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Abstract 

Although age-related declines in cognitive, sensory and motor capacities are well documented, current 

evidence is mixed as to whether or not aging impairs sensorimotor adaptation to a novel dynamic 

environment. More importantly, the extent to which any deficits in sensorimotor adaptation are due to 

general impairments in neural plasticity, or impairments in the specific processes that drive adaptation 

is unclear. Here we investigated whether there are age-related differences in electrophysiological 

responses to reaching endpoint and trajectory errors caused by a novel force field, and whether 

markers of error processing relate to the ability of older adults to adapt their movements. Older and 

young adults (N = 24/group, both sexes) performed 600 reaches to visual targets, and received audio-

visual feedback about task success or failure after each trial. A velocity-dependent curl field pushed 

the hand to one side during each reach. We extracted ERPs time-locked to movement onset 

[kinematic error-related negativity (kERN)], and the presentation of success/failure feedback 

[feedback error-related negativity (fERN)]. At a group level, older adults did not differ from young 

adults in the rate or extent of sensorimotor adaptation, but EEG responses to both trajectory errors and 

task errors were reduced in the older group. Most interestingly, the amplitude of the kERN correlated 

with the rate and extent of sensorimotor adaptation in older adults. Thus, older adults with an 

impaired capacity for encoding kinematic trajectory errors also have compromised abilities to adapt 

their movements in a novel dynamic environment.  

 

Keywords: aging; electroencephalography (EEG); event related potential; error-related negativity;, 

feedback-related negativity; sensorimotor adaptation 
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Introduction  

Sensorimotor adaptation is an error-based learning process (Izawa & Shadmehr, 2011) that is required 

to maintain successful and efficient movements despite changes in the properties of the environment 

or the body, such as during recovery after injury or disease, as well as age-related changes (King, 

Fogel, Albouy, & Doyon, 2013). Typical paradigms to study adaptation in the upper limbs are 

visuomotor rotation (Cunningham, 1989; Krakauer, 2009) and force field adaptation (Shadmehr & 

Mussa-Ivaldi, 1994). During visuomotor rotation, participants reach at targets while adapting to 

rotated visual feedback (for review see Krakauer, 2009). During force field adaptation participants 

hold a robotic arm and reach at visual targets, while the robot applies velocity-dependent forces 

orthogonally to the reach direction. This lateral perturbation initially leads to large spatial errors and 

curved movements, but with practice, participants reduce errors and perform accurate and straight 

reaching movements by modifying their force output in a velocity-dependant way (see Krakauer & 

Mazzoni, 2011 for review). To date the majority of studies investigating age-related differences in 

sensorimotor adaptation employed visuomotor rotation paradigms (e.g. Bock, 2005; Buch, Young, & 

Contreras-Vidal, 2003; Hegele & Heuer, 2013; Heuer & Hegele, 2008, 2014; Heuer, Hegele, & 

Sulzenbruck, 2011; for review see King et al., 2013; Seidler, 2006). Compared to visuomotor 

rotations, adaptation to physical perturbations, such as force fields, more closely resembles the 

requirements faced by older adults to adapt their force output in everyday life as a consequence of 

muscle atrophy, or injury. Force field adaptation therefore appears to be a good model to study motor 

adaptability in older people. However, to the best of our knowledge, only three studies to date have 

compared force field adaptation between young and older adults, and results are inconsistent between 

the studies (Cesqui, Macrì, Dario, & Micera, 2008; Huang & Ahmed, 2014; Trewartha, Garcia, 

Wolpert, & Flanagan, 2014). Specifically, while Cesqui et al., 2008 and Trewartha et al., 2014, found 

no differences in kinematic error reduction between young and older adults, Huang and Ahmed, 2014 

reported that older adults reduced errors less than young adults when reaching in a force field. Errors 

in hand position when exposed to a force field can be influenced by both online feedback corrections 

and feedforward or predictive compensation for the field. However, two of these studies included 
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force channel trials to isolate predictive control mechanisms in adaptation. In channel trials, a straight-

line path between the start and the target position is enforced with a mechanical force channel 

(Scheidt, Reinkensmeyer, Conditt, Rymer, & Mussa-Ivaldi, 2000). The velocity-dependent force 

applied against the channel wall in such “error clamp” trials indicates how well participants predict 

the new dynamics, independent of feedback and online corrections. Huang and Ahmed, 2014 found 

that younger adults showed greater predictive compensation to the field in force channel trials than 

older adults, suggesting a decline in the ability to form an accurate internal representation of new 

dynamics with increasing age. By contrast, Trewartha et al., 2014 found no age-related differences in 

predictive force field compensation. To resolve these opposing findings, it is important to identify 

whether there are changes in the mechanisms that underpin force field adaptation with age. 

Accordingly, the purpose of the current study was to investigate whether processes that drive 

adaptation to new dynamics, such as the processing and correction of errors, differ between young and 

older adults. Therefore, we not only assessed behavioural performance in young and older adults 

adapting to force fields, but also the neural responses to errors during the adaptation task. We aimed 

to establish whether error processing is associated with any age-related deficits of force field 

adaptation. 

People typically experience both sensory prediction and task outcome errors when first exposed to a 

novel force field (Izawa & Shadmehr, 2011). In this paradigm, sensory prediction errors (also referred 

to as low level errors, see Krigolson & Holroyd, 2007) constitute mismatches between the actual, 

laterally perturbed, reach trajectories and the straight trajectories that are expected given the issued 

motor commands. Task errors (also referred to as high level errors, see Krigolson & Holroyd, 2007) 

occur when people miss the intended target, and therefore fail to attain the task goal. Evaluation of 

both error types can drive the behavioural changes that take place in motor commands during 

adaptation (Izawa & Shadmehr, 2011; Nikooyan & Ahmed, 2015; Taylor, Hieber, & Ivry, 2013). 

However, the processing of sensory prediction errors seems to drive the ‘true’ adaptation that reflects 

predictive compensation for the new dynamics (Butcher & Taylor, 2017; Izawa & Shadmehr, 2011; 

Shadmehr, Smith, & Krakauer, 2010). In this study, we considered responses to both of the error types 
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that can influence adaptive behaviour, given that little is known regarding the contribution of different 

errors to adaptation in older adults. 

Error processing can be measured with EEG. In speeded choice response tasks, there is a negative 

EEG response to the commission of errors, referred to as error negativity (NE; Falkenstein, 

Hohnsbein, Hoormann, & Blanke, 1991) or error-related negativity (ERN; Gehring, Goss, Coles, 

Meyer, & Donchin, 1993), and a similar negativity to negative task feedback, referred to as feedback 

related negativity Miltner (fERN/FRN; Miltner, Braun, & Coles, 1997). Both ERN and fERN are 

reduced in older adults (e.g. Band & Kok, 2000; Falkenstein, Hoormann, & Hohnsbein, 2001; 

Nieuwenhuis et al., 2002), suggesting a reduced sensitivity to errors with age. 

In sum, our goal was to investigate age-related differences in force field adaptation and to gain a 

better understanding towards why some older adults seem to adapt less than young adults, while 

others do not seem to differ with regard to their adaptation outcomes. We expected that the ability to 

process sensory prediction errors and task errors might be a key determinant for adaptability in the 

elderly. More precisely, we addressed three aims in the current study. First, we compared how groups 

of older and young adults adapted to novel dynamics. Specifically, we characterised older adult’s 

behaviour in force field adaptation by describing movement parameters (movement time, velocity, 

extend, smoothness), and by measuring error-reduction during exposure to the force field and 

predictive compensation in channel trials (i.e. ‘true’ feedforward adaptation).We predicted that young 

and older adults would adapt to the new dynamics (Cesqui et al., 2008; Huang & Ahmed, 2014; 

Trewartha et al., 2014), but expected reduced adaptation in seniors, consistent with reports of motor 

and cognitive functional decline with age (for reviews see e.g. King et al., 2013; Maes, Gooijers, de 

Xivry, Swinnen, & Boisgontier, 2017; Park & Festini, 2017). Second, we evaluated whether there 

were age-related differences in electrophysiological responses to sensory prediction errors (trajectory 

errors during reaching) and task errors experienced during adaptation. Following Torrecillos et al., 

(2014) we used EEG to measure error processing during sensorimotor adaptation (Sambrook & 

Goslin, 2015; Torrecillos et al., 2014). Based on previous findings on error processing in the elderly 

employing task with a simple motor response (e.g. Falkenstein et al., 2001; Nieuwenhuis et al., 2002), 
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we expected that ERP amplitudes associated with the commission of errors and the evaluation of task 

outcome feedback would be reduced for older adults. Third, we tested the hypothesis that markers of 

error processing would be associated with adaptation outcomes in both young and older adults. In 

particular, as adaptation is an error-based learning process, we expected that older adults, who have a 

larger (more youth-like) brain response to errors, are more capable of adaptation.  

We found that older adults did not differ on average from young adults in the rate or extent of 

sensorimotor adaptation. However, responses to both trajectory errors and task errors were reduced in 

the older group. Interestingly, the rate and extent of adaptation were significantly larger in a subgroup 

of older adults with larger neural response to trajectory errors, compared to other older adults. This 

suggests that older adults with impaired capacity for trajectory error processing also have impaired 

capacity to adapt their movements to a novel dynamic environment. 

Methods 

Participants 

Twenty-eight young (17 to 24 years of age) and 26 older (65 to 80 years of age) healthy participants 

were recruited from the student pool from The University of Queensland and the community, 

respectively. All participants gave written informed consent to take part in the study and received 

either credit points or AUD 20 for their participation. They reported to be right handed (Oldfield 

1971, as modified by M. Cohen, Staglin IMHRO Center for Cognitive Neuroscience, University of 

California, Los Angeles, Los Angeles, CA; http://www.brainmapping.org/shared/Edinburgh.php), to 

have normal or corrected to normal vision and hearing, and to be free of any neurological or 

psychiatric disorders. Moreover, we asked participants to self-report their health (3 items), and years 

of education. Older participants additionally underwent the Standardised Mini-Mental State 

Examination (SMMSE; Molloy, Alemayehu, & Roberts, 1991) to ensure that they did not suffer from 

cognitive impairment and hence were able to understand and follow the task instructions. All older 

participants scored higher than 26 points on the SMMSE, indicating normal function. The Human 
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Research Ethics Committee of the University of Queensland, Australia, approved the study (Approval 

Number 2015000781).  

One older and three young participants were excluded as they hit the targets in less than 12% of the 

trials, resulting in less than the 50 valid trials required for EEG analysis time-locked to the successful 

target hit (Marco‐Pallares, Cucurell, Münte, Strien, & Rodriguez‐Fornells, 2011). One older 

additional participant had to be excluded due to noisy EEG signals. The final sample consisted of 25 

young (15 females, mean age of 19.04 ± 2.0 years) and 24 older participants (8 females, mean age of 

69.67 ± 4.3 years). Final samples did not differ with regard to their subjective rating of health (young: 

2.64 ± 0.78; older: 2.26 ± 0.79; a higher score indicates better health rating), or handedness (young: 

0.79 ± 0.14; older: 0.77 ± 0.24; ranging from -1 indicating left handedness to +1 for right 

handedness). Older adults, however experienced more (F(1,47)= 20.247, p < .001) years of education 

(18.1 ± 5.2 years) than the younger adults (13.2 ± 1.5 years), which is likely because we recruited 

young adults from a first year student pool and older adults from the broader university community. 

Due to an EEG trigger failure, we had to exclude one additional older participant from the analysis of 

trajectory error processing (task error was triggered using a photo sensor, hence data from this person 

were included in the behavioural and task error analyses only). 

 Reaching Task and Procedure 

Participants made planar reaches with their right arm while grasping the handle of a robotic arm; the 

vBOT, which is a modular, two-dimensional planar manipulandum (see Figure 1; for full detail of the 

apparatus see Howard, Ingram, & Wolpert, 2009). Visual feedback was provided using a 27” LCD 

computer monitor (ASUS, VG278H) running at 120Hz mounted above the vBOT and projected to the 

participant via a mirror. The display was calibrated so that visual feedback appeared in the plane of 

the limb, and a cursor appearance veridically coincided with actual hand position. The mirror 

prevented vision of the manipulandum and the participant’s arm. The participant’s arm rested on an 

air-sled that allowed for near frictionless movement over the table while relaxing their shoulder 

muscles. 
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The participants’ task was to move a cursor (radius = 0.25 cm), representing the position of their 

hand, from a start position (white disc with 1 cm radius, positioned on the mid-sagittal plane ∼25 cm 

from the participant's chest, and ~23 cm from the centre of the eyes) to a target position (yellow disc 

with 1 cm radius positioned 10 cm away from the start position) by making a reaching movement 

after a go signal. Targets could appear in one of twelve positions, distributed evenly in 30-degree 

increments around the start position. Target order was pseudorandomised, such that each target was 

presented once within each block of twelve trials.  

Participants were instructed to make a single, smooth and swift movement from the start to the target 

position in an attempt to stop on the target (see Figure 1C for a schematic overview of the trial 

structure). Once they stopped their movement (speed < 0.5 cm/s) they immediately received bimodal 

audio-visual feedback on their success. When the participant hit, or sliced through the target, the 

target disc turned green, and a pleasant “bing” sound was played. When they missed it (i.e. stopped 

short, or reached the target extent on either side of the target), the target disc turned red and an 

alternative sound was played. The start and the target position were displayed throughout the whole 

trial but the cursor feedback was displayed only until the reach extended 5 cm away from the start 

position (i.e. during the first half of the reach), as we aimed to minimise predictive processing of task 

outcome (based on vision) prior to the end of the reaching movement. The cursor position was 

displayed again at the end of each trial, together with the presentation of the audio-visual task 

feedback. If the participant’s reach exceeded the target distance, the cursor was displayed at the point 

where they passed a 10 cm radius. Feedback was provided for 800 ms, and participants were 

instructed to stay and wait in their final position until the feedback was turned off before returning 

back to the start position. When a participant’s movement time was below 150 ms or greater than 450 

ms, an additional feedback message was presented, asking them to move slower or faster, 

respectively. Importantly, this additional feedback message was presented after the task feedback, and 

was provided in order to ensure that participants moved with approximately the same movement 

speed. No feedback about speed was provided when participants’ movement time was within the 

desired range. 
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Figure 1: A) Schematic illustration of force field adaptation. In early adaptation kinematic profiles are curved, and 

participants do not produce velocity dependent forces to counteract the force field. In late adaptation, kinematics are straight 

and temporal profiles of the lateral hand forces exerted to counteract the forces produced by the robot match the hand speed 

profiles. In force channel catch trials, a stiff two-dimensional spring constrains reaches to follow a straight path to the target, 

and predictive hand forces made to counteract the expected perturbation are measured. B) Experimental set up. Participants 

held the v-Bot arm handle and performed centre-out reaching movements to targets presented at one of twelve positions 

(note that opacity of the screen and open circles at each target position are for illustration purposes only). C) Task structure. 

After a central fixation, a target appeared and participants initiated their reach towards the target. Mid-reach the cursor 

disappeared. At the end of each trial (either when the participant stopped, or when the target extent was reached), feedback 

was given to the participant about whether they hit or missed the target and the location of the cursor at target extent. 

 

This reaching task was performed in three different dynamic environments that were generated by the 

robot: 1) a null field in which the robot imposed no forces, 2) a viscous curl field imposing forces of 

25 N.m
-1

.s, and 3) a force channel that constrained reaches to follow a straight path to the target with a 
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spring constant of 4,000 N/m orthogonal to the channel wall (see also Carroll, de Rugy, Howard, 

Ingram, & Wolpert, 2016; Reuter, Cunnington, Mattingley, Riek, & Carroll, 2016). The force field 

and channels were only imposed on the outward movements towards the targets, whereas a weak 

spring assisted the participants to return the handle to the start position. No feedback about the hand 

position was provided during the return movement to avoid unlearning. 

Participants performed 600 reaches in total, of which the first 96 were baseline trials (80 null field 

trials with no forces, and 16 channel trials), and 504 were adaptation trials (420 force field trials, and 

84 channel trials). The direction of the force field was counterbalanced between participants. The 

order of field trials and channel trials was pseudorandomized for each participant, so that there was 

one channel trial and five field trials within six consecutive trials. Participants were forced to take a 

45 s break after each block of 60 trials, and told that they could take additional breaks anytime, by 

releasing the handle, and thus pausing the experiment. The reaching experiment took approximately 

50 minutes, preceded by a familiarisation phase, and EEG set up. In the familiarisation phase, 

participants performed movements in the null field until they felt comfortable doing the task and were 

able to move within the speed constraints. Participants performed at least 60 familiarisation trials in 

three blocks of 20 each. In the first block, we wanted participants to get familiar with the device and 

the task. Participants could move at their preferred speed. In the second block, participants received 

feedback about their movement speed if they moved too slow or too fast. In order to facilitate the 

adjustment of reaching speed to the task requirements only a single target position (at 90 degrees) was 

presented. The third practice block was identical to the experimental baseline trials with targets at all 

12 positions. If a participant struggled with any of the training blocks, or indicated that he/she would 

prefer more practice, the training block was repeated. The position of the handle and perpendicular 

forces were recorded with a 1000 Hz sampling rate.  

Behavioural data analysis 

Behavioural data were analysed with MATLAB 2015a (MathWorks Inc.). A 5th order, Butterworth 

filter with a low-pass cut-off frequency of 50Hz was applied to position, force and velocity data prior 

to analysis. The movement initiation was measured through the application of Teasdale’s et al. (1993) 
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algorithm to the velocity profile for each movement, with an initial threshold of 10% of the maximum 

tangential speed. Movement time was calculated from movement initiation until the participants 

reached the target distance of 10 cm, or reduced its velocity to more than 0.5 cm/s, if target distance 

was not reached. Trials where participants did not reach a distance of 5 cm, i.e. less than half of the 

target distance, were excluded from all further behavioural and EEG data analysis . On average 5.8 

±1.09 trials in the young group and 4.25 ± 0.87 trials in the older group were excluded, which is less 

than 1% of all trials per person. We analysed the percentage of target hits, the maximal reach distance, 

the peak velocity, the reach distance at peak velocity, and the movement time to generally describe 

participant’s behaviour in the task at baseline and during adaptation. In order to characterise kinematic 

reaching errors at baseline, we analysed peak perpendicular error, signed peak perpendicular error in 

the direction of the upcoming force field, and curvature of the movement (path length from start to 

final position/distance from start to final position) averaged across all of the null field trials during the 

baseline period. For field trials in the adaptation phase we analysed curvature and the signed peak 

perpendicular error in the direction of the force field. Variables for the adaptation phase were 

averaged across consecutive field trials in bins of 12, such that 35 bins characterised the entire 

adaption period. 

For channel trials, which were intermittent in the baseline and the adaptation phases, we calculated the 

signed peak force applied to counteract the force of the robot in order to characterise predictive 

compensation for the new dynamics. Signed peak forces were averaged across the entire baseline 

period, and across 3 consecutive channel trials in the adaptation phase. 

EEG recording and analysis 

EEG data were recorded using a 64 channel active electrode system (actiCHamp, Brain Products, 

Munich, Germany). Electrodes were positioned according to the extended 10-20 system (Jasper, 

1958). The signal was acquired with a sampling rate of 2500 Hz and low pass filtered at 100 Hz. 

Offline analyses of the EEG data were performed using Brain Vision Analyzer Software 2.0 (Brain 

Products, Munich, Germany). For ERP analyses, the signal was offline down-sampled to 625 Hz and 
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re-reference to the grand average signal (average across all 64 channels). A high-pass filter of 0.1 Hz, 

a low-pass filter of 30 Hz and a notch filter of 50 Hz were applied.  

Following Torrecillos’ et al. (2014), we meausred processing of trajectory and task errors as error-

related negativities in the event-related EEG potential. Specifically, we quantified kinematic trajectory 

error processing based on EEG activity time-locked to the movement onset. Task error processing was 

quantified based on EEG activity time-locked to feedback onset. For kinematic and trajectory error 

analysis, the data were segmented in 1 s segments of -200 to 800 ms from movement onset or 

feedback onset and baseline corrected relative to the 200 ms period prior to movement or feedback 

onset, respectively. Note that due to movement related potentials preceding movement onset 

(Jahanshahi & Hallett, 2003), and ongoing motor processing during movement prior to feedback 

onset, baseline phases prior to our ERP segments are not flat. Eye movements were corrected using 

ocular artefact removal based on an established algorithm (Gratton, Coles, & Donchin, 1983). EEG 

activity with a gradient steeper than 5 µV/ms, voltages exceeding -100 µV or 100 µV, or voltage 

changes of more than 100 µV in a 100ms time window were automatically detected and rejected as 

artefacts. Trials with artefacts were excluded channel-wise from further analysis (i.e. segments with 

artefacts were only excluded for channels in which the artefact occurred). Both kinematic and task 

error processing was analysed at electrode position FCz, which is situated over the medial–frontal 

cortex and which is a standard electrode site for analysis of error-related EEG potentials (Falkenstein, 

Hoormann, Christ, & Hohnsbein, 2000; Krigolson, 2017). 

For task error processing, following the traditional difference wave approach for feedback error 

related negativity (fERN) analysis (for reviews on fERN (also FRN) see e.g. Krigolson, 2017; San 

Martín, 2012), we calculated difference waves between trials with positive and negative feedback. 

The fERN peak was defined as the maximum negative peak in this fERN difference wave signal 

(ΔfERN) between 150 and 350 ms after feedback onset and peak latencies and adaptive mean 

amplitudes (±20ms) were extracted. Additionally we analyzed a feedback-related positivity (ΔfPE), 

which was evident in difference waves and peaked at about 400 ms (see Figure 5). Again, following 

Torrecillos et al. (2014), we further analysed kinematic trajectory error processing by comparing 
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mean ERP amplitudes gained from quartiles of trials with different error sizes (determined as the 

maximal perpendicular error per trial, i.e. the deviation from a straight trajectory from start to target 

position. Quartiles were determined individually for each participant, to allow for an equal number of 

trials in each error size category. We calculated kinematic error-related negativity (kERN) difference 

waves by subtracting the mean ERP amplitudes gained from the quartile of trials in which the smallest 

trajectory errors occurred from the mean ERP amplitudes gained from the quartile of trials in which 

the largest trajectory errors occurred. A more negative signal in this difference wave represents larger 

kinematic error processing. In young adults, a clear negative peak around 180 ms after movement 

onset was evident in the difference wave (see Figure 6c). We refer to this peak in the difference wave 

as kinematic error-related negativity (ΔkERN), inspired by Torrecillos et al., 2014, who used the term 

ERN-k. Note that the ΔkERN latencies in our complex reaching task are later than those typically 

reported for ERNs in speeded choice response tasks (Nieuwenhuis, Holroyd, Mol, & Coles, 2004), in 

which errors are binary in nature (Anguera, Seidler, & Gehring, 2009). This makes sense, as sensory 

prediction errors during reaching in a force field cannot readily be evaluated by use of the efference 

copy signal alone [as it would be the case in classic ERN speeded choice response paradigms or 

discrect motor task (Holroyd & Coles, 2002; Joch, Hegele, Maurer, Müller, & Maurer, 2017; 

Krigolson, 2017)]; instead in our task visual and/or proprioceptive feedback about the position of the 

hand are required to evaluate the discrepancy between the expected and actual sensory consequences 

(Torrecillos et al., 2014). Consequently, the kERN might more closely resemble an fERN than a 

classic ERN (Torrecillos et al., 2014).We quantified this ΔkERN peak in each subject by extracting 

the peak latencies and adaptive mean amplitudes (± 20 ms) of peaks detected between 120 and 250 ms 

in the difference wave signal.  In addition, we also exported average amplitudes for all four quartiles 

from a 50 ms time window of 160 – 210 ms after movement onset in order to test for scaling of 

kinematic error processing ERPs with error size. 

Statistical analysis 

Statistical analyses were done with SPSS for Windows version 25.0 (IBM Corp., Armonk, NY) and 

MATLAB 2015a (MathWorks Inc.). Behavioural measures at baseline were analysed with univariate 
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ANOVAs with the between group factor AGE (young, older). Mixed design ANOVAs and 

ANCOVAs were employed for the adaptation phase with the factors AGE and BIN (1 to 35) for 

dependent variables measured in field trials, and AGE and Bin (1 to 28) for signed peak forces 

measured the channel trials. ANCOVAs were used if we found any baseline differences between 

groups in the respective measure and baseline, and if this was the case the baseline value for the 

respective variables were included as a covariate in the model. Significant interactions between the 

factors BIN and AGE were followed up by determining learning rate constants from fitting the 

following exponential function using the Matlab fit function to the learning curves separately for both 

age groups: 

           

 

where x = trial number, a = a constant to allow for baseline error, b = the learning rate constant, y= 

reach error, and c = the asymptotic reach error. Confidence intervals (95%) for the learning rate 

constants were obtained by fitting to mean errors from bootstrapped samples (10000 iterations with 

replacement). 

For ERP analysis we calculated ANOVAs with the factors ERROR SIZE (quartile 1 to 4) on ERPs 

time locked to movement onset to assess whether kinematic error processing scales with error size. 

We further employed one sample t-test on the ΔkERN, ΔfERN, and ΔfEP difference wave peak 

amplitudes separately for both age groups. Between group differences in error processing were 

investigated with univariate ANOVAs on adaptive mean amplitudes and peak latencies. All statistical 

tests were computed bidirectionally. For within-subject factors, the Huynh–Feldt non-sphericity 

correction was applied where appropriate. Effect sizes are given as partial eta squares (ηp
2
). 

Correlations were used to investigate interrelations between the final level of adaptation and error 

processing (ΔkERN amplitude, ΔfERN amplitude). The final level of adaptation was defined as mean 

signed peak force averaged across second half of channel trials (i.e. bins 15 to 28), where performance 

reached an asymptote level (see Figure 4F). Specifically, robust Spearman skipped correlations were 
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computed using an open source toolbox for robust correlation analysis (Pernet, Wilcox, & Rousselet, 

2013; Rousselet & Pernet, 2012).  The toolbox uses Bonferroni correction for multiple comparison 

corrections and adjusts confidence intervals for correlation coefficients to 97.5% accordingly. 

Additionally, we performed median split analyses and subdivided the groups of young and older 

adults based on their ΔkERN amplitudes. We then compared behaviour performance between 

subgroups, as outlined above for the comparison between age groups.   

Results 

Aim 1: Age-related differences in force field adaptation - Behavioural results 

Figures 2 and 3 depict reach trajectories and force profiles for two individual participants at baseline, 

and in early and late adaptation. Figure 4 shows group average performance at baseline and during the 

adaptation phase for both age groups.   

 

Figure 2: Examples of reach trajectories for two individual participants (young, upper row; older, lower row) reaching at 

baseline (last baseline trial for each direction), in the beginning of adaptation (first adaptation trial for each direction), and at 

the end of adaptation (last adaptation trial for each direction). Note that the young participant adapts to a rightward force 

field and the old participant to a leftward force field. 

 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

16 

 

 

Figure 3: Examples of measured force profiles in the direction perpendicular to the direction of hand motion (red dotted 

line) and ideal force profiles needed to perfectly cancel the perturbing force generated by the robot (blue, solid line) for two 

individual participants (young, upper row; older, lower row). Individual trials recorded at the end of the baseline phase, in 

the beginning of adaptation, and at the end of adaptation are shown. Note that ideal force profiles also reflect the temporal 

course of velocity as ideal profiles are velocity dependent. Further note that ideal force profiles at baseline represent the 

forces that would be required to cancel the robot force when force field was subsequently turned on, and are included to 

illustrate that there were no substantial biases in lateral force production prior to adaptation. 

 

Baseline reaches in null field.  The percentage of target hits at baseline was about 75% in both groups, 

and despite the disappearance of the cursor midway through the reach, peak errors and movement 

curvature were small (Figure 4A-C). This suggests that participants made straight and smooth 

movements to the target, as instructed. As participants had no visual feedback of the cursor at the end 

of their movement, they typically reached past the target by about 2-3 cm. This overshooting was 

more apparent in young than older adults, evidenced by significant age effects for final reach distance 

and reach distance at peak velocity (see Table 1 for details). Moreover, movements of older adults 

were less straight, as evidenced by significantly larger movement curvature (Figure 4A), and larger 

lateral forces in force channel trials at baseline (Figure 4F). Peak errors in the direction of the 

upcoming force field, however, did not differ between age groups (Figure 4B), suggesting that there 
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were no age-related pre-existing direction dependent biases in reach trajectories. Also, movement 

time (Figure 4D) and peak velocity (Figure 4E) at baseline did not differ significantly between groups 

of young and older adults (see Table 1 for descriptive and statistical results for the baseline phase). 

Together, these findings confirm the expected and well-described age-related reduction of smoothness 

with age (for reviews see Diermayr, McIsaac, & Gordon, 2011; Seidler et al., 2010), but also show 

that participants in both age groups were able to successfully perform the task.  

Table 1. Performance measures at baseline and statistical results for comparison between age groups. 

Measure Young Older Statistics 

 Mean SD Mean SD F df p ηp2 

Target hits (%) 76 8 74 8 0.684 1,47 .412 .014 

Curvature 1.01 0.01 1.02 0.2 12.132 1,47 .001 .205 

Signed Peak Error (cm) 0.38 0.09 0.40 0.15 0.541  1,47 .466 .011 

Movement Time (ms) 323.1 66.0 350.1 44.2 2.820 1,47 .100 .057 

Peak Velocity (m/s) 50.8 10.1 50.5 6.9 0.025 1,47 .876 .001 

Signed Peak Force (N) 2.16 0.92 3.49 1.30 17.228 1,47 .001 .262 

Distance at peak velocity (cm) 6.15 0.70 5.49 0.545 13.487 1,47 .001 .268 

Reach distance (cm) 13.03 1.53 11.65 0.64 16.660 1,47 .001 .247 

Note that target hit curvature is unitless.  

 

Adaptation Phase. In the beginning of the adaptation phase, participants of both groups initially 

performed curved movements with large signed perpendicular errors, and lower percentage of target 

hits. Later in adaptation, they reduced their errors and moved straight towards the target again (see 

Figures 2 and 4A-C). Performance improvement is evident in all performance measures (main effects 

of bin for signed peak error: F(34,1598) = 83.926, p < .001, ηp
2
 =.641; curvature: F(34, 1564) = 

24.421, p < .001, ηp
2
 =.347 (for ANCOVA model with curvature at baseline included as covariate); 

percentage of target hits: F(34,1598) = 11.992, p < .001, ηp
2
 =.203). With increasing task 

performance, the movement time was also reduced (Figure 4D; main effect of bin for movement time: 

F(34,1598) = 5.376, p < .001, ηp
2
 =.103). 
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Overall, the age groups did not differ with regard to any of the parameters characterising kinematic 

error (main effects of age for signed peak error, curvature, percentage of target hits, all p > .10), but 

older adults had longer movement times (main effects of age for movement time: F(1,47) = 17.309, p 

< .001, ηp
2
 =.269). More importantly, interaction effects of the factors age and bin suggest that 

performance changed differently over time (Age × Bin interactions for signed peak error: F(34,1598) 

= 2.990, p = .004, ηp
2
 =.060; curvature: F(34,1564) = 2.492, p = .005, ηp

2
 = .051 (ANCOVA model 

with curvature at baseline included as covariate); percentage of target hits F(34,1598) = 1.549, p = 

.045, ηp
2
 = .032; see Figure 4A-C). Descriptively, it seems that young adults had larger errors at the 

beginning of adaptation, but then reduced their errors to a greater extent than older adults and thus 

outperformed the older participants at the end of adaption (see Figure 4A,B). Post hoc comparisons 

between groups at different time points, however, did not confirm statistically significant differences 

between groups in either early or late adaptation. We further followed up on these interactions by 

analysing differences in rate constants between groups. However, error reduction rates between age 

groups do not suggest differences between groups (means and 95% confidence intervals from 

bootstrapped error reduction rate for young: mean = 0.155 [CIs: 0.106, 0.191] and older: mean = 

0.220 [CIs: 0.122, 0.289] participants; curvature reduction rate for young mean = 0.229 [CIs: 0.048, 

0.316] and older: mean = 0.154 [CIs: -0.001, 0.220] participants; target hit rate for young: mean =  

0.069 [0.001, 0.113] and older: mean = 0.2312  [-0.350, 0.461] participants). Also, movement time 

changes over time differed between age group (Age × Bin interactions for movement time: 

F(34,1598) = 1.984, p = . 032, ηp
2
 = .040), indicating that older adults moved slower than young 

adults in the beginning of adaptation and then increased their movement speed over time, so that the 

differences in movement speed between age groups was reduced at the end of adaptation. Moreover, 

as in the baseline phase, velocity profiles of young and older adults were different, with young adults 

reaching their peak velocity later in the reach and overshooting the target distance more. We wanted 

participants to move as naturally as possible at their preferred movement speed and therefore did not 

further constrain movement times or distance. Consequently, the temporal characteristics of the force 

profiles experienced by the participants were slightly different for young and older adults. Most 

crucially however, peak velocity did not differ between age groups. Thus, the peak strength of the 
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physical perturbation was comparable between age groups, which allows us to investigate signed peak 

forces applied to compensate for the forces of the robot as a measure of feedforward adaptation. 

Signed peak forces increased over time in both older and younger adults (ANCOVA model with 

signed peak forces at baseline included as covariate, main effect of bin: F (27, 1242) = 3.827, p < 

.001, ηp
2
 =.077). Moreover, a Bin × Age interaction indicates that the development of signed peak 

forces across adaptation differed between age groups (F(27, 1242) = 1.867, p = .007, ηp
2
 =.039, see 

Figure 4F). A follow-up analysis on the rate of peak force development, however, did not confirm 

differences between groups (means and 95% confidence intervals from bootstrapped rates of peak 

force development for young = 0.235 [CIs: 0.114, 0.307] and older = 0.297 [CIs: 0.138, 0.446] 

participants). 

 Overall, the combined behavioural results suggest that young and older adults can adapt 

similarly to new dynamics even if the task is demanding (i.e. a strong force field of 25 N m
-1

 s, 

discontinuous visual feedback, and twelve target positions). Both age groups reduced their kinematic 

errors, increased their percentage of target hits, and learned to apply predictive compensation for the 

new dynamics. While bin by age interactions suggest differences in the temporal characteristics of 

error reduction and predictive field compensation, we could not confirm any age differences in 

adaptation rates. We note however that performance appeared more variable between individuals in 

the group of older adults (i.e. larger SD, see Figure 4; and large confidence interval ranges for 

adaptation rates).  
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Figure 4. Behavioural performance at baseline (individual data points), and throughout the adaptation phase for young (blue) 

and older (red) adults. A) Curvature. B) Signed peak error at peak hand speed. C) Target Hit Ratio. D) Movement Time. E) 

Peak Velocity. F) Signed Peak Force. Shaded area and error bars represent standard deviations  

 

Aim 2: Age-related differences in electrophysiological responses to errors experienced during 

adaptation – EEG results 

Figure 5 displays ERPs time locked to the onset of the feedback, and Figure 6 displays ERPs time-

locked the onset of the movement. We quantified trajectory error and task error processing as error-

related negativities to either kinematic trajectory errors (kERN), or task errors (fERN). 

Task error processing 

For task error processing, we calculated difference waves time-locked to the presentation of 

success/failure feedback between trials with positive feedback (target hits) and trials with negative 

feedback (target misses). In both groups, the difference wave showed a negative peak at 

approximately 200 ms, which we interpret as a ΔfERN, and a positive peak at approximately 350ms, 

which we term as a ΔfPE (see Figure 5). When outcomes can be anticipated prior to receiving task 

feedback, fERNs are smaller than when task feedback is unpredictable (Walsh & Anderson, 2012). 
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We tried to reduce this effect by turning off visual feedback at half the distance to the target, but 

participants still might have been able to use proprioceptive feedback to estimate their hand position 

in relation to the target position. Such anticipatory encoding of a target hit or miss could be 

responsible for the relatively early latencies of our fERN, relative to latencies reported in the literature 

(Hauser et al., 2014). A similar effect has been recently reported for outcome error encoding in prism 

adaptation (MacLean, Hassall, Ishigami, Krigolson, & Eskes, 2015). Additionally, as participants 

were moving their hand immediately before the feedback was presented, processes associated with 

movement offset and anticipation of future movement to return to the start position might have 

contaminated the ERP in the time period of feedback encoding. Importantly, such effects should be 

present independent of the feedback valence and therefore become negligible when quantifying 

fERNs with a difference wave approach (Eppinger, Kray, Mock, & Mecklinger, 2008; Krigolson, 

2017; Nieuwenhuis et al., 2002; Torrecillos et al., 2014). 

Amplitudes of both peaks in the difference wave were significantly different from zero for both young 

(ΔfERN: t(24) = -7.305, p < .001, ΔfPE t(24) = 4.118, p < .001) and older adults (t(23) = -2.599, p = 

.016, ΔfPE t(23) = 2.797, p = .010) indicating differences in the neural response to successful and 

unsuccessful task outcomes, in line with earlier findings in choice response tasks (San Martín, 2012). 

This reliable negativity in the ΔfERN after feedback onset indicates that both age groups successfully 

encoded task feedback about their final position during force field adaptation. However, the ΔfERNs 

of older adults (-0.664 ± SD 1.25µV) were significantly smaller than those of young adults (-3.15 ± 

SD 2.16 µV; main effect of age: F(1,47) = 24.114, p < .001, ηp
2
 =.339), which indicates that older 

adults have a reduced EEG response to negative feedback about task outcome in a reaching task. 

ΔfERN latencies did not differ between age groups, nor were there differences in ΔfPE amplitudes or 

latencies.  
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Figure 5. Event-related EEG activity, associated with task feedback processing A) Grand-average event-related potentials 

time-locked to task feedback onset averaged across trials with target hits (green) and target misses (red) for young (left) and 

older (right) adults. B) fERN differences waves (hits – misses) time locked to task feedback onset for young (blue) and red 

(older adults). 

 Trajectory error processing 

Following Torrecillos et al., (2014) we also analysed the EEG time-locked to movement onset to 

investigate online trajectory error processing. Trials were sorted into quartiles according to the 

observed perpendicular displacement in each participant and classified as: Very Small Error, Small 

Error, Medium Error, and Large Error trials (Torrecillos et al., 2014). Table 2 summarises the upper 

and lower bounds, as well as mean error size for each category and age group. Trajectory error sizes 

in each category were comparable between young and older adults.  

 

Table 2. Mean Error bounds and mean error size in cm and SD for trial categories used for kERN analysis for groups of 

young and older adults 

 Very Small Error Small Error Medium Error Large Error 

Groups Lower 

Bound 

Upper 

Bound 

Mean Lower 

Bound 

Upper 

Bound 

Mean Lower 

Bound 

Upper 

Bound 

Mean Lower 

Bound 

Upper 

Bound 

Mean 

Young 

Adults 

0.14 

(0.05) 

0.74 

(0.14) 

0.49 

(0.09) 

0.74 

(0.14) 

1.26 

(0.28) 

0.98 

(0.20) 

1.26 

(0.28) 

2.01 

(0.47) 

1.60 

0.37) 

2.02 

(0.47) 

7.34 

(1.52) 

3.08 

(0.62) 

Older 

adults 

0.14 

(0.07) 

0.86 

(0.32) 

0.58 

(0.20) 

0.87 

(0.32) 

1.38 

(0.52) 

1.12 

(0.42) 

1.39 

(0.53) 

2.08 

(0.74) 

1.71 

(0.63) 

2.09 

(0.74) 

6.28 

(1.15) 

2.92 

(0.87) 

Note. Errors are average peak perpendicular errors in cm per group. Standard deviation is presented in brackets. 
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 Similar to Torrecillos and colleagues’ findings, grand-averaged ERP data for young adults 

revealed a fronto-central negativity, which increased with error size (see Figure 6 a,b). This kERN 

was measured at electrode FCz. Visual inspection of grand average ERPs revealed that amplitudes 

began to diverge approximately 130 ms after movement onset and that differences between small and 

larger error trials was largest between 160 and 210 ms (note that later differences between trial classes 

are likely to result from task feedback processing, and therefore were not regarded in the current 

analysis, see above for ERPs time-locked to feedback presentation). Mean activity from 160 – 210 ms 

after movement was more negative when trajectory errors were larger in young adults (within-subject 

repeated measures ANOVA with the factor error size, F (3, 69) = 4.062, p = .011, ηp2 =.145), 

confirming previous results from Torrecillos et al. (2014) and Anguera et al (2009).  

 

Figure 6. Event-related EEG activity, associated with kinematic trajectory error processing. A) Grand-average event-related 

potentials time-locked to movement onset averaged across trials with very small (green) to very large (red) perpendicular 

errors for young (left) and older (right) adults. Difference waves were calculated between very small errors and large errors 

(thick lines). B) Mean kERN amplitudes in a 50 ms time window (160 -210 ms, shaded area in panel A) after movement 

onset for very small to larger errors. Error bars represent 95% confidence intervals. C) kERN Difference waves (very small 

errors – large errors) for young (blue) and red (older adults) time locked to movement onset. 

 

In order to further investigate age-related differences in trajectory error processing, we subsequently 

calculated difference waves between the very small error trials and the large error trials. The grand 

average ERP contained a peak at about 185 ms after movement onset for young adults (Figure 6C). 

Notably, this is about 80 ms later than classic ERN latencies typically reported for speeded choice 

response tasks (Nieuwenhuis et al., 2004), in which errors are binary in nature and errors can be 
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evaluated by use of the efference copy signal alone. The longer latency of our ΔkERNs can be 

explained by its dependency on the arrival of visual and/or proprioceptive feedback, which is required 

to evaluate the discrepancy between the expected and actual sensory consequences (Anguera et al., 

2009; Torrecillos et al., 2014). 

The ΔkERN peak was significantly different from zero in young adults (one sample t-test on adaptive 

mean amplitudes: T(24) = -5.176, p = .001). In older adults, a similar ΔkERN was not apparent at the 

group level (see Figure 6). Specifically, in older adults the EEG activity time-locked to the movement 

onset did not scale with error size (p = .754 Figure 5B), nor did the adaptive mean amplitudes of the 

ΔkERN difference wave peak differ from zero (p = .95, Figure 6C). Consequently, the ΔkERN 

difference wave peaks were larger in young than older adults (main effect of age, F(1,46) = 14.991, 

p< .001, ηp
2
 =.246). By contrast, ΔkERN peak latency did not differ between age groups.  

The fact that older adults did not reliably show a ΔkERN at the group level suggests an age-related 

reduction in sensitivity to trajectory errors. However, visual inspection of older participants’ 

movement onset locked EEG data indicates variability in ΔkERNs, and reveals that some older adults 

generated ΔkERNs, of comparable size to the young adults (see Figure 7A). 

Aim 3: Interrelation between error processing and behavioural performance 

Our results so far confirm age-related differences in trajectory error and task error processing, as 

indicated by reduced ΔkERN and ΔfERN amplitudes for older adults. In order to further investigate 

the role of error processing for force field adaptation we performed robust skipped correlation 

analyses between the ΔkERN, ΔfERN, amplitudes and the final level of adaptation separately for both 

groups. The final level of adaptation was calculated as the mean signed peak forces from all channel 

trials in the second half of the adaptation phase (bins 15-28), where performance had reached an 

asymptote level (see Figure 4F).  

For young adults, there were no significant correlations between the final level of adaptation and any 

kERN of fERN difference wave amplitudes, which might be due to the fact that variance in adaptation 

within the group of young adults was relatively small. By contrast, for older adults we found a 
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medium to strong, and statistically significant, correlation between ΔkERN difference wave peak 

amplitudes and final level of adaptation (r =  -0.7013 [CIs: -0.902 ; -0.276]; CIs reflect  98.33 % 

confidence intervals based on bootstrapped correlations; see Figure 7A). In other words, those older 

adults who showed larger (i.e. more negative and similar to young participants) ΔkERNs, also adapted 

their motor commands to the force field to a greater extent. Correlations between ΔkERN and ΔfERN 

difference wave peak amplitudes were not significant, within the subgroup of older adults, when CIs 

were corrected for multiple comparisons (r = 0.445 [CIs: -0.093 ; 0.756]. 

We further investigated the role of ΔkERN on final level and rate of predictive force development 

using a median split approach. We divided each age group into sub-groups comprised of those with 

the largest and smallest kERN difference wave peak amplitudes (Figure 7b). There were no 

differences in any of our screening parameters (age, health, education) or the baseline performance 

measures between the subsamples. There were also no differences in the average sizes of errors (or 

error ranges) between the two subsamples for trials in each quartile used to calculate ΔkERN, 

suggesting that the sizes of errors experienced by participants in the two subgroups were comparable. 

There were also no differences in peak velocity, distance at peak velocity or absolute reach distance in 

the field trials, suggesting that movement characteristics in adaptation were also comparable between 

subgroups. Interestingly, however, signed peak forces were larger (main effect of ΔkERN size: 

F(1,20) = 14.279, p < .001, ηp
2
 =.417), signed peak errors tended to be smaller (main effect of ΔkERN 

size: F(1,20) = 3.273, p = .085, ηp
2
 =.141), and movement times were faster (main effect of ΔkERN 

size: F(1,20) = 8.155, p = .010, ηp
2
 =.290) for older adults with large ΔkERNs than for older adults 

with small ΔkERNs. On the contrary, there were no significant differences between the two subgroups 

of young adults. Significant interaction effects between bin and ΔkERN size further suggest that 

predictive compensation is acquired at different rates in subsamples of older adults (Bin × ΔkERN 

size: F(1,20) = 1.801, p = .017, ηp
2
 =.083). This interaction was marginal in young adults (Bin × 

ΔkERN size: F(1,22) = 1.445, p = .081, ηp
2
 =.062.)  We further compared the rate of peak force 

development between sub-samples of older and young adults and confirmed that older adults with 

larger ΔkERNs learned the predictive compensation for the new dynamics at a quicker rate (means 
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and 95% confidence interval for rate of signed peak force development in groups old ΔkERN_high = 

0.427 [CIs: 0.206, 0.655]; old ΔkERN_low = 0.0708 [CIs: -0.030, 0.141]. Mean rates of peak force 

development followed a similar pattern for young adults (see Figure 7B), but the distribution of 

bootstrapped rate constants, does not suggest a significant differences between subgroups of young 

adults (means and 95% confidence interval for rate of signed peak force development in groups young 

kERN_high = 0.319 [CIs: -0.0578, 0.460]; young ΔkERN_low = 0.2175 [CIs: 0.124, 0.290]). 

In sum, correlation and subgroup analyses suggest that older adults who generated larger ERPs in 

response to reach trajectory errors adapt at a faster rate and to a larger extent than those with smaller 

ΔkERNs.  

 

Figure 7. Interrelation between adaptation and ΔkERN. A) Scatter plot showing the final level of adaptation and ΔkERN for 

young (blue open circles) and older (red, filled triangles) participants. B) Results of median split analyses within young and 

older adults depending on their ΔkERNs (light colours larger ΔkERN groups, dark colours small ΔkERN groups). Error bars 

represents 95 % confidence intervals. 

Discussion 

The purpose of this study was to test how EEG markers of error processing relate to adaptation in 

novel dynamic movement environments, and whether this differs between young and older adults. We 

found that both age groups were capable of adapting reaching movements to a force field, but that the 

processing of both trajectory and task errors during reaching is compromised with age, as shown by a 

reduction in ERP responses to kinematic errors and negative task feedback. Interestingly, older people 

with larger neural responses to trajectory errors, that more closely resemble those of the young (more 
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negative ERP responses to large than to small trajectory errors, i.e. larger ΔkERNs), also showed 

greater rates and levels of adaptation to force fields. Thus, an absence of neural responses to trajectory 

errors can predict whether older adults have impaired capacity to adapt to novel sensorimotor 

conditions. 

Young and older adults adapt similarly to force fields 

At the group level, we found no evidence of age-related differences in the rate or level of kinematic 

error reduction, predictive compensation of the force field or percentage of target hits, suggesting that 

both age groups adapted successfully. However, we found that older adults reduced their movement 

time when first exposed to the force field and moved slower than young adults throughout the 

adaptation phase (Figure 4D). The reduced movement speed, when faced with a perturbation, might 

reflect greater post-error slowing, an increased level of caution, and a relatively greater preference for 

task accuracy over speed, which are typical in older adults (Dutilh, Forstmann, Vandekerckhove, & 

Wagenmakers, 2013; Ruitenberg, Abrahamse, De Kleine, & Verwey, 2014; Smith & Brewer, 1995; 

Van Halewyck et al., 2015). Together with the finding that older adults reached peak velocity earlier 

and overshoot less than young adults, slower movements could also suggest greater feedback control 

in older adults (Seidler-Dobrin & Stelmach, 1998). Slower hand speeds would tend to reduce the 

perturbing force magnitude experienced by older adults, and might have contributed to reduced 

kinematic errors early in adaptation. However, reduced hand speed should not lead to greater 

predictive compensation for the robot force in channel trials, since a reduced perturbation strength 

should correspond to reduced adaptation magnitude. Accordingly, those older adults who slowed less 

adapted more (spearman robust correlation between slowing and final level of channel trial 

adaptation: r=0.580 [95% CIs = 0.208, 0.77]). From that, and the findings that older adults with larger 

ΔkERNs adapt at a greater rate and to a greater extent but also moved faster than older adults with 

smaller ΔkERNs (Figure 7B), it seems that slowing is rather non-functional and non-beneficial for 

adaptation outcomes in older adults, which is in line with findings for sequential actions (Ruitenberg 

et al., 2014). 
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Furthermore, it is important to note that the null effect should not be interpreted as proof of adaptation 

equality between age groups. There was larger between-subject variability among older adults than 

young adults, implying that only some older adults adapted successfully to the altered dynamics, 

while others struggled to adapt. Increased between-subject variability is common for older adults in 

cognitive and motor tasks (Bock & Girgenrath, 2006), and might explain the discrepant results of the 

two studies that previously measured predictive compensation to force fields in older people (Huang 

& Ahmed, 2014; Trewartha et al., 2014). Our findings emphasise the importance of an individual 

differences approach to motor control and aging research; a concept that is well established in the 

field of cognitive aging (e.g. Salthouse, 2017). 

Error processing during force field adaptation 

The negative EEG response to kinematic trajectory errors increased with increasing trajectory error 

size in young adults, presumably reflecting the magnitude of the mismatch between the predicted and 

experienced sensory consequences of one’s actions. Thus, our results complement previous findings 

in young adults showing that kinematic errors caused by visuomotor distortion (Anguera et al., 2009; 

Vocat, Pourtois, & Vuilleumier, 2011), and unpredictable external force perturbations (Torrecillos et 

al., 2014), are reflected in the size of an error-related negativity component.  The dorsal anterior 

cingulate cortex (dACC) is a key generator of the ERN and fERN in cognitive tasks (Hoffmann & 

Falkenstein, 2011; Walsh & Anderson, 2012) as well as motor tasks (Grafton, Schmitt, Van Horn, & 

Diedrichsen, 2008; for review see Seidler, Kwak, Fling, & Bernard, 2013; Torrecillos et al., 2014). 

This brain area contributes to error-detection, feedback and feedforward control during sensorimotor 

adaptation (Anguera, Russell, Noll, & Seidler, 2007; Danckert, Ferber, & Goodale, 2008; Grafton et 

al., 2008; Werner, Schorn, Bock, Theysohn, & Timmann, 2014), and would therefore appear to be a 

prime candidate for the origin of the ERN signals measured here. 

Previous reductions in error-related brain potentials (ERN, and fERN) in older adults during cognitive 

tasks (Falkenstein et al., 2001; Nieuwenhuis et al., 2002) have been attributed to reduced dopamine 

levels within the midbrain dopamine system that projects to ACC (Bäckman, Lindenberger, Li, & 

Nyberg, 2010; Kaasinen et al., 2000; Li, Lindenberger, & Sikström, 2001; Reeves, Bench, & Howard, 
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2002). To the best of our knowledge, this is the first study to investigate EEG correlates of error 

processing during sensorimotor adaptation in older people. The similarity in age effects on error-

related brain potentials measured in our motor task and previous cognitive tasks raises the possibility 

that aging results in a generalised impairment in error processing due to reduced dopamine 

availability in ACC. Alternatively, but not mutually exclusively, impaired error encoding upstream of 

the ACC could underpin age-related reductions in ΔkERN and ΔfERN amplitudes. For instance, in 

the current study we cannot fully rule out the possibility that older adults have impaired visual or 

proprioceptive acuity and processing speed, and consequently are less able to perceive kinematic 

errors. In addition, it is possible that due to faster and more accurate visual processing in young 

adults, their ΔkERN might be more strongly affected by visual feedback. However, given that the age-

related reduction of ΔkERN and ΔfERN, is in agreement with the well described age-effect on ERN 

and fERN components in cognitive tasks, we think that it is unlikely that the effects observed here are 

purely a by-product of age-related changes in perceptual encoding or reliance on visual feedback. 

Trajectory error processing is crucial for adaptation outcomes in older adults 

Older adults with larger ΔkERNs adapted quicker, and to a greater extent, than those with small 

ΔkERNs. One possibility is that preserved error processing in high performing older adults indicates 

general maintenance of healthy brain function that is not specific to adaptation (Lee, Tan, & Qiu, 

2016). However, if this were the case, there should also have been correlations between feedback 

processing (i.e. ΔfERN) and adaptation. Given that outcome error processing was not predictive of the 

ability of older people to adapt, some questions arise: (1) why are neural responses to trajectory errors 

but not outcome errors related to adaptation outcome in older adults? And, (2) what could be specific 

about error processing within the ACC that it is crucial for older adults but less important for younger 

adults? 

Task errors can drive the changes in motor commands needed to increase task success following some 

forms of sensorimotor perturbation (e.g. Izawa & Shadmehr, 2011; Nikooyan & Ahmed, 2015; Taylor 

et al., 2013), but trajectory errors seem pivotal for automatic recalibration of sensorimotor 

transformations (Butcher & Taylor, 2017; Izawa & Shadmehr, 2011; Shadmehr et al., 2010). Our 
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primary measure of adaptation, obtained via channel probe trials, reflects the extent to which 

participants recalibrated their feedforward motor commands to cancel the novel force field. Our 

findings therefore provide further evidence that trajectory errors are of greater importance for 

sensorimotor adaptation than task errors, presumably because trajectory errors entail important 

information about the direction of error (Butcher & Taylor, 2017) and the dynamics of the 

perturbation. 

The brain activation of older adults with larger ΔkERNs scaled with the size of trajectory errors (i.e. 

relatively more negative EEG response to larger as compared to smaller errors, and hence larger 

ΔkERNs), as also observed for young adults in our study and previously (Anguera et al., 2009; 

Torrecillos et al., 2014; Vocat et al., 2011). We speculate that this modulation of kERN amplitudes 

with error size might reflect a graded activation response within dACC. The overarching function of 

dACC is to deploy cognitive control via its interactions with the lateral prefrontal cortex (for review 

see Kolling, Behrens, Wittmann, & Rushworth, 2016). Greater functional as well as structural 

connectivity between dACC and other key regions involved in sensorimotor adaptation to visual 

perturbations were further associated with faster early adaptation, when the task is more cognitively 

demanding (Cassady et al., 2017).  Here, a graded response to errors of different sizes might therefore 

allow cognitive control mechanisms to be allocated to facilitate force field adaptation. Recruitment of 

additional cognitive resources in older adults is a common finding in cognitive and motor tasks, and 

reflects a neural compensatory mechanism in order to maintain performance (for reviews see Reuter-

Lorenz & Park, 2010, 2014; Sala-Llonch, Bartrés-Faz, & Junqué, 2015). A reduced ACC modulation 

with age has been shown in other tasks, including speech comprehension (Erb & Obleser, 2013), and 

selective attention (Milham et al., 2002), and is thought to reflect a decrease in the effectiveness of 

mechanisms responsible for implementing attentional control (Milham et al., 2002). The fact that 

adaptation is impaired in older adults with smaller ΔkERNs raises the possibility that the selective 

engagement of cognitive control associated with ACC activity is pivotal for successful sensorimotor 

adaptation in older age. In other words, we speculate that older adults with difficulties engaging 

cognitive control adapt less successfully. This interpretation would be consistent with previous 
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observations showing that older adults have greater difficulties in engaging explicit strategies in 

adaptation (Hegele & Heuer, 2013; Heuer & Hegele, 2008, 2014; Heuer et al., 2011; King et al., 

2013).  

Young adults demonstrated successful adaptation irrespective of ΔkERN amplitude, and it is clear 

that some young participants did not show larger kERNs to larger errors (ΔkERNs > 0 in some young 

adults, see Figure 7a). We speculate that young adults might sufficiently engage alternative resources 

for error encoding, including the posterior parietal cortex (PPC) (Della-Maggiore, Malfait, Ostry, & 

Paus, 2004) and the cerebellum (Izawa, Criscimagna-Hemminger, & Shadmehr, 2012; Popa, Streng, 

Hewitt, & Ebner, 2016; Seidler et al., 2013; Tseng, Diedrichsen, Krakauer, Shadmehr, & Bastian, 

2007), and are therefore are less dependent on graded response to errors within ACC and prefrontal 

processing (Christou, Miall, McNab, & Galea, 2016). Nonetheless, the general pattern of results on 

median split comparisons based on the size of ΔkERNs was qualitatively similar for older and young 

adults (see Figure 7 b). It is important for us to emphasise that although a significant correlation was 

found in older but not in young adults, differences in the profile of correlation between EEG and 

behaviour between age groups cannot be concluded. By contrast we think that the current data provide 

tentative support for the possibility that selective engagement of cognitive control might also benefit 

young adults in force field adaptation, however further work is needed to support this notion. 

Alternative explanations and methodological considerations 

In older adults, larger ΔkERN were associated with more youth like behaviour in force field 

adaptation (faster movement times, and larger and quicker adaptation). We think that these findings 

suggest that kinematic error processing and selective engagement of cognitive control is crucial for 

successful adaptation, especially in older adults. Nevertheless, one might ask whether these effects 

really are a matter of age, or whether there might be any alternative explanations. More specifically: 

are there factors other than age that could cause the observed differences between groups? Several 

between group differences in ΔkERN occurred in parallel with between group differences in 

movement times. Older adults moved slower and had a larger within-subject variability in their 

movement times than young adults. Together, this could imply that smaller ΔkERNs are an 
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epiphenomenon of slower movement time and larger movement time variability. As we time-locked 

the EEG to the movement onset the average ERP might be more “smeared” in older than young 

adults, and therefore smaller. In order to further investigate the interrelation between variability in 

movement time and ΔkERN amplitudes, we conducted an additional correlation analyses between 

intra-individual variability in movement time (determined as the coefficient of variation of movement 

times in all field trials), and ΔkERN amplitudes. If intra-individual movement time variability led to 

smeared and hence smaller kERNs, we would expect to see a positive correlation between these two 

measures (note that smaller ΔkERN, are reflected in larger values, as this is a negative component). 

The results do not support the assumption: In young adults the opposite relation was revealed (i.e. 

larger variability in movement time was associated with larger kERNs: r = -.415, p = .039), and in 

older adults the correlation was not significant. In addition, if kERNs were only smaller because of 

the smearing and not due to the age-related changes in reduced dopamine levels within the midbrain 

dopamine system that projects to ACC, we would not expect to see any age-related differences in 

fERNs. For fERNs smearing is unlikely due to the abrupt feedback onset. Thus, while we cannot fully 

rule out this alternative, we think that smearing is unlikely to be the only reason for the differences 

between groups in terms of ΔkERN. 

Another methodological consideration is that we set out to investigate neurophysiological markers of 

error processing in young and older adults during adaptation and thus to extend previous research in 

young adults employing random non-learnable force perturbation schedules (Torrecillos et al., 2014). 

Naturally, investigating error processing during sensorimotor adaptation means that measures of error 

processing could be confounded by time or adaptation state. Participants experienced more frequent 

large trajectory errors and negative task feedback early in adaptation, and more frequent small 

trajectory errors and positive task feedback at the end of adaptation. Thus, our ERP measures are not 

only influenced by error size and task feedback valence, but also by time. Importantly, this was the 

same for both young and older adults and is inherent to the design employed in the current study. A 

promising approach for future work that allows assessment of error processing during adaptation 

would be the use of single trial adaptation schedules (e.g. Herzfeld, Vaswani, Marko, & Shadmehr, 
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2014; Marko, Haith, Harran, & Shadmehr, 2012). Such an approach affords the opportunity to study 

age-related differences in the responses to sensory prediction errors caused by the adaptation task in 

the absence of cumulative time confounds.  

In addition, we do not know whether the pleasant sound might have served as an external reward. 

Consequently, the EEG response time locked to the onset of the feedback might not only reflect pure 

feedback processing, but also reward processing. Importantly, however any feedback about success or 

failure could be interpreted as reward, and it is impossible to know to what extent different feedback 

types are treated in terms of reward.  Moreover, even if no external feedback were provided other than 

the location of the cursor with respect to the target, information about the task success could be 

intrinsically rewarding. Thus, it seems that feedback processing is unavoidably intertwined with 

reward processing in goal-directed motor tasks. 

At last, as we allowed participants to practice until they felt comfortable with the task and until they 

successfully managed to move within the given speed constraints, there might have been differences 

in the number of practice trials between age groups. We did not record the number of practice trials, 

but from the experimenters recollection older adults were more likely to request additional practice. 

One might argue that any difference in the number of training trials between age groups might have 

disguised age-related differences in the baseline phase. However, as the primary purpose of the study 

was to investigate age-related differences in adaptation, we deemed it more important that all 

participants were equally capable of performing the task before being exposed to the perturbation. The 

fact the young and older adults reached a similar hit rate at baseline shows that this was the case. 

 

Summary and Conclusion 

In summary, our data show that the kERN provides a marker of kinematic error-processing in force 

field adaptation, and that larger ERNs in response to kinematic errors are associated with better force 

field adaptation in older adults. We suggest that older adults with impaired capacity for encoding 

kinematic errors might not effectively engage cognitive control when exposed to novel mechanical 
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conditions, and consequently have an impaired capacity to adapt their movements to a novel dynamic 

environment. Thus, the extent to which neural responses to trajectory errors scale with error 

magnitude, or lack thereof, might serve as a predictor for adaptation impairments in older people. 
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Greater neural responses to trajectory errors are associated with superior 

force field adaptation in older adults 

 

Highlights 

 Both young and older adults were capable of adapting reaching movements to a force field 

 EEG responses to trajectory errors and task errors were reduced in the older group 

 Larger neural responses to trajectory errors related to adaptation in older adults 

 Capacity to evaluate errors might serve as a predictor for adaptation impairments 
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