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Highlights

Inhibitory circuits in the amygdala are complex galy a central role in processing
fear, and learning.

Dysfunction within these circuits, at the celludard molecular level likely underpin
some anxiety related disorders.

Inhibitory neurotransmission play a central roléaar learning and extinction.
GABA receptors are differentially distributed iretbasolateral and central amygdala.
y1 - subunit containing receptors are selectivelyntbin the central amygdala

In the BLA a1l receptors, most likely in interneurons in the BjplAy an important
role in fear learning.

Tonic inhibition mediated by5 containing extrasynaptic receptor is presenoii b
the basolateral and central amygdala where it @ayde in anxiety-related
behaviour.

Studies of GABA receptors and inhibitory transnmossin the amygdala now
providing the results that could lead to the depelent of new targeted anxiolytic
agents.
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Of the many complex cognitive functions that owibs process, ‘emotions’ add an
ever-changing perceptual contour to our conscigpsrence. The amygdalar complex
(AC), located in the temporal lobe, is a criticahtre for integration of sensory inputs to
generate appropriate emotional response. The amaitrole of the AC has largely been
studied using an aversive Pavlovian conditioningag@m (fear conditioning), in which
subjects are presented with neutral stimulus, sagchtone or light (the conditioned stimulus,
CS) that is contingently paired with an aversivmstus, typically a foot-shock (the
unconditioned stimulus, U$}]. Following a small number of pairings, subgfiirm an
association between the CS and US, and subsequesiignd to the CS with an avoidance
‘fear’ response. This learnt response, the comutiil response (CR), is rapidly acquired and
forms a long lasting ‘memory trace’ for later réc8lubsequent presentations of the CS, not
paired with the US, progressively breaks this assion and lead to a gradual reduction of
the CR through a process known as fear extinckear extinction is not an erasure of the
original memory trace, but a new associative e ivent in which subjects learn that the
CS is no longer dangero[8. Integration of sensory inputs in the AC neuwiatuits mediate
associative learning that underlie ‘fear’ acquisitand extinction. The neural circuits that
underpin fear learning and extinction likely artsenable animals to learn and react rapidly
to dangerous conditions, are crucial for survival.

There are many physiological similarities betwdanfear response and human
anxiety, and a plethora of experimental evidencavsimat these two behavioural states share
common neural circuits [3]. For example, expodargaumatic events can form deleterious
memory traces which lead to aberrant arousal ar@tgnn safe environments as in post-
traumatic stress. Patients with dysregulated emaligesponses show heightened activity in
the ACJ[4]. Treatment strategies for dysregulated anxistigh as exposure therapy, have
their roots in fear extinction while pharmacolodiagents such as benzodiazepines modulate
GABA signalling in the AC to mediate anxiolytic thactions [5]. Therefore, understanding
the physiology and functional roles of GABAergiarismission in the AC is not only
interesting in terms of understanding basic bramcfion, but may also lead to the
development of targeted and better therapies @otrdatment of anxiety disorders. In this
review, we focus of GABAergic circuits in the ACdatheir physiological functions through
actions on GABA type-A receptors (GARRS), the ubiquitous inhibitory synaptic receptors
in the mammalian CNS.

GABAergiccircuitsin the AC
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The AC is a heterogeneous structure composed ait di3onuclei with extensive
intra- and extra-nuclear connections. Broadly,ARkeis classified into three main groups: the
basolateral amygdala (BLA), the central amygdaX)Cand the intercalated cells (ITCs).
Sensory inputs enter the AC at the level of the BlAere they are integrated to provide
output to the CeA; downstream projections from@ed elicit the behavioural responses.
The ITCs interposed as lateral and medial clusters feedforward interfaces for sensory
integration in the BLA and its output to the C@aviewed in[1])(Figure 1A).

BLA

TheBLA is a cortical-like structure and amatomicallysubdividedinto the lateral
(LA) andbasalamygdala(BA). Although LA and BA have distinct afferent and effet
connections, they contain a homogenous neural popnlof glutamatergic principal
neurons, and GABAergic interneurons. Principal naarconstitute the majority (80-85%) of
the total neuronal population and are the sourc¢eeoBLA output. Interneurons, although
less numerous (15-20%), form a diverse populatian tightly control activity of principal
neurons by a combination of feedforward and feeklip@tubition. As in other cortical-like
regions, BLA interneurons are classified basedhereixpression of the calcium binding
proteins, parvalbumin (PV), calbindin (CB) and etilin (CR), and the neuropeptides,
somatostatin (SOM), cholecystokinin (CCK), neurdmpY (NPY), and vaso-intestinal
peptide (VIP). Nearly half of these interneurores RV-positive, and nearly half of these
also express CB, but are negative for other peplicviewed in [6]). The majority of PV
interneurons form ‘basket’ synapses on the somagemdmal apical dendrite of principal
neurons and other interneurons. A small proporictme PV interneurons=6%) make
characteristic ‘cartridge’ type synapses on thenardial segment (AIS) of principal
neurons, similar to cortical PV Chandelier (PV-Cheyurond7] [8]. Interneurons expressing
CCK co-localize with either CR, VIP, or SOM, andkaaynaptic contacts on the somato-
dendritic compartment of principal neurons, budorainantly innervate other interneurons
[9]. Finally, ~15% of interneurons express SOM glavith CB or NPY, but not PV, and
these make synaptic contacts on the distal desdsftprincipal neurons and influence
dendritic propagation of extrinsic excitatory inptd the principal neurorj&0]. Therefore,
distinct population of interneurons influence elieetl signal propagation in principal
neurons in a compartment specific manner and cahieo output (Figure 1B).n vivo,
principal neurons receive synchronized GABAergjuuits which facilitate spike timing and
orchestrate BLA outpyt1].
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CeA

In contrast to the BLA, the CeA is a striatal |&teucture that is entirely GABAergic
and anatomically divided into lateral (CeL) and me(CeM) sectors, with extensive local
connections (reviewed in [1]in the CeL, neurons are divided into a number fiécint
populations based on expression of immunohistoatedmarkers, electrophysiological
properties, and synaptic connections. Of thesetvilo best understood are those expressing
protein kinase C-delta (PKY; and those expressing somatostatin (SOM) buttivegiar
PKC (PKC -ve). PKC+ve neurons that project to the CeM are thoughediate inhibition
of ‘fear’ output and referred as CgLcells[12] [13]. Both PKC and SOM neurons make
extensive local connections that control locahaisti[14]. Following fear conditioning, CS
activates PKGve/SOM neurons that are referred as (@ells. These (ON)-cells inhibit
PKC +ve expressing neurons, leading to disinhibitio®€eM outpuf12] [13] [15] (Figure
1C). In addition, some CeL neurons express coropat releasing hormone (CRH) and are
proposed to mediate flight behavidd6]. Apart from fear learning, the CeA has alserbe
implicated in a range of other behaviours sucteadifig and addiction, however, the exact
role of different populations and circuits in thdésdaviours remain to be determirj&d]
[18,19] [20].

ITCs

The ITCs are clusters of GABAergic interneurong swaround the BLA. Of these,
lateral ITC neurons receive sensory inputs andigeofeedforward inhibition to LA
interneurong21] [22] [23]. Similarly, medial ITC neurons forfeedforward inhibitory
projections to the Ce[24]. Thus, the lateral and medial ITCs functiefeedforward
inhibitory interfaces to gate LA and CeA outpuspectively.

Thus, it is clear that GABAergic circuits in the AGntrol all stages of fear learning
from integration of sensory inputs to key outptiat initiate the physiological responses [3].
Functionally, within the BLA, both excitatory inptd interneurons, as well as GABAergic
synapses undergo plastic[Bb], and interference of GABAergic transmissiorihin the
CeA or its output impair fear expression. In tudaar extinction is thought to result from
potentiation of inputs to mITC neurons that inhibié CeA[24] [26], thus reducing fear
responsef21] [26].

GABA,RsintheAC
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In the CNS, fast inhibitory signalling is mediatgd GABA,Rs which inevitably
control the activity of the AC circuits. GABAergsignalling mediates phasic and tonic
signalling through synaptic and extra-synaptic tompic GABA,Rs, respectively. These
receptors are anion-selective channels with highhpability for Cl and HCOSions with the
direction of ionic transport being determined bgitlrespective electrochemical gradients.
In mammalian neurons, the chloride equilibrium pos (E,,.,) is regulated by the activity
of local cation coupled anion transporters, anxchangers, pH, and local impermeant
anions [27]28]. In mature neurons, GABA is generally thoutghbe an inhibitory
neurotransmitter, however, excitatory actions ofB8ARs have also been reported. In the
BLA, some PV-Chn interneurons have been suggestbd excitatory at the principal
neuron AlS, the key site for action potential miton[29] [8]. Interestingly, aversive
stimuli, delivered during fear learning, recruit fhn interneurons with a short-latency, and
this activity is thought to facilitate synchronimat of BLA principal neuron$23]. A direct
excitatory mechanism at the AIS of principal new,cand the widely-distributed nature of
these synapses [Bfovides an obvious mechanism for such a synchatinoiz However,
direct evidence for such GABAergic excitation of Bprincipal neurons is still lacking.

The ionotropic GABARs are pentameric oligomers formed from various

combinations of the following subunits1-6,31-3,y1-3,9, €, 6, Ttandpl-3. In the adult
mammalian CNS, the most abundant synaptic isofagorporatesil, 32, andy2 subunits in
a 2:2:1 stoichiometry [30]. The subunit compositafrfGABA,Rs determine their kinetics,
their localization within a neuron and their phacwolagical modulation. Gene expression
studies in adult rats show that all almost GABAsubunits are expressed in the AC (Table
1), and quantitative analysis of mMRNA expressioygasts relative expression of GAFA
subunits in the BLA followsi2 > a1, 31, B3> 32, y2>>yl [31]. In the BLA, principal
neurons predominantly expres8- andal-containing GABARs that mediate phasic GABA
signalling, whilea3- anda5- containing GABARs mediate a tonic conductance [32].
Interneurons by contrast, predominantly expoessubunitq34]. Little is known about the
developmental regulation of GABR subunits in amygdala. However, in BLA principal
neurons, a switch from1- toa2- containing GABARS is reported to correlate with

developmental switch in £, [33].
In the CeA, GABAR subunit expression is largely similar to thathie BLA except
thatyl subunits are expressed at higher levels {Raj81]. Here, a2-containing GABARS

mediate phasic GABA signalling [35], whiteb-, al1-, andd- containing GABARS mediate
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a tonic conductance in PKE neurons[36]. The selective expressioylo$ubunits in the
CeA is unusual as they are not found in most ohthenmalian CNS. Receptors containing
vyl subunits can cluster at synapses[37], where thelyateelPSCs with slower kinetics than
those containing2[38]. Pharmacologically, benzodiazepines ex@utant positive

modulating effect o2-containing receptors but have little effectydrcontaining receptors
[30]. In the CeA, benzodiazepines have been regpooteeduce fast GABA inhibition and
this has been speculated to be caused by an asdefined variant ofl—-containing

GABA ,Rs [39]. This unusual pharmacological action imgptieat it might be possible to
develop anxiolytic drugs with high specificity fdre GABA,Rs found in this region of the

amygdala.

Subunit specific putative functional roles of GABA,Rs in the AC
Gene knockout (KO) experiments in the BLA have shidlata 1-containing

GABAARs are essential for sedative/hypnotic actionsidgeham, whereas2-containing

GABAARs mediate their anxiolytic actiof#0] [41] [42]. Modulation ofal subunits in the
BLA also has effects on fear learning and synggasticity, while selectivgenetic ablation
of al-subunits LAprincipal neuronshadno effect. Thus, it has been suggested ¢at

containing receptors imterneuronglay a role in auditoryearlearning[43]. In the CeA,
inhibitory inputs from théBed Nucleus of Stria Terminalis (BNST) amdedial intercalated

cells have been suggested to activate receptotainomg y2- andyl- subunits respectively
[31]. Moreover, selective deletion ektrasynaptica5-containingGABA Rs, that mediated

a tonic conductance, has been found to enhankiety-likebehaviouf36]. Together, these
findings show that GABAreceptors play a key role in fear processing aatréceptors

containing different subunits play distinct roledéar and anxiety.

L ooking forward

GABAergic transmission in the amygdala plays a dempole in emotional learning,
memory, and expression. A detailed understandirf@ABA ,Rs in the amygdala will help to
unravel these complexities and may pave the wath®rdevelopment of novel therapeutics
for disorders such as ADHD and anxiety. Recerdisfuusing genetic manipulations of
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GABA neurons and GAB/Rs have revealed their diverse functional rolesydwer, these
findings have limitations. Firstly, in the amygd&#&BA neurons that are functionally
different, with distinct synaptic targets expressisr molecular markers. Optogenetic
manipulations of these neurons inevitably changesiplogical activity in ways that we do
not fully understand. To address this, what is Bdeate more specific molecular markers to
identify, measure and manipulate functionally distineurons during physiological activity.
Secondly, the subunit combination of particular @ARs influence their location, activity
and functional impact on the neuronal activity.eThechanisms that regulate the
stoichiometry of particular GABARs and its influence on cellular and sub-cellular
localization is little understood. We need molectdmls to target specific subunits in

GABA Rs to elucidate expression and intracellular tc&iffig patterns. Finally, a
combinatorial approach with tools to simultaneousasure and manipulate GABA neurons
and specific subunit containing GABRSs can provide insights about functional role of
GABA transmission at synaptic level.

Figurelegends
Figure:1 A simplified schematic of connections within the amygdalar complex (AC)
A. Schemeof intrinsic connectiondetweendifferentregionsof the AC LA, Lateral

amygdalaBA, Basalandbasomediahmygdala Cel, laterocapsuladivision of central
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amygdalaCeA); CeM, Medial division of centralamygdalallTc, lateralclusterof
intercalatectells (ITc); miTc, medialclusterof intercalatectells Extrinsicinputs(black
arrowyg arriveattheLA, BA, ITc, andCeL. Interactionsbetweendifferentregionsof the
AC provideoutputfor emotionalexpressionCorticatlike regionsLA andBA contain
glutamatergi@and GABAergic neurons Striatatlike regionsCeA andITc containonly
GABAergic neurons Glutamatergiqrojections(red arrowy: LA sendsgglutamatergic
outputsto BA, mITc, andCeL; BA sendgglutamatergigrojectionsto the CelL andvarious
nonamygdalaregions GABAergic projections(blue): [ITc andmITc sendGABAergic
projectionto LA andCel, respectively CeL sendsGABAergic projectionsto the CeM;
CeM sendsGABAergic projectionto structuresnvolvedin emotionalexpressionBA
somatostatinnterneuronsendGABAergic projectionto basalforebrain

B. Schemedf microcircuitsshowssynapticandelectricalconnectionsormedby
interneuronsn the basolaterahmygdalaBLA) thatexpressspecificmolecularmakers PV,
Parvalbumin CCK, Cholecystokinin PV-Chn ParvalbuminexpressingChandeliemeuron
SOM, SomatostatinDistinctinterneuronsubtypegargetdifferentelectricalcompartments
of principalneurongP) andtightly control BLA output synapticandelectricalconnections
arepresenbetweennterneurons

C. Simplified schematic showing intrinsic connensavithin the CeA. In the CeL,

neurons that express somatostatin but negativertiiein Kinase @ (SOM/PK®-) are

referred as Cel, cells which synapse on to PRE referred as Cel. Interaction between

Cel,, cells and Cel_.control CeM output for fear expression. CeL neuribras express
Corticotropin releasing hormone (CRH) inhibit CeD/8 neurons.
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Table: 1A GABA, receptors (GABA Rs) in the basolateral amygdala (BLA)

Expression | dentified neuronal Subcellular locali- Putative pre- Electrophysiological evidence for sub-
of subunit Subtype zation synaptic neuron unit expression

(IHC)

al Interneurons [34]. Soma, dendrites PV, CCK CB1 receptor agonists reduaé-

containing GABARs signalling [35].

Principal neuror distal dendrites SOM
[34]
a2 Principal neuron Soma, dendrites PV, CCK, SOM q2- containing GABARs mediate
[44] diazepam sensitive anxiolytic effects
[40].
AlS [44] PV Chn
a3 Principal neuron AlS [44] PV Chn a3-containing GABARSs carry most of
[32] extra-synaptic GABA signalling
[32].
Extra-synaptic
[32].
a4 [45]
a5 [45] Principal neuron Extra-synaptic [32]
B1,B2,B3 Principal and
interneurons.
[32/33 co-localized with
al mainly in
interneurons especially in Page 10 of 21

PV subtype [34].
v? V2 TA4E8] Princinal neuror v2-containinad GARZ R< carrv svnhanti



Table: 1B GABA,Rsin the Central amygdala (CeA)

Expression of subunit Identified Subcédlular locali-

11

Putative pre-synaptic Electrophysiological evidence for

(IHC) neuronal zation neuron sub-unit expression
Subtype
al CRH typel al-containing GABARs mediate tonic
receptor_ conduction in CRH typel receptor +ve neurons
expressing [48].
(+ve)
(PKCe+t)
[48]
a2 Intra-nuclear connections a2-containing GABARS carry majority of
and ITC projections GABA signalling that is influenced by
diazepam [35].
a3[45] Intra-nuclear connections
and ITC projections
04[45]
o5 PKC + [36]. Extra-synaptic a5-containing GABARS carry majority of
extras-synaptic GABA signalling in PKC
neurons [36].
32>33,31[45]
v2,vyl Putative inputs from bed nucleus activgte
containg GABARs [31].
Putative inputs from ITC activatd-containing
GABA,Rs [31].
bo} CRH type 1 Extra-synaptic d-containing GABARSs contribute to tonic

receptor -ve

conduction in the CeL CRH typel receptor —ve
PageNeWans [49]
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13

Table: 1C GABA Rsin theIntercalated cells (ITCs)

Expression ldentified Subcdlular Putativepre-  Electrophysiological evidence for sub-unit expression

of subunit neuronal localization synaptic

(IHC) Subtype neuron

al PV expressing  Soma, proximal Intra-nuclear

large ITCs [23].  dendrite connections

a2 Soma Intra-nuclear a2 anda3-containing GABARs mediate signalling of intra-
connections  nuclear connections in the medial ITCs [50].

o3 Intra-nuclear
connections

04[46] Extra-synaptic

o o-containing GABARs carry tonic GABA signalling in the ITCs

that is modulated by neurosteroids[46].
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