

14 - 16 November 2016 BANGKOK, THAILAND Bangkok Convention Centre at CentralWorld

IPTC-18732-MS A Technical Evaluation of Hybrid Membrane-Absorption Processes for Acid Gas Removal

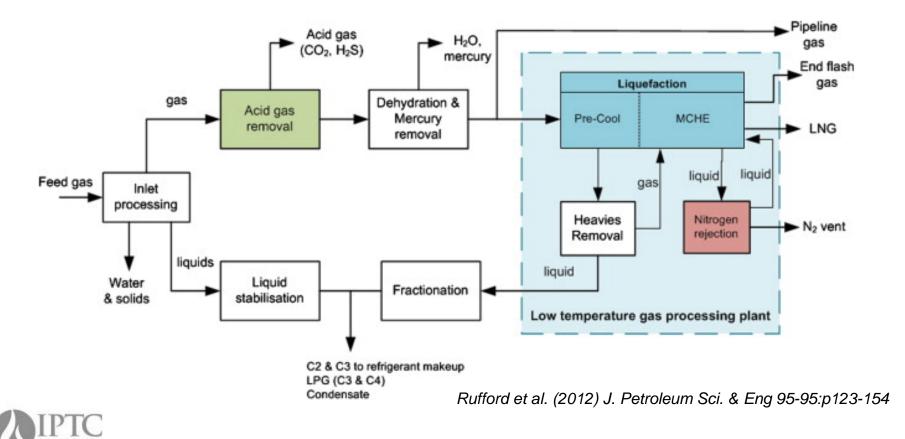
Michael Schlierf, Technischen Universität Müchen, Germany

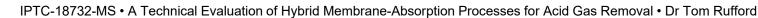
Tom Rufford, The University of Queensland, Australia

Contact: t.rufford@uq.edu.au

Create change

Highlights


Comparison of (1) conventional MDEA amine absorption and (2) hybrid membrane + amine process to treat sour gas for feed to an LNG plant.


Feeds with 10%mol CO₂ \rightarrow no apparent benefits of a hybrid system.

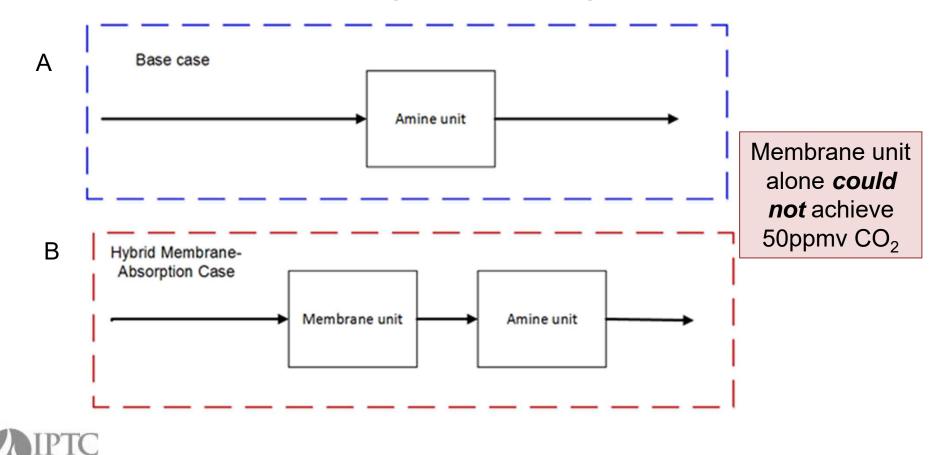
Very sour feed gas with 50% mol CO_2 the hybrid system has potential for significant reductions in equipment weight, plant volume, investment costs, and operating costs.

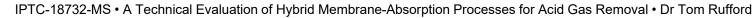
Typical process flow scheme for LNG production

Challenges for gas processing in remote or stranded fields

Feed to LNG plant has tight specification, e.g.:

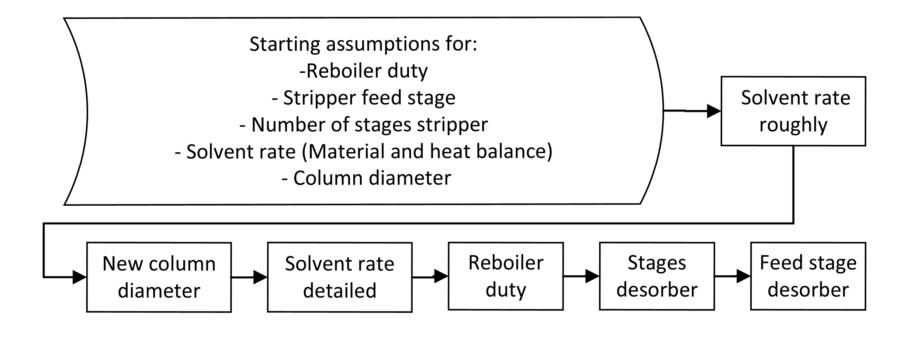
- CO₂≤50ppmv
- H₂S ≤4ppmv


To meet these specifications amine plants require large columns, large solvent inventories, high demand for energy.


Floating LNG (FLNG) and micro-LNG plants may need significant reductions in weight, cost, and energy demand.

This project seeks to evaluate the potential of a hybrid membrane + absorption process to treat sour gas onboard FLNG plants.

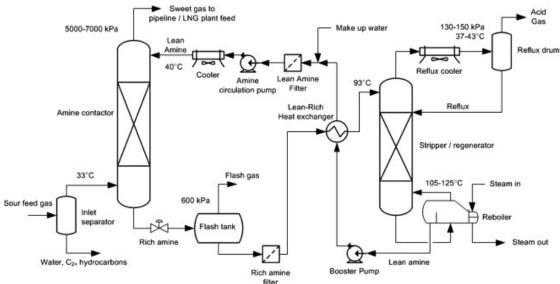
Overview of the processes compared



Summary of methodology

Two feed cases developed based on		Feed1	Feed2
Roussanaly et al. (2014)		Feed compositions in mole %	
Simulations in Aspen Hysys V8.6	Methane	83	41
Process metrics considered: Methane slip (MS)	Ethane	5	4.5
	Propane	2	3.5
Relative energy demand (RED)	CO ₂	10	50
Dry equipment weight	H_2S	0	1
Dry installed weight	H ₂ O	0	0
Total plant volume Equipment cost & installed cost	N_2	0	0
Operating cost	Temp., °C	40	40
Aspen Process Economic Analyzer	Pressure, bar	70	70
	Flow Nm ³ /h	590,000	590,000

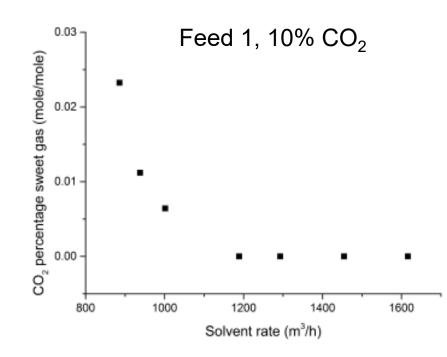
General simulation strategy



Summary of Base Case: 50% MDEA absorption

50% methyl-di-ethanolamine (MDEA) solvent + piperazine (PZ) Contactor: P=70bar; Mellapak 250Y structured packing

Stage efficiencies: 0.15 CO₂; 0.8 H₂S

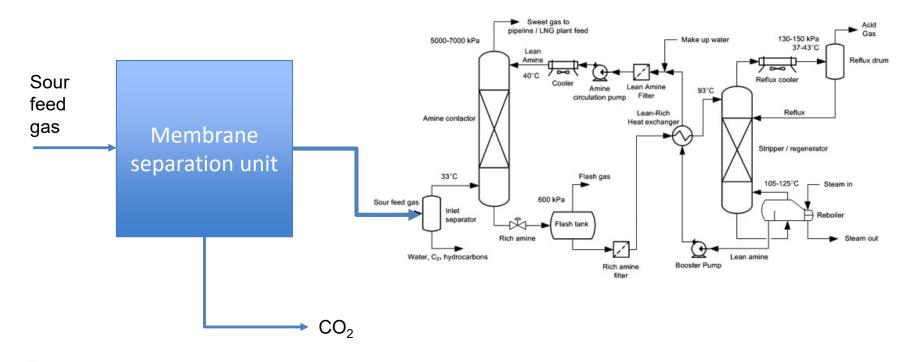

Stripper: 1.9 bar, 50°C

IPTC-18732-MS • A Technical Evaluation of Hybrid Membrane-Absorption Processes for Acid Gas Removal • Dr Tom Rufford

Solvent rate required to achieve 50 ppmv CO₂ spec

Run absorber hard to get 50 ppmv CO_2 for LNG prep. (vs 2% pipeline gas)

Optimized solvent rate = 1258m³/h



	Feed1	Feed2
CO ₂ , %mol	10	50
H ₂ S, %mol	0	1
Solvent rate m ³ /hr	1258	4105
Absorber stages	20	20
Absorber diameter, m	10	15
Stripper stages	7	7
Reboiler duty, Btu/gal lean solvent	880	880

Summary amine unit requirements for Feed 1 and Feed 2

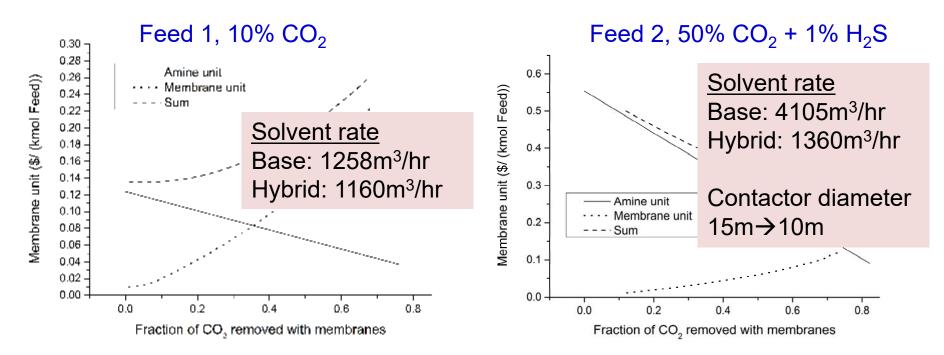
Hybrid membrane-amine unit

IPTC-18732-MS • A Technical Evaluation of Hybrid Membrane-Absorption Processes for Acid Gas Removal • Dr Tom Rufford

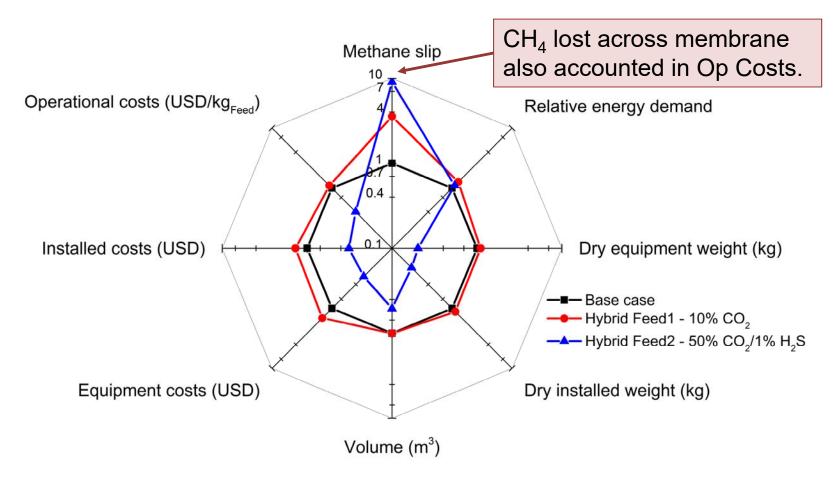
Method to model membrane separation unit

Material: cellulose acetate (CA) membrane Selectivity $P_CO_2/P_CH_4 = 15$ (Niu and Rangaiah, 2014) Selectivity $P_H_2S/P_CH_4 = 19$

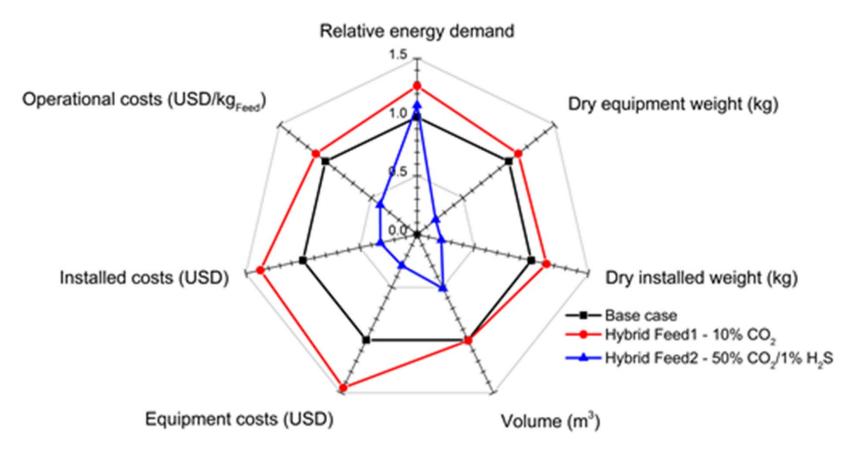
Permeate pressure = 1.38 bar


Membrane thickness = 100 nm (i.e. CA thickness on a substrate)

Modeled membrane unit in a user defined subflowsheet



How much CO₂ to remove in the membrane unit?


Each mole of CO_2 removed in membrane unit reduces solvent rate & reboiler duty required in the amine section. Control = membrane area. \rightarrow Reducing hydraulic load also effects equipment sizing

Process metrics spider plot (log scale)

Comparison of process metrics

Feed 1 10% CO₂ summary

No clear advantage of hybrid system for this feed scenario and membrane properties.

- 7.8% lower solvent rate in hybrid process, doesn't impact column size
- 30% drop in energy for reboiler, pumps in amine unit

Those benefits offset by:

- methane slip in membrane unit
- Small increase in equipment weight (MSU + base case amine unit)
- Hybrid process costs all increase

Feed 2 50% CO₂ + 1% H₂S Summary

For very sour gas feed there is potential to use bulk separation properties of the membrane unit.

- 67% reduced solvent rate in hybrid process
- 80% reduced equipment weight, 50% reduced plant volume

Methane slips increases $\rightarrow \sim 10\%$ CH₄ in feed lost across membrane

- Still energy savings allow 40% reduction in operating costs
- Methane slip has implications on any CO₂ processing/storage plans

Highlights

Comparison of (1) conventional MDEA amine absorption and (2) hybrid membrane + amine process to treat sour gas for feed to an LNG plant.

Feeds with 10%mol CO₂ \rightarrow no apparent benefits of a hybrid system.

Very sour feed gas with 50% mol CO_2 the hybrid system has potential for significant reductions in equipment weight, plant volume, investment costs, and operating costs.

14 - 16 November 2016 BANGKOK, THAILAND Bangkok Convention Centre at CentralWorld

Acknowledgements / Thank You / Questions

This work was funded in part by:

- The Australian Research Council (DE140100569)
- Technischen Universität Müchen travel support for Michael to UQ

IPTC attendance supported by SPE Faculty Enhancement Travel Award

Cited references

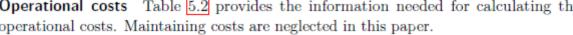
Niu, Mark Wendou, G. P. Rangaiah. 2014. Retrofitting amine absorption process for natural gas sweetening via hybridization with membrane separation (in *International Journal of Greenhouse Gas Control* **29**: 221-230

Roussanaly, S., R. Anantharaman, K. Lindqvist. 2014. Multi-criteria analyses of two solvent and one low-temperature concepts for acid gas removal from natural gas (in *Journal of Natural Gas Science and Engineering* **20**: 38-49.

Rufford, Thomas E., Simon Smart, Guillaume C.Y. Watson et al. 2012. The removal of CO_2 and N_2 from natural gas: A review of conventional and emerging process technologies (in *Journal of Petroleum Science and Engineering* **94-95**: 123-154.

Methane slip (MS) The methane slip depicts the percentage of methane lost during the purification process. It is defined in Equation 5.1.

$$MS = 1 - \frac{CH_4 \text{ in the product gas}}{CH_4 \text{ in the raw natural gas}}$$
(5.1)


Relative energy demand (RED) This indicator is the ratio of lost and required energy based on the combustion heat of the product gas \dot{Q}_{Prod} , depicted in Equation 5.2] The absolute energy demand can be calculated by summing up the differences in the combustion heats of the raw gas \dot{Q}_{Raw} along with the product gas \dot{Q}_{Prod} , electrical energy P_{el} and the required heat of the reboiler \dot{Q}_{Reb} . The electrical energy P_{el} in the gas facilities is provided by gas turbines. For calculating P_{el} a turbine efficiency of $\eta = 0.4$ is assumed.

$$RED = \frac{\dot{Q}_{Raw} - \dot{Q}_{Prod} + P_{el}/\eta + \dot{Q}_{Reb}}{\dot{Q}_{Prod}}$$
(5.2)

	Value	Unit	Source
Cost for reboiler steam	0.0145	\$/kg	[20]
Cost for electricity	0.07	\$/kWh	$\underline{20}$
Cost for cooling water	0.01	/t	20
Cost for process water	0.0005	\$/kg	$\underline{20}$
CH ₄ Loss	4	\$/MMBtu	20, 39
Lower heating value methane	10	kWh/m^3	40
Cost for MDEA	5.5	\$/kg	41
Cost for PZ	7.7	\$/kg	41
Solvent Degradation	0.25	$\rm kg/t_{\rm CO_2}$	[20]
Temperature saturated steam	140	$^{\circ}\mathrm{C}$	
Efficiency of reboiler heating	0.9		

Operational costs Table 5.2 provides the information needed for calculating the operational costs. Maintaining costs are neglected in this paper.

IPTC-18732-MS • A Technical Evaluation of Hybrid Membrane-Absorption Processes for Acid Gas Removal • Dr Tom Rufford