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1.0 Introduction 17 

 18 

Waves provide an important process of energy transfer at the ocean-land interface. The transfer of 19 

energy from deep-water to the nearshore is controlled by the offshore wave height, direction, and 20 

period, as well as the underlying coastal bathymetry. Wave energy is a key driver of morphological 21 

change along global coastlines and understanding the temporal and spatial variability within a wave 22 

climate is essential for informed coastal management (Gurran, 2008; Harvey and Woodroffe, 2008; 23 

Hugo, 2008; Hemer et al., 2013). While sea level fluctuations have received widespread global 24 

attention as a driver of shoreline change, variability in wave climate is expected to be the main 25 

process influencing coastal morphodynamics on moderate to high-energy sandy coasts globally 26 

(Coelho et al., 2009; Hemer et al., 2012; Mortlock and Goodwin, 2015). Changes in both the height 27 

and direction of future storm wave climates have potential to act as drivers in large-scale coastal 28 

reorganisation. 29 

 30 

A regional wave climate consists of both modal conditions, and conditions specifically related to 31 

storm events. While storms provide the energy to mobilise sediment and initiate rapid coastal change, 32 

the modal conditions are responsible for beach recovery and the redistribution of sediment onshore 33 

(Ranasinghe et al., 2004; Short and Trembanis, 2004). Additionally, a regional storm wave climate 34 

may be comprised of several sub-climates originating from a range of directions and synoptic weather 35 

systems (Goodwin, 2005; Mortlock and Goodwin, 2015). Differentiating between the sub-types of 36 

storm wave climates provides a mechanism of classifying storms as based on their relative frequency 37 

and intensity, and ultimately their potential to modify the coast. Although higher energy storms 38 

generally tend to induce more substantial beach erosion, other parameters have the capacity to 39 

influence the morphodynamic response of the receiving coastline including the storm duration, timing 40 

between storm events, wave direction, wave period, and coastal orientation (Short et al., 2000; Cooper 41 

et al., 2004). For example, higher incident wave power can increase shoreline erosion rates (Sanford 42 

and Gao, 2017) and deep-water waves of a moderate intensity but an anomalous direction can drive 43 

substantial beach erosion (Harley et al., 2017). The local planform of a coast can also determine the 44 
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response to storm impacts (Goodwin et al., 2006; Thomas et al., 2010. For example, headlands can 45 

refract waves to alter the nearshore wave direction, as well as change the total energy reaching the 46 

nearshore and the proportion of cross vs alongshore transport, and therefore the capacity of storms 47 

from different directions to drive change (Harley et al., 2011; Thomas et al., 2011; Nichol et al., 2016; 48 

Davidson et al., 2017). Storm impacts will therefore be determined by the characteristic wave climate 49 

of each storm type (i.e. height, direction, duration), and the morphology of each individual coastline.  50 

 51 

In this study, the role of variability in the seasonal and decadal wave climate is examined as a driver 52 

of shoreline change on the open Fraser coast of southeast Queensland, Australia. The study region 53 

provides a proxy for open sandy, drift-dominated coastlines globally with similar counterparts 54 

described in New Zealand (Kasper�Zubillaga et al., 2007; Bryan et al., 2008; Tribe and Kennedy, 55 

20101), Brazil (e.g. Santa Catarina coast: Siegle and Asp, 2007), and the U.S.A (Allen, 1981). While 56 

a growing body of literature has focused on classifying the wave climate of southeast Australia, most 57 

work has focused on New South Wales (NSW) (Harley et al., 2010; Shand et al., 2011; You, 2011; 58 

Mortlock and Goodwin, 2015; Pender et al., 2015) and the Gold Coast (Allen and Callaghan, 1999; 59 

Straus et al., 2007; Splinter et al., 2012). In southeast Australia, three distinct modal wave climates are 60 

recognised: (1) E-ESE (direction of 85-105°N, short wave periods of 8-9 secs); (2) ESE-SSE 61 

(direction of 110-150°N, long periods of 11-12 secs); and (3) SE-SSE (direction of 140-160°N, 62 

moderate periods of 9-10 secs) (Shand et al., 2011; Mortlock and Goodwin, 2015; Pender et al., 63 

2015). Storms waves are generated by: (1) easterly trough lows, also known as ‘east coast lows’; (2) 64 

extratropical cyclones; (3) southern secondary lows; (4) inland troughs; and (5) continental lows, with 65 

storm types 3-5 increasing in dominance further south along the Australian coast (Splinter et al., 2012; 66 

Browning and Goodwin, 2013). Due to a lack of long-term directional wave data, our understanding 67 

and classification of these wave climates is often applied to other sectors of the southeast Queensland 68 

coast. A shortcoming of this is that for regions located north of Brisbane (-27.45°S, 153.03°E), 69 

latitudinal differences result in a shift in regional synoptic conditions that are not accounted for. For 70 

example, the Queensland coast north of Brisbane fundamentally differs from NSW as it is more 71 

exposed to wave trains propagating from tropical cyclones generated in the Coral Sea (Mortlock and 72 
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Goodwin, 2015) with the potential to cause major episodes of coastal erosion (Splinter et al., 2012; 73 

Nott et al., 2013).  74 

 75 

A further underlying control on the variability in wave climate and storm frequency is the El Nino 76 

Southern Oscillation (ENSO). In southeast Queensland, it has been suggested that during El Nino 77 

events, increased jetstream activity may help trigger more east coast lows, reduce the number of 78 

tropical cyclones, and alter the mean wave direction (Allen and Callaghan, 1999; Short et al., 2000; 79 

You and Lord, 2008). In northern NSW, El Nino years (Southern Oscillation Index (SOI) ≤ -7) have 80 

been linked to periods of lower wave height and an increase in the southerly wave component (i.e. a 81 

clockwise rotation in wave direction), while La Nina (SOI ≥ 7) tends to result in higher waves with a 82 

dominant easterly direction (i.e. an anticlockwise shift in wave direction) (Ranasinghe et al., 2004). 83 

The change in wave height and direction resulting from ENSO variability in southeast Australia has 84 

been linked to decadal scale beach rotation with alternating accretion (erosion) occurring at opposite 85 

ends of beaches (Ranasinghe et al., 2004; Short and Trembanis, 2004). ENSO impacts on wave 86 

climate variability have not yet been investigated north of Brisbane where its impact on storm 87 

frequency and wave height, particularly as associated with ex-tropical storms, could be expected to be 88 

equally if not more strongly, correlated. In terms of translating the effects of wave climate variability 89 

to the morphological response of the shoreline, most prior work in Australia has been undertaken 90 

where sediment transport occurs largely within an embayed cell (Short et al., 2000; Short and 91 

Trembanis, 2004; Daly et al., 2015; brd et al., 2015) as well as internationally (Ojeda and Guillén, 92 

2008; Loureiro et al., 2009; Pinto et al., 2009). As many beaches in southeast Queensland are located 93 

along open coastlines (e.g. Noosa, Sunshine Coast, and the majority of beaches on Fraser and 94 

Stradbroke Islands), it is logical that shoreline response to wave climate variability be determined 95 

from an open coast analogue. The Interdecadal Pacific Oscillation (IPO) is a further long-term (15-30 96 

and 50-70 years) climatic oscillation which interacts with ENSO related climate variability (Grant and 97 

Walsh, 2001; Salinger et al., 2001; Power et al., 2006). Specifically, negative phases of the IPO 98 

increase sea-surface temperatures off Queensland and enhance La Nina events, whereas positive 99 

phases are associated with cooler water and reduced extra-tropical storm activity. 100 
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 101 

The present study aims to: (1) identify the wave climate for southeast Queensland based on a 31 year 102 

hindcast wave dataset; (2) delineate between different storm climates; (3) consider the role of ENSO 103 

as a driver of variation in wave climate; and (4) identify rates and trends of decadal scale shoreline 104 

change in response to temporal variability in wave conditions. The identification of different storm 105 

wave climates will enable a better understanding of events which most strongly impact upon the 106 

shoreline and will provide a baseline for future comparison. For instance, small changes in the 107 

directional wave height will have implications for the coastal sediment budget and consequentially 108 

beach morphodynamics. An important consideration is the change that may occur under projected 109 

shifts in global climate, such as an increase in the extra-tropical migration of tropical cyclones and in 110 

the frequency of storm events (Hughes, 2003; Harvey and Woodroffe, 2008; IPCC, 2013). 111 

 112 

1.1 Regional setting 113 

The open coast of southeast Queensland, Australia, is wave-dominated and microtidal with a spring 114 

tidal range of 1.35-1.86 m (Harris et al., 2002). The coastal climate is classified as humid subtropical, 115 

consisting of warm, humid summers and mild winters (Peel et al., 2007). The present-day storm wave 116 

climate is influenced by the occurrence of tropical cyclones during November-April, most of which 117 

develop in the Coral Sea and track southward. On average, about three cyclones per year are observed 118 

in the Coral Sea with wave fields impacting the southeast Queensland coast (Allan and Callaghan, 119 

1999), although the number of cyclones which actually make landfall is typically <1 per year (Flay 120 

and Nott, 2007). East coast lows are a further storm type influencing the coastline and result from 121 

trough intensification over eastern Australia. The interaction of east coast lows with developing high 122 

pressure systems to the south can increase the severity and duration of coastal storms (Short and 123 

Trenaman, 1992; Callaghan and Power, 2014).  124 

 125 

While the wave data in this study are representative of southeast Queensland as a whole, a specific 126 

compartment of the coast was used to map decadal scale shoreline change in close proximity to where 127 

the wave data was extracted from (Figure 1). The shoreline study area consists of a 15 km stretch of 128 
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sandy beach along the Inskip Peninsula (Figure 1). The study coastline is unmodified and 129 

representative of the open drift-aligned southeast Queensland coast. It is bounded by the Great Sandy 130 

Strait to the north, a significant tidal channel which separates mainland Queensland from Fraser 131 

Island, and the Double Island Point headland to the south. Tides are semidiurnal with a mean spring 132 

tidal range of 1.40 m (at Rainbow Beach) and a HAT of 2.28 m (Queensland Government, 2017a). 133 

The east Australian longshore drift system carries approximately 500,000 m3 of sand per year from 134 

the Gold Coast north towards Fraser Island where the subaqueous Breaksea Spit represents the 135 

northern terminus (Boyd et al., 2008). The net longshore drift direction is to the north with sediment 136 

being supplied from NSW coastal catchments (Roy and Crawford, 1977; Roy and Thom, 1981). Ebb-137 

tidal flows through the Great Sandy Strait also rework and transport sediment seaward from the 138 

adjacent Hervey Bay where it is then moved offshore and northward to Fraser Island (Boyd et al., 139 

2008). The East Australian Current flows south from the Coral Sea along the edge of the continental 140 

shelf, until it reaches central NSW (Cresswell et al., 1983; Church, 1987). The East Australian 141 

Current is located 10 km offshore near Fraser Island to the north and approximately 20-30 km 142 

offshore of the Inskip Peninsular (Boyd et al., 2008).  143 

 144 

2.0 Material and methods  145 

 146 

2.1 Wave data 147 

A 31 year (1979-2009) hindcast wave record was obtained from the third-generation wave model 148 

NOAA WAVEWATCH III (WWIII) (CFSR Reanalysis Hindcasts) (Tolman, 2009; Chawla et al., 149 

2012). WWIII is widely accepted as a reliable source of hindcast data across a variety of settings 150 

(Browne et al., 2007; Strauss et al., 2007; Cornett, 2008; Sofian and Wijanarto, 2010; Arinaga and 151 

Cheung, 2012) and in Australia, shows good agreement with satellite altimetry, visual observations 152 

and wave-rider buoy data (Hemer and Church, 2007; Hughes and Heap, 2010). WWIII uses high 153 

resolution (1/2°) global winds at 10 m height from the NCEP Climate Forecast System Reanalysis 154 

(CFSR) along with a coupled reanalysis of the atmospheric, oceanic, sea-ice, and land data (Chawla et 155 

al., 2012). Hindcast data from WWIII includes a bias-correction based on collocated altimeter data 156 
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which reduces error for high-wind speeds (Chawla et al., 2012). Hindcast wave data was taken from -157 

25.90 °S, 153.73 °E (in >25 m water depth) using the Australia four arc minute grid at a resolution of 158 

1/15° x 1/15° (Figure 1). The grid point was selected to be as close as possible to the study shoreline 159 

while allowing waves to maintain the most direct and uninhibited passage onshore. Data was 160 

extracted from grib format and analysed in MatLab R2015b software to output the mean daily 161 

significant wave height (Hs), primary peak spectral wave period (Tp), and average direction at the 162 

peak period (Dp) which was then presented as an overall time series. From this dataset overall mean 163 

daily and mean monthly descriptive statistics wave were calculated. 164 

 165 

2.2 Delineation of storm and modal conditions 166 

Within the wave dataset, individual storm events were extracted for further analysis. Storm events 167 

were separated from modal wave conditions using a modified Peaks-Over-Threshold (POT) method 168 

(after Mortlock and Goodwin, 2015). POT analysis aims to identify storm events in a continuous 169 

wave record that exceed a certain Hs threshold, are maintained for a minimum duration, and that are 170 

separated by a minimum recurrence interval.  171 

 172 

The critical Hs storm threshold was selected at 2.93 m. This value represents the daily 10 % 173 

exceedance wave height (Hs10) as calculated from Hs exceedance probability analysis of the 31-year 174 

dataset. Hs10 has been recommended as an appropriate threshold to categorise storms for southeast 175 

Australia by Mortlock and Goodwin (2015). Other critical storm thresholds considered were 3 m and 176 

the 95th percentile wave heights. The 3 m and 95th percentile scenarios, however, proved to greatly 177 

reduce the number of individual storm events. The Generalised Pareto Distribution (GDP) was used to 178 

further verify the statistical robustness of the selected threshold level based on the goodness-of-fit as 179 

per Coles et al. (2001) and Mazas and Hamm (2011). To classify storm events within the wave data 180 

record, a minimum storm duration of 3 days was chosen based on other southeast Australian wave 181 

climate and synoptic analyses (Hemer, 2010; Shand et al., 2011, Mortlock and Goodwin, 2015) and a 182 

minimum recurrence interval of 24 hours.  183 

 184 
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2.3 Classification of storm wave climates 185 

After identifying each individual storm event within the time series (as per Table 1), the mean Hs, Tp, 186 

and Dp were normalised following the methods of Camus et al. (2011).  Data normalisation was 187 

undertaken to ensure equal weighting was given to each parameter by providing a range for all 188 

parameters between 0 - 1. Prior to clustering, the optimal number of clusters was first identified using 189 

a Silhouette analysis (Rousseeuw, 1987) and gap statistics (Tibshirani et al. 2001) run on MatLab 190 

R2015b software. The Calinski-Harabasz criterion clustering evaluation was run in MatLab R2015b 191 

for 2 - 8 clusters. All methods indicated that two clusters was the optimum grouping for the dataset. 192 

Using the normalised Hs, Tp, and Dp values , storm events were classified into groups using a K-193 

means clustering method undertaken using IBM SPSS Statistics 23 software. K-means was selected 194 

based on its use in prior wave classification studies which also consider storm origin and synoptic 195 

typology (e.g. Goodwin and Mortlock, 2015). The K-means cluster was run using the identified 196 

optimum number of groupings to output cluster centres for each group and to identify how many 197 

storm events were classified within each group.  198 

 199 

As K-means clustering indicated that the wave direction was the strongest driver of cluster 200 

delineation. The distribution of wave directions occurring for the whole storm dataset were plotted as 201 

a probability density function (PDF) and this too showed a bimodal distribution (both as normalised 202 

data and as ° from N for each storm event). Circular statistics were run through CircStat (Berens, 203 

2009) to confirm that the storm wave climate groupings were statistically different. Gaussian Mixture 204 

Models (GMM) were also run in MatLab R2015b to determine cluster centres for the parameters Hs, 205 

Tp, and Dp. The GMM produced similar cluster centres to K-means. Descriptive statistics of Hs, Tp, 206 

and Dp for each grouping were then calculated and converted to de-normalised data form. The mean 207 

duration and seasonality of storm occurrence was then extracted from the storm record using the 208 

groupings output from GMM, CircStat, and K-means. Non-metric multidimensional scaling (nMDS) 209 

and hierarchal cluster analysis were also performed (Clarke and Warwick, 1994) as a final comparison 210 

to the groups classified using K-means and GMM (see supplementary material). 211 

 212 
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2.4 SOI comparison 213 

A 56-year record (1957-2012) of the mean monthly SOI was downloaded from Bureau of 214 

Meteorology (BoM) (2017) for comparison to wave parameters. The mean annual SOI was compared 215 

to the mean annual Hs, Dp, Tp, days with a mean daily Hs >Hs10 (days >Hs10), and storm frequency 216 

and duration using a Pearson correlation analysis. Mean annual data were used to account for intra 217 

annual variability and to correspond with the annual scale interval of aerial imagery. To determine the 218 

specific impacts of El Nino and La Nina events on variability in the wave climate, the mean monthly 219 

SOI index for periods of El Nino (SOI index ≤ -7) and La Nina (SOI ≥ 7) were extracted from 1979-220 

2009. A six-month minimum threshold was applied. This was used as it has been shown that in 221 

southeast Australia, El Nino and La Nina events must be sustained for several months to be reflected 222 

in the wave climate with a phase lag occurring before these impacts become apparent (Ranasinghe et 223 

al., 2004). The shifts in wave height and direction during the periods of sustained El Nino and La 224 

Nina were plotted as PDFs with descriptive statistics calculated.  225 

 226 

To analyse the lag time for changes between the SOI and mean monthly sea surface temperature 227 

(SST), a cross correlation analysis was performed in MatLab R2015b. Mean monthly SOI values from 228 

BoM were compared to the mean monthly SST (1957-2012) obtained from the NOAA Extended 229 

Reconstructed SST (ERSST) v.4 dataset. SST data were extracted from -26 °S, 153.73 °E, the closest 230 

available location to the WWIII wave hindcast grid point (±0.01 °S). The lag time for changes in Hs 231 

relative to SST (1979-2012) were analysed using the normalised mean monthly Hs. The maximum lag 232 

duration was set at +20 and -20 months to incorporate the known window of time (3-17 months) 233 

where changes in SOI are reflected in beach morphological response in southeast Australia 234 

(Ranasinghe et al., 2004). 235 

 236 

2.5 Analysis of decadal scale shoreline change  237 

A 54-year dataset (1958-2012) of aerial imagery from Qspatial (Queensland Government, 2017b) was 238 

used to analyse decadal shoreline change for the 15 km long Inskip Peninsula beach (Figure 1). 239 

Images were available for 20 individual years between 1958-2012. The average duration between 240 
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images was three years but there a longer duration (>5 years) existed for images taken 1996-2012. 241 

Aerial images were georectified in Arc GIS v.10.3.1 using a bilinear interpolation method. Each 242 

image was georectified with at least six control points and a maximum RMS error of 3.90 m. 243 

Shorelines were digitised in ARC GIS and then analysed using the Digital Shoreline Analysis System 244 

(DSAS) Version 4.0 (Thieler et al., 2009). The high water mark (HWM) was used to represent the 245 

shoreline position (after Moore et al., 2006). The HWM is widely regarded as the most reliable 246 

indicator of shoreline position due to its ability to be easily detected using aerial imagery (Crowell et 247 

al., 1991; Pajak and Leatherman, 2002; Fletcher et al., 2003). As the HWM can be influenced by sea 248 

level elevation, all dates of aerial imagery were checked against historic sea level records using the 249 

Mooloolaba and Noosa Heads gauges. The HAT was not exceeded at any time of the aerial imagery 250 

dates. 251 

 252 

Using DSAS, the oldest shoreline position (1958) was buffered 400 m landward to create a baseline.  253 

150 transects were cast along the beach at 100 m intervals to cover the shoreline extent. Each 254 

shoreline was weighted by the RMS error of the georectified imagery. The least median of squares 255 

method was calculated using DSAS to find the rate of shoreline change for the whole beach. The least 256 

median of squares method uses the median value of the squared residuals instead of the mean to 257 

determine the best-fit equation. This method was selected over linear regression as it more tolerant to 258 

outliers and large variations in beach width (Thieler et al., 2009). The net change in shoreline 259 

movement was then compared to temporal variability in the SOI, wave direction, and significant wave 260 

height.  261 

 262 

3.0 Results 263 

 264 

3.1 Overall wave climate 265 

From the hindcast wave dataset, the dominant wave direction at the study location is from the SE 266 

(mean Dp = 129 °N) with a mean Hs of 1.91 m and Tp of 8.60 sec (Table 1). Throughout the year, the 267 

wave direction varies from being predominantly ESE during January to March, to shift to the SE in 268 
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April to December (Figure 2a). Peak wave heights occur during January to July, with Hs in February 269 

to May exceeding 2 m on average (2.09-2.25 m) (Figure 2b). The lowest waves coincide with a more 270 

south-easterly direction during September to October (Dp = 145 °N; Hs = 1.57-1.61 m) (Figure 2a-b). 271 

Longer period waves occur during January to August (T = >8.45 secs) with a shorter period more 272 

prevalent in September to December (T = <8.40 secs) (Table 1; Figure 2c). 273 

 274 

3.2 Storm wave climate classification 275 

157 individual storm events were observed during 1979-2009 at an average frequency of 5.1 storms 276 

per/year and duration of 4.4 days. Storm wave directions show a bimodal distribution with a dominant 277 

E-ESE peak and a second peak from the SE (Figure 3a). In terms of the directional wave height, 278 

storms associated with an E-ESE direction tended to show the largest wave heights (Figure 3b). 279 

 280 

Using a K-means cluster analysis on normalised data, two distinct clusters occurred after three 281 

iterations (Figure 4). The wave direction was the primary driver of this delineation (Figure 4). 282 

Circular statistics indicated that the mean wave direction for the two wave climates were statistically 283 

different (p = <0.01) and produced mean values for each group that were ±1° similar to those 284 

identified using K-means (Table 2). GMM showed very similar cluster centres to K-means for all 285 

parameters with 1° difference in Dp, <0.05 m difference in Hs, and <0.03 sec difference in Tp (Table 286 

2; Figure 5a-b). The GMM also confirmed that the two groupings also correspond with statistically 287 

significant wave heights and periods (Figure 5a-b; Table 2). The two groupings of storm wave 288 

climates are referred to as Type 1 (E-ESE climate) and Type 2 (SSE-SE). 289 

 290 

3.3 SOI impacts on wave climate variability 291 

The mean annual SOI index shows a strong positive correlation with wave height (r = 0.505, p = 292 

<0.01) as well as the number of days exceeding the Hs10 threshold (2.93 m) (r = 0.422, p = <0.05) 293 

indicating that positive SOI years have higher waves on average (Table 3). Mean annual SOI showed 294 

a negative correlation with wave direction (r = -0.362, p = <0.05) indicating that years with positive 295 

SOI tend to experience waves propagating from a more easterly direction on average (Table 3). The 296 
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annual storm frequency was also positively correlated with the SOI index (r = 0.367, p = <0.05) 297 

(Table 3). 298 

 299 

 Periods of sustained (≥6 months) El Nino results in lower wave heights on average (mean Hs 1.88 m, 300 

median 1.87 m) while La Nina events tend to coincide with periods of higher waves (mean Hs 2.01 m, 301 

median 1.97 m) (Figure 6a). In terms of wave direction, periods of sustained El Nino sees an increase 302 

waves from the S-SE on average (mean Dp 130 °N, median 128°N), while La Nina tends to result in a 303 

shift in wave direction favour a more easterly direction (mean Dp 123 °N, median 119°N) (Figure 6b).  304 

 305 

3.4 Shoreline change  306 

The overall rate of shoreline change during 1958-2012 for the Inskip Peninsula shows a mean erosion 307 

rate of 0.29 m/year (Figure 7a). The distribution of the rates of shoreline change across the study area 308 

is both spatially and temporally variable, with both the north and south ends of the beach showing the 309 

highest rates of erosion (Figure 7b-c).  310 

 311 

On average, periods of larger waves from a more easterly direction coincide with higher net erosion at 312 

the Inskip Peninsula (Figure 8b-c). While the SOI did not directly correlate with shoreline change, in 313 

the 6 months-1 year following periods of El Nino, the beach tends to accrete (Figure 8a). In the 5-6 314 

months’ time following a La Nina event, accelerated erosion is visible (Figure 8a). Temporally, the 315 

beach showed most accretion during 1990 to 1991 with a net change in shoreline position of +19 m (± 316 

3 m). Between 1 Aug 1990-11 Sep 1991, the SOI remained negative to neutral (mean SOI of -1.32 317 

throughout this period), the SST anomaly was -0.03°C on average, and lower waves occurred on 318 

average with a mean Hs of 1.82 m (compared to the overall mean of 1.91 m). 319 

 320 

The most severe shoreline retreat occurred from 11 Sep 1991-26 May 1994 with a net change of -17 321 

m (±2.84 m). Beach erosion at this time is likely due to the clustering of three storms that occurred in 322 

rapid succession in the 6 months prior to the 1994 imagery (8-10 Dec 1993, 25-29 Jan 1994, and 21-323 

31 Mar 1994). The duration of the final storm preceding the 1994 aerial image (21-31 Mar 1994) was 324 
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11 days which was the longest duration storm that occurred within the record. The SST anomaly for 325 

the winter of 1993 was > +0.75°C (Figure 8a). This provided a period of sustained high SST that may 326 

have facilitated the 1993/1994 summer storm events. To support this, the mean annual SST anomaly 327 

shows a positive correlation with the annual storm frequency (r = 0.450, p = >0.05) (Table 3). 328 

Although the net change in shoreline movement was high between 1991-1994 images, the shoreline 329 

position in 1994 relative to the 1958 baseline was +0.42 m.  330 

 331 

3.5 Cross correlation of SOI, SST anomaly, and Hs 332 

A mean monthly SST anomaly of > +1°C tended to precede La Nina events, periods of higher Hs, and 333 

a retreat in net shoreline position (Figure 8a-c). Cross correlations between the mean monthly SOI and 334 

the mean monthly SST anomaly indicate that the two parameters are best correlated (r = -0.29) when 335 

change in the SOI leads SST by 9 months (Figure 8d). When the SOI lags changes in the SST, the 336 

maximum correlation (r = 0.27) occurs at 4 months. The mean monthly SST anomaly shows a 337 

maximum cross correlation with the mean monthly Hs anomaly (r = 0.24) at a 6-month lag period 338 

(Figure 8f). This indicates that it takes approximately 6 months for changes in the SST to influence a 339 

higher Hs at the study location. To test the 6-month lag impacts on shoreline movement, the net 340 

shoreline movement was correlated with monthly means of the SST and Hs anomalies, Hs, Dp, Tp, 341 

and SOI using the average value for the 6 months preceding the image date (Table 3). The SST and 342 

Hs anomalies were positively correlated (r = 0.616, p = <0.05) and both the SST (r = -0.592, p = 343 

<0.05) and Hs (r = -0.646, p = <0.05) anomalies were negatively correlated with the net shoreline 344 

movement (Table 3). This indicates that shoreline retreat at the study location typically occurs 345 

following higher than average SSTs and Hs in the 6 months prior.  346 

 347 

4.0 Discussion 348 

 349 

4.1 Storm wave climates  350 

Type 1 synoptically translates into storm wave fields associated with ex-tropical storm activity in the 351 

Coral Sea. Type 1 storms are most prevalent during late summer-early autumn with Hs being >3.7 m. 352 
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The direction of Type 1 storms favours an E-ESE approach with most waves (85 %) occurring from 353 

98-110 °N (Table 2). Although many ex-tropical storms in the region tend to track south from the 354 

equator, an absence of a strong N-NE signal in storm wave direction may be attributed to the blocking 355 

influence of Fraser Island to the north. Based on the hindcast wave dataset, the average return interval 356 

(ARI) for a Type 1 storm with an average Hs >3.8 is 2 years and for Hs >4 m, the ARI is 4 years (see 357 

supplementary material). These values are comparable to those of Allen and Callaghan (1999) who 358 

estimate an ARI of 2 years for tropical storms with Hs >3.9 m and 5 years for Hs >4.6 m in southeast 359 

Queensland. Type 1 storms have a mean wave period of ~9.4 secs with similar wave periods of 9-10 360 

secs being described for E-SE waves on the southeast Queensland coast (at Brisbane) (Mortlock and 361 

Goodwin, 2015). Compared to northern NSW, the wave period is longer in southeast Queensland for 362 

E-ESE waves as attributed to uninhibited swell wave propagation from the Equatorial Pacific and 363 

Coral Sea (Speer et al., 2009).  364 

 365 

Type 2 represents coastal lows of a SSE-SE direction and correspond with east coast lows (Shand et 366 

al., 2011; Browning and Goodwin, 2013). The majority of Type 2 storms (70 %) propagate from 138-367 

148 °N with Hs being <3.8 m for 88 % of all Type 2 storms (Table 2). This corresponds with the 368 

findings of Gourlay (1975) where waves from the E observed at Moffat Beach (100 km S of Inskip 369 

Peninsula) displayed higher Hs than waves from the SE. Based on the hindcast wave dataset, the ARI 370 

for a Type 2 storm with an average Hs >3.5 m is 3.8 years (see supplementary material).  371 

 372 

The storm climates identified in the study region provide an important analogue for understanding 373 

storm wave variability in other regions of southeast Queensland. The study provides the first analysis 374 

of the long-term wave climate and subtropical storm wave record north of Brisbane. The two 375 

classified storm climates correspond with those identified by Splinter et al. (2012) for the Gold Coast 376 

region. A fundamental difference between the Inskip wave climate and that of the Gold Coast is that a 377 

higher proportion of storms are associated with ex-tropical storm activity as opposed to east coast 378 

lows which are dominant at the Gold Coast and further south in NSW. This is a predictable outcome. 379 

When applying the POT threshold to identify storms, waves propagating from a purely southerly 380 
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direction did not reach the threshold for being classified as storm events. This is because the Inskip 381 

Peninsula lies above the swell window for storm waves associated with Southern Ocean Lows 382 

(Browning and Goodwin, 2013). Seasonally, the highest proportion of storms occur during January-383 

May (see supplementary material) irrespective of storm type. While southerly waves are at times 384 

present during modal conditions, it is likely that by the time storms of a southerly origin have 385 

propagated to reach the study region their energy has dissipated - potentially due to refraction across 386 

the continental shelf from NSW northward. Evidence of this is that Type 2 storms, which have a SE-387 

SSE direction on average, have a shorter period (T = <9.4 sec) and lower height (and therefore would 388 

have a lower wave energy and power) than SE-S storms occurring in NSW (T = 11-12 sec) (Morlock 389 

and Goodwin, 2015). Local morphology may also play a role in this as waves of a more southerly 390 

origin may be refracted around Double Island Point therefore reducing their wave height and energy 391 

upon reaching the coastline. 392 

 393 

4.2 Impact of ENSO on wave climate 394 

ENSO variability is known to influence wave height and direction in southeast Australia with 395 

negative phases linked to an anticlockwise shift in wave direction and a decrease in wave height 396 

(Phinn and Hastings, 1992; Short et al., 2000; Ranasinghe et al., 2004; Goodwin 2005; You and Lord, 397 

2008; Harley et al., 2010). While this relationship has been the focus of a growing body of literature, 398 

the role of ENSO in driving wave climate variability has not been well defined in subtropical regions 399 

north of Brisbane (27.47 °S). In the present study, ENSO showed a strong positive correlation with 400 

mean annual wave height and a negative correlation with wave direction (Table 3). The correlation 401 

between mean annual Hs and SOI was the strongest of all (r = 0.505, p = <0.01) (Table 3) and is also 402 

higher than that the same correlation undertaken for a 45-year wave record at Sydney, NSW, by 403 

Harley et al., (2010) (r = 0.39-0.43, p = <0.01). This indicates that ENSO has a stronger influence on 404 

wave heights at lower latitudes where the SST is warmer. During periods of sustained La Nina events, 405 

the shift in distribution of wave height and direction was more substantial than during El Nino events 406 

with a 0.1 m increase in mean Hs and a 6° anticlockwise shift in mean wave direction occurring 407 

(relative to the overall mean (Table 3).  408 
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 409 

The coupled shift to an easterly direction with higher wave heights during positive SOI phases also 410 

reflects a higher occurrence of ex-tropical storms (Table 3). Interestingly, mean annual storm duration 411 

showed a moderate negative correlation with SOI (r = -0.357, p = <0.05) (Table 3). This is the 412 

opposite of what would be expected as Type 1 storms have a longer duration on average and are 413 

representative of storm wave conditions positively correlated to the SOI (i.e. E-ESE, higher Hs) 414 

(Table 2; Table 3). This indicates that annual scale SOI data is not a good predictor of storm duration 415 

and that additional local synoptic factors are likely to influence the longevity of individual storm 416 

events. For example, the interaction of storms with adjacent areas of high pressure, including the 417 

subtropical ridge, is known to influence storm severity and duration (Allen and Callaghan, 1999; 418 

Walsh et al., 2004).  419 

 420 

These findings have highlight the importance of understanding large scale climate processes on other 421 

subtropical coastal regions globally affected by wave trains associated from extra-tropical storms. 422 

This extends to the Northern Hemisphere where the North Atlantic Oscillation (NAO) similarly 423 

controls westerly wind (and wave) characteristics and the location of storm tracks across the North 424 

Atlantic. During positive (negative) NAO phases the North Atlantic storm track would be expected to 425 

shift northwards (southwards) (Lehmann and Coumou, 2015). Extratropically transitioning tropical 426 

cyclones represent 50% of all tropical cyclones that make landfall on the east coasts of the U.S.A, 427 

Canada, and the west coast of Europe. Variability in the NAO also relates to shoreline change with the 428 

potential to drive beach rotation (Thomas et al., 2011). Evidence that storm tracks in the North 429 

Atlantic are shifting southward over the last several decades (Clarke et al., 2002; Hurrell et al., 2003; 430 

Costas et al., 2006).  431 

 432 

4.3 Shoreline change 433 

The shoreline response to decadal scale variability in wave climate provides an important analogue 434 

for other wave-dominated beaches along the open southeast Queensland coastline and in particular, 435 

for regions north of Brisbane. During 1958-2012, the Inskip Peninsula has shown a trend of beach 436 
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erosion at a rate -0.29 m/year on average (Figure 7a). Higher net erosion occurred during periods of 437 

larger waves occurring from a more easterly direction, while periods of lower wave height resulted in 438 

beach accretion regardless of the wave direction (Figure 8a-d). The most substantial erosion also 439 

occurred following periods of increased SST anomaly >1°C (Figure 8a). Periods of La Nina (El Nino) 440 

did not directly coincide with shoreline retreat (progradation) but tended to lag the peak of La Nina 441 

(El Nina) episodes (Figure 8a-b). Interestingly, the centre of the beach shows a trend of net accretion 442 

in an area located north of a beach rock formation (Eight Mile Rocks) where there is also a change in 443 

coastal alignment (Figure 7a-c: 5-7 km). As the beach rock provides a hard, nodal point, the 444 

northward section of the beach could see future coastal compartmentiliation similar to the model of 445 

Stephens et al. (1981) for formation of zetaform bays down-drift side of beach rock ourcrops. This 446 

would potentially result in the creation of two separate littoral cells while a trend of net erosion 447 

persists.  448 

 449 

The most severe erosion (-0.73 m/year) occurs at the southern end of at the study beach and in the lee 450 

of the Double Island Point headland, a shadow zone from northward moving longshore drift (Figure 451 

7c). The northern end of the beach too shows a long-term trend of net erosion which is unexpected as 452 

it would be assumed to be receive more sediment supplied from drift with less refraction from the 453 

headland. This illustrates an imbalance in the coastal sediment budget and suggests that we may need 454 

to revisit existing sediment budgets for drift dominated shorelines in southeast Queensland. The 455 

constant ‘river’ of sediment that is inferred to be moving north from NSW to Fraser Island does not 456 

dominate the signal of coastal accretion and erosion at the study location (Figure 7a-b; Figure 8a). 457 

Existing studies suggest that littoral drift rates should increase progressively northwards along the 458 

coast of southeast Queensland (Stephens et al., 1981). As the study beach is located near the terminus 459 

of the east Australian longshore drift system, we would expect to see normal seasonal cycles of 460 

erosion-accretion superimposed upon an either stable or accretionary long-term state. There is 461 

however a trend of net erosion punctuated by large (>10 m) interannual changes in shoreline position 462 

which are clearly tied to variability in the wave climate (Figure 8a-d). These shifts in shoreline 463 

position may be related to sediment slugs moving alongshore. Temporary storage offshore and on 464 
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beaches and barrier islands such as Moreton, Stradbroke, and Bribie Islands is largely unaccounted for 465 

in current models (e.g. Roy and Thom, 1981). A higher demand for longshore sediment supply would 466 

likely occur at the Inskip Peninsular if the coast evolved to be further oblique to the dominant swell 467 

direction (Stephens et al., 1981) which would intensify coastal erosion. The site provides an important 468 

proxy for predicting coastal response to future shifts in wave climate and ENSO events at similar 469 

drift-dominated, subtropical coastlines globally, as well as for understanding how beach readjustment 470 

can modulate these effects. This is particularly relevant for beaches at the terminus of significant drift 471 

systems where sediment supply is determined by down drift processes and coastal alignment (e.g. 472 

U.S.A: Stone et al., 1992; Brazil: Martin and Suguio, 1992; west Africa: Blivi and Oyédé, 2002; and 473 

South Africa: Smith et al., 2010).  474 

 475 

The time elapsed between individual storms proved important in determining the magnitude of 476 

shoreline erosion with storms clustered in rapid succession leading to more substantial erosion (e.g. 477 

1994) that individual events of a high magnitude. This is because the recovery period that would 478 

facilitate beach accretion was reduced between storm events. This illustrates the importance of the 479 

buffering capacity of the beach in preventing substantial erosion both for storms occurring in close 480 

succession. This is consistent with observations in southeast Australia (Callaghan et al., 2008; 481 

Karunarathna et al., 2014), Europe (Vousdoukas et al., 2012; Dissanayake et al., 2015; Castelle et al., 482 

2015; Masselink et al., 2016), and the U.S.A (Flick, 1993). At the Inskip Peninsula, storm clustering 483 

and erosion would extend to the dunes which directly bound the southern portion of the beach 484 

however the associated outcomes of their net input to the coastal sediment budget is unknown.  485 

 486 

4.4 Future considerations  487 

This study provides a first classification of storm wave climates in the region to correlate storm 488 

activity with decadal scale climate drivers and shoreline change. Use of multivariate Neural Network 489 

Clustering methods, such as Self Organising Maps (SOM), may offer potential to delineate further 490 

between storm types in future (Camis et al., 2011; Liu and Weisberg, 2011). Further delineation 491 

between the Type 1 storms identified within this study would be valuable as these events tend to cause 492 
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the most substantial erosion at the shoreline. Type 1 storms are also most likely to change in 493 

frequency and magnitude if there was a southward expansion of the sub-tropics. 494 

 495 

Understanding the changes in directional wave height of the two classified storm wave climates has 496 

implications for the coastal sediment budget and consequentially beach morphodynamics. A shift in 497 

wave height, and most importantly direction, would translate to large changes in the longshore 498 

transport flux at the receiving coastline (USACE, 1986; Hemer et al., 2010; Splinter et al., 2012; 499 

Splinter et al., 2014). The landward extent of storm waves would also increase under predicted future 500 

increases in sea level and storm Hs (due to enhanced wind speeds) (IPCC, 2013) consequentially 501 

exacerbating the magnitude of coastal erosion observed in this study. Although detailed nearshore 502 

modelling was not undertaken for this work, the study findings provide valuable information that 503 

could be used in future to analyse the nearshore conditions for each storm wave climate. For example, 504 

a simple application of the CERC (USACE, 1984) equation, shows a +3,235 m3/day (Type 1) and 505 

+431 m3/day (Type 2) increase in the net longshore drift rate from modal conditions (for details on 506 

drift calculations, see supplementary material). This illustrates the potential to result in imbalances to 507 

the coastal sediment budget when the northward littoral transport exceeds the amount transported 508 

from the south.  509 

 510 

5.0 Conclusions 511 

 512 

From a 31-year hindcast wave dataset, the present study has established that two storm wave climates 513 

are dominant in southeast Queensland: Type 1 (ex-tropical storms) and (2) Type 2 (east coast lows). 514 

The storm wave climates show clear differences in mean wave height and direction, with the 515 

dominance of Type 1 storms resulting in higher waves and enhanced shoreline erosion. The SOI is an 516 

important forcing factor influencing the variability in wave climate, being positively correlated to 517 

wave height and storm frequency, and negatively correlated with wave direction. This indicates that 518 

Type 1 storms are more prevalent during periods of positive SOI phases with the potential to induce 519 

more substantial erosion. During periods of sustained La Nina/El Nino events, shifts in the 520 
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distribution of wave direction and height become more apparent, with La Nina resulting in higher 521 

waves and a more easterly direction, and El Nino corresponding with lower waves from a more 522 

southerly-southeast direction. The change in wave height and direction was most pronounced in La 523 

Nina phases and corresponds with a +0.10 m increase in mean monthly wave height and a 6° 524 

anticlockwise shift in wave direction. These changes are likely to translate into a larger difference in 525 

directional wave power at the shoreline with the potential to influence distinct phases of beach 526 

erosion, alongshore sediment supply, and coastal sediment budgets. A change in offshore wave 527 

direction is known to outweigh a change in wave height when translated to nearshore effects (e.g. 528 

nearshore directional spreading or localised refraction) (Wandres et al., 2017). 529 

 530 

The observed change in shoreline position through the study period is both spatially and temporally 531 

variable. Shoreline deposition (erosion) relates to both short-term storm events and longer-term shifts 532 

in the wave climate induced by the underlying signal of the SOI. Following sustained La Nina events, 533 

beach erosion occurs on at an average rate of -5.75 m/year (±2.03 m) while following El Nino events, 534 

the shoreline is accretionary at an average rate of +4.32 m/year (±2.06 m) (Figure 8b). There is a six-535 

month time lag for changes in the SST, a parameter related to the phase and intensity of the SOI and 536 

which causes heightened tropical storm activity (Sohn et al., 2016), to be translated to changes in the 537 

Hs. The buffering capacity of the beach and the succession and duration of individual storm events 538 

proved to be important in determining the extent of shoreline erosion, with storms occurring in rapid 539 

succession favouring more extensive erosion. The study findings have application for similar drift 540 

dominated open coastline beaches globally. Future climate warming is predicted to result in widening 541 

of the tropics with a poleward expansion of 1-2° projected for later this century (Seidel et al., 2008; 542 

Mortlock and Goodwin, 2015). This may lead to an increase in frequency of ex-tropical storm tracks 543 

further south and a change in regional wave climates for southeast Queensland and northern NSW. 544 

Storm wave parameters from the Inskip Peninsula can therefore provide surrogate data to project 545 

future storm wave impacts at more southern locations on the Australian seaboard. 546 

 547 
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Figure captions: 916 

 917 

Figure 1. Study area showing the section of coast used for shoreline change analysis. The grid point 918 

used for wave hindcast reanalysis (NOAA WAVEWATCH III) (-25.9°S, 153.73°E) is indicated on 919 

the map of Australia.  920 

[1.5 column figure size]  921 

 922 

Figure 2. Mean monthly wave data for the study region (1979-2009) showing variability in: (a) wave 923 

direction (Dp); (b) significant wave height (Hs); and (c) primary peak spectral wave period (Tp).  924 

[1 column figure size] 925 

 926 

Figure 3a-b. Directional distribution of storm events showing (a) a bimodal distribution of 927 

directionality, and (b) wave directional rose for the storm events. P1 refers to peak 1 and P2 refers to 928 

peak 2 of the directional distribution of storm wave events. The peaks represent the most frequent 929 

waves within each distribution of a certain direction range. 930 

[1.5 column figure size]  931 

 932 

Figure 4. K-Means cluster analysis of two storm wave climates using the normalised parameters: 933 

significant wave height (Hs), wave direction (Dp), and primary peak spectral wave period (Tp). Type 934 

1 and 2 corresponds with the two cluster groups output by K-means and GMM. 935 

[1 column figure size]  936 

 937 

Figure 5a-b. GMM cluster analysis of two storm wave climates: (a) wave direction and significant 938 

wave height; (b) direction and wave period. Data is normalised as per Camus et al. (2011) to maintain 939 

similar weightings of parameters. 940 

[1.5 column figure size] 941 

 942 
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Figure 6a-b. Distribution (PDF) of (a) Hs and (b) Dp for La Nina (SOI ≥ +7) (37 months total) and El 943 

Nino (SOI ≤ -7) (64 months total) periods sustained ≥ 6 months in duration. Cumulative distribution 944 

function included for both. Mean SOI for El Nino periods: SOI -16.87 (median -16.65) and mean SOI 945 

for La Nina periods: SOI 12.74 (median 12.20).  946 

[2 column figure size] 947 

 948 

Figure 7. (a) Rate of shoreline change for the whole beach 1958-2012; (b) net shoreline movement 949 

over time; (c) rate of shoreline change for the whole study area. 950 

[2 column figure size] 951 

 952 

Figure 8. (a) Mean monthly sea surface temperature (SST) anomaly and net shoreline movement. 953 

SST anomaly > +1°C shown in grey boxes with max anomaly annotated; (b) Mean monthly SOI and 954 

net shoreline movement. Dashed lines show classified La Nina and El Nino threshold; (c) mean 955 

monthly Hs and net shoreline movement. Hindcast wave record starts at 1979 with the 2010-2012 956 

wave data added from NOAA’s global 30m model; (d) Mean monthly wave direction and net 957 

shoreline movement; cross correlations between (e) mean monthly SOI and mean monthly SST 958 

anomaly (1958-2012) with maximum correlations at -4 and +9 month lags; (f) mean monthly SST and 959 

Hs anomalies (1979-2012) with maximum correlations at -8 and +6 month lags. 960 

[1.5 column figure size] 961 

  962 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Tables and table captions: 963 

 964 

Table 1. Descriptive statistics of the modal offshore wave climate for the study region (1979-2009) 965 

including mean daily significant wave height (Hs), wave direction (Dp), and primary peak spectral 966 

wave period (Tp). Data hindcast from the NOAA WAVEWATCH III wave model.  967 

 968 

Descriptive statistics Hs (m) Dp (°N) Tp (sec) 

Mean 1.91 128.96 8.60 

Median 1.76 117.22 8.53 

Mode 2.08 92.22 8.49 

St Dev. 0.77 49.12 1.74 

90th percentile 2.93 166.03 10.85 

10th percentile 1.09 87.85 6.41 

 969 

  970 
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Table 2. Storm wave climate cluster centres identified from K-means cluster analysis, CircStat, and 971 

Gaussian Mixture Models showing similar cluster centres. Wave parameters include significant wave 972 

height (Hs), wave direction (Dp), primary peak spectral wave period (Tp), and storm duration. For 973 

seasonality of storm occurrence, summer = 1, autumn = 2, winter = 3 and spring = 4. 974 

 975 

K-Means final cluster centres (mu) 

  Cluster 1 Cluster 2 

Season 1.98 2.31 

Hs (m) 3.73 3.54 

Dp (°N) 106.20 142.20 

Tp (sec) 9.51 9.38 

Duration (days) 4.71 3.79 

n 105 52 

Circ Stat final cluster centres 

 Cluster 1 Cluster 2 

Mean resultant vector (°N)  106.07 142.99 

Median Dp (°N) 106.57 143.20 

Standard deviation (°) 10.25 10.63 

n 105 52 

GMM final cluster centres (mu) 

Model 1: Hs vs Dp Cluster 1 Cluster 2 

Dir (°N) 106.20 143.50 

Hs (m) 3.73 3.54 

Model 2: Tp vs Dp Cluster 1 Cluster 2 

Dir (°N) 106.90 143.80 

Tp (sec) 9.53 9.37 

n 105 52 

 976 

  977 
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Table 3. a. Pearson correlation analysis between mean annual SOI and wave data 1979-2009. SOI is 978 

the mean annual SOI index value (BoM, 2017), Hs is mean annual significant wave height, Dp is 979 

mean annual wave direction, Tp is mean annual wave period, SF is annual storm frequency, SD is 980 

mean annual storm duration, D >Hs10 refers to total annual days over Hs10 threshold (2.93 m), and 981 

SST a is the mean annual SST anomaly. b. Correlations between net shoreline movement (NSM) and 982 

6-month pre-image SST anomaly (SST a), Hs, Hs anomaly (Hs a), Dp, Tp, and SOI 1979-2012. 983 
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a. Correlations between mean annual SOI, SST anomaly, and annual scale wave/storm data 

  SOI Hs Dp Tp SF SD D >Hs10 SST a 

SOI 
Pearson 
correlation 

1 0.505**  -0.362* 0.415* 0.367* -0.357* 0.422* 0.196 

Sig. (2-tailed) 
 

0.004 0.045 0.02 0.042 0.49 0.018 0.290 

Hs  
Pearson 
correlation 

0.505**  1 -0.495**  0.628**  0.719**  -0.111 0.862**  0.414* 

Sig. (2-tailed) 0.004 
 

0.005 0 0 0.554 0 0.021 

Dp 
Pearson 
correlation 

-0.362* -0.495**  1 -0.464**  -0.245 0.261 -0.253 -0.176 

Sig. (2-tailed) 0.045 0.005 
 

0.009 0.185 0.156 0.169 0.344 

Tp 
Pearson 
correlation 

0.415* 0.628**  -0.464**  1 0.241 -0.206 0.345 0.186 

Sig. (2-tailed) 0.02 0 0.009 
 

0.191 0.267 0.058 0.316 

Storm F. 
Pearson 
correlation 

0.367* 0.719**  -0.245 0.241 1 -0.255 0.855**  0.450* 

Sig. (2-tailed) 0.042 0 0.185 0.191 
 

0.165 0 0.011 

Storm D. 
Pearson 
correlation 

-0.357* -0.111 0.261 -0.206 -0.255 1 0.280 -0.106 

Sig. (2-tailed) 0.042 0.554 0.156 0.267 0.165  0 0.571 

D >Hs10 
Pearson 
correlation 

0.422* 0.862**  -0.253 0.345 0.855**  0.280 1 0.322 

Sig. (2-tailed) 0.018 0 0.169 0.058 0 0.883  0.078 

SST A. 

Pearson 
correlation 

.196 .414* -.176 .186 .450* -.106 .322 1 

Sig. (2-tailed) .290 .021 .344 .316 .011 .571 .078  

b. Correlations between net shoreline movement and 6-month pre-image SST anomaly, SOI, and wave data 

  NSM Hs Hs a Dir  Tp SST a SOI  

NSM 
Pearson 
correlation 

1 -0.418 -0.646* 0.552* -0.294 -0.592* -0.459 
 

Sig. (2-tailed)  0.137 0.013 0.041 0.308 0.026 0.099  

Hs 
Pearson 
correlation 

-0.418 1 0.652* -0.892**  0.624* 0.279 0.381  

Sig. (2-tailed) 0.137  0.011 0.000 0.017 0.335 0.171  

Hs A. 
Pearson 
correlation 

-0.646* 0.652* 1 -0.529 0.393 0.616* 0.681**   

Sig. (2-tailed) 0.013 0.011  0.052 0.165 0.019 0.022  

Dp 
Pearson 
correlation 

0.552* -0.892**  -0.529 1 -.445 -0.369 -0.396  

Sig. (2-tailed) .041 0.000 0.052  .111 0.194 0.161  

Tp 
Pearson 
correlation 

-.294 0.624* 0.393 -0.445 1 -0.162 -0.035  

Sig. (2-tailed) .308 0.017 0.165 0.111  0.581 0.906  

SST A. 
Pearson 
correlation 

-0.592* 0.279 .616* -.369 -.162 1 0.789**   

Sig. (2-tailed) 0.026 0.335 .019 .194 .581  0.001  

SOI 
Pearson 
correlation 

-0.4596 0.381 0.681**  -0.396 -0.035 0.789**  1  

Sig. (2-tailed) 0.099 0.171 0.022 0.161 0.906 0.001   

** Correlation is significant at the 0.01 level (2-tailed). 985 

*   Correlation is significant at the 0.05 level (2-tailed). 986 
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Highlights 

• Storms in SEQ are delineated into two types: ex-tropical storms and East Coast Lows.  

• The Southern Oscillation Index is positively correlated to Hs and storm frequency 

• Periods of sustained La Nina increase Hs by 0.10 m and shift mean wave direction 6° 

anticlockwise. 

• Shoreline erosion and deposition is closely tied to variability in wave height and direction, 

modulated by underlying ENSO signals. 

• Clusters of storms in rapid succession is a major driver of coastal erosion. 

 

Regional index terms 

Australia, Queensland, Inskip Peninsula 

 


