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Transient ischemic attack (TIA) has received only little attention in the experimental research field.
Recently, we introduced a TIA model for mice, and here we set similar principles for simulating this
human condition in Wistar rats. In the model: 1) transient nature of the event is ensured, and 2) 24 h after
the event animals are free from any sensorimotor deficit and from any detectable lesion by magnetic res-
onance imaging (MRI). Animals experienced varying durations of ischemia (5, 10, 12.5, 15, 25, and
30 min, n = 6–8 per group) by intraluminal middle cerebral artery occlusion (MCAO). Ischemia severity
and reperfusion rates were controlled by cerebral blood flow measurements. Sensorimotor neurological
evaluations and MRI at 24 h differentiated between TIA and ischemic stroke. Hematoxylin and eosin
staining and apoptotic cell counts revealed pathological correlates of the event. We found that already
12.5 min of ischemia was long enough to induce ischemic stroke in Wistar rats. Ten min or shorter dura-
tions induced neither gross neurological deficits nor infarcts visible on MRI, but histologically caused
selective neuronal necrosis. A separate group of animals with 10 min of ischemia followed up to 1 week
after reperfusion remained free of infarction and any MRI signal change. Thus, 10 min or shorter focal
cerebral ischemia induced by intraluminal MCAO in Wistar rats provides a clinically relevant TIA the
rat. This model is useful for studying molecular correlates of TIA.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Transient ischemic attack (TIA), according to its new tissue-
based definition, is a brief episode of neurological dysfunction
due to a vascular cause, with no detectable infarction (Albers
et al., 2002; Easton et al., 2009). To differentiate between TIA and
stroke, it is necessary to utilize brain imaging with MRI including
diffusion-weighted scans (Easton et al., 2009). This new concept
of TIA has inspired us to develop a TIA model for mice (Pedrono
et al., 2010) and rats, convenient species to use in experimental
focal brain ischemia research.

Intraluminal suture occlusion of the middle cerebral artery
(MCAO) is a widely used method in experimental stroke. Its major
advantage is the absolute control on the duration of ischemia
(reperfusion is abrupt by the time of suture withdrawal) and on
the rate of reperfusion (possibility for complete recanalization,
unless a clot is formed), simulating ischemia-reperfusion of a large
cerebral artery in humans. The relevance of the suture occlusion
model should be better appreciated because of the recently opened
era of thrombectomy (Tatlisumak, 2015).

Brief periods of focal cerebral ischemia are generally used in
rats as a preconditioning event. For this purpose, generally 2 to
10 min-ischemia is applied with the intraluminal MCAO method
(Alkayed et al., 2002; Puisieux et al., 2004; Glantz et al., 2005;
Naylor et al., 2005), but as long as 20 (Glazier et al., 1994) to 30
min- ischemia (Yoshida et al., 2004) was used. In Wistar rats,
ischemia duration longer than 3 min seems sufficient to induce
injury (Puisieux et al., 2004), but not an infarction visible with
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2,3,5-triphenyltetrazolium chloride (TTC) staining (Alkayed et al.,
2002). 10 min of ischemia induced no detectable infarct with cresyl
violet staining in spontaneously hypertensive rats (Naylor et al.,
2005), but selective neuronal necrosis in Sprague-Dawley rats (Li
et al., 2000). In this strain, three times of 10 min ischemia with
45 min intervals caused no lesion at 24 h but at 72 h infarction
was noticed (Chen et al., 1996). These studies showed us that out-
come of a brief episode of ischemia varies depending on animal
strain used, the method of lesion evaluation, and the time-point
of outcome evaluation.

Both mice and rats are the most commonly used animals in
focal brain ischemia research. As we described a TIA model for
mice previously (Pedrono et al., 2010), now we decided to validate
the same model in Wistar rats as ischemia thresholds and
responses to ischemic insults of equal severity may differ between
species and the results of mice studies cannot directly apply to rat
studies. Here, we aimed to develop a TIA model in male Wistar rats,
by systematic application of increasing durations of transient focal
cerebral ischemia. To achieve a close clinical relevance to TIA
(Easton et al., 2009), in our model we used suture occlusion model
of the MCAO, assessed the outcome with sensorimotor testing and
MRI at 24 h after reperfusion. After detecting the critical ischemia
duration limiting the outcome to TIA rather than stroke, we tested
the presence of delayed infarction with this duration.
2. Results

2.1. Physiological parameters (Table)

Rectal temperatures were steady and within physiological
ranges during the entire experiment (P > 0.05 for each group).
Baseline body weights varied from 250 to 450 g (P < 0.001, control
group was relatively lighter and 10-min group heavier). At 24 h,
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Fig. 1. Cortical cerebral blood flowmeasurements with laser Doppler flowmetry. Measure
6 to 8 rats each), 7 day reperfusion of an additional 10-min ischemia (7-day group, n = 7)
averaged.
weight loss was around 13%, as compared with baseline weight
(P < 0.001) with no intergroup difference (P = 0.111). Seven-day
group’s weight follow-up showed no changes over time (P = 0.135).
2.2. CBF

MCAO caused an immediate CBF drop of 76 ± 9% from the base-
line level, which was similar for all ischemia groups (P = 0.45)
(Fig. 1, Table 1). CBF values recovered to 74 ± 21% of baseline
30 min after reperfusion. This was statistically different between
groups (P = 0.013). However, this difference has vanished at 24 h
(P = 0.285), when CBF values became approximately equal to those
of baseline (P = 0.946).
2.3. Neurological deficits and infarcts

Fig. 2A resumes typical MRI findings of the study. MRI lesions in
the 12.5- (1 in 6 animals, with lesion volume of 27 mm3) and 15-
min groups (3 in 7 animals) were all limited to lateral caudaputa-
men. No animals in the 5- or 10-min ischemia groups including the
10-min ischemia long-term follow-up group as well as no animals
in the sham (control) group showed any ischemic changes or other
abnormalities in MRI. In the 25-min group, all animals developed
infarction in the caudaputamen, of these 3 showed also patchy cor-
tical involvement. In the 30-min group, subcortical involvement
was again a sustained finding, with cortical involvement in half
of the rats. Extended reperfusion period of one week in a separate
group of animals subjected to 10-min ischemia (7-day group), dis-
closed no further ischemic damage neither at 72 h nor at 7 days on
MR images. MRI-based infarct volumes are shown in Fig. 2B. Neu-
rological deficit findings and lesion volumes are resumed in Table 1.
In the 1-week follow-up group of animals with 10-min of MCAo,
total brain volumes were measured from the MRI at Day 1 were
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, and control group (n = 4). Left hemisphere (LH) measurements from all groups are
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Fig. 2. A. T2-weighted scans at 24 h after reperfusion. Scans of one animal from each group is demonstrated: 5- and 10-min ischemia induced no infarction (TIA brains), 12.5
and 15-min ischemia were associated with infarctions in the lateral caudaputamen in 1 out of 6 and 3 out of 7 animals, respectively (images with infarctions are presented
here). Longer ischemia resumed in patchy cortico-subcortical infarctions in the territory of the middle cerebral artery. B. Infarct volumes based on MRI. Each column
represents infarct volume of an individual animal.

Table 1
Physiological parameters and resume of the findings. Groups are formed of animals with middle cerebral artery occlusion (MCAO) of different durations, sham operated animals
(control group), and animals with 10-min MCAO, followed at three time points after occlusion up to 7 days (7-d group).MRI, magnetic resonance imaging; A.U, arbitrary units.

Groups (n) 12.5-min
(6)

15-min
(7)

25-min
(7)

30-min
(6)

Control
(4)

7-d (7)

5-min
(8)

10-min
(6)

MCAO-day 24 h 72 h 7 d

Body weights (g) baseline 313 ± 40 403 ± 49 323 ± 12 365 ± 55 327 ± 30 279 ± 16 257 ± 3 271 ± 20 259 ± 21 277 ± 18
reperfusion + 24 h 296 ± 30 309 ± 12 271 ± 33 300 ± 28 263 ± 15 235 ± 8 259 ± 26

Temperatures (� C) baseline 37 ± 0.3 37 ± 0.3 37 ± 0.5 37 ± 1 37 ± 0.6 37 ± 0.6 37 ± 0.6 37 ± 0.4
MCAO 37 ± 0.8 37 ± 0.6 37 ± 0.6 37 ± 0.7 37 ± 0.6 37 ± 1.3 37 ± 0.7 37 ± 0.5

reperfusion + 30 min 37 ± 1 37 ± 0.3 37 ± 2 37 ± 1.2 37 ± 0.6 37 ± 0.8 37 ± 0.5 36 ± 1.3
C.B.F. (A.U.) baseline 449 ± 195 397 ± 89 391 ± 91 412 ± 80 314 ± 148 310 ± 88 302 ± 112 408 ± 203

MCAO 99 ± 44 119 ± 39 76 ± 35 76 ± 49 69 ± 35 81 ± 38 279 ± 67 80 ± 22
reperfusion + 30 min 256 ± 148 395 ± 110 355 ± 96 292 ± 105 144 ± 68 268 ± 165 203 ± 79 102 ± 39
reperfusion + 24 h 322 ± 86 no 379 ± 90 no 331 ± 113 387 ± 44 379 ± 184 365 ± 89

Sensorimotor deficit (n) 0 (0%) 0 (0%) 0 (0%) 2 (29%) 2 (29%) 4 (67%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
MRI lesion (n, (%)) 0 (0%) 0 (0%) 1 (17%) 3 (43%) 7 (100%) 6 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Lesion volume in MRI (mm3) 0 0 27 43 ± 16 70 ± 49 113 ± 92 0 0 0 0
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in average 1652.14 cubic millimeters and at Day 7 were 1652.80
cubic millimeters giving a P value of 0.965 (CI at 95% is �35.56
to 34.24).

2.4. HE results

In line with previous data, the longer the duration of ischemia,
the more pronounced the ischemic damage was (R = 0.762,
P < 0.001, Fig. 3A). Transient ischemia of 5- and 10-min resulted
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in scattered ischemic neuronal changes (hypereosinophilic neu-
rons and shrunken neurons), mainly in hippocampus and in a les-
ser extent in the caudaputaminal regions of the right (ischemic)
hemisphere in all animals. The outcome after 12.5-min ischemia
was variable: subcortical selective neuronal necrosis was a feature
in 2 of 6 animals and 1 of 6 showed small infarction.15-min or
longer durations induced either selective neuronal necrosis or
infarction. HE scores were different only in 25-min and 30-min
ischemia groups (vs control, P < 0.001). Between ischemia groups,
HE scores in 5-min and 10-min groups differed from those of 25-
min and 30-min groups (P < 0.001). Seven days after 10-min ische-
mia no additional ischemic damage was observed (P = 0.125).

2.5. TUNEL

Left (intact) hemispheric TUNEL-positive cell counts were sim-
ilar among groups (P = 0.537). Right hemispheric counts of TUNEL-
positive cells were significantly higher as compared with left hemi-
spheric counts (P < 0.001, Fig. 3B) and 25- and 30-min ischemia
groups had a higher TUNEL index than had control group and 5-
and 10-min groups (P < 0.001) (Fig. 3C). In regional TUNEL analysis
(Fig. 3B), we observed apoptotic cells mostly in the caudaputamen
of 25- and 30-min groups, number of cortical apoptotic cells
reached statistical significance with 30-min-duration of ischemia.
Hippocampus showed no significant apoptosis in any group
(P = 0.748). Number of apoptotic cells induced by 10-min ischemia
were not increased at 1 week, as compared with those at 24 h
(P = 0.366). Severity of apoptosis and ischemia duration were in
good correlation (R = 0.78, P < 0.001).
3. Discussion

A new definition of TIA was proposed in 2009 and received
widespread acceptance (Easton et al., 2009). This tissue-based
TIA definition relies on the exclusion of infarction with imaging
methods, preferably with MRI. Although neurological or imaging
correlates of TIA are absent in the short term, thereafter a cognitive
decline has been reported (Takahashi et al., 2009). In addition to
heralding forthcoming ischemic strokes, TIAs are associated with
global brain atrophy (Walters et al., 2003). Repeated TIAs are asso-
ciated with cognitive decline (Bakker et al., 2003; Takahashi et al.,
2009) suggesting that TIA likely leads to some degree of permanent
brain injury that is beyond the detection limits of MRI. Because
histopathologic studies of patients with TIA are not feasible, an
appropriate animal model of TIA may facilitate analyses of changes
within the neurovascular unit and the molecular determinants of
tissue fate after TIA, and it would assist in identifying cellular
Fig. 3. 5- to 30-min ischemia was induced (n = 6–8), reperfusion lasted 24 h, except
7 days in the 7-day group with 10-min ischemia (n = 7). Control group consisted of 4
sham-operated animals. A. Impact of ischemia as hematoxylin and eosin (HE) scores.
Ischemic changes in the hippocampus, caudaputamen, and frontoparietal cortex of
both hemispheres were scored (0 = no change, 1 = scattered neuronal changes,
2 = selective neuronal necrosis, and 3 = infarction) and summed. HE scores differed
only in 25-min and 30-min groups (vs control ***, P < 0.001). Between ischemia
groups, HE scores of 5-min and 10-min groups were different from those of 25- and
30 min groups (P < 0.001). Animals with infarct are presented with beams extending
from a black circle. B. Terminal deoxynucleotidyl transferase-mediated dUTPbiotin
nick end-labeling (TUNEL). Regional TUNEL-positive cell counts of the ipsilateral
(right) hemisphere. For comparison averaged left hemisphere counts from all groups
is also shown. 25- and 30-min ischemia induced significant apoptosis in the
caudaputamen (***, P < 0.001) and 30-min also in the cortex (**, P = 0.003). Hip-
pocampal countswere similar among groups (P = 0.748). 10 min-ischemia caused no
further apoptosis at the end of 7 days follow up (10-min vs 7-day group, P = 0.445). C.
TUNEL index as the total right hemisphere counts divided by the left hemisphere
counts. Groups of 25- and 30-min ischemia have higher index than have the control
group, 5-min, and 10-min ischemia groups (***, P < 0.001). Animals with infarct are
presented with beams extending from a black circle.

3



170 A. Durukan Tolvanen et al. / Brain Research 1663 (2017) 166–173
and molecular substrates of mild ischemic injury in a spatial pat-
tern and with a dose-response gradient corresponding to the
increasing severity of ischemic insult. Furthermore, such a model
may aid the discovery of therapies targeting the adverse conse-
quences of TIA, such as necrotic and apoptotic injury cascades,
and promoting neuroprotection. Future rodent studies utilizing
this TIA model and incorporating long-term follow-up together
with sophisticated neurological, behavioral, imaging, and post-
mortem examinations may fill this gap of knowledge while this
present study offers the necessary tools to these forthcoming
studies.

There exist only few data on TIA in the experimental literature.
Appreciating the need for an optimized animal model for TIA, we
previously described such a model in mice (Pedrono et al., 2010).
The novelty of the model was neither the focal ischemia technique
used (in contrary, we utilized the most common method, the intra-
luminal suture occlusion of the MCA) nor any of the techniques
used for outcome evaluation (a simple sensorimotor testing and
MRI), but was the implementation of 3 criteria when testing vary-
ing durations of MCAO. Due to these criteria the mouse TIA model
achieved a clinical relevance, that we could identify suitable dura-
tions of MCAO leading to neurologically (grossly) intact and MRI-
lesion free TIA events in mice. Here, we used a similar approach
for developing an equally relevant TIA model in rats. Outcomes
of 5 to 30 min of focal ischemia were evaluated in male Wistar rats
to describe a TIA model. Predetermined criteria of TIA model were:
1) LDF should indicate a successful occlusion and reperfusion, 2) no
sensorimotor deficit should be observed at 24 h after reperfusion,
and 3) at this time-point no lesion on magnetic resonance images
should be found. The necessity of the first criterion raises from the
fact that intraluminal MCAO model may fail for different reasons
and, not rarely, inadequate occlusion and reperfusion occurs
(Schmid-Elsaesser et al., 1998). These handicaps can easily be
detected by LDF, monitoring cerebral blood flow through intact
skull. If one aims to control the severity of ischemia, the concomi-
tant use of LDF during intraluminal MCAO is indispensable. This
holds true especially in brief ischemia applications. Second crite-
rion relies on sensorimotor evaluation of animals. A number of
sensorimotor and behavioral tests serve to investigate the impact
of focal cerebral ischemia (Hunter et al., 2000). Behavioral tests
are particularly important in drug studies. However, these were
developed mostly for mice. Furthermore, TIA’s clinical diagnosis
is based often on patients’ description of the symptoms, which
are frequently sensorimotor. For this reason, when studying a
TIA-like episode, rather than sophisticated behavioral tests neuro-
logical evaluation of sensorimotor functions are preferable. Third
criterion introduces the use of MRI, which was proposed as the
diagnostic imaging method in patients presenting with TIA
(Easton et al., 2009). In the present study, these three criteria were
fulfilled for 10 min or shorter MCAO, proving a suitable TIA model
for Wistar rats. A transition between TIA and infarction occurs
between 12.5 and 15 min of MCAo. Longer MCAO durations were
associated with infarctions. Infarction threshold with intraluminal
MCAO model was similar in NMRI mouse (Pedrono et al., 2010).
Spontaneously hypertensive rats (Ejaz et al., 2015) and Swiss
albino mice were devoid of infarction after 15 min of surgically
induced distal MCAO (Arsava et al., 2009). In TIA patients, 30 min
seemed like a cut off duration which differentiates between MRI
negative and positive outcomes (Inatomi et al., 2004).

Higher species have probably less vulnerability to ischemia
than rodents do. Moreover, strain and vendor differences may
influence sensitivity to ischemia (Oliff et al., 1995). Future studies
in phylogenetically higher animals (such as cats, dogs, pigs, and
primates) searching for ischemic thresholds will allow for inter-
species comparisons as well as form a base for investigating a
number of phenomena such as why different species may be hav-
ing differing thresholds. A number of factors such as gray versus
white matter proportions, neuron density, formation of the Willis
circle, collateral circulation, cerebral blood flow values, age, and
gyrencephalic versus lissencephalic brain as well as yet unknown
intrinsic factors may play important roles. Accordingly, the appli-
cation of our TIA model to any rat strain may require preliminary
MCAO experiments with 10 and 12.5 min duration to determine
infarction threshold specific to that strain. Ejaz et al. (2015) devel-
oped a TIA model for spontaneously hypertensive rats. This model
includes 15-min microclip occlusion of distal MCA leaving animals
free from infarction and gross neurological deficits. Interestingly, a
more sophisticated sensorimotor test (sticky label test) was sensi-
tive to show deficits, of which pathological correlates were selec-
tive neuronal necrosis. In rats as brief as 8 min of focal ischemia
resumes in selective neuronal necrosis (Li et al., 1999). As well
apoptosis is induced after brief ischemia (Fink et al., 1998; Lee
et al., 2002). In our study, 25 and 30 min of MCAO, but not milder
ischemia, induced significant apoptosis. In accordance with the
findings of Kametsu et al.(2003), we found that increased durations
of transient ischemia paralleled with increased numbers of apop-
totic cells in the ipsilateral hemisphere. We could not observe
the same effect on the lesion volumes, because in the groups of
12.5- and 15-min ischemia number of animals with infarction
was few (1 out 6 and 3 out of 7, respectively). Apoptotic cell death
as a consequence of TIA-like brief transient focal brain ischemia
evolves in a progressive and delayed manner (Du et al., 1996).
Our results indicate that apoptosis induced by an episode of 10-
min ischemia is not aggravated from 24 h to 7 days after reperfu-
sion. Similarly, MRI follow-up ensured that TIA induced with 10-
min MCAO is associated with no delayed MRI lesion up to 7 days.
Additionally, total brain volumes on Day 1 and Day 7 were indiffer-
ent in this group of animals. Together with the lack of any other
visible abnormalities in MRI, these data suggest that no early atro-
phy follows a TIA-level ischemic insult. Long-term follow-up stud-
ies incorporating versatile methodology are warranted for
searching long-term cognitive consequences of TIA in rodents.

Preconditioning-ischemic tolerance paradigms used both
surgical and intraluminal MCAO. With intraluminal method, three
10-min intervals of transient MCAO (separated with 45 min peri-
ods of reperfusion) produced no histologically proven brain injury
at 24 h, but a gross patchy infarction in the caudaputamen and
selective neuronal necrosis in the cortex at 72 h was found (Chen
et al., 1996). Others using a similar preconditioning protocol found
no lesions with TTC-staining, neither at 24 nor at 72 h (Alkayed
et al., 2002). Toyoda et al. (1997) induced 20 min of MCAO with
simultaneous bilateral common carotid artery occlusion in the
rat without observing any TTC-derived lesion 48 h later. A single
10-min period of MCAO (by surgical method) in spontaneously
hypertensive rats produced no visible brain injury on HE-stained
sections neither in short-term (day 1 and 2) nor in long-term
(week 2 and 4), and no signs of apoptotic cell death was found
(Barone et al., 1998). Following 15 min of MCAO at day 3, MRI
did not reveal pathologic findings, but histopathologic examina-
tions showed selective neuronal death in the striatum (Fujioka
et al., 1999). Taken together, these data from ischemic tolerance
studies suggest that histopathological outcome of brief transient
MCAO (5–20 min) varies mainly depending on the animal strain
and the method used for pathological assessment. TTC-staining is
not precise enough to exclude small patchy infarcts as it depends
on an enzymatic reaction which occurs independent of selective
neuronal necrosis since the involved enzymes are as well located
in glial cells and leukocytes in addition to neuronal cells. As well
MRI fails to recognize selective neuronal necrosis induced by brief
focal ischemia, as in our study and in others (Li et al., 2000).
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To conclude, a clinically relevant TIA model is achieved in Wis-
tar rats, using intraluminal suture occlusion of the MCA for 10 min
or shorter periods. Such model may be utilized to explore molecu-
lar level pathophysiological determinants and to develop therapies
against delayed consequences of a TIA.
4. Experimental procedures

4.1. Animals

Adult male Wistar rats, weighing 250 to 450 g (Harlan Neder-
land, Horst, The Netherlands) were housed before surgery in
groups of five in a temperature- and humidity-controlled environ-
ment in a 12/12 h light/dark cycle with free access to standard
rodent food and tap water. After surgery, environmental conditions
were kept same, except that animals were housed individually.
Body temperature was monitored by a rectal thermometer
throughout the surgical procedures and imaging, and the animals
were maintained normothermic via a heating blanket. All experi-
ments were performed in conformity with the guidelines of the
National Institutes of Health Guide for the Care and Use of Labora-
tory Animals (1996). The local Animal Research Committee
approved the study protocol. Altogether 51 animals were eligible
to be included to the analyses. Twenty-eight animals were
excluded due to various failures including weak or no drop in
LDF values following attempts of MCA occlusion, no recovery of
LDF values following mechanical withdrawal of the suture occlu-
der, or due to subarachnoid hemorrhage. We made all efforts to
minimize the number of animals used and their suffering. All eval-
uations were done blindly to the experimental group allocation of
the animals.

4.2. Transient focal cerebral ischemia-animal groups

We used injectional anesthesia by an intraperitoneal injection
of ketamine hydrochloride (50 mg/kg, Ketalar, Parke-Davis, Detroit,
MI) and a subcutaneous injection of medetomidine hydrochloride
(0.5 mg/kg, Domitor, Orion, Espoo, Finland). To induce transient
focal cerebral ischemia we used intraluminal suture MCAO model
with a slight modification (Tatlisumak et al., 1998). Briefly, the
right common carotid artery and the right external carotid artery
were permanently ligated. A home-made suture occluder (a 4–0
nylon monofilament, with its tip rounded by heating and coated
by silicone) was inserted through an arteriotomy below the carotid
bifurcation and advanced rostrally into the internal carotid artery
until a mild resistance was felt, indicating occlusion of the orifice
of the right MCA. Reperfusion was achieved by withdrawing the
occluder after varying durations of MCAO: 5, 10, 12.5, 15, 25, and
30 min of transient ischemia was tested. Control group consisted
of sham animals, which experienced the very same surgery, except
MCAO. After collecting and analyzing the data from these groups,
we studied an additional group of animals (7-day group), to which
10 min of transient ischemia was induced, and reperfusion period
was extended to 1 week. In this group, we searched for any delayed
appearance of MRI lesions by repeated imaging at 24 h, 72 h, and
1 week. The final numbers of animals in each group are given in
the Table 1.

4.3. Model criteria

4.3.1. Criterion 1, demonstration of MCAO and reperfusion
Laser-Doppler flowmetry (LDF, Oxy-Flow, Oxford Optronix,

Oxford UK) guidance (Strbian et al., 2006) ensured firstly the suc-
cess of MCAO, secondly of recanalization. Values of CBF at baseline,
occlusion, and reperfusion (immediately, and at 10, 20, 30 min, and
24 h after reperfusion) were recorded. MCAO was interpreted as
successful if CBF dropped to below 25% of baseline level after
occlusion, and reperfusion was found sufficient if post-
reperfusion value (latest at 30 min post-reperfusion) was a mini-
mum 50% of baseline level. Animals were excluded in cases of
inadequate MCAO or inadequate reperfusion, and when subarach-
noid hemorrhage was suspected due to severe and sustained
decreases of CBF after occlusion and during reperfusion.

4.3.2. Criterion 2, demonstration of normal neurological status at 24 h
We applied a six-point scale of sensorimotor findings

(Tatlisumak et al., 1998) as follows: 0 = no deficit, 1 = failure to
fully extend the left forepaw, 2 = circling to the left, 3 = decreased
resistance to lateral push, 4 = no spontaneous walking with a
depressed level of consciousness, and 5 = dead. No deficit was the
prerequisite for fulfilling Criterion 2. Animals were evaluated at
the end of reperfusion period (i.e. at 24 h; in the 7-day group addi-
tionally at 72 h and 7 days).

4.3.3. Criterion 3, demonstration of the absence of visible infarction
After neurological assessment, animals received anesthesia for

MRI. We used a 4.7 Tesla scanner (PharmaScan, Bruker BioSpin,
Ettlingen, Germany) with a 90-mm shielded gradient capable of
producing a maximum gradient amplitude of 300 mT/m with a
80-ms rise time. A linear birdcage RF coil with an inner diameter
of 38 mm was used. Diffusion-weighted imaging (DWI) was
applied by using a spin-echo echo-planar imaging (EPI) sequence
with two b values of 0 and 1037 s/mm2, and diffusion was mea-
sured in the read gradient direction (TR/TE = 3000/32 ms, matrix
size = 128 � 128, field-of-view = 40 � 40 mm). Afterwards, a T2-
weighed spin echo (rapid acquisition with relaxation enhance-
ment, RARE) sequence (TR/TEeff = 2500/80 ms, matrix
size = 256 � 192, field-of-view = 40 � 40 mm) was run. Both DWI
and T2-weighted sequences had seven 2-mm-thick slices covering
the entire brain. Images were evaluated visually by an investigator
blind to animal groups to detect any region with increased signal
indicating ischemic lesion. Ischemic lesions on T2-WI scans were
manually outlined in each slice (Schneider et al., 2012). Lesion
areas were summed-up, and multiplied by slice thickness yielding
lesion volume.

4.4. Tissue handling and histological evaluations

After a lethal dose (300 mg/kg) of intraperitoneal pentobarbital
(Mebunat, 60 mg/mL, Orion, Espoo, Finland) injection, we per-
formed cardiac perfusion-fixation with ice-cold saline. Brains were
cut to 2-mm-thick slices and fixed in formaldehyde, and embedded
in paraffin blocks. We cut 4-mm slices with a microtome (Leica
SM2000 R, Leica Microsystems Nussloch GmbH, Nussloch, Ger-
many) and HE or terminal deoxynucleotidyl transferase-mediated
dUTPbiotin nick end-labeling (TUNEL, In Situ Cell Death Detection
Kit, Fluorescein, Roche Diagnostics Oy, Espoo, Finland) stainings
were applied (the latter according to the manufacturer’s instruc-
tions). Stained slices were assessed under a light microscope (Axio-
plan2 Imaging, Carl Zeiss MicroImaging GmbH, Göttingen,
Germany) by investigators who were blinded to the experimental
groups.

In TUNEL-stained slices, we counted TUNEL-positive cells in
both hemispheres, in three regions: the hippocampus, the fron-
toparietal cortex, and the caudaputamen. The ratio of the ipsilat-
eral count to the contralateral count yielded the TUNEL-index.

In the HE-stained specimens, we searched for ischemic changes
and necrotic findings in the hippocampus, caudaputamen, and
frontoparietal cortex of both hemispheres (Pedrono et al., 2010).
The pathology found in each area was scored as follows: 0 = no
change, 1 = scattered neuronal changes, 2 = selective neuronal
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necrosis (necrotic findings limited mainly to specific neuron popu-
lations), and 3 = infarction (pannecrosis characterized as the loss of
affinity for hematoxylin in all cell types). Afterwards, total scores
were calculated by summing scores from all three areas of both
hemispheres.

4.5. Statistical analysis

Statistics were performed using SigmaStat (version 3.11, Systat
Software, Inc., Chicago, IL). All values, except for the neurological
scores, were presented as mean ± SD. One-way analysis of variance
(ANOVA) followed by Holm–Sidak post hoc test compared para-
metric data (body weights, rectal temperatures, LDF values) in
multiple groups. Nonparametric data (HE scores and non-
normally distributed TUNEL-index data) were analyzed using
Mann-Whitney Rank Sum test for 2 group comparisons and for
multiple group comparisons Kruskal-Wallis ANOVA on ranks test
followed by Dunn’s method or Tukey test. Follow-up values of
parametric parameters (body weights, rectal temperatures, LDF
values) are tested for variance with paired t-test or ANOVA for
repeated measures. Spearman rank correlation tests assessed the
correlation between the duration of ischemia and the number of
apoptotic cells or HE scores. A two-sided P value of <0.05 was con-
sidered statistically significant.
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