Accepted Manuscript

Title: Evidence of clinical response and stability of Ceftolozane/Tazobactam used to treat A carbapenem-resistant *Pseudomonas aeruginosa* lung abscess on an outpatient antimicrobial program

Author: A. Stewart, J.A. Roberts, S.C. Wallis, A.M. Allworth, A. Legg, K.L. McCarthy

PII:	S0924-8579(18)30046-3
DOI:	https://doi.org/10.1016/j.ijantimicag.2018.02.008
Reference:	ANTAGE 5377
To appear in:	International Journal of Antimicrobial Agents
Received date:	3-1-2018
Accepted date:	11-2-2018

Please cite this article as: A. Stewart, J.A. Roberts, S.C. Wallis, A.M. Allworth, A. Legg, K.L. McCarthy, Evidence of clinical response and stability of Ceftolozane/Tazobactam used to treat A carbapenem-resistant *Pseudomonas aeruginosa* lung abscess on an outpatient antimicrobial program, *International Journal of Antimicrobial Agents* (2018), https://doi.org/10.1016/j.ijantimicag.2018.02.008.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	EVIDENCE OF CLINICAL RESPONSE AND STABILITY OF
2	CEFTOLOZANE/TAZOBACTAM USED TO TREAT A CARBAPENEM-
3	RESISTANT <i>PSEUDOMONAS AERUGINOSA</i> LUNG ABSCESS ON AN
4	OUTPATIENT ANTIMICROBIAL PROGRAM
5	
6	Stewart A ¹ , Roberts JA ^{2,3} , Wallis SC ³ , Allworth AM ¹ , Legg A ² , McCarthy KL ^{1,3}
7	
8	¹ Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Queensland,
9	Australia
10	² Department of Pharmacy, Royal Brisbane and Women's Hospital, Queensland,
11	Australia
12	³ UQ Centre for Clinical Research, Faculty of Medicine, The University of
13	Queensland, Brisbane, Australia
14	× O
15	
16	G
17	Corresponding author:
18	X
19	Dr. Adam Stewart
20	Infectious Diseases Unit, Royal Brisbane and Women's Hospital, Queensland,
21	Australia
22	+61421759716
23	adm_stewart@hotmail.com
24	

25	Sir.
	~,

26

27	Ceftolozane/Tazobactam (C/T) is a cephalosporin and β -lactamase inhibitor with
28	potent activity against Pseudomonas aeruginosa [1]. There is limited experience with
29	C/T as a continuous infusion, and as such, to ensure attainment of pharmacodynamic
30	targets, therapeutic drug monitoring (TDM) should be undertaken. It is unknown
31	whether temperature or other deviations that occur when the infusion is run in the
32	community affect overall drug stability and exposure. Here we report a case of a
33	patient who received C/T where drug concentrations were measured in the hospital
34	and then later in the community.
35	
36	A 58 year-old male with a renal transplant was admitted to a tertiary referral hospital
37	following subacute fevers. No prior infections were noted. On admission, computed
38	tomography of his chest revealed a four-centimetre cavitating lung lesion within the
39	right upper lobe of the lung. A pan-susceptible Pseudomonas aeruginosa was isolated
40	via bronchoscopy and initial therapy of meropenem 1g IV three times daily was
41	commenced. His clinical condition worsened and he required inotropic support in the
42	intensive care unit (ICU). He developed acute kidney injury with a serum creatinine
43	rise to 231 µmol/L (baseline serum creatinine 96 µmol/L), however, did not require
44	renal replacement therapy. He was discharged to a medical ward and went on to
45	complete a total of fourteen days of meropenem. Five days after cessation of
46	antibiotic therapy the patient became febrile. Repeat imaging of his chest revealed
47	progression of the cavitating lung abscess. An induced sputum sample taken revealed
48	a P. aeruginosa isolate resistant to meropenem, ciprofloxacin and ceftazidime. The
49	C/T MIC was determined by E-Test as 2 mg/L (susceptible) and the patient was

50	commenced on a 3/1.5g per 24-hour continuous C/T infusion. The infusion
51	composition was C/T 3g/1.5g in (final volume) 300mL 0.9% sodium chloride and
52	administered via a CADD pump. Following clinical and biochemical improvement
53	(C-reactive protein <2mg/L), he was planned for discharge to his home in via an
54	Outpatient Parenteral Antibiotic Therapy (OPAT) service. Repeat imaging of his
55	chest after 42 days of C/T therapy revealed a significant reduction in size of the
56	cavitating lung lesion.

57

Three blood samples were taken at pharmacokinetic steady state (after 24-hours of 58 59 ceftolozane continuous infusion therapy), initially while the patient was an inpatient, 60 then two weeks later whilst on the OPAT program. This occurred during April 2017 (local reported temperatures ranged from 13.0-29.0 degrees Celsius [2]) with samples 61 62 separated by at least 4-hours. Drug concentrations of ceftolozane and tazobactam in 63 plasma were measured by a validated UHPLC-MS/MS method on a Shimadzu 64 Nexera2 UHPLC system coupled to a Shimadzu 8030+ triple quadrupole mass spectrometer. The mean \pm SD drug concentrations in the hospital and community 65 were 37.3 + 1.4 versus 34.8 + 0.2 for ceftolozane and 6.57 + 1.78 versus 7.66 + 0.7966 67 mg/L for tazobactam respectively. The individual patient concentrations are shown in Figure 1a and 1b. 68

69

This is the first known report of C/T continuous infusion therapy used to treat a multidrug resistant *Pseudomonas aeruginosa* pulmonary infection. This report outlines the successful use of a long course of C/T in an immunosuppressed patient delivered through an OPAT service. There did not appear to be a significant difference in unbound drug concentrations measured in the hospital as compared with the

75	community setting, as well as between designated time points throughout the day
76	(minimum 4-hour gap between samples).

77

There have been only two reports of the successful use of C/T as a continuous
infusion [3]. C/T is known to be stable for at least 24 hours at room temperature
making it a suitable candidate for continuous infusion [3]. A study evaluating the
stability of C/T in elastomeric pumps determined physical and chemical stability of at
least 7 days with greater than 93% drug recovery at this time [4].

84 Recommended dosing of C/T in patients with a creatinine clearance of >50ml/min is 85 1.5g, over a 1-hour infusion, every 8 hours [4]. The decision to use the standard dose 86 (3g/1.5g) in this patient was due to his low body weight (approx. 65kg), creatinine 87 clearance of 55 mL/min and that the patient was not critically unwell at the time of 88 treatment initiation. The unbound ceftolozane concentrations in plasma were well 89 above the 4-5 times the MIC value that is associated with maximal bacterial killing. 90 The mean penetration of ceftolozane into epithelial lining fluid is suggested to be 50% 91 of plasma concentrations [5]. Using this figure, the concentrations were likely to be 92 greater than 4-5 times the MIC at the site of infection for the full dosing interval. 93

C/T as a continuous infusion administered in the community setting was found to be
effective in the treatment of a carbapenem-resistant *P. aeruginosa* lung abscess. More
investigations are required to characterise the pharmacokinetics of C/T in different
patient populations as well as its stability in different clinical scenarios to further
optimise its use.

99

100	Declarations	
101	Funding: No funding obtained for study	
102	Competing Interests: No conflicts of interest	
103	Ethica	al Approval: Not required
104		
105	REFERENCES	
106	1.	Liscio, J.L., M.V. Mahoney, and E.B. Hirsch, Ceftolozane/tazobactam and
107		ceftazidime/avibactam: two novel beta-lactam/beta-lactamase inhibitor
108		combination agents for the treatment of resistant Gram-negative bacterial
109		infections. Int J Antimicrob Agents, 2015. 46(3): p. 266-71.
110	2.	Australian Government Bureau of Meteorology. 2017 26/10/17]; Available
111		from:
112		http://www.bom.gov.au/climate/dwo/201704/html/IDCJDW4019.201704.sht
113		<u>ml</u> .
114	3.	Jones, B.M., B. Smith, and C.M. Bland, Use of Continuous-Infusion
115		Ceftolozane/Tazobactam in a Multidrug-Resistant Pseudomonas aeruginosa
116		Urinary Tract Infection in the Outpatient Setting. Ann Pharmacother, 2017.
117		51 (8): p. 715-716.
118	4.	Terracciano, J., E.G. Rhee, and J. Walsh, Chemical Stability of
119		Ceftolozane/Tazobactam in Polyvinylchloride Bags and Elastomeric Pumps.
120		Curr Ther Res Clin Exp, 2017. 84: p. 22-25.
121	5.	Xiao, A.J., et al., Ceftolozane/tazobactam
122		pharmacokinetic/pharmacodynamic-derived dose justification for phase 3
123		studies in patients with nosocomial pneumonia. J Clin Pharmacol, 2016. 56(1):
124		p. 56-66.

125 **FIGURES**

126

127 1. Unbound Ceftolozane/Tazobactam plasma concentrations (mg/L) in both hospital and community settings using a continuous infusion of 3/1.5g over 128 129 twenty-four hours (samples taken two weeks apart)

- 130
- 131

132 1a. Hospital

133

143