reduced via data normalisation, leaving all of the samples on the same 
measurement scale (224, 225) and allowing meaningful comparisons to be made between samples or 
conditions in an experiment. This step is usually undertaken after initial quality control (QC) to check 
the quality of the RNA, signal quality of the array, dataset homogeneity as well as comparability 
across the arrays (samples) (226, 227).  
 
In this thesis, I will concentrate on quantile normalisation and rank normalisation, which were 
employed on the gene expression and metabolite data. 
 
Quantile Normalisation 
 
In quantile normalisation, each sample is given the same distribution over features (e.g., gene 
expression levels) (228). Values for each feature within each sample are sorted and a mean quantile 
over all of the samples in the microarray experiment is calculated. Subsequently, the value of the data 
item in the original dataset is substituted with the mean (followed by a re-sort of each sample) (228).  
 
Quantile normalisation may suffer from false negative findings, especially at low expression levels, 
since this normalisation method assumes an equal distribution of expression values, which in turn 
may mask biological changes (196, 198). 
 
Rank normalisation  
 
Rank normalisation is a nonparametric normalisation technique that replaces each observation by its 
fractional rank (the rank divided by the total number of features) in the sample (229, 230). This 
procedure removes noise because it only uses the ordering of the observations (231) and is not overly 
affected by outliers (232). However, using only ranking can result in a loss of information, which is 
particularly harmful in small sample sets (229). Additionally, the rank of features may be the same in 
two samples but the actual gene expression or metabolite quantity may be different (229). Conversely, 
the gene expression or metabolite quantities may be the same across two samples but may be ranked 
differently in the two samples (229).  
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In this thesis, metabolite data was rank transformed to a standard normal distribution with a mean of 
zero and variance of one. Hence, data was scaled using the standard deviation. While several scaling 
methods have been used on metabolite data, range scaling (difference between the maximum and 
minimum concentrations as the scaling factor) and autoscaling (standard deviation as the scaling 
factor) are able to transform the data so that the ranking of the important metabolites do not depend 
heavily on the average concentration and the magnitude of the fold-changes between samples (220, 
223). 
 
2.8.2. Principal Component Analysis 
 
Principal Component Analysis (PCA) is employed in ‘omics data to identify a few combinations of 
features that best explain the total variation in the original dataset. Principal components (PC) are a 
set of vectors in a multidimensional vector space that decreasingly capture the variation seen in data 
points (233). PCA is a dimension reduction technique that finds the directions (PCs) in a 
multidimensional space along which the variation of the data is the maximum. PCA generates PCs 
with the first PC capturing more variation than the second, and so on (234). These PCs act as new 
variables that are linear combinations of the original variables.  
 
PCA is often used as a first step before clustering or classification of samples because PCs are 
uncorrelated and may represent different aspects of samples (234). PCA is a powerful tool to reduce 
the dimension if the data of the subsequent biological question is related to the highest variance in 
the dataset (220). One consideration, though, is to decide how many and which components to use in 
subsequent analyses. Options include using components that correlate with a phenotype of interest 
(235) or using enough components to include most of the variation in the data (236).  Often in 
microarray datasets, most of the variability can be accounted for by a small number of principal 
directions (237). However, the biological significance of these PCs is not directly apparent (238).  
  
 
2.8.3. Data clustering 
 
Clustering is a form of unsupervised learning used to assign similar objects into groups, thereby 
enabling the reduction of complex data and allowing detection of underlying patterns in the data.  

The basic premise is to cluster either the samples or measured features (genes or metabolites in this 
thesis) based on their similarity. In the first instance, samples with similar gene expression or 
metabolite profiles are identified with the collection of gene expression or metabolite concentrations 
acting as features identifying each sample (239). In the second instance, genes or metabolites act as 
objects to be clustered. The purpose here is to identify groups of genes or metabolites acting 
correlatively on the different samples (239). Application to biological data has allowed discovery of 
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groups of co-expressed genes or metabolites, as well as identification of samples with similar 
genome-wide gene or metabolite profiles (240-242). 

Several clustering techniques exist, amongst them are the distance-based techniques (using, for 
example, Manhattan or Euclidian distance). In this thesis, two distance-based techniques are 
discussed: K-means clustering (using a partitioning algorithm) and agglomerative clustering (using 
hierarchical algorithm). Agglomerative clustering starts with each object in its own cluster and 
merges iteratively similar clusters (according to the selected distance measures) until one single 
cluster remains. The results are visualised via dendrograms. In K-means, an initial number of cluster 
(K) objects are assigned and objects are randomly assigned to one of the K clusters. Iteratively, objects 
are moved between clusters and allowed to remain in the new cluster only if they are closer to it than 
to their previous cluster. 
 
Both methods have drawbacks and no consensus has been reached as to which method is better: 
hierarchical clustering tends to give equal consideration to all features including less important genes 
and the number of clusters derived depends on at which level the dendrogram is cut (214). The K-
means clustering requires initialisation and specification of the number of clusters and is sensitive to 
noisy data and outliers (243, 244).  
 
While clustering genes on the basis of samples is straightforward, the clustering of samples on the 
basis of genes or metabolites presents a problem because the number of features exceeds the number 
of samples. Some ways to overcome this problem include reducing the number of genes or 
metabolites used in the analysis through dimension reduction techniques (e.g., factor analysis or PCA) 
(245, 246) and then performing clustering with the reduced dimension. Also, when calculating the 
similarity of samples over a large number of genes or metabolites, the similarity measures are 
averages which ignore subsets of genes that may be more similar to each other across different clusters 
(244). Genes or metabolites can be partitioned into homogenous groups before clustering is carried 
out separately in these groups (244). 

Another option is to provide prior knowledge to the cluster. For example, if there are distinct groups 
of a disease in a dataset, it is possible to provide this information to the K-means clustering algorithm 
so that the number of clusters equals the number of subgroups in the disease. PCA can also be used 
to heuristically determine the number of clusters beforehand.  

Clusters can be validated by bootstrapping or permutation methods (235). Other less computationally-
intensive methods include checking clusters for density (variance in the cluster should be minimal) 
and separation from other clusters or using validity indices, for example, the partition coefficient 
(247). 
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2.8.4. Association analysis using linear mixed modelling 
 
Association studies can be used to find associations between genes or metabolites and traits of interest 
in transcriptomics and metabolomics studies. In this thesis, association analyses were conducted using 
linear mixed modelling to identify metabolite–phenotype associations. 
 
The linear mixed model is an extension of linear regression which allows the modelling of both fixed 
and random effects. The random effects are used to model variables for which there are variations 
between different levels of the variable. For example, measurements taken multiple times from the 
same subject or from siblings are more likely to be more similar than measurements taken from 
another subject and, hence, need to be accounted for in the model. 
 

2.8.5. Differential analysis using moderated t-tests 
 
Differential analysis for complex data tests differences in the data (e.g., gene expression, metabolite 
levels) between groups, between individuals, between different treatments and tissues as well as 
between different time points. Performing t-tests on microarray data is challenging because there are 
limited measurements for each gene. Additionally, while normalisation has been used to reduce 
technical variations, having a small sample size still impacts the ability to detect differentially 
expressed genes (231). The high number of genes also poses a multiple testing problem that can give 
rise to false positives (248). One upside is that genes expressed at similar levels have similar 
variances, and in a Bayesian modelling approach these similarities can be used as prior knowledge to 
estimate variances by borrowing information from genes with similar expression levels (249). Using 
empirical Bayes, the limma package in R-Bioconductor fits a linear model to each row of data (in this 
thesis, gene expression and metabolites) and shares variance information between the gene-wise 
models, increasing the degrees of freedom even when the number of samples is small (224, 250). 
 
Two common methods employed in dealing with the multiple testing problem are the Bonferroni 
Correction and the False Discovery Rate (FDR) adjustment. The Bonferroni Correction works on the 
premise that if the type I error (false positive) rate for a null hypothesis is α, the study-wide error rate 
when n tests are carried out will be α/n. This adjustment implies that interpretations of the null 
hypothesis can differ according to how many tests were performed. (251). While there are several 
ways to implement the FDR adjustment, one commonly used way is the Benjamini Hochberg 
procedure which controls for the expected proportion of falsely rejected hypotheses by ordering all 
the p-values in the experiment in descending order and testing if each p-value is lower than α(k/n), 
where α is the error rate, n is the number of tests and k is 1,2…n. When the largest value for k is 
found, all the p-values calculated up to that point are rejected (252). 
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2.9. Transcriptomics patterns in obesity 
 
Transcriptomics studies on human SAT have revealed upregulation of inflammation (21, 33, 253-
255) and immune response (253, 254), and downregulation of mitochondrial pathways (21, 159, 254), 
insulin-signalling (256) and lipid metabolism (254, 257) in obesity. In a previous twin study, acquired 
obesity resulted in a significant reduction in transcripts responsible for mitochondrial function and an 
increase in inflammatory pathways in subcutaneous fat, a phenomenon that was closely correlated 
with disruption to whole-body insulin sensitivity (21). A list of transcriptomics studies on SAT and 
adipocytes (excluding weight-loss, dietary intervention studies) from the past 10 years on SAT and 
adipocytes can be found in Table 1. Studies investigating IR or T2DM in obesity are not included. 
 

Most of these studies employ differential analysis to determine the differences in groups that have 
been defined according to clinical traits or phenotypes. Common findings across these studies show 
that obesity has consistently been linked to metabolic pathways, inflammation and BCAA-related 
pathways. 

 

Table 1: Previous transcriptomics studies in obesity (excluding weight-loss studies). 

Study design: 
Participants 
Tissue 
Experiment method 
 

Transcriptomics analysis 
methods 

Results References 

Within-pair 
comparison of heavy 
and lean co-twins 
 17 female pairs, 9 

male pairs 
 SAT 
 AffymetrixTM 

U133 Plus 2.0 
chips 

 differential analysis with 
moderated t-tests (limma) 

 pathway analysis 

 mitochondrial 
biogenesis, oxidative 
metabolic pathways, 
and OXPHOS 
proteins in SAT are 
downregulated in 
acquired obesity 

Heinonen et al. (2015) (159) 

Comparison between 
lean, MHO, MUO  
 lean healthy 

individuals: 5 
females, 2 males, 

 metabolically 
healthy 
individuals: 6 
females, 2 males, 

 metabolically 
unhealthy 
individuals: 6 
females, 2 males 

 SAT 

 differential analysis using 
ANOVA 

 pathway analysis 

 genes related to 
branched-chain 
amino acid 
catabolism and 
tricarboxylic acid 
cycle were less 
downregulated in 
metabolically 
healthy obese 
individuals 
compared to 
metabolically 
unhealthy obese 
individuals 

Badoud et al. (2014) (45) 
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Study design: 
Participants 
Tissue 
Experiment method 
 

Transcriptomics analysis 
methods 

Results References 

 AffymetrixTM 
Human Gene 2.1 
ST array 

Within-pair 
comparison of heavy 
and lean 
 BMI-discordant 

twin pairs, 
concordant for 
liver fat, non-
obese: 6 females, 2 
males, obese: 6 
females, 2 males  

 BMI-discordant 
twin pairs, 
discordant for liver 
fat, non-obese: 4 
females, 4 males, 
obese: 4 females, 4 
males 

 BMI-concordant 
pairs: lean: 4 
females, 7 males, 
heavy: 4 females, 
7 males 

 SAT 
 AffymetrixTM 

Human U133 plus 
2 chips 

 differential expression 
analysis using Mann–
Whitney U test 

 pathway analysis 

 maintenance of high 
mitochondrial 
transcription and 
lack of inflammation 
in SAT are 
associated with low 
liver fat and 
metabolically 
healthy obesity 

Naukkarinen et al.  
(2013) (33) 

Comparison of SAT 
and VAT in obese 
people 
 8 obese females 
 SAT vs. VAT  
 AffymetrixTM 

Human U133 plus 
2 chips 

 differential analysis with 
moderated t-tests (limma) 

 pathway analysis 

 22 genes 
differentially 
expressed in SAT vs 
VAT 

Hoggard et al. (2012) (258) 

Comparison of SAT 
in 2 groups differing 
by the presence of 
crown-like structures 
indicating 
inflammation  
 20 female, 16 

male; all obese  
 SAT 
 IlluminaTM 

HumanHT-12 v3 

 differential analysis using 
ANOVA 

 pathway analysis 

 genes involved in 
inflammation and 
response to 
inflammation were 
upregulated in group 
with crown-like 
structures 
(indicating 
macrophages) 

Le et al. (2011) (259) 
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Study design: 
Participants 
Tissue 
Experiment method 
 

Transcriptomics analysis 
methods 

Results References 

expression bead 
chip 

Comparison of lean, 
overweight, obese, 
and obese with 
metabolic syndrome 
 32 women (8 in 

each group) 
 SAT 
 AgilentTM 44k 

whole human 
genome 
microarrays 

 repeated-measures 
ANOVA was used to 
determine group and fat 
depot effects 

 functional analysis using 
Database for Annotation, 
Visualization and 
Integrated Discovery 
(DAVID) 

 lean vs obese with 
metabolic syndrome 
– enrichment for 
genes related to 
branched-chain 
amino acid, fatty 
acid, carbohydrate, 
and mitochondrial 
energy metabolism 

 higher expression of 
genes involved in 
polyunsaturated 
fatty acid 
biosynthesis was a 
characteristic of 
SAT 

Klimcakova et al. (2011) (260) 

Comparison of 
morbidly obese and 
non-obese 
 15 morbidly obese, 

10 non-obese 
controls (all 
women) 

 SAT 
 custom-made 

cDNA Superchip I 
aminopropylsilane 
glass slides for 319 
genes 
(PerkinElmerTM) 

 differential analysis using 
Mann-Whitney U test 

 pathway analysis  

 adipocyte 
differentiation was 
increased in 
morbidly obese 
patients 

 expression of 
PPARᵧ1, a 
transcription factor 
that controls the 
final steps of pre-
adipocyte 
conversion into 
mature adipocytes, 
was reduced 

Rodriguez-Acebes et al. (2010) 
(261) 

Comparison of SAT 
and VAT in obese 
 53 females, 22 

males; all obese  
 SAT vs.VAT  
 IlluminaTM 

HumanHT12 
BeadChips 

 Wilcoxon Mann-Whitney 
U test to identify 
differentially expressed 
genes in SAT and VAT  

 modules of highly co-
expressed genes were 
constructed using pair 
wise average-linkage 
cluster analysis 

 

 3 SAT co-expressed 
gene modules were 
inversely associated 
with plasma HDL-C 
levels 

 1 SAT co-expressed 
gene module was 
inversely associated 
with both plasma 
glucose and plasma 
triglyceride levels 

 these 4 modules  
were enriched in 
immune and 
metabolic genes 

 genes upregulated in 
SAT (not in VAT) 

Wolfs et al. (2010) (262) 
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Study design: 
Participants 
Tissue 
Experiment method 
 

Transcriptomics analysis 
methods 

Results References 

were responsible for 
cell structure and 
vitamin metabolism 

Comparison of lean 
and obese 
 67 females, 3 

males 
 SAT 
 AgilentTM 

microarray 

 differential analysis of 
lean and obese using 
SAM analysis (263)  

 increased amount of 
interstitial fibrosis in 
obese SAT, 
associated with an 
infiltration of 
different types of 
inflammatory cells 

Henegar et al. (2008) (264) 

Comparison of obese 
and non-obese 
 11 non-obese and 

28 obese women 
 SAT 
 custom-made PCR 

amplified cDNA 
microarrays 
(produced at 
Stanford 
University) 

 

 SAM analysis (263) to 
compare obese to non-
obese subjects 

 calculation of correlations 
between overexpressed 
genes in SAT of obese 
subjects and BMI 

 240 genes 
significantly 
overexpressed in 
SAT of obese 

 Cathepsin S (which 
affects vascular 
structure and 
function) was 
significant and 
targeted for further 
analysis 

Taleb et al. (2005) (265) 

Comparison of obese 
and non-obese 
 19 obese (10 

females, 9 males) 
and 20 lean (10 
females, 10 males) 

 SAT adipocyte 
 AffymetrixTM 

Human Genome 
U95 

 differential analysis using 
Mann-Whitney U test 
were used to compare the 
mean expression level for 
each gene between the 
non-obese and obese 
individuals 
 

 inflammation-related 
genes were 
upregulated in obese 
adipocytes 

Lee et al. (2005) (255) 

Only transcriptomics studies on SAT and adipocytes (excluding weight-loss, dietary intervention studies) are 
included in the table. ANOVA, analysis of variance; BMI; body mass index, c-DNA complementary-
deoxyribonucleic acid; HDL-C, high-density lipoprotein cholesterol, IPA®, Ingenuity Pathway Analysis tool, 
MHO, metabolically healthy obese, MUO, metabolically unhealthy obese; OXPHOS, oxidative 
phosphorylation, PCA, principal component analysis; PCR-cDNA, polymerase chain reaction complementary 
DNA; SAM, Significance Analysis of Microarrays, SAT, subcutaneous adipose tissue; VAT, visceral adipose 
tissue 
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2.10. Metabolomics patterns of obesity in plasma 
 
Obesity, because of its effects on the whole body, clearly involves metabolic changes, with 
dysfunction in different tissues and cells, representing a complex picture (177). Research into the 
metabolomics of obesity has seen a wealth of information regarding potential biomarkers. Previous 
studies on obesity consistently implicate BCAAs, acylcarnitines and AAAs (57, 58, 73, 266-269). 
These circulating levels of BCAAs and AAAs (isoleucine, leucine, valine, tyrosine, and 
phenylalanine) have now been shown to predict the risk for future T2DM, a condition closely linked 
to obesity (57, 58, 266, 270). A more comprehensive list of previous obesity-related plasma 
metabolomics studies is presented in Table 2. 
 
Most of these studies employ association or discriminate analysis to determine metabolite–phenotype 
associations and find metabolites that are capable of discriminating between groups of people with 
different clinical phenotypes. Common findings across these studies show that obesity and other 
cardiometabolic risk factors have consistently been associated with BCAAs, AAAs and lipids. 

 
Table 2: Previous metabolomics studies (using plasma and serum) in obesity. 

Study design: 
Participants 
Experiment method 
 

Metabolomics analysis 
methods 

Results References 

Association study of 
metabolite profiles to 
cardio-metabolic 
phenotype 
 2,383 

participants,53% 
women 

 Liquid 
chromatography 
with tandem MS  
also known as 
MS/MS 

 association analysis 
using random effects 
model 

 BMI was associated with 
AAAs and BCAAs 

 There was considerable 
overlap in metabolite 
profiles between BMI, 
abdominal adiposity, 
insulin resistance and 
dyslipidaemia 

Ho et al. (2016) (74) 

Association study of 
BCAA metabolites to 
cardio-metabolic 
phenotype 
 3299 participants; 

all females 
 Ultra-high 

performance liquid 
chromatography 
and gas 
chromatography 
MS platforms 

 association analysis 
using regression 
model - utilised twins 
for within-twin pair 
analyses and as 
individuals 

 BCAA inversely 
associated with insulin 
resistance, inflammation 
and blood pressure 
independent of shared 
genetic and common 
environmental factors 

Jennings et al. (2016) 
(73) 
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Study design: 
Participants 
Experiment method 
 

Metabolomics analysis 
methods 

Results References 

Comparison of 
metabolite patterns in 
obese and non-obese 
 obese (23 females, 

27 males), non-
obese (27 females, 
21 males),   

 1H NMR spectra 

 Spearman’s rank 
correlation for 
correlation analysis 
between metadata and 
BMI 

 Orthogonal partial 
least-squares (OPLS)-
discriminant analysis 
to identify 
characteristic 
metabolites associated 
with lean and obese 
phenotypes 

 metabolites associating 
with obesity included 
sugars, BCAAs, and 
lipids 

 the metabolites 
associating with obesity 
also associated with lower 
HDL-C 

Saeed et al. (2016) 
(271) 

Association study of 
age and adiposity to 
metabolites 
 combination of 6 

studies - 739 
participants: 431 
females, 308 males 

 Tandem MS 

 dimension reduction 
using PCA 

 association analysis 
using multivariable 
models 

 metabolites of lipid and 
amino acid metabolism 
were associated with age 
and BMI 

Kraus et al. (2016) 
(272) 

Comparison of 
metabolite profiles of 
T2DM-high-BMI, 
T2DM-low-BMI and 
non-diabetic-high-
BMI groups as 
compared 
to the control group 
(non-diabetic-low-
BMI) 
 128 non-diabetics, 

17 pre-diabetics, 
165 diabetics with 
each group 
comprised of equal 
numbers of both 
sexes 

 NMR  

 dimension reduction 
using PCA 

 discriminate analysis 
using PLSDA for 
discriminating 
between the groups 

 t-test and ANOVA 
analysis for 
differences in groups 

 19 metabolites correlated 
with T2DM, irrespective 
of BMI 

Gogna et al. (2015) 
(273) 

Association of 
metabolites to BMI 
 300 women 
 liquid 

chromatography 
triple quadrupole 
MS 

 linear regression using 
BMI as a continuous 
variable 

 

 7 metabolites 
significantly associated 
with BMI:  
methyl succinate, 
asparagine, urate, 
kynurenic acid, 

       glycine, glutamic acid,  
and serine 

Zhao et al. (2015) 
(274) 

Association study of 
BMI to metabolites 

 linear regression using 
BMI as a continuous 
variable 

 37 metabolites (including 
19 lipids, 12 amino acids) 

Moore et al. (2014) 
(275) 
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Study design: 
Participants 
Experiment method 
 

Metabolomics analysis 
methods 

Results References 

 386 females, 561 
males 

 ultra-high 
performance 
liquid-phase 
chromatography 
and gas 
chromatography 
coupled with MS 
and tandem MS 

 

significantly associated 
with BMI 

 

Comparison of lean 
and overweight/obese 
men and their 
metabolite profile 
 60 men 
 ultra-performance 

liquid 
chromatography 
and Q-TOF MS 
 

 PLSDA to classify 
overweight from 
obese 

 lyso-phosphatidylcholine  
(C14:0), lyso-
phosphatidylcholine  
(C16:0), and lyso-
phosphatidylcholine  
(C18:1) identified as 
potential plasma markers 
for overweight/obese men  

 abnormal metabolism of 
BCAAs, AAAs, and fatty 
acid synthesis and 
oxidation found in 
overweight/obese men 

Kim et al. (2010)  

Comparison of 
metabolite profiles 
between obese and 
lean (blood serum 
used) 
 obese (52 females, 

22 males), non-
obese (38 females, 
29 males,) 

 Tandem MS  

 dimension reduction 
using PCA to 
consolidate the 
metabolites 

 Wilcoxon rank-sum 
testing to compare 
means of metabolite 
levels between lean 
and obese subjects  

 the obese and lean groups 
differed in levels off 
BCAA, methionine, Glx 
(glutamate/glutamine), 
AAA, and C3 and C5 
acylcarnitines 

Newgard et al. (2009) 
(58) 

Only metabolomics studies on plasma and serum (excluding time-series studies) are included in the table. 1H 
NMR, proton nuclear magnetic resonance; AAA, aromatic amino acid; ANOVA, analysis of variance; BCAA, 
branched chain amino acid; MS, mass spectrometry; PCA, principal component analysis; PLSDA, Partial 
Least Squares Discriminant Analysis; Q-TOF MS, Quadrupole Time-of-flight Mass Spectrometry; T2DM, 
Type2 Diabetes Mellitus 
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3. AIMS OF THE STUDY 
 
The overall aim of this thesis was to study the molecular effects of obesity in SAT and plasma and 
to relate them to cardiometabolic risk factors as ascertained by clinical measurements (adiposity and 
blood biochemistry measures). The specific aims were: 
 

 To study the transcriptional profile of SAT in acquired obesity. (Study I) 
 To determine if transcriptomics patterns in adipose tissue can be used to profile sub-types in 

acquired obesity. (Study I) 
 To investigate the transcriptional profile of isolated adipocytes in acquired obesity. (Study 

II) 
 To identify the blood metabolite patterns that are associated with different phenotypes 

including fat depot measurements and selected cardiometabolic risk factors. (Study III) 
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4. MATERIALS AND METHODS 
 
The materials and methods of the studies covered in this thesis are presented in more detail in each 
of the original publications (I-III) and summarised here. 
 

4.1. Subjects 
 
4.1.1. FinnTwin16 and FinnTwin12 birth cohorts 
 
Study participants were obtained from two population-based longitudinal birth cohorts: FinnTwin12 
and FinnTwin16.  
 
FinnTwin16 (twins born 1975–1979, n=2839 pairs) participants were assessed via five waves of 
questionnaires at ages 16, 17, 18.5 (276), 25 and 30 years (277). These questionnaires collected 
information on eating and smoking habits, anthropometry measures, physical activity, alcohol use 
and various health indicators (276, 277). 
 
FinnTwin12 (twins born 1983–1987, n=2578 pairs) participants were first assessed at 11-12 years old 
with a follow-up at age 14, then at 17.5, with a follow-up at an average age of 24 (276, 277). Use of 
alcohol, smoking habits, lifestyle and age-specific items on health behaviour were assessed (276, 
277).  
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4.1.2. Subjects in this study 
 
From both twin cohorts, all available MZ twin pairs who were discordant for BMI (within-pair BMI 
difference, ∆BMI ≥ 3 kg/m2) according to the last questionnaire were asked to participate in the study, 
and the BMI discordance was confirmed by phone interview. Additionally, BMI-concordant 
(∆BMI<3 kg/m2) twin pairs were selected as controls. Selected twin pairs were invited to the Obesity 
Research Unit at the University of Helsinki for clinical assessment: interviews, body composition 
measurements, blood samples, and adipose tissue biopsies were taken. Altogether 26 BMI-discordant 
and 14 BMI-concordant MZ twin pairs with all data sets available were included in this thesis. In 
addition, 14 of the BMI discordant and 5 of the BMI concordant MZ pairs also had isolated adipocytes 
available for this study. 
 
The twins were healthy, with the exception of one twin with inactive ulcerative colitis (treated with 
mesalazine and azathioprine), and another twin with T2DM (treated with metformin and insulin).  
 
Figure 6 shows a brief description of the study participants.  
 
Study I comprised 26 BMI-discordant MZ twin pairs (males n=9, females n=17 pairs). Within the 26 
twin pairs, the mean BMI difference was 6.0 kg/m2 and mean age was 30.2 years at the time of clinical 
study (278). A subset of these BMI-discordant twin pairs also provided the study subjects for Study 
II. The replication set for Study I consisted of 13 healthy BMI-discordant MZ twin pairs (males n=8, 
females n=5 pairs) who belonged to a previously published study. The mean BMI difference within-
twin pairs was 5.25 kg/m2 and mean age was 25.6 years (279). The dataset for the replication study 
was obtained from https://www.ebi.ac.uk/arrayexpress/.  
 
Study II comprised 5 MZ BMI-concordant twin pairs (males n=1, females n=4 pairs) and 14 MZ 
BMI-discordant twin pairs (males n=3, females n=11 pairs).  
 
Study III comprised 26 BMI-discordant and 14 BMI-concordant MZ twin pairs (males n=36, females 
n=44) (276). The mean BMI was 27.9 kg/m2 and mean age 30.7 years at the time of clinical study. 
Participants from Study I and II are a subset of participants from Study III. 
 

 

 

 

 



  Materials and Methods
   

Page 33 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 6: Study I, II, III participants. Study I, II, III used participants from two Finnish twin cohorts. 
Participants from Study I and II are a subset of participants from Study III. BMI, body mass index, MZ, 
monozygotic; SAT, subcutaneous adipose tissue 
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4.2. Ethical considerations 
 
Written informed consent was obtained from all participants. The study protocol was designed in 
accordance of the principles of the Helsinki Declaration with approval from the Ethics Committee of 
the Helsinki University Central Hospital. The related ethics permissions are Dnro 249/E5/01 and 
Dnro/13/03/01/2008. 
 
4.3. Measures 

 
SAT gene expression and plasma metabolite data were acquired to ascertain molecular-level 
disturbances in the adipose tissue as well as plasma that co-occur with obesity. Clinical measurements 
that include anthropometric, body composition and metabolic clinical measures were obtained. 
Details of food intake, physical activity and smoking status were also recorded.  
 
4.3.1. Blood tests and clinical measurements 
 
Figure 7 below shows all of the blood tests and clinical measures taken from the study subjects. 

 

Figure 7: Phenotype measures. AUC, area under the curve; BMI, body mass index; CRP, C-reactive 
protein; DEXA, dual-energy X-ray absorptiometry; HDL-C, high-density lipoprotein cholesterol; HOMA, 
homeostatic model assessment; LDL-C, low-density lipoprotein cholesterol; LF, liver fat; MRI, magnetic 
resonance imaging; SAT, subcutaneous adipose tissue; TCHOL, total cholesterol; TG, triglycerides; VAT, 
visceral adipose tissue 
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BMI was calculated from height and weight, which were measured from participants in their 
underwear after a 12-hour overnight fast. Dual-energy X-ray absorptiometry (DEXA) (280) provided 
body composition measures including %bodyfat while magnetic resonance imaging (MRI) 
determined the body fat distribution of abdominal SAT and VAT (173). Proton magnetic resonance 
spectroscopy (1H-MRS) ascertained the percentage of LF (173).  
 
Fasting lipids (comprising total cholesterol [TCHOL], HDL-C, LDL-C and TG) and high-sensitivity 
C-reactive protein (hs-CRP) were determined from blood samples. Similarly, measurements of 
glucose and insulin during a 2-h oral glucose tolerance test (OGTT) were taken; HOMA (homeostasis 
model assessment) was calculated from fasting insulin and glucose values while Matsuda was 
computed from the fasting insulin, fasting glucose, insulin area under the curve and glucose area 
under the curve values (278). 
 
The plasma BCAAs (valine, leucine and isoleucine) were measured using a high-throughput NMR 
metabolomics platform (281). Plasma leptin and adiponectin were measured by enzyme-linked 
immunosorbent assay (ELISA) using DuoSet ELISA (R&D Systems Europe Ltd, Abindgon, UK) 
(174). Nutritional intake was recorded using a 3-day food diary, while physical activity was measured 
using Baecke indices (159, 282). Current daily smoking status for the twins was obtained via 
questionnaire.  
 
4.3.2. Subcutaneous adipose tissue and adipocyte gene expression 
 
SAT biopsies were taken after an overnight fast (12-h) via a surgical technique under local anaesthesia 
(159). The RNeasy Lipid Tissue Mini Kit (Qiagen, Venlo, The Netherlands) was used to extract SAT 
RNA (159) which was then treated with DNase I (Qiagen, Venlo, The Netherlands) and hybridised 
to an Affymetrix™ U133 Plus 2.0 microarray (Thermo Fischer, Santa Clara, CA, USA) (33). 
Scanning of the microarray provided light intensity measurements that were then converted into gene 
expression values (190).  
 
QC assessment was done using the simpleaffy and affyPLM packages of Bioconductor to assess the 
quality of the data. Checks addressed the quality of the RNA, signal quality of the array, dataset 
homogeneity as well as comparability across the arrays (samples) (226, 227). In detail, the QC steps 
involved creating different plots to ascertain the quality of the data: 

 RNA Degradation Plot to detect samples that had degraded more than others in the same 
dataset  

 Beta-actin/Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) plot to detect any samples 
that may contain heavily degraded RNA  
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 Perfect Match (PM) intensity plot to detect if any of the arrays had problems in amplification 
or labelling  

 Positive and negative border elements plot to detect dissimilarity that arises either from non-
uniform hybridisation or gridding problems  

 Array–array intensity correlation plot to test data homogeneity  
 Normalised Unscaled Standard Error (NUSE) plot to detect signal variability between probes 

from the same probe set  
 

The gene expression data passing the QC steps (in this case, all) was then used to perform subsequent 
gene expression analyses in Studies I and II. 
 
A piece of fresh adipose tissue was digested in 2% collagenase–Dulbecco's Modified Eagle Medium/ 
Nutrient Mixture F-12 (DMEM/F-12) to isolate adipocytes for further processing (174). Adipocyte 
volume and diameter were measured (using ImageJ) from 200 SAT adipocytes per person, that were 
photographed with a light microscope (283, 284). Adipocytes were also subjected to RNA extraction 
and hybridised to an Affymetrix™ U133 Plus 2.0 microarray (Thermo Fischer, Santa Clara, CA, 
USA) (33), as described above, for further gene expression analysis in Study II. 
 
4.3.3. Plasma metabolite measures 
 
After a 12-h fast, blood samples were taken from participants. Metabolites were extracted from the 
plasma samples using acetonitrile (1:4, sample:solvent) and detected using ACQUITY™ Ultra 
Performance Liquid Chromatography (UPLC)-MS/MS system (Waters Corporation, Milford, MA, 
USA) (285). MassLynx 4.1 software was used for data acquisition, data handling and instrument 
control. Data was processed using TargetLynx software and metabolites quantified using external 
calibration curves. 
 

4.4. Analysis techniques 
 
The analysis techniques and the work flow for Studies I-III are presented in Figures 8-10 below. For 
analysis in R, the version used was R version 3.2.0. 
 
In Study I (Figure 8), SAT was extracted and clinical measurements recorded from 26 BMI-
discordant MZ twin pairs. The mRNA from the SAT were hybridised to Affymetrix™ U133Plus2.0 
GeneChip microarrays. The resulting gene expression data was normalised (package gcrma in R) 
(198), annotated with the Brainarray custom chip description file (CDF) version 18 (286) and 
analysed further. First, differential analysis (moderated t-test with package limma in R) was 
conducted to identify within-twin pair differentially expressed genes. The significant genes (FDR p-
value<0.05) were analysed further using the Ingenuity® Pathway Analysis (IPA®, Qiagen, Venlo, 
The Netherlands) in order to identify the pathways associated with these genes. 
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In Study I, the gene expression ratios (heavy/lean) across all gene transcripts for each twin pair were 
calculated. Because these ratios are calculated for each twin pair, they represented obesity that is 
acquired and not driven by genetics nor shared environmental factors in the co-twins. These ratios of 
gene expression values (one value per pair per gene) were used to perform average-linkage 
hierarchical clustering using squared Euclidean distance (package hclust in R) (287) in order to 
identify which twin pairs grouped together (i.e., had similar gene expression ratio profiles). 
Dendrograms were used to visually inspect the clusters. For each cluster identified, within-twin pair 
differential analysis (moderated t-test with package limma in R) was conducted. The resulting genes 
were analysed with IPA® to 1) identify, in each cluster, pathways which the differentially expressed 
genes belong to and 2) compare the enriched pathways in each cluster against the top 10 pathways 
identified earlier in the 26 twin pairs.  
 
In order to determine if the within-twin pair differences in gene expression in each cluster were 
accompanied by within-twin pair differences in clinical measurements, one-way analysis of variance 
(ANOVA) with Tukey post hoc test in R software was performed for the clinical measurements. Here, 
the differences in clinical measurements within-twin pairs were used and the mean of the differences 
compared across clusters.  
 
The replication dataset was used to verify the cluster analysis results. 
 

 
Figure 8: Analysis flow (Study I). Subcutaneous adipose tissue gene expression was measured using 
microarrays. The gene expression data was then analysed for within-twin pair gene expression differences, 
followed by pathway analysis. The gene expression data was also used to perform clustering of the twin pairs. 
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Resulting clusters were examined for within-twin pair gene expression differences. Pathway analysis was 
conducted for each cluster. Within-twin pair clinical measure differences was compared across the clusters. 
ANOVA, analysis of variance; AUC, area under the curve; AT, adipose tissue; BMI, body mass index; hs-CRP, 
high-sensitivity C-reactive protein; LF, liver fat; VAT, visceral adipose tissue; SAT, subcutaneous adipose 
tissue; LDL-C, low-density lipoprotein; HDL-C, high-density lipoprotein 
 

In Study II (Figure 9), SAT was extracted and clinical measurements recorded from 14 BMI-
discordant MZ twin pairs and 5 BMI-concordant MZ twin pairs. Additionally, adipocytes were 
isolated from the BMI-discordant MZ twin pairs. The mRNA from the SAT and adipocytes were 
hybridised to Affymetrix™ U133Plus2.0 GeneChip microarrays. The resulting gene expression data 
was normalised (package gcrma in R) (198), annotated with the Brainarray CDF version 18 (286) and 
analysed further. First, using the data from the adipocytes, differential analysis (moderated t-test with 
package limma in R) was conducted to identify within-twin pair differentially expressed genes. Using 
FDR p-value<0.05 as a cut-off for significance, the genes were analysed further using the IPA® 
analysis tool in order to identify the pathways associated with these genes. Next, using the data from 
the SAT, differential analysis (moderated t-test with package limma in R) was conducted to identify 
within-twin pair differentially expressed genes; the SAT data from the BMI-discordant twin pairs 
were used as controls. The significant genes (FDR p-value<0.05) were analysed further using the 
IPA® analysis tool in order to identify the pathways associated with these genes. The Pearson 
correlations for these pathways (both SAT and adipocytes-related) with adiposity and clinical 
measures were calculated. Additionally, significantly differentially expressed genes were checked 
against the MitoCarta database to determine which ones were mitochondria-related.  
 

 
Figure 9: Analysis flow (Study II). Subcutaneous adipose tissue and adipocyte gene expression were measured 
using microarrays. The gene expression data was then analysed for within-twin pair gene expression 
differences, followed by pathway analysis. AT, adipose tissue; LF, liver fat; VAT, visceral adipose tissue; SAT, 
subcutaneous adipose tissue; hs-CRP, high-sensitivity C-reactive protein; HOMA, index homeostatic model 
assessment 
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In Study III (Figure 10), 80 MZ twins were studied as individuals. Plasma samples were analysed 
using the Acquity ultra high performance liquid chromatography (UPLC) system coupled to a triple 
quadrupole mass spectrometer. Adiposity and blood biochemistry measures were also recorded for 
each individual. While the previous two studies investigated acquired obesity (owing to non-shared 
environmental factors) by using ∆BMI>3 as the segregating factor between heavy and lean co-twins, 
this study looked at varying adiposity and blood biochemistry measures in order to identify 
associations (owing to both genetic and environmental factors) with circulating metabolites. First, 
associations of metabolites with these adiposity and blood biochemistry measures were identified. 
Then, to see which association were free from genetic and shared environment factors, within-twin 
pair analysis was performed.  

 
Pearson correlations of the 80 individuals were performed using data adjusted for sex, family and 
smoking effects. First, the phenotype data was modelled using a linear mixed model using only sex, 
family and smoking as effects. Then, residual values were obtained for each phenotype. These 
residuals, free from the effects of sex, family and smoking, were used in the Pearson correlation 
calculations. The reason the residuals were used was to ensure the samples were independent, and 
biological effects associated with sex, family and smoking were removed before correlations were 
calculated. 
 
Metabolites with more than 30% missing values across the samples were excluded from further 
processing. Shapiro-Wilk test for normality was conducted on the metabolite data to check for 
normality in the distribution. Metabolite data was rank transformed (package GenABEL in R) (288) 
to a standard normal distribution with a mean of zero and variance of one. The rationale for choosing 
rank transformation to normality was to reduce technical noise (by using rank values instead of 
measured values) and to ensure all the metabolites were on the same scale and hence comparable.  
 
The associations between each phenotype (adiposity and blood biochemistry measures) and each 
metabolite across all individuals (n=80) were calculated using linear mixed model (package lme4 in 
R) regression analysis. This model was chosen so that genetic relatedness within each twin pair could 
be factored in using the random effects part of the model. To prevent overfitting the data, the predictor 
variables in the model were selected using the (LASSO) method (219). Family relatedness, sex, 
smoking, age and batch number were retained as independent variables. Bonferroni p-value<0.05 was 
considered statistically significant.  
 
Because there is no consensus on which cardiometabolic risk factors are more important than the 
others (289), metabolite-phenotype associations were compared to reveal the relative importance of 
each of the phenotypes. For metabolites significantly associated with one or more phenotypes, the 
standardised beta coefficients (in units of standard deviation) were compared to determine which 
associations had stronger effect sizes. Additionally, within-twin pair differential analysis (moderated 
t-test with package limma in R) was performed to determine associations, already identified in the 



  Materials and Methods
   

Page 40 
 
 
 
 
 

 

association analysis using the linear mixed model, that were independent of genetic and shared 
environmental effects. Both regression and moderated t-test models were adjusted for family 
relatedness, sex, smoking, age and experiment batch number.  
 
Lastly, in order to determine whether individuals form separate clusters based on their metabolite 
profiles, K-means clustering was performed. Metabolites were modelled as dependent variables using 
a linear mixed model with only age, sex, family and smoking status, batch number as random effects. 
The residual values for each metabolite in each sample was obtained and now represented metabolite 
concentration values with the effects of age, sex, family and smoking, batch number removed. These 
residual values were dimension reduced using PCA in order to capture the variance in the metabolite 
data while accounting for collinearity between the metabolites. Because the metabolites were rank 
transformed to standard normal before extraction of the residuals, the metabolites did not have 
differing variances; this prevents the variables with the largest variances from dominating the first 
few PCs. Scree plots were produced to show the fraction of total variance in the data as represented 
by each PC. Using enough PCs to capture 80% of the variance in the data, K-means clustering was 
performed in order to cluster the individuals according to their metabolite profiles.  
 
Between-cluster differences were determined using differential analyses (package limma in R) to 
ascertain if metabolite concentrations between the clusters differed significantly. A Bonferroni-
corrected p-value<0.05 was considered significant for the differential analyses. The significantly 
differing metabolites were analysed using IPA® to find pathways associated with these metabolites. 
In order to determine if the differences in metabolite concentration in each cluster were accompanied 
by significant differences in clinical measurements, Welch t-tests were conducted. 
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Figure 10: Analysis flow (Study III). Plasma metabolites were extracted. The quantity of each metabolite was 
measured for each individual. The metabolites and phenotype measures (adiposity and blood biochemistry) 
were then analysed using linear regression analysis as well as within-twin pair differential analysis. The 
metabolite data was also used to perform clustering of the samples. Resulting clusters were examined for 
cluster differences, pathway analysis was conducted for the significantly different metabolites. Phenotype 
measure between clusters were compared. BMI, body mass index; HDL-C, high-density lipoprotein; HOMA, 
index homeostatic model assessment; hs-CRP, high-sensitivity C-reactive protein; LDL-C, low-density 
lipoprotein; LF, liver fat; SAT, subcutaneous adipose tissue; TCHOL, total cholesterol; TG, triglycerides; 
VAT, visceral adipose tissue 

 

 

 

4.5. Analysis methods common to the studies (Study I, II, III) 
 
4.5.1. Linear and linear mixed model analysis (Study I, II, III) 
 
Within-twin pair analysis was performed using the linear model for microarray data (package limma 
in R). Association analysis with the twin individuals was performed using the linear mixed model 
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(package lme4 in R). For the gene expression analysis, significance was set at 0.05 for FDR 
correction. For the metabolite data analysis, significance was set at 0.05 for Bonferroni adjustment. 
 
Analysis details for within-twin pair analysis (Study I, II, III): 
After normalisation of the data, a design matrix (model) (package limma in R) was specified and the 
normalised data fit to it. Family ID was used to identify the twin individuals belonging to the same 
twin pair. A binary value of 1 or 2 denoted the “HeavyLean” status (“1” for the co-twin with the 
smaller BMI and “2” for the co-twin with the higher BMI). 
 
In Study I and II, the gene expression was the dependent variable with HeavyLean status as 
explanatory variable and FamilyID as covariate in the model. In Study III, the metabolite 
concentration was the dependent variable with one of the adiposity or blood biochemistry measures 
as the explanatory variable, and FamilyID and smoking status as covariates in the model.  
 
The gene transcripts/metabolites that had significant associations with the explanatory variable along 
with the fold-changes for the differential expression/concentration were then extracted. 
 
In Study II, the within-twin pair model was first run for the discordant twin pairs and then for the 
concordant twin pairs using the adipocyte data. Genes that were also differentially expressed in 
concordant twin pairs were removed from the final list of genes differentially expressed within the 
BMI-discordant twin pairs. The within-twin pair analysis was repeated for adipose tissue data. 
 
Analysis details for differential analysis in clusters (Study I, Study III): 
After normalisation of the data, a design matrix (model) (package limma in R) was specified and the 
normalised data fit to it. ClusterNo was defined as the unique identifier for each cluster. FamilyID 
was used to identify the twin individuals belonging to the same twin pair. Genetic relatedness within 
each twin pair were calculated using the duplicateCorrelation function in limma. 

 
In Study I, gene expression was the dependent variable with the interaction between ClusterNo and 
HeavyLean status as the explanatory variable, and age, sex, genetic relatedness as the covariates. In 
Study III, metabolite concentration was the dependent variable with age, sex, smoking, experiment 
batch number, ClusterNo and FamilyID as covariates.  
 

   
Analysis details for association analysis (linear mixed model) with twin individuals (Study III): 
After normalisation of the metabolite data, a regression model was created (package lme4 in R) and 
the normalised data fit to it. The outcome variable in this univariate model was the metabolite with 
the phenotype (adiposity or blood biochemistry measure), smoking, experiment batch number, age, 
sex as fixed effects, and the family identifier as the random effect. A binary value of 0 or 1 denoted 
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the smoking status (“0” for non-smokers and “1” for smokers).The regression coefficient for each 
phenotype was then extracted along with the association p-values and Bonferroni adjusted p-values.  
 
4.5.2. Pathway Analysis (Study I, II, III) 
 
For the gene expression data, differentially expressed genes within twin pairs along with the fold-
change and adjusted p-values were uploaded to the IPA® tool. Using the IPA®’s Comparison 
Analysis tool, the genes differentially expressed in each cluster were compared to the original top 10 
differentially expressed pathways within the 26 twin pairs. This was done to see how each cluster 
compares against the original top 10 pathway findings and if any one cluster was driving the original 
top 10 pathways. Each cluster’s pathways were determined using IPA®’s Canonical Pathway 
analysis. A Fisher’s exact test p<0.05 was considered significant.  
 
For metabolite data, metabolites with significantly different concentrations between the clusters were 
examined using the IPA® tool. This was done to find pathways that associated with these metabolites. 
 
4.5.3. Clinical measurements analysis (Study I, II, III) 
 
In Study I and II, the co-twins were identified as “lean” or “heavy” depending on their BMI. In order 
to compare whether the remaining clinical measurements (other than BMI) within-twin pairs were 
significantly different, Wilcoxon signed rank tests in R (chosen because the samples were related) 
were performed.  

For the cluster analysis using the 26 twin pairs, one-way analysis of variance (ANOVA) with Tukey 
post hoc test in R software compared between clusters the mean differences of clinical measures 
within pairs. Histogram plots showed near normal distribution for each clinical phenotype and hence 
the ANOVA test was considered suitable. An adjusted p-value≤0.05 was considered significant.  
 
For the cluster analysis using the 80 twin individuals, means of the clinical measurements were 
compared between clusters using the Welch t-test (package psych in R). This test was considered 
suitable because of the unequal sample size in the two clusters. The data was adjusted for family, sex 
and smoking before comparison of the mean values of each clinical measure. 



  Results
   

Page 44 
 
 
 
 
 

 

5. RESULTS 
 
5.1. Characteristics of the twins (I, II, III) 
 

Detailed characteristics of the twins (n=52 used in Study I, n=38 used in Study II, n=80 used in 
Study III) can be found in each publication. The twins used in each publication were from a set 
of 40 MZ twin pairs composed of altogether 26 BMI-discordant and 14 BMI-concordant twin 
pairs; Study I used 26 BMI-discordant twin pairs from this set, while Study II used 14 BMI-
discordant and 5 BMI-concordant twin pairs.  
 
Characteristics of the whole sample of 40 twin pairs (80 individuals) (Study III), BMI-discordant 
and BMI-concordant pairs (Study I, II) are presented in Table 3. 

 
In the 26 BMI-discordant twin pairs, the lean and heavy co-twins were highly discordant (p-
value<0.0001) for all measures of adiposity (%bodyfat, SAT, VAT, LF, adipocyte volume and 
adipocyte diameter). The heavy co-twins also had higher values of fasting insulin, insulin area 
under the curve (AUC) during OGTT, LDL-C, triacylglycerol, serum hs-CRP, leptin and all 
BCAAs. Additionally, the heavy co-twins had lower values of HDL-C and adiponectin.  In the 5 
BMI-concordant twin pairs, the body composition and metabolic clinical measures were similar. 

 

Table 3: Characteristics of the BMI-discordant and BMI -concordant twin pairs. 

 

80 MZ twin 
individuals 
(mean age = 
30.73 years; 
males n=36, 
females n=44) 
 
Study III 

BMI-discordant pairs BMI-concordant pairs 

(ΔBMI > 3 kg/m², n=26 pairs)  
(mean age = 30.2 years; males n=9, females 

n=17 pairs) 
 
 
 

Study I, II 

(ΔBMI < 3 kg/m², n=5 pairs) 
(mean age = 29.7, males n=1, females n=4 

pair(s)) 
 
 
 

Study II 

Variable  Lean co-twin 
(mean ± SE) 

Heavy co-twin 
(mean ± SE) p-value Lean co-twin 

(mean ± SE) 
Heavy co-twin  
(mean ± SE) p-value 

BMI  
(kg/m²) 27.8±0.6 25.3±0.9 31.3±1.0 <0.0001 28.2±1.9 30.4±1. 0.063 

%bodyfat  34.2±1.1 32.3±1.8 41.1±1.3 <0.0001 35.7±4.85 36.9±4.0 0.63 

SAT (cm³) 4511.3±280.1 3813.7±416.8 6358.9±540.4 <0.0001 4234.5±668.5 4754.7±656.9 0.13 
VAT  
(cm³) 1147.2±113.4 790.2±178.9 1643.7±247.4 <0.0001 782.1±293.6 954.3±356.4 0.19 

Liver fat  
(%) 2.9±0.5 1.12±0.3 4.52±0.9 <0.0001 1.32±0.6 2.6±1.8 0.81 

Adipocyte diameter  
(μm) 85.4±1.9 80.88±2.54 95.02±2.82 <0.0001    
Adipocyte volume  
(pL) 440.8±28.9 355.6±3  547±59  <0.001 389.2±82.9 443.9±66.5 0.08 
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80 MZ twin 
individuals 
(mean age = 
30.73 years; 
males n=36, 
females n=44) 
 
Study III 

BMI-discordant pairs BMI-concordant pairs 

(ΔBMI > 3 kg/m², n=26 pairs)  
(mean age = 30.2 years; males n=9, females 

n=17 pairs) 
 
 
 

Study I, II 

(ΔBMI < 3 kg/m², n=5 pairs) 
(mean age = 29.7, males n=1, females n=4 

pair(s)) 
 
 
 

Study II 

Variable  Lean co-twin 
(mean ± SE) 

Heavy co-twin 
(mean ± SE) p-value Lean co-twin 

(mean ± SE) 
Heavy co-twin  
(mean ± SE) p-value 

 fP-glucose  
(mmol/L) 5.30±0.05 5.1±0.1 5.3±0.1 0.17 5.3±0.24 5.28±0.2 0.85 

AUC Glucose in Oral 
Glucose Tolerance  
Test (mmol/l/h) 

14.34±0.3 14.16±2.7 14.85±2.8 0.35 13.97±1.4 13.49±1.6 0.813 

fS-insulin  
(mU/L) 6.35±0.5 4.9±0.5 8.5±1.2 0.0011 6.06±1.52 6.44±0.7 0.625 

AUC Insulin  
(mU/l/h) 93.06±0.03 87.6±8.0  129.3±24.6 0.031 68.24±18.8 80.05±24.3 0.438 

Total cholesterol  
(mmol/L) 4.5±0.1 4.4±0.2   4.7±0.2 0.14 4.46±0.27 4.7±0.4 0.58 

LDL cholesterol  
(mmol/L) 2.8±0.9 2.6±0.1 3.0±0.2 0.14 2.8±0.07 2.84±0.3 0.99 

HDL cholesterol  
(mmol/L) 1.4±0.04 1.6±0.1  1.3 ± 0.1 0.00040 1.2±0.1 1.34±0.2 0.44 

Triglycerides  
(mmol/L) 1.1±0.08 0.94±0.1 1.32 ± 0.2 0.014 1.09±0.4 1.11±0.4 0.99 

fS-hs-CRP  
(mg/dL) 2.5±0.5 2.6±0.7 4.0 ± 1.1 0.065 0.97±0.4 1.37±0.4    0.44 

fP-Adiponectin  
(ug/mL) 3.1±1.7 2.8±0.3  2.2±0.2  0.0023 3.9±1.4 2.7±4.1 0.13 

fP-Leptin  
(mg/mL) 21.2±2.2 18.9±4.1 34.6±5.5  0.0015 23.8±8.4 25.6±10.4 0.63 

Isoleucine  
(mmol/litre)  0.05±0.01 0.06±0.02 0.033 

 

Leucine  
(mmol/litre) 

 
0.08±0.01 0.09±0.02 0.0094 

 

Valine  
(mmol/litre) 

 
0.19±0.04 0.21±0.04 0.024 

 

Smokers 

 6 out of 26 
individuals (3 
smokers have a 
smoker twin; 3 
smokers have a 
non-smoking 
heavier twin) 

6 out of 26 
individuals (3 
smokers have 
a smoker twin; 
3 smokers 
have a non-
smoking 
leaner twin 

 

1 individual 

Wilcoxon’s rank sum test was used to compare values of the lean versus the heavy co-twin. AUC, area under 
the curve; fP, fasting plasma; fS, fasting serum; HDL, high-density lipoprotein; HOMA, homeostatic model 
assessment; hs-CRP, high-sensitivity C-reactive protein; LDL, low-density lipoprotein; OGTT, oral glucose 
tolerance test; SAT, subcutaneous adipose tissue; SE, standard error; VAT, visceral adipose tissue 
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5.2. Correlations between phenotypes (I, II, III) 
 
5.2.1. Correlation between the phenotype measures  
 

Pearson correlations for the 11 phenotypes (BMI, adiposity measures (%bodyfat, SAT 
volume, VAT volume, %LF), and blood biochemistry measures) are in Figure 11. Amongst 
the measures, the strongest positive correlations were between BMI and SAT (0.94) and 
between total cholesterol and LDL-C (0.91). The strongest negative correlations were 
between VAT and HDL-C (-0.54) and between BMI and HDL-C (-0.50).  

 

Figure 11: Correlations between adiposity and clinical measures.  Pearson correlation analysis was 
performed on phenotype measures from 80 individuals. Residual values from a linear mixed model were used 
to ensure sex and family effects do not influence the correlations. High positive correlations (>0.7) were 
observed between BMI and body composition measures: BMI and %bodyfat, BMI and SAT, BMI and VAT, 
%bodyfat and SAT, SAT and VAT and VAT and LF as well as LDL-C and Cholesterol. %bf, percentage of 
body fat; BMI, body mass index; CRP, C-reactive protein; HDL-C, high-density lipoprotein cholesterol; 



  Results
   

Page 47 
 
 
 
 
 

 

HOMA, homeostatic model assessment; LDL-C, low-density lipoprotein cholesterol; LF, liver fat; SAT, 
subcutaneous adipose tissue; TCHOL, total cholesterol; TG, triglycerides; VAT, visceral adipose tissue 

  



  Results
   

Page 48 
 
 
 
 
 

 

5.3. Subcutaneous adipose tissue gene expression in acquired obesity 
(I) 

 
In this thesis, annotations were first done using the Affymetrix™ HGU133plus2 CDF. Due to the 
availability of custom CDFs that have more recent annotations, the analysis was also conducted using 
Brainarray CDFs. This additional analysis was done for comparison. The analysis using Brainarray 
CDFs yielded more gene transcripts than the Affymetrix™ CDF. However, 30% of the transcripts 
identified in the Affymetrix™ CDF did not exist in the list produced with Brainarray CDF. Pathway 
analysis done on these 30% differing gene transcripts did not yield any biological pathways that made 
sense regarding obesity. Hence, the results from the custom CDFs were retained. 

 
5.3.1. Within-twin pair differences in transcriptomics patterns of SAT  
 
A total of 2108 genes were differentially expressed (FDR p-value<0.05) between heavy and lean co-
twins in the SAT of the 26 twin pairs. Amongst the top 10 (smallest adjusted p-values selected) 
downregulated genes in the heavy co-twins (compared to the lean co-twins) were those involved in 
lipid biosynthesis, lipid and FA metabolism, and cell signalling processes. Amongst the top 10 
upregulated genes in the heavy co-twins (compared to the lean co-twins) were those involved in 
apoptosis and immune response. 
 
Top pathways (Fisher’s exact test p-value<0.05) enriched for genes differentially expressed in the 
SAT of the heavy co-twins compared to the lean co-twins were:  
1. Oxidative Phosphorylation 
2. Valine Degradation I 
3. Mitochondrial Dysfunction  
4. IL-8 Signalling 
5. Triacylglycerol Biosynthesis  
6. Glutaryl-CoA Degradation  
7. Ketogenesis  
8. Ketolysis 
9. Isoleucine Degradation I 
10. Nur77 Signalling in T Lymphocytes 
11. Unfolded Protein Response 
 
The top most significant (Fisher’s exact test p-value<0.05) pathways were mitochondria-related. 
There was lower oxidative phosphorylation (OXPHOS) and mitochondrial function in the heavy co-
twins. The Mitochondrial Dysfunction pathway represents a biological pathway that is activated when 
there is dysfunction of the mitochondria. The Mitochondrial Dysfunction pathway consists of the 
same downregulated genes as in the OXPHOS pathway; additionally, the Mitochondrial Dysfunction 
pathway had upregulated genes GSR and CYB5R3 which have roles in reducing the damage caused 
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by a build-up of mitochondrial oxidative stress. Genes in the Mitochondrial Dysfunction (most of 
which, other than GSR and CYB5R3 that were upregulated, overlapped with OXPHOS) and OXPHOS 
pathways, Valine Degradation I and Isoleucine Degradation I were downregulated in the heavy co-
twins.  
 
Nur77 Signalling in T Lymphocytes (with a role in inflammation) and Unfolded Protein Response 
(linked to endoplasmic reticulum stress) pathways were also enriched (showing both up- and 
downregulated genes) in the heavy co-twins.  
 
5.3.2.  Adipose tissue gene expression profiles in subgroups of the twin pairs (I) 
 
Genome-wide gene expression differences within each twin pair were used in order to ascertain if the 
twin pairs cluster into separate groups. For each gene, each twin pair was represented by a within-
pair gene expression ratio (heavy/lean). This collection of ratios across the genome represented the 
effects of acquired obesity within twin pairs. Based on their expression profiles, the twin pairs formed 
three distinct subgroups (clusters) of acquired obesity. These groups are referred to as Cluster 1, 
Cluster 2 and Cluster 3. Cluster 1 had 2 twin pairs, Cluster 2 had 19 and Cluster 3 had 5. Within the 
twin pairs, Cluster 1 had 413, Cluster 2 had 728, and Cluster 3 had 828 differentially expressed genes 
(FDR p-value<0.05).  
 
Pathways that differed within twin pairs in Cluster 1 (Figure 12a) were enriched for lipid metabolism 
and signalling pathways, but did not reach significance to indicate a clear upregulation or 
downregulation of pathways. Cluster 2 (Figure 12b) showed enrichment for pathways involved in 
mitochondrial function. Both OXPHOS and valine degradation pathways showed downregulation of 
genes in the heavy co-twins of this cluster. Cluster 3 showed significant upregulation (Figure 12c) of 
the inflammation-related pathways and downregulation of valine degradation, a mitochondrial 
pathway, in the heavy co-twins. These cluster findings were also evident in the replication dataset 
(detailed in Chapter 4.1.2) in which three clusters were also found (Figure 13).  
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Figure 12: The top 10 pathways of the subgroups (clusters) based on the within-twin pair differences in gene 
expression. Figure reprinted with the permission obtained from the International Journal of Obesity. 
Differentially expressed genes for each cluster (FDR p-value<0.05, n=274 for Cluster 1, n=728 for Cluster 2, 
n=828 for Cluster 3) were entered into IPA® to produce the pathways. (a) Cluster 1, (b) Cluster 2, and (c) 
Cluster 3. The y-axis displays the -log of p-values, which is calculated by Fisher's exact right-tailed test. A -
log (p-value) of 1.3 is indicative of a p-value of 0.05. The percentage of upregulated (red) and downregulated 
(green) genes in the heavy co-twins in the dataset is represented.  The white blocks represent the genes that 
belong to the pathway according to IPA® analysis but did not reach significance. For some pathways, IPA® 
was able to conclusively provide activation scores: z scores >2 or < 2 are considered significant. For Cluster 
2, IPA® predicted the following pathway to be downregulated: EIF2 Signalling (z=-2.309), and the following 
pathways to be upregulated: mTOR Signalling (z=0.378) and IL-8 Signalling (z=1.414). Mitochondrial 
pathways, oxidative phosphorylation, valine degradation had genes that were downregulated in the heavy co-
twins but did not reach z-score significance. For Cluster 3, IPA® predicted the following pathways in Cluster 
3 to be upregulated: CD28 Signalling in T Helper Cells (z=2.688), TREM1 Signalling (z=4.123), B Cell 
Receptor Signalling (z=3.128), Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses 
(z=4.00), Role of NFAT in regulation of the immune response (z=3.578), and iCOS-iCOSL Signalling in T 
Helper Cells (z=2.309). IPA®, Ingenuity Pathway Analysis 
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Figure 13: Subgroups (clusters) formed in the discovery and replication dataset. Figure reprinted with the 
permission obtained from the International Journal of Obesity. Within-twin pair differentially expressed genes 
for each cluster in each dataset were entered into IPA® to produce the pathways. These pathways were 
compared with the IPA® Comparison Tool. The y-axis displays the -log of p-values, which is calculated by 
Fisher's exact right-tailed test. A -log (p-value) of 1.3 is indicative of a p-value of 0.05. IPA®, Ingenuity 
Pathway Analysis 

Next, the pathways enriched for differentially expressed genes within the 26 twin pairs were re-
examined to determine if they were still enriched in each cluster. This was done to ascertain if any of 
the original pathways were driven by any specific cluster and also to have a baseline against which 
to compare all three clusters. IPA®’s comparison analysis revealed that compared to Cluster 1, the 
other two clusters had more enriched genes (differentially expressed within twin pairs) for these 
pathways (Figure 14).  In Cluster 3, there were more genes (differentially expressed within twin pairs) 
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for Nur77 signalling in T lymphocytes (upregulation of inflammation) and Valine Degradation 
(downregulation of mitochondria) than in Cluster 1 or 2. Additionally, compared to Cluster 1 and 3, 
Cluster 2 had more genes (differentially expressed within twin pairs) belonging to the mitochondrial 
pathways. Compared to Cluster 1 and 2, Cluster 3 had more affected genes for Nur77 signalling in T 
lymphocytes and Valine Degradation pathways. 

 

 

 

Figure 14: Pathways of Clusters 1–3 compared for selected functions. Differentially expressed genes for each 
cluster (FDR p-value<0.05, n=274 for Cluster 1, n=728 for Cluster 2, n=828 for Cluster 3) were entered into 
IPA® to compare the selected pathways. The y-axis displays the -log of p-value which is calculated by Fisher's 
exact right-tailed test. A -log (p-value) of 1.3, marked by the yellow threshold line, is indicative of a p-value 
of 0.05. 
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5.3.3. Associations between cluster pathways and phenotype measures, based on 
the adipose tissue gene expression profile (I) 

 
Overall (Figure 15), Cluster 2 was characterised by mitochondrial dysfunction while Cluster 3 was 
characterised by mitochondrial dysfunction and inflammation in the heavy co-twins. In a comparison 
of all three clusters using adiposity measures and biochemistry measures, differences within-twin 
pairs were larger for Cluster 3 than in Cluster 2 for fasting insulin levels (adjusted p-value =0.041) 
and adipocyte diameter (adjusted p=0.045). 

 

Figure 15: Cluster differences in pathways and clinical measures. The 26 BMI-discordant twin pairs grouped 
into three clusters. The Venn diagram shows the number of genes differentially expressed within the twin pairs. 
Here, no differentially expressed genes are common to all three clusters. The genes differentially expressed 
for each cluster were analysed for the pathways. Cluster 1 (i.e., the “healthy” group (n=2 pairs)) showed 
slight differences within twin pairs in lipid metabolism and cell signalling pathways. Cluster 2 showed 
mitochondrial downregulation and Cluster 3 showed mitochondrial downregulation and higher inflammation 
within twin pairs. A comparison of clinical measures also showed there were significant differences within the 
twin pairs in Cluster 3 for fasting insulin and adipocyte diameters. Heavy refers to the heavier co-twin in a 
pair while lean refers to the leaner co-twin in a pair. 
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5.4. Differential gene expression in adipocytes and subcutaneous 
adipose tissue (II) 

 
5.4.1. Pathways for differentially expressed genes within the BMI-discordant twin 

pairs, in the adipocytes (II) 
 
In order to investigate if the gene expression differences in the adipose tissue of the heavy co-twins 
(compared to the lean co-twins) were similar to the gene expression differences in the adipocytes of 
the heavier co-twins (compared to the lean co-twins), the adipocytes were studied in more detail. Of 
the 26 BMI-discordant twin pairs included in Study I, 14 pairs had isolated adipocytes available. 
Within-twin pair gene expression analysis was conducted for these 14 pairs; differentially expressed 
genes were analysed for pathway enrichment. 2538 genes were differentially expressed within the 
twin pairs (p-value<0.05).  
 
The top pathways (p-value<0.001) enriched for genes differentially expressed in the adipocytes of 
the co-twins were:  
1. Oxidative Phosphorylation 
2. Valine Degradation I 
3. Glucocorticoid Receptor Signalling 
4. IL-8 Signalling 
5. mTOR Signalling 
6. Role of JAK2 in Hormone-Like Cytokine Signalling 
7. Isoleucine Degradation I 
8. Glutaryl-CoA Degradation 
9. NRF2-mediated Oxidative Stress Response 
10. Regulation of eIF4 and p70S6K Signalling 

 
Downregulated pathways in adipocytes of the heavier co-twins compared to the leaner co-twins 
included OXPHOS, glutaryl-CoA degradation, mTOR signalling and BCAA catabolism (valine and 
isoleucine degradation), and the significantly upregulated pathways were glucocorticoid receptor and 
IL-8 signalling. 
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5.4.2. Pathways for within-twin pairs differentially expressed genes in 
subcutaneous adipose tissue and adipocytes (II) 

 
Pearson correlations were calculated in order to explore if the top 10 most significant (p-value<0.01) 
pathways enriched for the genes differentially expressed within twin pairs in the SAT correlated with 
body composition, adipocyte volume, HOMA and CRP measures (Table 4). There were significant 
correlations between body composition measures, adipocyte volume, HOMA and CRP, with most of 
the top 10 pathways including OXPHOS, BCAA Degradation and Glutaryl-CoA Degradation 
pathways. Higher values of the adiposity measures (SAT, VAT, LF, adipocyte volume) as well as 
HOMA and CRP correlated with downregulation of the top 10 pathways. In other words, increased 
adiposity, higher IR and inflammation were related to downregulation of these ten pathways. 
 
Table 4: Pathways differentially enriched between heavy and lean subcutaneous adipose tissue. 

Pathways differentially enriched between heavy and lean adipose tissue 
p-value< 0.01 
(n=38 individual twins) 

Pathways 

Significant correlations between pathways to phenotype (adiposity and 
clinical measures) 
(*p<0.025, **p<0.01 and ***p<0.001) 

SAT VAT LF 
Adipocyte 
volume 

Matsuda 
HOMA hs-CRP 

Oxidative 
Phosphorylation 

-0.49 
* 

-0.74 
*** 

-0.41 
* 

-0.55 
** 

0.48 
** 

 
-0.44 

* 
Valine Degradation I -0.63 

*** 
-0.77 

*** 
-0.61 

*** 
-0.74 

** 
0.63 
*** 

-0.56 
** 

-0.41 
* 

Triacylglycerol 
Biosynthesis 

  -0.59 
*** 

-0.52 
** 

       

Glutaryl-CoA 
Degradation 

-0.68 
** 

-0.77 
*** 

-0.56 
*** 

-0.74 
*** 

0.63 
*** 

-0.49 
** 

-0.39 
* 

Ethanol Degradation 
II 

-0.63 
*** 

-0.79 
*** 

-0.55 
*** 

-0.65 
*** 

0.53 
*** 

-0.47 
*** 

Ketogenesis -0.66 
*** 

-0.73 
*** 

-0.58 
*** 

-0.75 
*** 

0.58 
** 

-0.47 
** 

 

Ketolysis -0.65 
*** 

-0.68 
*** 

-0.57 
*** 

-0.73 
*** 

0.58 
** 

-0.48 
** 

 

Lysine Degradation II  -0.51 
** 

-0.72 
*** 

-0.51 
** 

-0.6 
*** 

0.60 
*** 

-0.56 
** 

-0.52 
** 

Acetate Conversion to 
Acetyl-CoA  

-0.56 
** 

-0.64 
** 

-0.49 
** 

-0.54 
* 

0.44 
* 

-0.35 
* 

 

Fatty Acid β-oxidation 
I  

-0.62 
*** 

-0.76 
*** 

-0.54 
*** 

-0.69 
*** 

0.56 
*** 

-0.44 
** 

-0.35 
* 

Pathways were identified in the within-twin pair analysis. Pearson correlations of these pathways with 
adiposity and clinical measures were calculated in individuals. Table contains summarised information from 
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Supplementary Table 3 of Article II. Pathways produced using the IPA® tool. HOMA, homeostatic model 
assessment; hs-CRP, high-sensitivity C-reactive protein; LF, liver fat; SAT, subcutaneous adipose tissue; VAT, 
visceral adipose tissue 
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Pearson correlations were also calculated, this time for the adipocyte data, in order to explore if the 
top 10 (according to p-value) pathways enriched for the genes differentially expressed within twin 
pairs in adipocytes correlated with body composition, adipocyte volume, HOMA and CRP measures 
(Table 5). There were significant correlations between body composition measures, adipocyte 
volume, HOMA with OXPHOS, BCAA degradation and glutaryl-CoA degradation pathways.  
 
Table 5: Correlations between pathways differentially expressed within twin pairs (for adipocyte data) with 
phenotype. 

 Pathways differentially enriched between heavy and lean adipocytes 
p-value< 0.01 
 

Pathways  Significant correlations between pathways to phenotype (adiposity 
and clinical measures) (n=38 individual twins) 
(*p<0.025, **p<0.01 and ***p<0.001) 

SAT VAT LF 
Adipocyte 
volume 

 
Matsuda HOMA hs-CRP 

Oxidative Phosphorylation  -0.70 
*** 

-0.55 
** 

 0.61**   

Valine Degradation I -0.48 
* 

-0.66 
*** 

-0.61 
*** 

 0.68*** -
0.54** 

-0.46 
* 

Glucocorticoid Receptor 
Signalling 

  0.67 
*** 

0.58 
** 

  -0.61**    0.49 
* 

IL-8 Signalling 0.61 
** 

0.84 
*** 

0.64 
*** 

0.59 
* 

-0.70*** 0.54 
** 

-0.57 
* 

mTOR Signalling -0.42 
** 

-0.46 
** 

-0.41 
* 

-0.51 
** 

0.39*   

Role of JAK2 in Hormone-
Like Cytokine Signalling 

       

Isoleucine Degradation I  -0.62 
** 

-0.62 
** 

 0.65*** -0.52 
** 

 

Glutaryl-CoA Degradation -0.54 
** 

-0.72 
*** 

-0.65 
*** 

-0.66 
** 

0.70*** -0.55 
** 

 

NRF2-mediated Oxidative 
Stress Response 

       

Regulation of eIF4 and 
p70S6K Signalling 

       

Pathways were identified in the within-twin pair analysis. Pearson correlations of these pathways with 
adiposity and clinical measures were calculated in individuals. Table contains summarised information from 
Table 5 of Article II. Pathways produced using the Ingenuity Pathway analysis tool. HOMA, homeostatic 
model assessment; hs-CRP, high-sensitivity C-reactive protein; LF, liver fat; SAT, subcutaneous adipose 
tissue; VAT, visceral adipose tissue 
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5.5. Plasma Metabolites (III) 
 
In Study I and II, within-twin pair differences in the gene expression of the heavy co-twin in 
comparison to the lean co-twin were analysed. These studies utilised linear association analysis to 
reveal how these gene expression differences associated with the differences in within-twin pair BMI 
values. In Study III, the aim was to study the relationships between metabolites and phenotypes 
(adiposity and blood biochemistry measures) in all available twin pairs, disregarding their within-
twin pair discordance or concordance for BMI. Study III also investigated the effect sizes of these 
metabolite–phenotype relationships (i.e., how much change there is in metabolite concentration 
values for every one unit of change in the phenotype measure). 
 
5.5.1. Significant metabolite-phenotype associations (III) 
 
In order to determine associations between metabolites and different phenotypes (adiposity and blood 
biochemistry measures), linear regression analysis was conducted. Overall, there were 25 metabolite–
phenotype associations (Bonferroni corrected p-value<0.05) involving 12 metabolites and 7 
phenotypes (Table 6, Table 7). HDL-C, followed by BMI, associated with the most number of 
metabolites in the plasma. 
 
Metabolites associating with adiposity measures were mostly AAs followed by acylcarnitines. 
Metabolites associating with %body fat also associated with BMI; however, associations with BMI 
were stronger. SAT, VAT, and LF associated with metabolites that also associated with BMI. 
Amongst the blood biochemistry measures, only TG and HDL-C associated with one or more of the 
metabolites. HDL-C associated with the most number of metabolites; some of these metabolites also 
associated with other phenotypes (both adiposity and blood biochemistry measures), but the strength 
of the association with HDL-C was always higher. HDL-C also associated with the most number of 
metabolites not associated with any other measure. 
 
Table 6: Metabolites associating with adiposity measures in individuals and within-twin pairs. 

 Metabolites 
significantly 
associating with 
phenotype in 
individual twins 

Metabolites with 
concentrations that 
are significantly 
different  
within twin pairs 

Metabolite 
Category 

BMI 
1 Valine 

 
Valine 
 

Amino acids and 
derivatives 

2 Tyrosine 
 

Tyrosine 
 

Amino acids and 
derivatives 

3 Aspartate Aspartate Amino acids and 
derivatives 
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 Metabolites 
significantly 
associating with 
phenotype in 
individual twins 

Metabolites with 
concentrations that 
are significantly 
different  
within twin pairs 

Metabolite 
Category 

4 Cysteine 
 - Amino acids and 

derivatives 
5 Propionylcarnitine Propionylcarnitine Acylcarnitines 
6 Deoxycytidine Deoxycytidine Nucleosides 
%bodyfat 
1 Aspartate Aspartate Amino acids and 

derivatives 
2 Propionylcarnitine Propionylcarnitine Acylcarnitines 
SAT 
1 Aspartate Aspartate Amino acids and 

derivatives 
2 Propionylcarnitine Propionylcarnitine Acylcarnitines 
3 Deoxycytidine Deoxycytidine Nucleosides 
VAT 
1 Aspartate Aspartate Amino acids and 

derivatives 
2 Propionylcarnitine Propionylcarnitine Acylcarnitines  
LF 
1 Aspartate Aspartate Amino acids and 

derivatives 
Significant associations with metabolites were found for all adiposity measures. Out of all significant 
metabolite–phenotype associations, except for the cysteine–BMI association, all other metabolites associated 
with the phenotypes in the table, independent of genetic factors. BMI, body mass index; LF, liver fat; SAT, 
subcutaneous adipose tissue, VAT, visceral adipose tissue 

 

Table 7: Metabolites associating with blood biochemistry measures in individuals and within twin pairs. 

 Metabolites 
significantly 
associating with 
phenotype in 
individual twins 

Metabolites with levels 
that are significantly 
different within- twin 
pairs 

 

 HDL-C 
1 Tyrosine 

 
Tyrosine 
 

Amino acids and 
derivatives 

2 Alanine 
 

Alanine 
 

Amino acids and 
derivatives 

3 Citrulline 
 

Citrulline 
 

Amino acids and 
derivatives 



  Results
   

Page 60 
 
 
 
 
 

 

 Metabolites 
significantly 
associating with 
phenotype in 
individual twins 

Metabolites with levels 
that are significantly 
different within- twin 
pairs 

 

4 Phenylalanine 
 

Phenylalanine 
 

Amino acids and 
derivatives 

5 L-Kynurenine L-Kynurenine Amino acids and 
derivatives 

6 Propionylcarnitine Propionylcarnitine Acylcarnitines 
7 Kynurenic Acid - Urea cycle 

intermediates 
8 Deoxycytidine - Nucleosides 
9 Phosphoethanolamine 

 - Ethanolamines 
 

TG 
1 Aspartate 

 
Aspartate 
 

Amino acids and 
derivatives 

2 S-Adenosyl-L-
Homocysteine - Amino acids and 

derivatives 
Out of all significant metabolite–(HDL-C) associations, except for kynurenic acid, deoxycytidine and 
phosphoethanolamine, all other metabolites correlated with HDL, independent of genetic factors. For 
all significant metabolite–TG associations, except for S-Adenosyl-L-Homocysteine, all other 
metabolites correlated with TG, independent of genetic factors. No significant associations were found 
for HOMA, Total Cholesterol, LDL-C and CRP. HDL-C, high-density lipoprotein cholesterol; TG, 
triglycerides 

 
5.5.2. Metabolite–phenotype associations confounding from shared factors in twins 

(III)  
 
To ascertain if any of the metabolite-phenotype relationships already established in the linear 
regression were independent of shared genetic and familial factors, within-twin pair analysis was 
carried out. For significant within-twin pair differences, there were differences in within-twin pair 
values of phenotype measures that significantly associated with metabolite concentration differences 
within-twin pairs. The results for the within-pair analyses are summarised in Table 6 and Table 7. 
Out of all significant metabolite–BMI associations in the individual twins, all metabolites except for 
cysteine remained associated with BMI within the pairs (i.e., independent of genetic factors). Because 
MZ co-twins are genetically identical, significant within-pair differences in metabolite levels would 
rule out shared genetics or environment and point to environmental factors for which the twin pair is 
discordant. Amongst the blood biochemistry measures, six out of nine associations with HDL-C and 
one out of two associations with TG remained free of confounding from genetic and shared 
environmental factors.  
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5.5.3. Shared and unique associations for metabolites with different phenotypes (III) 
 
The associations identified were compared across the phenotypes to identify shared and unique 
associations. Four metabolites (tyrosine, propionylcarnitine, deoxycytidine and aspartate) were 
significantly associated with two or more phenotypes (Figure 16a). BMI, HDL-C and TG showed 
associations with metabolites not associating with any other phenotype (Figure 16b).  

a b 

 

 

 
Figure 16: Metabolite-phenotype associations. a) Metabolites associating with BMI, adiposity and blood 
biochemistry measures. Metabolites that associate with one or more phenotype are shown in the heatmap. 
Only significant Bonferroni-corrected significant associations p-value<0.05) are shown. If these associations 
are free from genetic confounding, the cell is marked with a hash (#) symbol. All effect sizes of the metabolite–
phenotype associations have been transformed to be on the same scale (values between -1 and 1) and are 
comparable. b) BMI, HDL and TG showed associations with metabolites that did not associate with any other 
phenotype. Beta coefficients show the effect size/strength of the associations. BMI, body mass index; HDL-C, 
high-density lipoprotein cholesterol; LF, liver fat; SAT, subcutaneous adipose tissue; TG, triglycerides; VAT, 
visceral adipose tissue. Images reproduced from manuscript #3 
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5.5.4. Effect size comparisons in metabolite-phenotype associations (III) 
 
For metabolites associating with HDL-C that also associated with another phenotype, the effect size 
of the metabolite-(HDL-C) relationship (compared on the same scale with other phenotype) was 
always the highest, except for propionylcarnitine (Table 8). 
 

Table 8: Comparison of effect sizes (compared on the same scale i.e., standardised beta coefficients) of 
metabolites which associate with HDL-C that also associate with other metabolites 

Phenotype BMI %bodyfat SAT VAT LF HOMA TCHOL 
LDL
-C 

HDL 
-C TG CRP 

Alanine 0.05    0.31    -0.44 
0.2

9  
Citrulline 0.04       0.19 -0.34   

deoxycytidine 0.04 0.19 0.20 0.22 0.13 0.14   -0.23 
0.1

4  
Kynurenic 
Acid 0.05  0.24 0.33     -0.44   
L-Kynurenine 0.06  0.26 0.33 0.23   0.32 -0.51   
Phenylalanine 0.04       0.23 -0.41   
Phosphoethan
olamine 0.03  0.11 0.15     -0.21   
Propionylcarni
tine 0.07 0.38 0.33 0.46 0.23 0.30  0.22 -0.39 

0.2
4 0.28 

Tyrosine 0.10  0.39 0.44 0.35    -0.68  0.34 
For all metabolites that associate with HDL-C, if these metabolites also associate with other phenotype, the 
effect size for the metabolite–(HDL-C) relationship is always larger (absolute values considered in this 
comparison) except for Propionylcarnitine. The actual effect sizes for each association were transformed to 
be on the same scale to enable comparison across the phenotypes. TCHOL did not associate with any 
metabolites that also associated with HDL-C; the TCHOL column is hence empty in the table. BMI, body mass 
index; HDL-C, high-density lipoprotein cholesterol; HOMA, homeostatic model assessment; hs-CRP, high-
sensitivity C-reactive protein; LDL-C, low-density lipoprotein cholesterol; LF, liver fat; SAT, subcutaneous 
adipose tissue; TCHOL, total cholesterol; TG, triglycerides; VAT, visceral adipose tissue 
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5.5.5. Plasma metabolite profiling identified two groups (III) 
 
To address the high multicollinearity in the metabolite dataset, PCs of the metabolites were used to 
capture the variance across all of the metabolites. It was found that 20 PCAs (Figure 17) were enough 
to characterise 80% of the variance in the data. 
 

a 

twcss plot for K-means clustering

 
b 

Figure 17: a) PCA analysis of the metabolite data and b) total within sum of squares (twcss) plot pointing to 
an optimal n=2 clusters.  

These 20 PCs were then used to cluster the metabolite data. Two subgroups (clusters) were revealed; 
Cluster1 had 22 individuals and Cluster 2 had 58 individuals. 
 
Moderated t-tests were run on these two clusters to investigate if there were any differences in 
metabolite concentrations between the clusters. All 32 metabolites (Table 9) had higher levels (p-
value<0.05) in Cluster 2; these included several acylcarnitines and AAs including BCAAs. Cluster 2 
also displayed significantly (p-value<0.05) higher values for total cholesterol and LDL-C compared 
to Cluster 1.  
 
Table 9: Differences in metabolite concentrations between Cluster 1 and Cluster 2. 

Metabolite Classification Cluster 2 vs Cluster 1 
log fold change p-value 

Hexanoylcarnitine Acylcarnitines 1.09 0.000090 
Octanoylcarnitine Acylcarnitines 0.89 0.0019 
Valine Amino acids and 

derivatives 
0.68 0.0035 

Myristoyl Carnitine Acylcarnitines 0.69 0.0059 
Dimethyl Glycine Amino acids and 

derivatives 
0.75 0.0060 

Dodecanoyl Carnitine Acylcarnitines 0.83 0.0061 
Uracil Nucleobases 0.83 0.0071 
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log fold change is the log (ratio of the metabolite quantity of Cluster 2 compared to the metabolite quantity of 
Cluster 1). log fold change>0 indicates that Cluster 2 has a higher quantity of the metabolite than Cluster 1.

Cytidine Nucleosides 0.86 0.0077 
Arginine Amino acids and 

derivatives 
0.82 0.010 

Acetylcarnitine Acylcarnitines 0.88 0.011 
Histidine Amino acids and 

derivatives 
0.67 0.011 

Isovaleryl Carnitine Acylcarnitines 0.61 0.011 
2-deoxyuridine Nucleosides 0.74 0.011 
L-Kynurenine Amino acids and 

derivatives 
0.75 0.012 

Propionylcarnitine Acylcarnitines 0.68 0.012 
Carnitine Acylcarnitines 0.64 0.012 
Xanthine Nucleobases 0.71 0.014 
Isoleucine Amino acids and 

derivatives 
0.56 0.016 

Leucine Amino acids and 
derivatives 

0.56 0.017 

Cysteine Amino acids and 
derivatives 

0.58 0.020 

Lysine Amino acids and 
derivatives 

0.86 0.024 

Stearoyl Carnitine Acylcarnitines 0.69 0.025 
Taurocholic Acid Bile Acids 0.70 0.025 
Decanoylcarnitine Acylcarnitines 0.66 0.026 
L-Methionine Amino acids and 

derivatives 
0.66 0.026 

Glyceraldehyde Central Carbon 
Metabolites 

0.51 0.027 

Phenylalanine Amino acids and 
derivatives 

0.63 0.029 

Arachidyl Carnitine Acylcarnitines 0.65 0.040 
Deoxycytidine Nucleosides 0.44 0.042 
2-Aminoisobutyric acid Amino acids and 

derivatives 
0.60 0.045 

Asymmetric 
Dimethylarginine 

Amino acids and 
derivatives 

0.46 0.048 

Guanosine Nucleosides 0.59 0.049 
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6. DISCUSSION 
 
6.1. Methodological considerations 
 
Because there is a plethora of bioinformatics methods and tools available, it is challenging to select 
the most suitable method or tool to address the particular research question at hand. In addition to the 
unique dataset used in this thesis, the lack of consensus in data-pre-processing, dimension reduction 
and statistical analysis in other obesity-related studies make comparisons across studies particularly 
challenging. The tools employed in this thesis were selected based on the data and study questions 
employed and were largely guided by the commonly used practices in the field. The rationale for 
choosing the methods and tools in this thesis are explained under the relevant sub-sections in this 
chapter.   
 
To take advantage of the unique dataset available, this thesis employed a powerful within-twin pair 
design in order to investigate the obesity phenotype related to the non-shared environmental factors 
between the co-twins. It is important to bear in mind that while associations may be apparent, 
causality cannot be established in these types of studies. MZ twins that are discordant for 
phenotypes/diseases being investigated provide a unique insight into diseases, independent of genetic 
background. Additionally, since each twin of a pair acts as the control for the other twin of the pair, 
they are the perfect case–control study example in humans. However, it is erroneous to use both twins 
of each pair in statistical models that assume sample independence (as in linear regression) without 
making adjustments for the possibility that outcome values from co-twins might well be more similar 
than values from two unrelated individuals (290, 291). Using related samples in these models may 
result in inaccurate standard errors and invalid confidence intervals and p-values (290).  
 

The main analysis across the three studies focused on finding associations between BMI with gene 
expression data and phenotypes of interest with metabolite data. Within-twin pair and linear mixed 
model analyses were conducted to study these associations. Additionally, variations in gene 
expression and metabolite data were identified in order to see if subgroups formed based on the 
genome-wide profiles. Clustering the data was an important step in achieving this. The considerations 
in the selection for these methods are discussed below. 

 

6.1.1. Transcriptomics data analysis 
 
Transcriptomics data analysis is now a mature field of study. In this thesis, Affymetrix™ 
HGU133plus2 was chosen because its human genome chipset is very comprehensive (40,000 
transcripts) and has previously been used successfully in the lab where this thesis was carried out. 
However, more sophisticated technology does exist and with the falling prices of sequencing 
technologies, RNA-seq for expression analysis seems promising. With this technology it would have 
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been possible to quantitatively detect all transcripts (including isoforms), even those that do not 
correspond to known existing genomic sequences (292). Compared to microarray technology, RNA-
seq technology also provides precise measurements of transcript levels at a wider range of expression 
levels than is possible with microarray technology (292). Hence, because of the range of coverage in 
both transcripts and transcript levels, it is possible that using RNA-seq technology in this thesis might 
have increased the possibility of finding more true positives values for differentially expressed genes. 
However, the results obtained from the microarray analyses in this thesis are still valid. In a 
comparison of Illumina™ RNA-seq and Affymetrix™ HGU133plus2 for differential expression 
analysis, 87% of genes identified as differentially expressed in the microarray experiment were also 
identified in the RNA-seq experiment, with correlating log-fold changes found in both experiments 
(293). Additionally, the microarray technology used in this thesis was still the most cost-effective 
option at the time the experiments were conducted. 
 
With transcriptomics data analysis, there is an abundance of tools to analyse the different types of 
data and a strong community of bioinformaticians and biostatisticians able to provide guidance based 
on prior experiences. However, no consensus has been reached on the appropriate pre-processing 
methods to be used. One issue is the transcript/gene annotation. Outdated annotations (286), the gene 
overlap between annotations, the incompleteness of annotation content, the strong 
connectivity/dependency among genes are amongst several problems (294). Around 10 to 40% of the 
original probe IDs on vendor-defined annotation packages for older GeneChips no longer match or 
have been retired from current annotation databases, some probes are redundant or non-specific (one 
probe hybridising to more than one gene transcript or to a non-coding region) (286). In this thesis, to 
circumvent the issue of outdated annotations, annotations were done using the Brainarray CDFs 
(286), which is updated on a yearly basis.   
 
In Study I, differential analysis was conducted to determine if the three clusters identified differed in 
within-twin pair gene expression. Differential analyses using the limma package in R generally 
performs well, is robust and easy to use while supporting complex experimental designs (224, 295) 
and hence was chosen for differential analyses in this thesis. While some transcriptomics studies use 
Significance Analysis Methods (SAM), ANOVA and t-tests to analyse gene expression data, limma 
provides better control of false-positive rates and has increased power in analysing small sample sets 
(296) by borrowing information on gene expression variations across samples to deal with small 
sample sets (224). 
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6.1.2. Regression analysis with metabolomics data 
 
Several metabolite studies on BMI and obesity have used PCA-derived factors derived from 
metabolite data as dependent variables in subsequent regression analysis (266, 297, 298), while others 
have used the individual metabolites as dependent variables (90, 299). While these factors may form 
biologically relevant groups or pathways, using them as dependent variables may produce results that 
may be difficult to envision and compare across studies. For example, a previous metabolite-related 
regression analysis has identified statistically different factors that are general and not specific, for 
example, factors comprising ‘various metabolites’ or ‘non-esterified FAs and other AAs’ (266). One 
study identified a factor comprising all AAs except for two as associating with several adiposity 
markers (297). In order to individually examine each metabolite and not groupings of metabolites, 
this thesis employed individual metabolites as dependent variables. Additionally, the aim of the 
metabolite study in this thesis was to determine the effect size of each metabolite individually and to 
subsequently compare them. Hence, PCA factors were not used in the regression analysis.  
 
6.1.3. Linear regression and within-twin pair differential analysis 
 
Study I and II utilised within-twin pair differential analysis while Study III employed regression 
analysis using linear mixed modelling. These two types of analyses have different objectives. The 
former (Study I and II) compares the differences within the twin pairs in order to derive the magnitude 
of the difference in gene expression for each unit difference in phenotype within the twin pairs. This 
study was conducted to identify the gene expression differences in acquired obesity and point to 
environmental effects not common to both twins in a pair (e.g. aspects of diet, exercise and lifestyle) 
as a basis to explain individual differences within MZ twin pairs. The latter type of analysis 
investigated the relationship between metabolites and phenotypes by modelling all variations in the 
metabolites against variations in phenotype within the whole study sample. The end result were effect 
sizes that showed the variation in metabolite concentration for each unit variation in phenotype value. 
In other words, the within-twin pair differential analysis (Study I and II) was concerned with the 
comparative gene expression differences between co-twins in a pair. The linear regression analysis 
(Study III) looks at the absolute change in metabolite levels associating with a change in phenotype.  
 
In Study III, linear mixed modelling was applied metabolite-wise, using a separate linear model for 
each metabolite. Because information was not shared between metabolites as in the within-twin pair 
differential analysis using limma that was employed in both Study I and Study II, this analysis suffers 
from low degrees of freedom and low statistical power.  
 
6.1.4. PCA before clustering in metabolomics 
 
In this thesis, PCA was first applied on the metabolite data to extract enough PCs to model 80% of 
the variance in the data before K-means clustering was applied. Performing clustering with these PCs 



  Discussion
   

Page 68 
 
 
 
 
 

 

prevented additional emphasis on highly collinear metabolites that may represent the same biological 
information because these highly collinear metabolites were collapsed into new, independent 
variables. This dimension reduction method has been employed in other metabolomics studies (58, 
266, 298, 300, 301) with the resulting components used in regression (266, 298, 302) or differential 
analyses (58) or to identify subgroups in the data (301). The difficulties with using PCA-derived 
components in regression analysis is that it is not possible to directly obtain the effect size of the 
metabolites from the regression model. Hence, for the regression analysis in Study III, the individual 
metabolites and not the PCA-derived factors were used. 
 
6.1.5. Clustering methods  
 

In Study I, hierarchical clustering was performed to reveal if sub-types in obesity can be identified 
based on transcriptome profiles in adipose tissue. Hierarchical clustering has been used extensively 
to identify subgroups in diseases like cancer (303-305), and also in one study of subtyping obesity 
(306). Hierarchical clustering is widely used on gene expression data (307) and because of the ease 
in visually examining the results of hierarchical clustering (308), this thesis used the aforementioned 
method. From a biological point of view, it is very hard to choose the best cluster solution if the 
clinical phenotype has not been characterised completely based on prior knowledge. In this thesis, 
the biological findings in the obtained clusters were validated using a replication dataset. However, 
the results of this thesis would have benefited from statistical validation of the clusters, for example 
permutation testing (309). This is one limitation of this thesis. 
 
In Study III, K-means clustering was carried out using the metabolite data. This method has been 
used in several metabolomics studies (310-312) and was used in this thesis because of its simplicity 
and ease of implementation. One challenge was to identify the actual number of clusters and cluster 
membership. Here, the number of clusters were identified with a total within sum of squares plot. 
Cluster membership was not validated; this is one area where the thesis could have been improved 
on.  
 
While Study I clustered the samples based on the variations in transcriptomics profiles and Study III 
clustered the samples based on the variations in the metabolite profiles, the clusters themselves are 
not comparable. Although, 26 twins pairs from Study I are also in Study III, the findings point to 
different molecular effects. In the transcriptomics study, the ratios (heavy/lean) of the gene expression 
values were used with one value per gene per twin pair, thereby resulting in each pair being assigned 
to the same cluster. This clustering was done to capture the acquired obesity component, leaving out 
the genetic and shared environment components which are the same for the co-twins. In the 
metabolomics study, the individual metabolite concentration values were used (i.e. one value per 
metabolite per individual). This clustering was done to capture the both the genetic and acquired 
components of the phenotype. As a result, the differences within the twin pairs were used in the 
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clustering in Study I while the actual values for the individuals were used in the clustering in Study 
III. 
 
6.2. Summary of the main findings 
 
A summary of this thesis’s main findings is presented in Figure 18. In brief, the transcriptomics 
studies showed downregulation of mitochondria-related pathways (OXPHOS, Glutaryl-CoA 
degradation, AAA degradation, BCAA degradation, FA β Degradation) and upregulation of 
inflammation pathways in the obese SAT (Study I, II). Consistent with these pathway findings in the 
SAT, the metabolomics study on plasma (Study III) shows higher circulating BCAAs, AAAs and 
acylcarnitines in obesity. Transcriptomics and metabolomics profiles were used to identify subgroups 
in the study participants. In both transcriptomics and metabolomics profiles, associations were found 
between molecular-level subgroups and the adiposity and blood biochemistry measures.  
 
In Study I, there was a gradual worsening of the obese SAT from Cluster 1 through Cluster 2 and 
finally to Cluster 3. However, this was not a longitudinal study and these subgroups are not to be 
taken as different stages in the development of obesity. Instead, they are three subgroups of obesity 
profiles with different levels of adipose tissue worsening. Pathways that differed within twin pairs in 
Cluster 1, were enriched for lipid metabolism and signalling pathways. Cluster 2 showed worsening 
of mitochondrial function in the heavy co-twins. Both OXPHOS and valine degradation pathways 
were downregulation in the heavy co-twins of this cluster. Cluster 3 showed significant upregulation 
of the inflammation-related pathways and downregulation of valine degradation in the heavy co-
twins. This cluster was considered the unhealthiest subgroup. In this unhealthy obese cluster that was 
identified from the transcriptomics profiles, there was also evidence of adipocyte diameter increase 
and higher fasting insulin in the heavy co-twins.  
 
In Study II, mitochondrial pathways including OXPHOS, BCAA Degradation and Glutaryl-CoA 
Degradation were found downregulated in the heavy co-twins in both adipocytes and adipose tissue. 
There were significant correlations between body composition measures, adipocyte volume, HOMA 
and CRP with these pathways. 
 
In Study III, two subgroups (i.e., Cluster 1 and Cluster 2) of individuals were identified based on their 
metabolite profiles. Cluster 2 showed an unhealthier metabolite profile compared to Cluster 1. In this 
unhealthy cluster, 32 metabolites showed higher concentration levels in comparison to Cluster 1.  This 
unhealthy cluster also had higher LDL-C and total cholesterol in comparison to Cluster 1. 

While some of the discussion on the clusters in both Study I and Study III are in the context of other 
studies which have studied the MHO and MUO phenotype, it should be noted that this thesis does 
not claim that Cluster 2 from Study I is the MHO phenotype or that Cluster 3 is the MUO phenotype. 
The twins in this thesis were all healthy and these clusters were formed using genome-wide gene 
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expression data, and not clinical classifications of the MHO and MUO phenotypes. Rather, it is 
recognised that of these two groups, one is healthier than the other, with one cluster appearing to be 
more metabolically healthy than the other. For the remainder of this thesis, for ease of reading, the 
healthier cluster shall be referred to as ‘healthy cluster’, while the less healthy cluster shall be referred 
to as ‘unhealthy cluster’.  

 

Figure 18: Molecular changes in obesity and their associations to phenotypes. Excess nutrients are converted 
from fatty acids and stored as triglycerides through lipogenesis. In periods of nutrient deficiency, these 
triglycerides are converted to fatty acids and glycerol and used for energy production. In conditions of nutrient 
overload, more acetyl-CoA is converted to fatty acids and stored as triglycerides. However, downregulation 
of several pathways in the obese subcutaneous adipose tissue results in increased circulating amounts of 
BCAA, AAA and acylcarnitines in the plasma. Inflammatory response is also upregulated in obesity. Several 
of these pathways show significant associations with adiposity measures. Red and green arrows denote the 
findings from this thesis. AAA, aromatic amino acid; Acetyl-CoA, Acetyl coenzyme A; BCAA, branched chain 
amino acid; CRP, C-reactive protein; HDL-C, high-density lipoprotein cholesterol; HOMA, homeostatic 
model assessment; LDL-C, low-density lipoprotein cholesterol; LF, liver fat; SAT, subcutaneous adipose 
tissue; TCHOL, total cholesterol; TG, triglycerides; VAT, visceral adipose tissue 
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6.3. Adipocyte mitochondrial functions consistently implicated in 
obesity (Study I, II, III) 

 
In this thesis, molecular-level effects to the mitochondria-related pathways in both SAT and plasma 
in acquired obesity were shown. Associations of these pathways to adiposity (BMI, SAT, VAT, LF, 
adipocyte volume) (Study II) as well as insulin and cholesterol measures (Study I, III) were found. 
Pathways associated with differentially expressed genes in the heavy co-twins in both adipose tissue 
(Study I) and adipocytes (Study II) were similar; mitochondrial pathways were downregulated in the 
heavy co-twins.  
 
Downregulation of mitochondrial function, oxidative phosphorylation and BCAA catabolism 
consistently found in the heavy co-twins in both Study I and Study II all pointed to adipocytes as the 
major contributor to the reduced mitochondrial oxidative metabolism of adipose tissue in acquired 
obesity. The top pathways differentially expressed in the heavy co-twins compared to the lean co-
twins, namely Oxidative Phosphorylation, Glutaryl-CoA Degradation, Mitochondrial Dysfunction, 
BCAA Degradation, FA β Degradation, all involved the adipocyte mitochondria. The mitochondria 
have been recognised as the link between nutrient metabolism and oxidative respiration (156). In 
obesity, mitochondrial respiration is reduced in the adipocytes (313, 314). Mitochondrial dysfunction 
has been suggested to be due in part to this impairment in oxidative phosphorylation in addition to 
impairment in mitochondrial biogenesis and ATP production (156).  
 
Results from Study I clearly show a downregulation in both oxidative phosphorylation and 
mitochondrial function in the heavy co-twins’ SAT. The Oxidative Phosphorylation pathway encodes 
proteins in the five respiratory chain complexes of the mitochondrial matrix (315). The Mitochondrial 
Dysfunction pathway includes the same significantly downregulated genes as the Oxidative 
Phosphorylation pathway as well as, upregulated genes GSR and CYB5R3, which are involved in 
mitochondrial oxidative stress reactions. While this pathway has been termed as the mitochondrial 
‘dysfunction’ pathway in the IPA® tool, the downregulation of this pathway effectively means 
reduced mitochondrial function. Adipocyte mitochondrial respiration is reduced in obesity (313, 314). 
Lower oxidative phosphorylation in obese people impacts normal mitochondrial function and impairs 
the ability of the mitochondria to function effectively (314). The majority of the genes in the BCAA 
pathways, Valine Degradation I and Isoleucine Degradation I also code genes that function in the 
mitochondria and were found to be downregulated in the heavy co-twins.  
 
Few studies have examined the gene expression profiles of isolated adipocytes (255, 316). A 
comparison study of adipocytes and stromal vascular cells in lean and obese people revealed 
signalling-related pathways enriched in adipocytes of obese subjects (316), while another study 
comparing SAT adipocytes in obese and non-obese subjects found upregulation of inflammation and 
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immune response genes in obesity (255). Similarly, in this thesis, upregulation of inflammation was 
found in the heavy co-twins in both Study I and Study II. Additionally, this thesis revealed the 
downregulation of mitochondrial function, oxidative phosphorylation and BCAA catabolism 
pathways in obese adipocytes – findings that are new and important. On top of that, this thesis has 
highlighted that the disturbances to the adipocyte mitochondria-related pathways occur even in 
young, healthy adults who have increased BMI. It should be remembered that the work carried out in 
this thesis did not include measuring the mitochondrial pathways of stromal vascular fraction cells. 
Hence, no conclusion can be made regarding the differences in mitochondria-related transcriptional 
downregulation in adipocytes compared to the stromal vascular fraction cells of the adipose tissue. 
What can be concluded is that gene expression differences in acquired obesity are similar in 
adipocytes and adipose tissue of young MZ BMI-discordant co-twins, making adipocytes the major 
contributors to the downregulation of mitochondrial pathways in obese adipose tissue. 
 
6.4. Branched chain amino acid consistently associated with obesity 

(Study I, II, III) 
 
In all three studies, there was evidence of dysfunction in BCAA metabolism in obesity. 
Downregulation of the BCAA catabolism pathway in the SAT correlated with higher adiposity, CRP 
and HOMA (Study I, II), while increased plasma BCAA concentrations associated with higher BMI 
(Study III). In unhealthy obesity, in the plasma, higher levels of circulating BCAA correlated with 
LDL-C and total cholesterol, while in the SAT downregulation of BCAA degradation correlated with 
fasting insulin and adipocyte diameter measures. These associations also remained after controlling 
for both shared genetic and shared environmental factors, pointing to disturbances in BCAA 
catabolism as a characteristic of acquired obesity. Indeed, circulating concentrations of BCAA 
(valine, leucine, isoleucine) are often increased in obese, insulin-resistant states and in T2DM (58).  
 
In this thesis, the downregulation of BCAA degradation was evident both by SAT and adipocyte gene 
expression, and plasma metabolite screening, confirming that the effect to reduced BCAA 
degradation in the adipose tissue is further reflected in the BCAA levels in circulating plasma. While 
Study I and III were different in that Study I investigated 26 BMI-discordant twin pairs and Study III 
investigated 40 twin pairs of which 26 were BMI-discordant and 14 BMI-concordant, the results from 
both of the studies can be integrated. Hence, this thesis shows the link between decreased BCAA 
degradation in the adipose tissue to higher circulating levels of BCAA in plasma as occurring in 
obesity. This thesis also shows the degradation of BCAA catabolism and increased circulating plasma 
BCAA in obesity as associating with higher LDL-C, higher total cholesterol, higher fasting insulin 
levels and larger adipocyte diameter. Circulating BCAAs have been consistently found to correlate 
with HOMA (45, 58, 317), insulin resistance (58, 298), and they are important predictors for future 
diabetes (90). Several studies have found higher circulating BCAAs (26, 58, 269, 275, 318) and 
downregulation of SAT BCAA catabolism (21, 319) in obesity. This thesis has now established the 
link between BCAA catabolism downregulation in SAT to the occurrence of increased circulating 
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BCAAs in plasma. Also, this thesis has uniquely shown this link already in increased BMI (in young, 
healthy people), in both Study I and III. Furthermore, the downregulation of BCAA catabolism and 
increased plasma BCAAs were also found in the heavy co-twins of the groups of unhealthy metabolic 
profiles in both of these studies (further discussed in Chapter 6.6).  
 
Two other studies have compared circulating BCAAs between MHO and MUO (45, 266). One study 
(n=10 for lean and healthy, n=10 for MHO and n=10 for MUO; MHO and MUO classified based on 
BMI and %bodyfat, insulin, lipids and glucose values) found differences in BCAAs that were not 
significant between MHO and MUO, but significantly different between MHO and the lean and 
healthy group as well as between MUO and the lean and healthy group (45). The other study (n=119 
for lean and healthy, n=114 for MHO and n=738 for MUO; MHO and MUO classified based on BMI 
and glucose and blood pressure values) found significant differences in BCAAs between MHO and 
MUO groups (266). Here, the lack of significant findings in the former study could be because the 
study was conducted on a small sample size and used a different criteria for MHO and MUO 
classification. Unlike these prior studies, the analyses in Study I and III did not aim to form subgroups 
based on clinical measures and then subsequently compare the gene expression and metabolite 
profiles. With regards to clinical measures, the unhealthy groups in Study I and Study III differed in 
lipid and insulin values from the healthier groups. While the definition of MUO is wide, involving 
several clinical measures, the generally acceptable difference between MHO and MUO fits in well 
with the clinical differences observed in the clusters in this thesis. 
 
From this finding, it is now evident that as the AT function worsens in obesity; BCAA degradation 
is downregulated, resulting in increased plasma BCAAs. Even more interesting is that this thesis, by 
employing within-twin pair analyses, has shown both phenomena (decreased BCAA degradation, 
increased circulating BCAAs) to be free of genetic confounding.  
 
To the best of my knowledge, this is also the first study examining the association between circulating 
BCAAs and all three fat depots, namely SAT, VAT and LF. Because BMI does not distinguish 
between fat and lean mass, associations with other adiposity measures are important to explore. 
Circulating BCAAs (320) have previously been found to positively associate with VAT but not SAT 
or BMI (320). Conversely, in this study, BCAA was found to associate with BMI but not with any of 
the fat depots. Although no significant associations were found for BCAA and individual fat depots 
in this thesis, this could be due to the relatively healthy sample set.   
 

6.5. Adiposity and blood biochemistry measures associating with 
metabolic risk factors (Study III) 

 
BMI is often used as a measure of obesity because, in addition to being easy to obtain, the general 
understanding is that it is a reasonable measure of adiposity (321-325), Several studies have found 
high correlations between BMI and adiposity measures including %bodyfat, SAT and VAT (107, 



  Discussion
   

Page 74 
 
 
 
 
 

 

326) further supporting this understanding. However, the effectiveness of BMI, as an obesity 
measure, in predicting metabolic health is still under question. Some studies indicate that BMI do not 
perform as well as body composition measures (327, 328) in predicting metabolic health. Others 
suggest that BMI outperforms (329, 330) or is equal to more detailed adiposity measures in 
identifying metabolic risks (331). In this thesis, high correlations of BMI with %bodyfat, SAT and 
VAT were identified in the dataset, a finding also seen in the other studies (107, 326). On a molecular 
level, in Study III, it was shown that BMI, compared to %bodyfat, SAT, VAT, and LF, associated 
positively with the most metabolites, namely valine, tyrosine, propionylcarnitine, deoxycytidine, 
cysteine and aspartate. In comparison, the fat depot measures associated with three or less 
metabolites. Out of the six metabolites associating with BMI, three also associated with the fat depot 
measures: aspartate associated with all three fat depots (SAT, VAT and LF), propionylcarnitine with 
SAT and VAT, and deoxycytidine with SAT. The metabolite-BMI association has been studied 
extensively, revealing associations with various BCAAs, AAAs and acylcarnitines (58, 74, 88, 275). 
Additionally, valine, tyrosine and propionylcarnitine also show significant difference between lean 
and obese people (58, 88). The findings in this thesis of the six metabolites associating significantly 
with BMI with only three of them also associating with fat depot measures are in agreement with 
studies that propose BMI as outperforming other adiposity measures and further strengthens the 
possible role of these metabolites as biomarkers for obesity.  
 
Other than Study III, to my knowledge, no other studies have compared metabolites associating with 
SAT, VAT and LF. A previous study comparing metabolites extracted from SAT and VAT in obese 
and non-obese subjects found that, in SAT, the difference between obese and non-obese associated 
with differences in only one metabolite, 2-ketoisocaproic acid, which is a derivative of BCAA leucine 
(267). In VAT, the differences between obese and non-obese subjects included methionine, threonine, 
lysine, serine and leucine (267). While this was a study on tissue metabolites and not plasma 
metabolites, it highlights that obesity associates with more VAT metabolites than SAT metabolites. 
Another study found significant serum metabolite associations (including BCAAs valine and 
isoleucine, and AAAs tryptophan and phenylalanine) for VAT only in men, while no associations 
were found for SAT (320). Unlike these two studies that found more metabolites associating with 
VAT than SAT in obesity, in Study III, SAT associated with one more metabolite than VAT, namely 
deoxycytidine. Additionally, LF was found to associate with plasma metabolite aspartate. This thesis 
has uniquely found metabolite associations across all three fat depots and by employing within-twin 
pair analyses to examine these associations, has shown them to be free of genetic and shared 
environment confounding. Importantly, this thesis has shown, for the first time that the effect sizes 
for SAT–, VAT– and LF–metabolite associations were larger than the associations with BMI. This 
suggests that these associated metabolites are more sensitive to changes in %bodyfat, SAT, VAT and 
LF compared to changes in BMI. While Study III did not identify any metabolites that were uniquely 
associated with the different fat depots, this could be due to the small sample size, as well as the 
limited number of metabolites studied.  
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While all adiposity measures had associations with one or more metabolites, only two blood 
biochemistry measures had significantly associating metabolites in this thesis. HDL-C and TG 
measures associated mostly with AAs and acylcarnitines. Across all the adiposity and blood 
biochemistry measures, HDL-C also associated with the most number of metabolites. Additionally, 
for metabolites that associate with HDL-C in addition to other phenotypes, the effect size for the 
association with HDL-C was always larger than the effect sizes with other phenotypes. HDL-C has 
been found to be a consistent risk indicator for metabolic health (332-336). The findings in this thesis 
that show HDL-C associating with the most number of metabolites in comparison to other phenotypes 
support the comprehensiveness of HDL-C as a metabolic health measure. Additionally, for the first 
time, this thesis uniquely highlights that HDL-C levels, due to its association with a large number of 
metabolites along with the large effect sizes of these association, can be used as an indirect measure 
of metabolite level changes indicative of metabolic health. 
 
 

6.6. Biological pathways and clinical phenotypes of unhealthy groups 
(Study I, III) 

 
In this thesis, genes and metabolites identified as significantly associating with obesity and metabolic 
risk factors were further analysed using pathway tools to understand the main biological changes that 
unfold in the adipose tissue and blood plasma as a response to excess body weight. Cluster analysis 
enabled identification of groups of individuals with similar gene expression or metabolite profiles. 
 
Healthy and unhealthy obesity subgroups (clusters) 
In Study I, three subgroups of obesity were identified. The transcriptomics profiling revealed three 
subgroups (referred to as Cluster 1, Cluster 2 and Cluster 3) which differ by the gene expression 
differences within the twin pairs. Cluster 1 comprised twin pairs with slight within-pair differences 
in lipid metabolism and cell signalling pathways. However, because Cluster 1 had only two twin 
pairs, no definitive conclusions may be drawn regarding this cluster. Cluster 2 showed lower BCAA 
catabolism and lower mitochondrial function in the heavy co-twins, while Cluster 3 showed even 
lower mitochondrial function and BCAA catabolism and higher inflammation in the heavy co-twins. 
Cluster 3 also exhibited higher adipocyte size and insulin resistance in the heavy co-twins. Cluster 2 
thus appears to be the healthy obese cluster, while Cluster 3 is the unhealthy obese cluster. In 
agreement with these findings, BCAA levels have previously been noted to be lower in MHO versus 
MUO individuals (266). Obese individuals without pro-inflammatory adipose tissue changes also 
display more favourable clinical characteristics (337), suggesting that a lower inflammation state 
lowers the risk for cardiovascular disease in this group of people (7).  
 
Unhealthy clusters and related phenotypes 
In Study I, the unhealthy group had lower mitochondrial function, higher inflammation along with 
higher IR and larger adipocyte size in the heavy co-twins. In Study III, using twin individuals, the 
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unhealthy cluster had higher concentrations of AAs (BCAAs and AAAs) and acylcarnitines, along 
with higher levels of total cholesterol and LDL-C, in comparison to the healthy cluster. Figure 19 
depicts the pathways and phenotypes identified. 
 
The rest of this chapter integrates the molecular findings from the cluster analyses based on 
transcriptomics profiles in adipose tissue (Study I) and metabolite profiles in plasma (Study III), and 
discusses these in light of the clinical properties observed in the unhealthy clusters. Specifically, this 
part of the discussion will focus on associating the metabolic disturbances in the unhealthy obesity 
phenotype to adiposity measures (adipocyte size) and biochemistry measures (TCHOL, LDL-C and 
IR).  
 
 
  

 
Figure 19: Main integrated results from Study I, II and III. Two clusters were identified using metabolite 
profiles; higher AAA and BCAA associated with higher total cholesterol and LDL-C in the unhealthier cluster 
of the metabolite profile. Three clusters were identified using the gene expression profiles; in the unhealthier 
cluster there was mitochondrial downregulation, higher inflammation that associated with higher adipocyte 
size and higher insulin resistance. The downregulation of the pathways in the obese in adipocytes were similar 
to the ones found in adipose tissue – mitochondrial downregulation was consistently identified in the obese 
co-twins. These pathways identified in the adipocytes and adipose tissue associated with adiposity, HOMA 
and CRP values. The sequence of events from normal adipose tissue to MHO and MUO adipose tissue is not 
known. 
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In Study III, two groups of individuals were identified based on their metabolite profiles. One group 
appeared to be unhealthier compared to the other group. In this unhealthier group, circulating total 
cholesterol and LDL-C values were higher than in the other group. High plasma cholesterol has 
previously been shown to correlate positively with adipocyte cholesterol (338). There is also a strong 
correlation between adipocyte cholesterol content and adipocyte size (339). Adipocyte size, in turn, 
positively correlates with the macrophage content of adipose tissue and expression of pro-
inflammatory cytokines, such as Tumor Necrosis Factor-α (167). Hence, there is evidence for 
correlations between high cholesterol, adipocyte size and inflammation. High plasma LDL-C levels 
result in more LDL-C uptake by cells through the LDL receptor, which leads to a compensatory 
downregulation of cellular cholesterol synthesis and uptake (340), highlighting a negative association 
between plasma LDL-C levels and lipid metabolism. However, this negative feedback regulation of 
cholesterol metabolism can be overridden by inflammatory responses (340). This inflammatory 
response attracts monocytes/macrophages to infiltrate the adipose tissue (255). High cholesterol also 
disrupts secretion of adipokines that control appetite and satiety (338), potentially leading to 
overeating. Disruption of the cellular cholesterol homeostasis in adipocytes and occurrences of 
inflammation in obesity have been proposed to precede the development of T2D in obesity (340). It 
is proposed here that with increasing weight and nutrition, higher circulating lipids result in more 
lipid uptake, mitochondrial oxidation is reduced and the adipocyte dysfunctions. Results of this thesis 
show that mitochondrial downregulation occurs in obesity, while both mitochondrial downregulation 
and higher inflammation occur in more metabolically disadvantaged obesity. The dysfunctional 
adipocytes may  cause the adipose tissue to recruit more macrophages (341), resulting in 
inflammation of adipose tissue (34). This inflammation impairs insulin signalling (342) by affecting 
phosphorylation of both the insulin receptor and its substrate, IRS-1 (343, 344). Alternatively, the 
dysfunctional adipocytes with higher oxidative stress and lower mitochondrial biogenesis (156) may 
allow the build up of ROS, disrupting  insulin signalling (345, 346). The inflammatory state may in 
fact be causal in the development of IR and the other disorders associated with obesity, such as 
hyperlipidaemia and metabolic syndrome (170, 171).   
 
While there is no consensus of the exact clinical trait criteria to distinguish between MHO and MUO 
(6, 8, 347, 348), prior studies comparing MHO and MUO subjects are largely in agreement with the 
findings of the healthy and unhealthy subgroups of this thesis. A study comparing clinical measures 
found that MHO individuals had significantly lower VAT, fasting insulin, TG, CRP and high HDL 
compared to MUO individuals (7). Lower amounts of CRP levels, despite high levels of body fat, 
was suggested to contribute to the favourable metabolic profile of the MHO subjects (7). 
Interestingly, in that study there was an overlap of CRP levels between MHO and MUO subjects (7), 
being in line with the findings in this thesis of no significant differences between the healthy and 
unhealthy clusters when comparing within-twin pair differences in CRP levels. Other studies on 
metabolite profile differences between MHO and MUO subjects found higher circulating BCAAs 
and acylcarnitines in MUO people (266, 349). Along with this difference in metabolite profile, both 
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serum HDL-C and TG levels, as well as fasting insulin levels, have been found to be significantly 
different in MHO compared to MUO people (349). These findings of different levels of HDL-C and 
fasting insulin were also found in Study I and Study III of this thesis. Another combined 
transcriptomics and metabolomics study utilising serum and adipose tissue found downregulation of 
BCAA catabolism and higher circulating BCAAs and acylcarnitines in MHO subjects (45). While 
these findings of BCAAs and acylcarnitines match the findings of this thesis, this thesis has also 
shown this obesity-related perturbations in the adipose tissue and plasma to be free of genetic 
confounding. 
 
This thesis has now built a deeper understanding of the differences between healthy obesity and 
unhealthy obesity groups by showing a worsening of mitochondrial function in obesity in the 
unhealthy group and associating the molecular perturbations in the unhealthy phenotype to adiposity 
measures (adipocyte size) and biochemistry measures (TCHOL, LDL-C and IR). It has also been now 
shown, with the aid of within-twin pair analyses, that most of the molecular disturbances are free of 
genetic confounding. This is a new finding. With these analyses, it was possible to rule out the effects 
of genetics on the observed within-twin pair differences. The gene expression and metabolite 
differences between individuals with the same genotype could well be because of differences in their 
epigenetic profiles. The epigenetic marks react to environmental effects and thereby mediate these 
effects on the function of the genome. The epigenetics of obesity was not studied as part of this thesis, 
however.  A previous epigenetic study utilising twins from the same cohort, however, revealed DNA 
methylation patterns in 17 genes that associate with obesity (22). Out of these 17, only 3 genes were 
in Study I’s list of within-twin pair differentially expressed genes, hinting at perhaps some epigenetic 
mechanism other than DNA methylation driving the expression and metabolite differences within 
twin pairs in this thesis.  
 
It should also be remembered that there is no way of knowing if both co-twins (among the BMI-
discordant twin pairs) are genetically predisposed to being lean, with one subsequently becoming 
heavier. It is just as possible that both co-twins are genetically predisposed to being heavy. But, 
because of differences in lifestyle choices, one co-twin is leaner.  
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7. STRENGTHS AND LIMITATIONS 
 
The strengths of these three studies include the use of a comprehensive and detailed set of clinically 
relevant phenotypes (both adiposity and blood biochemistry measures), along with high-dimensional 
metabolomics and transcriptomics data to understand obesity from both a molecular and symptomatic 
level. The twin pair samples allowed for the rare opportunity to study acquired obesity independent 
of genetic confounding. This thesis also employs bioinformatics methods developed specifically for 
transcriptomics and metabolomics data, capable of dealing with low numbers of samples and high 
numbers of observations. Regardless, the studies in this thesis do suffer from low sample numbers 
and relevant associations with low effect sizes may have been missed (231).  
 
However, only 26 young adult twin pairs were BMI-discordant from the available Finnish twin 
cohorts comprising 5417 twin pairs. Additionally, measuring the transcript levels does not necessarily 
translate to proteins levels because mRNA levels may not accurately predict protein abundance (350, 
351). Profiling of mRNA expression shows only the transcriptional activity of a gene, while targeted 
protein level analysis would allow for the detection of the physical presence and location of the 
respective proteins (352). Hence, to confirm protein abundance, the genes identified as differentially 
expressed in this thesis would need to be further tested by protein expression analyses or other 
functional assays in the future.  
 
This cross-sectional study also does not allow for the determination of cause and effect; only 
conclusions on the level of associations can be drawn. Inferring causality would require longitudinal 
studies or Mendelian randomisation studies that use genetic variants to infer causality between obesity 
phenotypes and gene expression levels (353, 354).  
 
In Study III, a limited number of metabolites were analysed. Because of limitations in available 
technology, most metabolite profiling experiments are not able to target and quantify a large number 
of metabolites (355). Hence, most metabolite profiling studies do not allow for a more comprehensive 
view of the thousands of metabolites that are involved in the metabolic pathways in the body. While 
the Human Metabolite Database (HMDB) has thousands of metabolites identified and categorised, 
technology to both identify and quantify these metabolites has not caught up or may be too expensive. 
The metabolomics platform used in this thesis was capable of identifying 111 metabolites. Deriving 
biological meaning behind the results were severely impacted by the lack of information about the 
metabolites that were not measured that might, in the end, play a role in the broader biological picture. 
In the end, understanding the metabolomics of the body as a complete system in the context of the 
study question becomes a difficult task. This is one limitation in Study III. 
 
While sample clustering was applied using both gene expression and metabolomics data and all Study 
I participants are also in Study III, the grouping of the twin pairs and individual twins in the clusters 
are not comparable. In Study I, gene expression differences within the twin pairs were used and in 
Study III, individual metabolite concentrations were used. Hence, clusters could not be compared for 
sample membership. If the clusters had been comparable, it would have been possible to further 
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validate the findings of the obesity subgroups by determining if the same individuals group into the 
same clusters based on both the transcriptomics and metabolite profiles. However, the aims of Study 
I and III were slightly different and the focus of the clustering was to identify subgroups that point to 
gene expression profiles in acquired obesity (Study I) and metabolite profiles in obesity and related 
cardiometabolic risk factors (Study III), respectively. 
 
The low number of subjects per cluster also provided lower statistical power. In the cluster analysis, 
it is not known if more data could have revealed more clusters or even different clusters. While 
biological validation was done in Study I to confirm the cluster findings in a replication dataset, this 
thesis would have benefited from additional cluster validation. For example, the clusters could have 
been further tested with permutation testing whereby gene expression and metabolite data can be 
permutated and further tested for cluster membership with within-cluster and between-cluster 
variance measurements used to represent the quality of the clusters (309). This is one area where 
clustering analyses could have been done better in this study. Studies combining other twin cohorts 
available globally could also be a step to address this power issue. However, to the best of my 
knowledge, such similar datasets (with comprehensive clinical phenotype information as in this 
thesis) do not exist. 
 
In Study I, both physical activity and food intake were recorded to gain insight regarding 
environmental effects that might explain the BMI and associated gene expression differences within 
twin pairs. No significant differences were found in both physical activity and food intake. However, 
it has been suggested that obese individuals tend to underreport food intake by as much as 30% (356). 
Additionally, most obese individuals are believed to ingest more calories than lean individuals 
matched for exercise, to maintain their elevated weights (70). Hence, the findings may not reflect the 
actual difference in physical activity and food intake in the twin pairs. 
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8. CONCLUSION AND FUTURE PROSPECTS 
 
In reference to the aims of this thesis, the main conclusions are as follows: 

 This study confirms that acquired obesity is associated with changes in mitochondria-related 
gene expression in adipose tissue. 

 Using gene expression profiles to identify sub-types of obesity is a feasible effort that should 
be further confirmed with more independent datasets.  

 The pathways implicated in acquired obesity are similar for both SAT and adipocytes.  
 BMI outperforms other adiposity measures including the fat depot measures. However, for 

SAT, VAT and LF, the effect sizes for metabolite–phenotype associations were larger than 
the associations of the same metabolites with BMI. 

 HDL-C shows associations with the most number of metabolites with the largest effect sizes. 
This finding highlights HDL-C’s potential as an indirect measure of metabolite level changes 
indicative of metabolic health.  

 Downregulation of BCAA degradation in the obese adipose tissue is reflected in the increased 
circulating plasma BCAA. 

 
Constant improvements in the microarray and metabolomics technologies have improved data 
quality, increased the number of genes and metabolites interrogated and initiated the development of 
countless automated statistical tools and methodology with which to study them. The studies above 
would benefit from improvements to the publicly available databases on the human metabolome as 
well as the transcriptome. Also, bearing in mind that these technologies are susceptible to technical 
variation, many of these findings, especially with regards to genes implicated in obesity, would 
benefit from validation in the laboratory via other techniques like RT-PCR. Replication cohorts would 
also be beneficial in confirming findings from these studies. However, as mentioned previously, to 
my knowledge no other BMI-discordant MZ cohort, with detailed clinical and ‘omics data similar to 
the cohort studied in this thesis exists. However, some of the findings from this thesis can be 
confirmed using individuals as obese cases versus controls.  
 
There is growing evidence that epigenetic marks associate with obesity (22, 357, 358). In MZ twin 
pairs, where there are no differences in gene sequences within the twin pairs, differences in gene 
expression could well be explained by epigenetics marks (e.g., DNA methylation or histone marks). 
Additionally, environmental differences (e.g., diet and exercise) within the twin pairs may result in 
epigenetic differences at genomic loci that regulate gene expression levels or metabolite 
concentrations. By integrating findings from various ‘omics studies, a more detailed picture of obesity 
can emerge. One future prospect for this thesis would be to study the complex interaction between 
different ‘omics layers and the clinical measures using, for example, group factor analysis (359) to 
interrogate the relationships between groups of ‘omics data. 
 
In conclusion, this thesis shows that by employing comprehensive methods in bioinformatics it was 
possible to first explore patterns in both transcriptomics and metabolomics data, perform detailed 
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analyses and derive biological meaning that allowed for the successful integration of findings from 
both types of OMICS studies.  
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