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Abstract 17 

High-moisture rice snacks, such as steamed rice cakes, develop firmness on storage which 18 

decreases shelf life significantly. By analogy with lower moisture bread systems, this staling 19 

was hypothesised to be due to a combination of starch retrogradation and moisture re-20 

distribution. Therefore, food additives which are commonly used to retard starch 21 

retrogradation during bread staling, including enzymes, hydrocolloids and emulsifiers (alpha-22 

amylase, alginate, xanthan, guar gum, carrageenan, carboxymethyl cellulose, distilled 23 

monoglyceride, and sodium stearoyl lactylate) were investigated for their anti-hardening 24 

effects in high-moisture rice snacks. The results showed that only alginate significantly 25 

reduced the firming rate of rice cakes. However, differential scanning calorimetry 26 

measurements surprisingly indicated that rice cakes with alginate had higher levels of starch 27 

retrogradation than the control after storage for 7 days. Magnetic resonance imaging results 28 

were characterised by a redistribution of signal intensity from the edge to the centre of rice 29 

cakes and the formation of high intensity regions. These features were stronger with the 30 

addition of alginate. We propose that the alginate forms a continuous phase with water that 31 

has high mobility, whereas the partially gelatinized starch granules are an included phase 32 

distributed within the continuous phase. The reduced hardness of aged rice cakes with 33 

alginate is more dependent on the soft continuous phase than the hard starch granules, 34 

therefore leading to a softer texture. This mechanism is different to that proposed to operate 35 

for lower water content baked systems, therefore hydrocolloid and other anti-staling agents 36 

which are effective in bread systems may not be applicable in higher moisture starchy foods. 37 

Key words: firming; high-moisture; water mobility; additives 38 
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1 Introduction 40 

High-moisture starchy foods that contain 35% or greater moisture content or a water activity 41 

above 0.9 experience significant staling processes which result in hardened texture and off 42 

flavours that limit shelf life. The staling mechanisms that are widely studied in intermediate-43 

moisture starchy foods are also thought to be responsible for the hardening of high-moisture 44 

foods, namely moisture loss and redistribution as well as starch retrogradation (Ji, Zhu, Zhou, 45 

& Qian, 2010; Lee, et al., 2014).  46 

Various anti-staling agents such as enzymes, hydrocolloids and emulsifiers have been 47 

applied successfully in intermediate-moisture foods, particularly breads, to control staling. 48 

The enzymes α-amylase and β-amylase have an anti-staling effect on bread by partially 49 

degrading starch and generating low-molecular-weight dextrins (De Stefanis, Ponte Jr, 50 

Chung, & Ruzza, 1977; Hebeda, Bowles, & Teague, 1991; Katina, Salmenkallio-Marttila, 51 

Partanen, Forssell, & Autio, 2006; Nguyen, et al., 2015; Outtrup & Norman, 1984). The 52 

dextrins are thought to hinder gluten-starch interactions and interrupt the starch network 53 

(Goesaert, Leman, Bijttebier, & Delcour, 2009; Goesaert, Slade, Levine, & Delcour, 2009).    54 

Hydrocolloids enhance water retention and limit its redistribution within starchy baked food 55 

structures (Sozer, Bruins, Dietzel, Franke, & Kokini, 2011), which provides an anti-staling 56 

effect. The type, source and molecular weight of hydrocolloids are all important factors that 57 

influence the anti-staling ability in different food products (Guarda, Rosell, Benedito, & 58 

Galotto, 2004; Gujral, Haros, & Rosell, 2004). Guarda, et al. (2004) reported that alginate 59 

and hydroxypropyl methyl cellulose (0.1% - 0.5%) showed wheat bread crumb hardening 60 

retardation and reduction of moisture loss while xanthan and carrageenan only reduced 61 

moisture loss.  62 

Effective emulsifiers retard staling of intermediate-moisture bread by influencing the firming 63 

rate instead of simply reducing the initial hardness of bread (Knightly, 1977) which 64 

shortening is normally capable of. The interactions between emulsifiers and starch and/or 65 

protein are thought to be the reason for anti-staling effects (Gray & Bemiller, 2003). 66 

Emulsifiers form single helical V-type complexes with amylose, which may reduce starch 67 

swelling and amylose leaching from starch granules or prevent migration of water from 68 

gluten to facilitate starch crystallisation, further reducing hardness of bread (Dragsdorf, 1980; 69 

Zobel, 1973, 1988). This complex-forming ability relies on amylose structure, the type, pH, 70 

ion concentration of emulsifiers (Krog, 1973), and their physical state before adding to the 71 

dough, with aqueous, liquid-crystalline gels showing best results (Krog & Jensen, 1970). 72 

However, this may not be the only reason for the anti-staling effects of emulsifiers, as 73 

emulsifiers can complex with amylopectin as well, although at a lower level, to reduce 74 
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amylose-amylopectin network formation (Gudmundsson & Eliasson, 1990).  Mikus, Hixon, 75 

and Rundle (1946) and Tang and Copeland (2007) suggested that monoglycerides form 76 

helical complexes of aggregated structure with amylose to decrease hardness caused by 77 

amylose retrogradation and amylose complexes with lipids and other components. In 78 

contrast to the many reported studies of anti-staling effects in breads and other intermediate 79 

moisture foods, there have been few comprehensive studies of anti-staling effects in high 80 

moisture foods. We hypothesised that anti-staling agents with proven effectiveness in breads 81 

would also have anti-staling properties in high moisture foods. 82 

The research example of high-moisture starchy foods in this study, steamed rice cakes, are 83 

a traditional snack food in some Asian countries. Steamed rice cakes have a moisture 84 

content of 40%-65% and a water activity of around 0.92 (Eunhye Choi & Ko, 2014; Ji, Zhu, 85 

Qian, & Zhou, 2007; Sang, Shao, & Jin, 2015). A few studies have shown that additives such 86 

as tea polyphenols, oligosaccharides and polysaccharides (β-glucan, β-cyclodextrin, 87 

xanthan gum, carrageenan etc.) can reduce the rate and extent of retrogradation in rice 88 

starch (Banchathanakij & Suphantharika, 2009; Tang, Hong, Gu, Zhang, & Cai, 2013; Tian, 89 

et al., 2009; Wu, Chen, Li, & Li, 2009). However, the mechanisms behind the retardation of 90 

starch retrogradation in these cases are not well characterised. The oligo- and poly- 91 

saccharides might function as hydrocolloids by holding water to control the amount of water 92 

available for inclusion in starch crystallites. Tea polyphenols may act as plasticizers to 93 

interact with starch by hydrogen bonding, and reduce self-entanglement of side chains of 94 

starch polymers (Wu, et al., 2009). The hydrogen bonding depends on size, number and 95 

reactivity of OH groups in the polyphenol additives (Smits, Kruiskamp, Van Soest, & 96 

Vliegenthart, 2003). No work has been reported for ready-to-eat high-moisture rice products 97 

to investigate starch retrogradation retardation and anti-hardening effect of additives, or to 98 

reveal the potential mechanisms.  99 

The aim of this study is to evaluate the anti-staling effect of several enzymes, hydrocolloids 100 

and emulsifiers on high-moisture steamed rice cakes. Uniaxial compression testing was 101 

used to determine the mechanical properties of rice cakes, particularly hardness, as a 102 

function of storage time. Factors thought to be closely related to hardness development were 103 

investigated with the goal of defining the anti-staling mechanisms: distribution of water 104 

(magnetic resonance imaging) and major components (confocal laser scanning microscopy); 105 

starch recrystallization (differential scanning calorimetry); and molecular mobility (magnetic 106 

resonance imaging). 107 
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2 Materials and Methods 108 

2.1 Materials 109 

Sticky rice flour and rice flour were obtained from Erawan marketing Co., Bangkok, Thailand. 110 

The amylose contents of the sticky rice flour and rice flour were 1.87 and 20.84%, 111 

respectively, measured using the size exclusion chromatography method of Fitzgerald, et al. 112 

(2009). The protein content of sticky rice flour and rice flour are 6.61% and 6.98%, 113 

respectively (from the manufacturer’s nutrition information table). The total fat content of both 114 

flours is less than 1%. Sugar was obtained from Sugar Australia Pty Limited, Australia. 115 

Enzyme (fungal α-amylase with enzyme activity of min. 1000 units/g), hydrocolloids (guar, 116 

carboxymethyl cellulose (CMC), carrageenan, alginate (extracted from brown algae 117 

Laminaria digitate with M/G ratio of 1.5:1), and xanthan) and emulsifiers (sodium stearoyl 118 

lactylate (SSL), distilled monoglyceride (DM)) were provided by Danisco Australia Pty Ltd 119 

(Banksmeadow, Australia).  120 

2.2 Preparation of steamed rice cake 121 

Control steamed rice cakes were produced by mixing sticky rice flour, rice flour, sugar and 122 

water together in a ratio of 3:2:1:3.6 (w/w) using a bench mixer (GS-6118, Homemaker, 123 

Kmart Australia) at low speed for 1 min following a traditional recipe for steamed rice cakes 124 

in Asian countries. The dough was then shaped into 50 g balls and cooked in a steamer 125 

(RC-4700-A, Homemaker, Kmart Australia) for 15 min. After cooling down, each rice cake 126 

was packaged into a 12µm polyethylene terephthalate/120µm linear low density 127 

polyethylene stand up pouch (10010001, West’s Packaging Services P/L, Australia) and 128 

sealed by a food packaging machine (Sous Vide 260, Australia Vacuum Packaging 129 

Machines Pty Ltd, Australia). Anti-staling additives including enzymes, hydrocolloids and 130 

emulsifiers were mixed with water first in concentrations as shown in Table 1, then the 131 

mixture of sticky rice flour, rice flour and sugar was added to the anti-staling additive-water 132 

system using the same ratio as control steamed rice cakes. The same mixing and shaping 133 

processes were performed. The two sets of doughs with amylase were covered with cling 134 

wraps (Cling Wrap, Berry Plastics Pty Ltd, Australia) to prevent moisture loss and left at 135 

room temperature for 0.5h and 1h, respectively, allowing time for amylase action on starch. 136 

All the samples were then steamed and packaged in the same way as control steamed rice 137 

cakes. 138 

2.3 Properties of steamed rice cakes during storage 139 

The packaged steamed rice cakes were stored at room temperature (22±1°C, tested using 140 

wireless thermocouples (Hitemp 140-FP-36, MadgeTech Inc., USA)) for 2, 5 and 7 days. 141 
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The hardness of all samples was measured on days 0, 2, 5 and 7 to screen for effective anti-142 

staling additives in steamed rice cakes. The rice cakes with effective anti-staling additives 143 

and control rice cakes were further used to measure starch retrogradation, microstructure, 144 

and moisture content on days 0, 2, 5 and 7. Moisture distributions of rice cakes were 145 

measured on days 0 and 7. 146 

2.3.1 Hardness 147 

An Instron universal testing machine (5800, Illinois Tool Works Inc., USA) was used to 148 

measure the compression response of rice cakes. Bluehill2 software (Instron Corp., USA) 149 

was used to operate the experiment and record data. The centre of the rice cake samples 150 

was cut into a cylinder of 20 mm (diameter) × 20 mm (height) for instrumental texture 151 

measurement. The height of each cylindrical sample was measured by a 150mm digital 152 

Vernier Caliper (Work Zone, Australia) and recorded in the software. Then the sample was 153 

placed on an Instron compression cylindrical plate (T1223-1021) with a diameter of 50 mm. 154 

Another cylindrical compression plate (T1223-1021 with diameter of 50 mm) was placed 155 

directly above the sample and the gauge length was reset as 0mm. A 2000 N load cell was 156 

used to compress the sample until reaching the maximum load of 1500 N at a crosshead 157 

speed of 2 mm/s. The compressive stress and strain were recorded and graphed. The 158 

hardness was reported as the modulus in a linear region of compressive strain between 10% 159 

and 20%. 160 

2.3.2 Starch retrogradation by differential scanning calorimetry (DSC) 161 

Analyses were performed in a DSC Q2000 (TA Instruments, United States), using Tzero 162 

aluminium hermetic sample pans and lids (901683.901). 10 mg of rice cake was weighed by 163 

an ABT 120-5DM analytical balance (Kern & Sohn GmbH, Balingen, Germany) into Tzero 164 

aluminium sample pans. All the sample pans were hermetically sealed using a Tzero sample 165 

press and hermetic die kit (TA Instruments, United States). An empty sealed pan was used 166 

as a reference. Each sample was heated from 30 to 130 °C at a speed of 10 °C/min with 167 

nitrogen flow of 50 mL/min. The heat flow curves were recorded and TA Universal Analysis 168 

software was used to analyse the data. The temperature values obtained were for the onset 169 

(To), peak (Tp), and completion (Tc) of the endothermic transition. The enthalpy of transition 170 

was estimated from the integrated heat flow over the temperature range of the transition, 171 

and is expressed as joule per gram sample (J/g). 172 

2.3.3 Microstructural properties of rice cake by confocal laser scanning microscopy (CLSM) 173 

The micro-structural properties of rice cakes were investigated using confocal microscopy 174 

(LSM 700, Carls Zeiss, Germany). A triple-staining technique including the combination of 175 

Calcofluor White, FITC (1% w/v, ethanol) and Rhodamine B (0.1% v/w, ethanol) was used.   176 
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A very thin slice of rice cake (obtained by hand using a razor blade ~ 10 mg) was incubated 177 

with 1 ml of FITC for 48 hours under gentle shaking conditions followed by washing with 178 

water until the washed water was observed to be clear. The FITC stained cake was further 179 

incubated with 1 ml of Rhodamine B for 4 hours under shaking conditions followed by 180 

washing until the supernatant was clear. A small section of double stained cake was placed 181 

on a glass slide and infiltrated with Calcofluor white for 5 min. The excess of Calcofluor white 182 

was absorbed by a filter paper tip.  The sample was observed after excitation at 405, 488 183 

and 555 nm for Calcofluor White, FITC and Rhodamine B respectively.  Normally, double-184 

staining of mixed starch and protein systems with a mixture of Rhodamine B and FITC leads 185 

to staining of proteins by Rhodamine B and starch by FITC. However, both Rhodamine B 186 

and FITC can bind non-covalently with each of starch and protein, depending upon the 187 

concentration of the components in the system. In a low protein system, such as rice cake, 188 

and a high concentration of FITC (FITC 1% vs Rhodamine B 0.1%) the FITC binds with both 189 

starch and protein. In contrast, Rhodamine B binds more specifically with protein allowing 190 

the visualisation of both starch and protein simultaneously (Zheng, Stanley, Gidley, & Dhital, 191 

2016). The use of Calcofluor White allows visualisation of the non-starch polymers, mainly 192 

the distribution of added hydrocolloid and rice cell wall material. 193 

2.3.4 Moisture content 194 

Moisture  was determined by drying the sample to a constant weight in an oven at 105 °C for 195 

24h. The difference in the weight of the sample before and after drying was used to calculate 196 

the moisture content (AOAC, 1990).  197 

2.3.5 Water distribution by magnetic resonance imaging (MRI) 198 

Rice cakes were imaged in a preclinical MRI system, comprising a 300mm bore 7T ClinScan 199 

(Bruker, Germany), running Siemens software version VB17. A 72 mm ID MRI rf coil was 200 

used to acquire the images. The rice cakes were placed on a ruler taped to the bottom of a 201 

rat-sized bed. The following images were acquired. 202 

1. Localiser images: Three sets of orthogonal gradient echo images were acquired with 203 

the following parameters: repetition time (TR) = 41 msec, echo time (TE) = 4.43 msec, field 204 

of view 130 X 130 mm, slice thickness = 1 mm, number of slices in each direction = 5, matrix 205 

= 128 X 128, flip angle = 25°, bandwidth = 400 Hz/Px, averages = 1, concatenations = 3, 206 

total scan time = 16 sec. 207 

2. T2 TSE images – Coronal T2 weighted spin echo images were obtained with the 208 

following parameters: TR = 2800 msec, TE = 49 msec, field of view 60 X 54 mm, matrix = 209 

256 X 256, slice thickness 0.6 mm, number of slices = 19, averages = 1, bandwidth = 130 210 

Hz/Px, turbo factor = 7, total scan time = 3 min 12 sec. 211 
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3. T1 parameter images were generated using the 3D_VIBE_t1mapit sequence using 212 

the following parameters:  TR = 12msec, TE = 1.02 msec, field of view 60 X 55 X 60 mm, 213 

image matrix = 160 X 160 X 120, flip angle = 6°, and 33°, bandwidth = 400 Hz/Px, averages 214 

= 2, total scan time = 8 min 31 sec. A 3D T1 map was automatically generated following 215 

acquisition of the images. 216 

4. T2 parameter images were generated using multi-echo T2 images acquired with the 217 

following parameters: TR = 2500 msec, TE = 10-120 ms in 10 msec increments, field of view 218 

60 X 58 mm, matrix = 192 X 192, slice thickness 1.0 mm, number of slices = 20, averages = 219 

2, bandwidth = 196 Hz/Px, total scan time = 15 min 34 sec. T2 parameter images were 220 

automatically generated following acquisition of the images. 221 

2.4 Statistical analysis 222 

All measurements were performed with at least 3 replicates. The mean values and standard 223 

deviations were reported. Microsoft Excel 2013 and R software (3.2.3) were used for 224 

statistical analysis. 225 

3 Results and Discussion 226 

3.1 Hardness 227 

Staling of starchy foods is typically associated with increases in compressive hardness due 228 

to starch retrogradation and redistribution of moisture. Thus the hardness of the rice cakes 229 

was monitored to represent staling over time and to differentiate between successful and 230 

unsuccessful anti-staling interventions. Examples of the full range of compressive stress-231 

strain curves of rice cakes are shown in Figure 1a. The stress-strain curves are divided into 232 

4 regions: a region of partial contact because of the uneven surfaces of rice cakes; a linear 233 

region before breaking (Figure 1b) which was used to calculate the modulus to represent the 234 

hardness of the rice cakes; the breaking region; and a linear compressive region after 235 

breaking. 236 

The compression modulus of all rice cakes, shown in Figure 2, increases significantly after 7 237 

days of storage. All the concentrations of amylases added to rice cakes with both incubation 238 

times showed significantly higher hardness than the control (Figure 2a). In contrast to bread 239 

(Goesaert, Slade, et al., 2009), amylase appears to be ineffective at preventing staling of 240 

high-moisture rice cakes.  The mechanism of anti-staling effect of amylase in intermediate-241 

moisture bread is complex and incompletely understood but is likely to involve effects on 242 

both starch retrogradation and consequent firming processes (Akers & Hoseney, 1994; León, 243 

Durán, & de Barber, 1997). Low-molecular-weight amylase products, such as branched 244 

dextrins, maltotriose or maltotetraose, are likely to  reduce starch retrogradation as indicated 245 
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by a lower endotherm enthalpy on re-heating (Lin & Lineback, 1990; Schults, Schoonover, 246 

Fisher, & Jackel, 1952). Conversely, amylase products with higher molecular weight might 247 

show the opposite effect because the starch recrystallization processes underlying 248 

retrogradation is promoted by the more mobile polymers produced by enzyme action (Akers, 249 

et al., 1994). In this study, the increased hardness of steamed rice cakes following amylase 250 

treatment suggests that the effects on the starch network may have been caused by the 251 

presence of staling-accelerating hydrolysis products in rice cakes. 252 

Most concentrations of DM and SSL show significantly higher hardness than control across 253 

the whole storage time (Figure 2a). Similar to amylase, staling retardation due to emulsifiers 254 

is not observed in high-moisture rice cakes, which is opposite to the effect normally reported 255 

in intermediate-moisture bread (Gomes-Ruffi, Cunha, Almeida, Chang, & Steel, 2012). 256 

Most of the rice cakes with suitable amounts of hydrocolloid have a lower hardness 257 

compared to the control after storage for 5 and 7 days (Figure 2b), presumably due to the 258 

general water holding capacity of hydrocolloids. This is in line with Davidou, Le Meste, 259 

Debever, and Bekaert (1996) where addition of 0.6% w/w of locust bean gum, 0.3% alginate 260 

or xanthan in wheat bread, and Sim, Noor Aziah, and Cheng (2011) and Sim, Noor Aziah, 261 

and Cheng (2015) where addition of 0.2% w/w flour of alginate or 0.8% w/w flour of konjac 262 

glucomannan in Chinese steamed bread reduced hardness by reducing the dehydration rate 263 

of samples, or influencing protein-starch interaction or macromolecular entanglement. The 264 

statistical analysis shows that only the rice cakes with an addition of 0.3% w/w alginate show 265 

significantly lower hardening rate (p<0.05), while the rest are not significantly different from 266 

the control rice cakes. This suggests that alginate is a potential anti-staling agent for 267 

application in high-moisture starchy foods such as steamed rice cakes, although the 268 

mechanism needs to be uncovered for predictable application. One potential mechanism is 269 

that, in high-moisture starchy foods, hydrocolloids might absorb more water which reduces 270 

the amount of water available to be included in starch crystallites. Xanthan is reported to 271 

have a greater water holding ability (Sánchez, Bartholomai, & Pilosof, 1995), but its anti-272 

staling effect on steamed rice cakes is less than alginate. However, water holding ability as 273 

an isolated hydrocolloid may not be a good indicator of water holding in a high starch and 274 

sugar environment as found in rice cakes. One possibility is that xanthan binds more to 275 

(neutral) starch than the more highly charged alginate does, and therefore contributes less to 276 

water-holding. Further work (e.g. using labelled xanthan to identify its location within rice 277 

cakes) would be needed to test this possibility. In order to further investigate the 278 

mechanism(s) by which alginate exerts its anti-staling effect, the enthalpy required for 279 

melting retrograded amylopectin, and the rice cake moisture content were measured. 280 
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3.2 Starch retrogradation 281 

Starch retrogradation has been found to be an important factor influencing the hardness of 282 

starchy food systems such as bread and cake (Katz, 1928; Maga & Ponte, 1975; Zhu, 2016). 283 

As the main component on a dry basis of steamed rice cakes, starch experiences structural 284 

changes both in the steaming process (gelatinization) and on storage (retrogradation) which 285 

greatly influence the texture. Therefore, the retrograded starch may play a major role in the 286 

staling mechanism. DSC tests were applied to control and 0.3% alginate-added rice cake 287 

samples to capture the heat flow curves and compare the levels of starch retrogradation.  288 

A typical peak representing the melting of retrograded amylopectin was detected and the 289 

onset temperature, peak temperature, conclusion temperature, and enthalpy were recorded, 290 

as shown in Table 2. With increasing storage time, the width of the transition (Tc – To) 291 

increased and the peak shifted to a lower temperature in the control group, while the alginate 292 

group did not show this shift. This suggests that after long term storage, amylopectin in rice 293 

starch forms a broad range of imperfect and (for control) slightly more labile crystalline 294 

structures, consistent with the ageing process involving more of the starch in crystallisation 295 

rather than an annealing of the same crystallites into more perfect crystals. Rice cakes with 296 

0.3% alginate show lower onset and peak temperatures than the control, suggesting that 297 

alginate influences the formation of crystalline structures by interacting with starch molecules 298 

and/or interacting with water to control the availability of water within starch networks.  299 

The enthalpy values increase with storage time, consistent with increasing amounts of 300 

retrograded amylopectin. Control rice cakes have less retrograded amylopectin (smaller 301 

enthalpies) compared to rice cakes with 0.3% alginate at the same storage time (Table 2). 302 

Alginate is a macromolecule and is unlikely to be able to penetrate either intact starch 303 

granules as only molecules smaller than 1000 g/mol are able to penetrate starch granules 304 

(Lathe & Ruthven, 1956) or swollen granules (Appelqvist & Debet, 1997). In addition, 305 

alginate absorbs water first as it was pre-dissolved prior to mixing with dry flour. Due to 306 

competition with the alginate, less water would be expected to be available in this 307 

concentrated system for the starch granule swelling (Gonera & Cornillon, 2002; Ramírez, et 308 

al., 2015). The more intact granules and ordered structure of starch in alginate-added rice 309 

cakes are proposed to result in larger DSC enthalpies than the control. However, from the 310 

compression test results (Figure 2), the rice cakes with addition of 0.3% alginate have a 311 

lower hardness than controls. This suggests that amylopectin retrogradation is not 312 

responsible for the firming of high-moisture rice cakes and that the anti-firming action of 313 

alginate has another origin. From phase separation theory (Appelqvist, et al., 1997), alginate 314 

might form a continuous soft phase with water and leached amylose, which separates from a 315 

second phase made of stiffened starch granules. The balance of these two phases may 316 
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affect the hardness of steamed rice cakes. Possibly the soft alginate-water phase is 317 

dominant and yields the softer rice cake texture found in this study. To test this hypothesis, 318 

direct observation of the microstructure of rice cakes using microscopy can be used to 319 

examine if there are two phases. In addition, the softness of the continuous phase is likely 320 

related to the water behaviour for which MRI can be used to derive information on molecular 321 

mobility. 322 

3.3 Microstructure 323 

Since amylopectin retrogradation was not correlated with hardness development of high-324 

moisture steamed rice cakes, the microstructure is of interest to reveal any difference 325 

between samples with and without 0.3% alginate. Figure 3 shows CLSM images of stained 326 

samples from control and alginate-containing rice cakes. Both groups showed similarities in 327 

changes during storage for 7 days. In fresh rice cake samples (day 0, Figure 3 (a1), (b1)), 328 

most of the starch molecules, stained green, formed a continuous phase as they were 329 

gelatinised. Bright green areas show that some starch granules are kept intact and 330 

aggregate with limited swelling (Figure 3c). With increasing storage time, starch granule 331 

aggregates are clearly observed and their size increases by day 7. This suggests that some 332 

phase separation is occurring, perhaps driven by starch molecules crystallizing and forming 333 

a more ordered structure compared to the fresh samples (as evidenced by DSC – Table 2). 334 

Proteins (stained red) are dispersed between starch granules apparently uniformly. Even 335 

though the two groups of samples show a similar overall behaviour, the control group 336 

appears to have less and smaller aggregates of residual partially-swollen granule structures 337 

compared to the alginate group. In addition, they tend to be more continuous and have a 338 

looser structure. This observation is consistent with the DSC results that the control group 339 

has a smaller enthalpy for retrograded amylopectin than the alginate group. 340 

Calcofluor stained non-starch polymers blue, including cell walls and alginate in this study. 341 

The blue parts observed in Figure 3 (a1-3) and (b1-3) are believed to be the cell walls, as  342 

cell wall polysaccharides account for 2% of the dry weight of polished rice grains (Palmer, et 343 

al., 2015), while the alginate content is only 0.3% of rice flour basis, which is less than cell 344 

wall polysaccharides. Alginate appears to be distributed uniformly in the inter-granular 345 

spaces of the rice cakes (in the background of Figure 3 (a1-3) and (b1-3)). This reduces the 346 

inter-particle contact, interrupting the continuity of the network of starch granules and 347 

weakening the composite network structure (Biliaderis, Arvanitoyannis, Izydorczyk, & 348 

Prokopowich, 1997). From these results, it is hypothesised that aged rice cakes with addition 349 

of alginate have a lower overall hardness because of a softer continuous alginate/water 350 

continuous phase despite containing harder swollen starch granules as an included phase. 351 
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3.4 Moisture content 352 

The results of the present study (Figure 2) show that only 0.3% alginate addition in the rice 353 

cakes exhibited less firming than the control. As starch retrogradation is not positively 354 

correlated with the firming of aged rice cakes, it is possible that water content and/or 355 

distribution play an important role in the firming process. Therefore, the moisture contents of 356 

the control group and the alginate 0.3% group were tested, but the results (Figure 4) show 357 

no significant difference of moisture content between the two groups before or after different 358 

storage periods. Moisture loss can be an important factor influencing staling of starchy food 359 

products, however, in this study, moisture loss was prevented by sealed polyethylene 360 

packaging and was not responsible for rice cake staling. Even though the total moisture 361 

content of the rice cakes did not change significantly during storage, there may be a change 362 

of water mobility and moisture distribution. In studies related to bread staling, the moisture 363 

redistribution between components, particularly starch and protein, changes the physical 364 

structure of the molecules and their properties, and influences the staling process (Schiraldi 365 

& Fessas, 2000).  366 

3.5 Moisture distribution 367 

MRI was used to capture the moisture distribution and water mobility of rice cakes on day 0 368 

(fresh) and day 7 (stale) to better understand the effect of water on staling. Three central 369 

images of the proton-density, T1 (longitudinal relaxation time) and T2 (spin-spin relaxation 370 

time)-weighted images of fresh (day 0) and stale (day 7) control and 0.3% alginate-added 371 

steamed rice cakes are shown in Figure 5. The MRI images (Figure 5) consist of dark areas 372 

representing air bubbles in the rice cake samples and an intermediate-intensity background 373 

representing the rice cake base. In the stale samples, high image intensity (bright) regions 374 

develop, consistent with areas of higher water density and/or mobility. Steamed rice cakes 375 

have a foam-like structure with an extensive number of fine pores, while the void areas might 376 

be filled with air and/or liquid. The porous structure of steamed rice cakes makes it hard to 377 

convert proton density to water content in local areas and calculate the precise T1 and T2 378 

values for analysing the difference in water mobility between samples quantitatively. 379 

However, a difference between fresh and aged samples is observed in the proton density, 380 

T1 and T2-weighted MRI images with the appearance of bright areas in aged samples. The 381 

pixel intensity distribution in the proton density, T1 and T2 images are shown in Figure 6. 382 

The proton density images of fresh control and fresh alginate added samples are very similar 383 

in that they both have higher signal intensity near the edges than in the centre, which 384 

suggests that the water distribution in fresh samples is not uniform. The porous structure of 385 

rice cakes leads to two possibilities. Firstly, the pores may not be evenly distributed, with an 386 
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outer layer containing a lower density of pores and/or smaller pore sizes below the image 387 

resolution compared to the central region. Secondly, the outer layer of pores may be filled 388 

with water to a greater extent than the inner pores. Water vapour transfers to the pores near 389 

the edges during the steaming process, but the short time (15min) and the hydrophilic nature 390 

of starch may limit diffusion of water from the surface into the centre. With increasing storage 391 

time, water tends to move to the centre as the whole system moves towards an equilibrium 392 

state.  393 

This is different from water movement in intermediate-moisture bread which has a higher 394 

initial moisture content in the internal crumb (25%-35%) than the external crust (15%-20%) 395 

(Czuchajowska & Pomeranz, 1989; Mandala, Karabela, & Kostaropoulos, 2007) due to 396 

water evaporation during baking. During equilibration, water moves from the crumb to the 397 

crust and evaporates from the crust to the surrounding air (Maga, et al., 1975), i.e. the 398 

opposite direction to steamed rice cakes. The cling wrap covering of the rice cakes in this 399 

study would minimize evaporation, and enhance water re-distribution in the rice cakes. This 400 

is likely to be one of the main reasons for the apparently different mechanisms of staling in 401 

intermediate- and high-moisture starchy foods.  402 

Both fresh and aged alginate-added samples have brighter centres than the control and 403 

water movement is more pronounced in control samples, which may be due to the water 404 

holding ability of alginate. Fresh and aged samples can be differentiated as a few areas with 405 

high proton density are observed in both aged samples (Figure 5a). These areas might be 406 

composed of gel structures with limited porosity. Generally, the pixel intensity in the centre of 407 

the stale rice cakes displayed higher maximum intensity and greater variation in the pixel 408 

intensity, than the fresh samples after 7 days’ storage (Figure 6a). These bright areas are 409 

consistent with regions of higher water content and reduced air bubbles. This may occur as 410 

air bubbles are filled with water expelled from starch structure in the rice cakes. However, 411 

the alginate added samples have more bright areas than the control, consistent with 412 

comparatively more water binding with the alginate. Morris (1990) suggested that water can 413 

be lost from a starch-rich phase due to the molecular associations between starch chains as 414 

occurs during retrogradation. The DSC results show that rice cakes with alginate added 415 

have more retrograded starch than the control, which may expel more water and result in 416 

brighter areas (more inhomogeneity) in the alginate group. There is also experimental 417 

evidence that some types of hydrocolloids work as a coating agent to reduce interaction of 418 

starch molecules and retard syneresis (Charoenrein, Tatirat, Rengsutthi, & Thongngam, 419 

2011; Ferrero, Martino, & Zaritzky, 1994; Hahm & Kuei, 2015; Lee, Baek, Cha, Park, & Lim, 420 

2002). Shi and BeMiller (2002) suggested that this effect was likely due to interactions 421 

between certain leached molecules, primarily between amylose and certain gums. In this 422 
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study, alginate neither reduced starch retrogradation, nor inhibited syneresis, so this 423 

mechanism does not seem to apply. 424 

T1-weighted images (Figure 5b) of both fresh control and fresh alginate-added samples 425 

have greater intensity towards the surface than in the centre, with water distribution moving 426 

towards a more homogeneous state after 1 week’s storage, similar to that observed in 427 

proton density images. The T1 images also showed higher pixel intensity and greater 428 

variation in the pixel intensity following 7 days of storage. The reduced variation in the 429 

profiles in the stale samples is consistent with the high intensity regions not being as 430 

prominent in the T1 images. This suggests similar T1 times for the water distributed 431 

throughout the rice cake and in the regions of high intensity.   Figure 6b shows that the 432 

intensity of fresh alginate added samples are slightly higher than that of the fresh control, 433 

which may indicate a general shortening of T1 or different porosity caused by the alginate. In 434 

this study, alginate was first added to water, followed by the mixture of rice flours and sugar, 435 

thus less water is available for binding with starch in alginate-added samples. This is 436 

consistent with a reduced overall water mobility / porosity after addition of alginate. The 437 

intensity difference between the surface and the centre is more pronounced in the control, 438 

suggesting that an alginate-water phase facilitates moisture diffusion into the rice cake. This 439 

is consistent with the presence of alginate increasing the phase volume of the extra-granular 440 

phase by reducing the amount of water associated with swollen starch granules. The slower 441 

hardness development in alginate-added samples might therefore result from a continuous 442 

phase with alginate which remains soft with less reduction of water mobility.  443 

Bread staling has been studied extensively, however, the movement of water between 444 

components at the molecular level is still not clear. In bread staling research, water 445 

transportation from starch to gluten and from gluten to starch have both been hypothesized 446 

based on instrumental measurements (Bachrach & Briggs, 1947; Cluskey, Taylor, & Senti, 447 

1959; Eliasson, 1983; Ribotta & Le Bail, 2007; Senti & Dimler, 1960). However, steamed rice 448 

cake has a very different composition to wheat bread, particularly more water, less protein 449 

and fat, and no gluten, which makes the mechanisms of staling behaviour different. With no 450 

gluten and less protein content, water might be more mobilized and involved in the starch 451 

network to reduce crystal formation and starch retrogradation, as a smaller DSC enthalpy 452 

(1.35 J/g) was observed in the control samples after 7 days’ storage than was reported for 453 

bread (more than 3 J/g) (Baik & Chinachoti, 2000; Rogers, Zeleznak, Lai, & Hoseney, 1988). 454 

T2-weighted images (Figure 5c) of both control and alginate-added samples have a bright 455 

layer on the surface, indicating that during steaming free water diffuses into the pores in this 456 

layer or there is a thin layer of water between the packaging and the rice cake which 457 
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provides the high image intensity. The contrast between the background rice cake and the 458 

regions of high intensity in the stale cakes was greatest in the T2 images, in particular the 459 

alginate stale sample (blue dashed line, Figure 6c). After 1 week’s storage, there was a 460 

general increase in the image intensity at the centre of both samples (Figure 6c). This is 461 

consistent with water diffusing from the surface to the centre resulting in a more 462 

homogeneous water distribution. In addition, the aged samples have distinct bright areas, 463 

more obvious in alginate-added samples (Figure 6c), similar to what was found in the proton 464 

density images. The bright areas are consistent with longer T2 values and/or lower porosity.  465 

The higher intensity regions may result from areas with lower porosity, pores filled with water 466 

or free water filling cracks in the rice cakes. The aggregated bright areas possibly represent 467 

a liquid phase with high water mobility, similar to the hypothesis of a continuous aqueous 468 

phase leading to soft texture of fresh rice cakes. For wheat bread samples, T2 469 

measurements suggest three distinct ranges: 8-14µs, 280-360µs, and 2000-3000µs (Chen, 470 

Long, Ruan, & Labuza, 1997). These ranges are proposed to represent water (8-14µs) 471 

strongly associated with other molecules by hydrogen bonding, particularly macromolecules 472 

such as starch and gluten in bread; water (280-360µs) associated with macromolecules to a 473 

certain degree; and mobile water (2000-3000µs) which was closely correlated with the 474 

firming process. Some studies related two ranges of water (microsecond and millisecond 475 

range) to two mobility fractions of water (Ruan, et al., 1996). Two fractions are observed in 476 

T2 images of rice cakes as well. One is the portion of water with low mobility shown as the 477 

intermediate intensity background of rice cakes, while the other is the portion with high 478 

mobility shown as high intensity separated areas in Figure 5c. The changes of water mobility 479 

might be caused by macromolecules such as starch including water to form crystals during 480 

retrogradation or expelling water as the physical structure of the macromolecules change 481 

due to e.g. re-crystallisation. Overall, the MR imaging results are characterised by movement 482 

of signal intensity from the edge to centre of the rice cakes and formation of high intensity 483 

regions in aged cakes.   484 

4 Conclusions 485 

Among three categories of additives tested (hydrocolloids, enzymes and emulsifiers), 486 

alginate was the only one that showed a significant reduction of hardening rate for steamed 487 

rice cakes during storage.  The additives were chosen based on their anti-staling effect on 488 

low-moisture foods such as breads, but the results suggest most are not effective in higher 489 

moisture systems. Amylase treatment and emulsifier addition to rice cakes led to higher 490 

hardness compared to the control, while other hydrocolloids had no significant effect on 491 

hardness. The staling of rice cakes is accompanied by starch retrogradation, but addition of 492 
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alginate increased the DSC enthalpy for melting retrograded amylopectin, whilst decreasing 493 

hardness. The microstructure of rice cakes with and without alginate is similar, however after 494 

staling, the alginate samples had a smaller reduction in water mobility and more 495 

inhomogeneity than in the control, which might be related to the reduced hardness. We 496 

hypothesise and provide evidence to suggest that the properties of high-moisture steamed 497 

rice cakes are due to a phase-separated system containing a low water mobility included 498 

phase of stiffened starch granules and a continuous soft aqueous phase containing added 499 

alginate with high water mobility. The continuous phase apparently plays a key role in 500 

determining hardness and storage ability of steamed rice cakes. More generally, for high 501 

moisture starchy foods, anti-staling agents function by different mechanisms in high moisture 502 

starchy foods than for the well-studied but lower moisture bread systems. 503 
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Figures 642 

Figure 1 Compressive stress-strain curves: (a) full strain range, regions from left to right are region 643 
for partial contact, linear region before breaking, breaking region, and linear region after breaking; 644 
(b) linear region before breaking for modulus calculation 645 
Figure 2 Firmness of rice cakes with added anti-staling agents: (a) enzyme and emulsifiers; (b) 646 
hydrocolloids. DM: distilled monoglyceride; SSL: sodium stearoyl lactylate; CMC: carboxymethyl 647 
cellulose. 648 
Figure 3 Confocal laser scanning microscopy images of control (a1-3), 0.3% alginate (b1-3) added rice 649 
cake samples on storage time of day 0, 2 and 7. c: polarised light microscopy image of alginate 650 
added sample on day 0. Starch were stained by FITC to green, proteins were stained by Rhodamine B 651 
to red, and  the non-starch polymers, mainly alginate and rice cell wall material were stained by 652 
Calcofluor White to blue.. 653 
Figure 4 Moisture contents of rice cakes of control and alginate 0.3% addition groups 654 
Figure 5 The proton-density (a), T1 (b) and T2-weighted (c) magnetic resonance images of control 655 
and 0.3% alginate added steamed rice cakes. 656 
Figure 6 Pixel intensity distribution of proton density (a), T1 (b) and T2 (c) images as a function of 657 
distance from rice cake centre. 658 
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 660 

 661 

 662 

Figure 1 Compressive stress-strain curves: (a) full strain range, regions from left to right are region for partial 663 
contact, linear region before breaking, breaking region, and linear region after breaking; (b) linear region before 664 

breaking for modulus calculation 665 
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666 

 667 

Figure 2 Firmness of rice cakes with added anti-staling agents: (a) enzyme and emulsifiers; (b) hydrocolloids. DM: 668 
distilled monoglyceride; SSL: sodium stearoyl lactylate; CMC: carboxymethyl cellulose. 669 

  670 

a 

b 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

23 

 

(a1) 

 

(a2) 

 

(a3) 

 

(b1) 

 

(b2) 

 

(b3) 

 

(c) 

Figure 3 Confocal laser scanning microscopy images of control (a1-3), 0.3% alginate (b1-3) added rice cake 671 
samples on storage time of day 0, 2 and 7. c: polarised light microscopy image of alginate added sample on day 672 

0. Starch were stained by FITC to green, proteins were stained by Rhodamine B to red, and  the non-starch 673 
polymers, mainly alginate and rice cell wall material were stained by Calcofluor White to blue.. 674 
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  676 

Figure 4 Moisture contents of rice cakes of control and alginate 0.3% addition groups 677 

  678 

40

42

44

46

48

50

52

54

0 2 5 7

M
o

is
tu

re
 c

o
n

te
n

t 
(%

)

Day

control alginate



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

25 

 

 

 

Figure 5 The proton-density (a), T1 (b) and T2-weighted (c) magnetic resonance images of control and 0.3% 679 
alginate added steamed rice cakes. 680 
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   684 

Figure 6 Pixel intensity distribution of proton density (a), T1 (b) and T2 (c) images as a function of distance from 685 
rice cake centre.  686 
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Tables 687 

Table 1 Additives and their concentrations used in this study 688 
Table 2 DSC characteristics of rice cakes during storage for a week 689 
  690 
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Table 1 Additives and their concentrations used in this study 691 

Additives Concentrations tested (w/w rice flour) 

Xanthan  0.15% 0.2% 0.25% 

Guar gum 0.1% 0.5% 1% 

Carrageenan  0.01% 0.1% 0.5% 

CMC 0.1% 0.5% 1% 

Alginate  0.3% 0.5% 0.7% 

Fungal α-amylase 0.03% 0.1% Incubation time 0.5h, 1h 

SSL 0.1% 0.3% 0.5% 

DM 0.1% 0.3% 1% 
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Table 2 DSC characteristics of rice cakes during storage for a week 693 

Storage time (day) 
Retrograded amylopectin 

To (°C) Tp (°C) Tc (°C) ∆H (J/g) 

Alginate 0.3% 

0 - - - - 

2 52.5±1.1 62.2±1.7 75.1±0.6 0.37±0.09 

5 46.9±0.1 58.5±1.1 73.4±0.4 2.00±0.27 

7 48.2±0.7 61.5±0.2 78.3±1.1 2.94±0.51 

Control 

0 - - - - 

2 58.7±5.0 68.3±1.7 77.5±0.8 0.19±0.17 

5 56.0±2.3 66.2±1.2 76.7±1.0 0.47±0.39 

7 52.9±1.2 64.2±0.8 77.2±0.5 1.35±0.23 

“-” indicates no peak detected. 694 
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Highlights 

 

Effects of anti-staling treatments used in baking evaluated for steamed rice cakes 

Alginate showed the most effective anti-firming effect but promoted starch retrogradation 

Anti-firming mechanism proposed to be due to structuring of the soft continuous phase 

Hydrocolloid anti-staling mechanisms are different for high and low moisture foods 


