
AUTONOMIC MANAGEMENT IN A DISTRIBUTED STORAGE
SYSTEM

Markus Tauber

A Thesis Submitted for the Degree of PhD
at the

University of St. Andrews

2010

Full metadata for this item is available in the St Andrews
Digital Research Repository

at:
https://research-repository.st-andrews.ac.uk/

Please use this identifier to cite or link to this item:
http://hdl.handle.net/10023/926

This item is protected by original copyright

This item is licensed under a
Creative Commons License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/1586033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.st-andrews.ac.uk/
https://research-repository.st-andrews.ac.uk/
http://hdl.handle.net/10023/926

Autonomic Management in a Distributed
Storage System

PhD Thesis

by

Markus Tauber

School of Computer Science

University of St Andrews

December 2009

Abstract

This thesis investigates the application of autonomic management to a distributed storage

system. Effects on performance and resource consumption were measured in experiments,

which were carried out in a local area test-bed. The experiments were conducted with

components of one specific distributed storage system, but seek to be applicable to a wide

range of such systems, in particular those exposed to varying conditions.

The perceived characteristics of distributed storage systems depend on their configuration

parameters and on various dynamic conditions. For a given set of conditions, one spe-

cific configuration may be better than another with respect to measures such as resource

consumption and performance. Here, configuration parameter values were set dynamically

and the results compared with a static configuration. It was hypothesised that under non-

changing conditions this would allow the system to converge on a configuration that was

more suitable than any that could be set a priori. Furthermore, the system could react to

a change in conditions by adopting a more appropriate configuration. Autonomic man-

agement was applied to the peer-to-peer (P2P) and data retrieval components of ASA, a

distributed storage system. The effects were measured experimentally for various work-

load and churn patterns. The management policies and mechanisms were implemented

using a generic autonomic management framework developed during this work.

The motivation for both groups of experiments was to test management policies with the

objective to avoid unsatisfactory situations with respect to resource consumption and per-

formance. Such unsatisfactory situations occur when either the P2P layer or the data re-

trieval mechanism is configured statically. In a statically configured P2P system two unsat-

isfactory situations can be identified. The first arises when the frequency with which P2P

node states are verified is low and membership churn is high. The P2P node state becomes

inaccurate due to a high membership churn, leading to errors during the routing process

and a reduction in performance. In this situation it is desirable to increase the frequency to

increase P2P state accuracy. The converse situation arises when the frequency is high and

churn is low. In this situation network resources are used unnecessarily, which may also

reduce performance, making it desirable to decrease the frequency.

In ASA’s data retrieval mechanism similar unsatisfactory situations can be identified with

respect to the degree of concurrency (DOC). The DOC controls the eagerness with which

multiple redundant replicas are retrieved. An unsatisfactory situation arises when the DOC

is low and there is a large variation in the times taken to retrieve replicas. In this situa-

tion it is desirable to increase the DOC, because by retrieving more replicas in parallel a

result can be returned to the user sooner. The converse situation arises when the DOC is

high, there is little variation in retrieval time and there is a network bottleneck close to the

requesting client. In this situation it is desirable to decrease the DOC, since the low vari-

ation removes any benefit in parallel retrieval, and the bottleneck means that decreasing

parallelism reduces both bandwidth consumption and elapsed time for the user.

The experimental evaluations of autonomic management show promising results, and sug-

gest several future research topics. These include optimisations of the managed mecha-

nisms, alternative management policies, different evaluation methods, and the application

of developed management mechanisms to other facets of a distributed storage system. The

findings of this thesis could be exploited in building other distributed storage systems that

focus on harnessing storage on user workstations, since these are particularly likely to be

exposed to varying, unpredictable conditions.

Declaration

I, Markus Tauber, hereby certify that this thesis, which is approximately 45,000 words in

length, has been written by me, that it is the record of work carried out by me, and that it

has not been submitted in any previous application for a higher degree.

date signature of candidate

I was admitted as a research student in March 2005 and as a candidate for the degree of

Doctor of Philosophy in March 2006; the higher study of which this is a record was carried

out in the University of St Andrews between 2005 and 2009.

date signature of candidate

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regu-

lations appropriate for the degree of Doctor of Philosophy in the University of St Andrews

and that the candidate is qualified to submit this thesis in application for that degree.

date signature of supervisor

In submitting this thesis to the University of St Andrews we understand that we are giv-

ing permission for it to be made available for use in accordance with the regulations of

the University Library for the time being in force, subject to any copyright vested in the

work not being affected thereby. We also understand that the title and the abstract will be

published, and that a copy of the work may be made and supplied to any bona fide library

or research worker, that my thesis will be electronically accessible for personal or research

use unless exempt by award of an embargo as requested below, and that the library has the

right to migrate my thesis into new electronic forms as required to ensure continued access

to the thesis. We have obtained any third-party copyright permissions that may be required

in order to allow such access and migration, or have requested the appropriate embargo

below.

The following is an agreed request by candidate and supervisor regarding the electronic

publication of this thesis:

Access to Printed copy and electronic publication of thesis through the University of St An-

drews.

signature of candidate signature of supervisor

date

Acknowledgement

I would like to thank Graham Kirby and Al Dearle, my supervisors, for their help, patience

and support. They have provided a great introduction to research.

My thanks also go to everyone in the School of Computer Science and in the Internet Club

Burgenland (ICB) with whom I had stimulating discussions about my work or about tools

that make a PhD student’s life easier.

I also would like to express my thanks to Rhona Maclean for her proof-reading.

My deepest thanks go to my family, for their help, encouragement and unwavering belief

in me. This also applies to Sandra Vater, my partner, she has been a great support during

the demanding process of writing my thesis.

This work was partially funded by EPSRC grant GR/S44501/01: “Secure Location-Independent

Autonomic Storage Architectures” (ASA).

Contents

1 Introduction 1

1.1 Distributed Storage Systems . 2

1.2 Problem Definition and Hypothesis . 4

1.3 Autonomic Management in Distributed Systems 6

1.4 Thesis Structure . 7

1.5 Conclusions . 9

2 Autonomic Management 10

2.1 Introduction . 11

2.2 The Autonomic Nervous System . 11

2.3 Autonomic Management in Computer Science 13

2.4 Conclusions . 14

3 The ASA Storage System 15

3.1 Introduction . 16

3.2 P2P Layer . 18

3.3 Generic Storage Layer . 20

i

ii

3.4 Conclusions . 21

4 Optimisation of P2P Overlays 23

4.1 Introduction . 24

4.2 Background . 25

4.3 Related Work . 28

4.3.1 Dynamic Control of P2P Overlays 28

4.3.2 Static Control of P2P Overlays . 29

4.4 Problem Definition . 33

4.4.1 Evaluation Criteria . 33

4.4.2 Discussion and Hypothesis . 34

4.5 Autonomic Management in P2P Overlays 35

4.5.1 Overview . 35

4.5.2 Autonomic Management Components 36

4.6 Conclusions . 40

5 Optimisation of Data Retrieval Mechanisms in Distributed Storage Systems 42

5.1 Introduction . 43

5.2 Background . 44

5.3 Related Work . 45

5.4 Problem Definition . 47

5.4.1 Analytical Model . 49

5.4.2 Discussion and Hypothesis . 56

5.5 Autonomic Management Applied to a Distributed Store Client 58

iii

5.5.1 Overview . 58

5.5.2 Autonomic Management Components 60

5.6 Conclusions . 63

6 A Generic Autonomic Management Framework 64

6.1 Introduction . 65

6.2 Related Work . 66

6.3 Design . 68

6.3.1 Overview . 68

6.3.2 Detail . 69

6.4 Conclusions and Future Work . 71

7 Experimental Evaluation of the Management of P2P Nodes 72

7.1 Introduction . 73

7.2 Implementation of Autonomic Management for StAChord 75

7.2.1 Event Generation . 76

7.2.2 Management of the stabilize() Interval 76

7.2.3 Management of the fixNextFinger() Interval 77

7.2.4 Management of the checkPredecessor() Interval 78

7.3 Experimental Parameters . 79

7.3.1 Churn Pattern . 79

7.3.2 Workload . 82

7.4 Experiment Setup . 84

7.4.1 The Test-Bed . 84

iv

7.4.2 Derivation of User-Level Metrics 85

7.4.3 Churn Pattern Configurations . 86

7.4.4 Workload Configurations . 87

7.4.5 Policy Parameter Configurations 88

7.5 Experimental Results . 89

7.5.1 Overview . 89

7.5.2 Detailed Analysis . 92

7.5.3 Analysis of Reproducibility . 104

7.6 Comparison with Related Work . 106

7.7 Conclusions and Future Work . 108

7.7.1 Suggestions for Adaptations of Chord 109

7.7.2 Encountered Nodes in the Network 110

7.7.3 Alternative Validation Approaches 112

7.7.4 Wider Contribution . 113

8 Experimental Evaluation of the Management of Distributed Store Clients 114

8.1 Introduction . 115

8.2 Implementation of Autonomic Management for an ASA Store Client 116

8.2.1 ASA Client . 117

8.2.2 Server Ranking . 118

8.2.3 Autonomic Management Details 120

8.3 Experimental Parameters . 121

8.3.1 Data Item Size . 122

v

8.3.2 Workload . 122

8.3.3 Churn Pattern . 123

8.3.4 Network Speed . 123

8.4 Experiment Setup . 125

8.4.1 The Test-Bed . 126

8.4.2 Derivation of User-Level Metrics 126

8.4.3 Data Item Size Configurations . 127

8.4.4 Workload Configurations . 127

8.4.5 Churn Pattern Configurations . 128

8.4.6 Network Speed Configurations . 128

8.4.7 Policy Parameter Configurations 130

8.4.8 Server Ranking Mechanism Configuration 131

8.5 Experimental Results . 131

8.5.1 Overview . 131

8.5.2 Detailed Analysis . 137

8.5.3 Analysis of Reproducibility . 145

8.6 Conclusions and Future Work . 147

8.6.1 Suggestions for Adaptations of the Managed ASA Client 148

8.6.2 Alternative Management Approaches 149

8.6.3 Alternative Validation Approaches 150

8.6.4 Wider Contribution . 150

9 Conclusions and Future Work 151

vi

9.1 Thesis Summary . 152

9.2 Contributions . 154

9.2.1 Distributed Storage Systems Architecture 154

9.2.2 P2P Computing . 157

9.2.3 Autonomic Management . 157

9.2.4 Cloud Computing . 158

9.3 Future Work . 159

9.3.1 Autonomic Management of Storage Maintenance Operations 160

9.3.2 Autonomic Management of Data Fragmentation 161

9.3.3 Combination of Autonomic Elements 161

9.4 Conclusions . 162

9.5 Final Thoughts . 163

A P2P Layer Experiments 165

A.1 Preliminary Work . 165

A.1.1 Static Maintenance Intervals . 166

A.1.2 Workload Length . 168

A.1.3 Sampling the Policy Parameter Space 170

A.1.4 File System Specific Workload Generation 174

A.1.5 Choosing a Local Area Test-Bed 175

A.2 P2P Experimental Results . 177

A.2.1 Introduction . 177

A.2.2 Synthetic Light Weight Workload with Low Churn 179

vii

A.2.3 Synthetic Light Weight Workload with High Churn 181

A.2.4 Synthetic Light Weight Workload with Locally Varying Churn . . . 183

A.2.5 Synthetic Light Weight Workload with Temporally Varying Churn . 185

A.2.6 Synthetic Heavy Weight Workload with Low Churn 187

A.2.7 Synthetic Heavy Weight Workload with High Churn 189

A.2.8 Synthetic Heavy Weight Workload with Locally Varying Churn . . 191

A.2.9 Synthetic Heavy Weight Workload with Temporally Varying Churn 193

A.2.10 Synthetic Variabale Weight Workload with Low Churn 195

A.2.11 Synthetic Variabale Weight Workload with High Churn 197

A.2.12 Synthetic Variabale Weight Workload with Locally Varying Churn . 199

A.2.13 Synthetic Variabale Weight Workload with Temporally Varying Churn201

A.2.14 File System Specific Workload with Low Churn 203

A.2.15 File System Specific Workload with High Churn 205

A.2.16 File System Specific Workload with Locally Varying Churn 207

A.2.17 File System Specific Workload with Temporally Varying Churn . . 209

A.2.18 Analysis for Statistical Significance 211

A.2.19 Holistic Quantification of the Effects of Autonomic Management . 211

B Data Layer Experiments 214

B.1 Preliminary Work . 214

B.1.1 Network Speed Configuration Verification 214

B.1.2 Bandwidth Estimation . 215

B.1.3 Network Speed Configuration . 216

viii

B.1.4 Autonomic Manager Configuration 217

B.2 Experimental Results . 218

B.2.1 Introduction . 218

B.2.2 Policy Effects Overview . 218

B.2.3 Static Bottleneck at Server Side 220

B.2.4 Static Bottleneck at Client Side 221

B.2.5 No Bottleneck . 222

B.2.6 Temporally Varying Network Speed 223

C GAMF 224

C.1 Customising Triggers . 224

C.2 Triggering By Combining System Adapters 225

C.3 Nesting Autonomic Managers . 225

C.4 Supporting Team Development . 225

C.5 A Target System Without Access to Source 226

Bibliography 228

Chapter 1

Introduction

Outline

This chapter introduces distributed storage systems and the benefits of such systems. It

explains the type of distributed storage system that this thesis focuses on and introduces

the hypothesis that autonomic management can be used to improve such systems with

respect to performance and resource consumption. The chapter finishes with an outline of

the thesis.

1

2

1.1 Distributed Storage Systems

Distributed storage systems are an approach towards the provision of reliable, scalable and

fault-tolerant storage. The benefits of such systems include that they may be more scalable

than non-distributed storage systems, partly because computers which contribute storage

can be added dynamically, and partly because they are able to balance the usage of storage

and the computational load of individual machines. Another benefit of distributed storage

systems is that data may be replicated on multiple physical machines, which improves the

fault-tolerance of such systems. Additionally, distributed storage systems can be built on a

decentralised infrastructure which results in the absence of a single point of failure.

Distributed storage systems may operate over a dedicated set of machines. They may,

however, also be used to harness storage on user workstations. This thesis investigates

distributed storage systems which may be used in both usage scenarios. Potential imple-

mentation challenges result from changing conditions to which such systems are exposed.

These include changes in the available network performance, the frequency with which

users disconnect and reconnect their machines from the distributed storage system, and the

frequency with which users access data items. The perceived characteristics of distributed

storage systems depend on their configuration parameters and on combinations of various

dynamic conditions.

For a given set of conditions, one specific configuration may be better than another with

respect to measures such as performance and resource consumption. Performance in this

context is the average time it takes to retrieve or store data in the distributed storage system.

3

When referring to resource consumption, this thesis focuses on network resources which

are consumed by the distributed storage system. A motivation for considering network

resources rather than, for instance, storage resources is given by reports ([10, 12]) that

network resources are generally exhausted faster than storage or computational resources

in the considered usage scenarios. In [12] it is concluded that network bandwidth is a

scarce resource in a wide-area distributed storage system. The overall performance and

resource consumption of a distributed storage system depends on the performance of its

constituent components and more specifically on individual facets of these components.

One such facet is represented by the scheduling of maintenance operations in Peer-to-

Peer (P2P) overlays used as a distributed storage system’s decentralised infrastructure.

P2P overlays provide data item to storage host mappings in a changing network topology.

These mappings are resolved by P2P routing operations (lookups). A peer-set is used to

make routing decisions, and to adapt the overlay network to new nodes joining and existing

nodes leaving or failing. The interval between maintenance operations of this peer-set is

a configuration parameter. Two possible unsatisfactory situations can be identified when

considering the interval between such maintenance operations. The first arises when both

the maintenance interval and the membership churn are high. Peer-sets become inaccurate

due to high membership churn, leading to errors during the routing process and a reduction

in performance. In this situation it is desirable to decrease the interval in order to increase

the accuracy of peer-set. The converse situation arises when the interval is low and churn

is low. In this situation network resources are used unnecessarily, which may also reduce

performance, making it desirable to increase the interval.

4

Another facet of a distributed storage system whose performance and resource consumption

depends on a specific configuration parameter is the data retrieval mechanism. This con-

figuration parameter is the degree of concurrency (DOC) with which data is retrieved. The

DOC controls the eagerness with which multiple redundant replicas are retrieved. Again,

two unsatisfactory situations can be identified. The first arises when the DOC is low and

there is a large variation in the times taken to retrieve replicas. In this situation it is desir-

able to increase the DOC, because by retrieving more replicas in parallel a result can be

returned to the user sooner. The converse situation arises when the DOC is high, there is lit-

tle variation in retrieval time and there is a network bottleneck close to the requesting client.

In this situation it is desirable to decrease the DOC, since the low variation removes any

benefit in parallel retrieval, and the bottleneck means that decreasing parallelism reduces

both bandwidth consumption and elapsed time for the user.

1.2 Problem Definition and Hypothesis

The above situations represent cases in which a specific configuration is beneficial with

respect to performance and resource consumption but ceases to be so as conditions vary.

In such situations a dynamic adaptation of the configuration may be more beneficial than a

static configuration. Due to its complexity and dynamic nature, the adaptation of configu-

ration parameters of facets of distributed storage systems ideally happens without the need

for human interference. An approach for doing this is autonomic management.

Autonomic management is a methodology inspired by the autonomic nervous system. In

5

the human body the autonomic nervous system controls the heart rate without the con-

scious brain being aware of it. The autonomic nervous system increases the heart rate in

situations in which a human is highly alerted, but decreases it in moments of relaxation and

thus prevents unnecessary resource consumption. The same principle can be applied to,

for instance, the rate with which maintenance operations in a distributed storage system’s

P2P layer are executed or the degree of concurrency with which redundant data items are

retrieved in a distributed storage’s data layer.

It is hypothesised that controlling configuration parameter values autonomically in re-

sponse to changing conditions yields improved results with respect to performance and

resource consumption, compared with a static configuration. Furthermore, under non-

changing conditions this allows the system to converge on a configuration that is more

suitable than any that could be set a priori.

The evaluation of the hypothesis involves:

• An analysis of the scope for optimisation with respect to performance and resource

consumption with autonomic management.

• The development of an autonomic management framework.

• An experimental evaluation of the effects of autonomic management applied to facets

of a distributed storage system.

This work is carried out as part of the Autonomic Storage Architecture (ASA) project [47].

All investigations are carried out using components of the ASA storage system.

6

1.3 Autonomic Management in Distributed Systems

Related work with respect to autonomic management in distributed systems in general is

discussed in this section.

In the Architectural Artefacts for Autonomic Distributed Systems (A3DS) project [86] and

the project concerned with the development of the k-component [20, 19] the focus lies on

the development of concepts and tools to add autonomic behaviour to distributed systems.

The usage of those tools in the context of this thesis is discussed at a later point (chapter 6).

A3DS introduces an approach for specifying high level policies via a contract specification

language. The k-component provides a similar approach which is evaluated in a distributed

file system use case. In this use case a connection manager (specific to k-components) and

a file forwarding mechanism were autonomically managed. Unlike to the facets considered

in this work, those facets do not apply to a wide range of distributed storage systems. On the

other hand, both the A3DS and the k-component provide interesting starting points with re-

gards to the process of applying autonomic management. Generic conceptual components

of those approaches which can also be found in [45] were applied in this thesis.

In [92] facets of a distributed storage system which may benefit from autonomic manage-

ment are discussed at a high level. The facets comprise replica placement strategies, error

detection and recovery, management of file locking mechanisms, and intrusion detection.

All of the facets are discussed with respect to DMSuite. DMSuite is a generic storage sys-

tem designed for use in a Grid environment. Some of the discussed facets can also be found

in distributed storage systems.

7

In [5] policy based autonomic managers are proposed to control various facets of a network

in response to a changing environment. The policies are inspired by biological processes

like Chemotaxis which triggers a positive or negative stimulus depending on the amount

and type of monitored information. This is applied to the management of a routing protocol

which implements a hop-by-hop route discovery from source to destination. The routing

table is managed autonomically. Though the area of investigation is different to that in this

thesis, the authors are also concerned with the performance of underlying network protocols

in the presence of a changing environment, and address disadvantages with autonomic

management.

In work on distributed storage systems like, for instance, PAST [21] and OceanStore [78],

the attribute self-organising is introduced for the ability to relocate data items in order to

compensate for membership churn. This suggests that those distributed storage systems are

autonomically managed. In fact, they rely on the maintenance operations in their underly-

ing P2P layer and react to reported changes in the key space. This represents an additional

motivation to investigate whether autonomic management can be used to optimise perfor-

mance and resource consumption in P2P overlays (section 1.1).

1.4 Thesis Structure

The structure of the thesis is influenced by it dealing with various areas including autonomic

management/computing, P2P computing and distributed storage architecture. Background

information and related work is discussed in the relevant chapters.

8

In chapter 2, general principles of autonomic management are explained and related to

computer science. Chapter 3 introduces the ASA storage system, and outlines the connec-

tion between the different layers and how the P2P layer is utilised by a higher level storage

layer. Chapter 4 investigates the scope for optimisation with autonomic management in a

distributed storage system’s P2P layer. Chapter 5 explores the scope for optimisation with

autonomic management in a distributed storage system’s data layer.

In chapter 6, an autonomic management framework developed as part of this work is out-

lined. Chapter 7 reports experiments in which the effects on resource consumption and

performance of autonomic management applied to a P2P overlay are compared with a stat-

ically configured overlay under various conditions. Chapter 8 reports experiments in which

the effects on resource consumption and performance of autonomic management applied

to a distributed storage system’s retrieval mechanism are compared with a statically con-

figured system under various conditions. Chapter 9 finishes the thesis by drawing some

general conclusions and giving an outline for potential future work, including an outline

of how further facets of a distributed storage system can be controlled with an autonomic

manager.

Extensive appendices are provided containing preliminary work, as well as detailed views

on the data for the experiments reported in chapters 7 and 8. Further information to support

wider applications of the framework developed here is also provided.

9

1.5 Conclusions

This chapter outlined potential implementation challenges in distributed storage systems

that may be exposed to various changing conditions. Situations were briefly discussed

in which autonomic adaptation of specific configuration parameters may improve perfor-

mance and resource consumption in comparison to a statically configured system.

Chapter 2

Autonomic Management

Outline

To provide an understanding of the terms and concepts used throughout this thesis, the

analogy between nature and computer science with respect to autonomic management is

briefly outlined. The general concepts of autonomic management are also explained in this

chapter.

10

11

2.1 Introduction

Autonomic computing or autonomic management [45, 39, 32, 34, 36] is a term inspired by

the autonomic nervous system [24, 23], which frees the conscious brain from controlling

vital parts of the human body in the presence of a changing environment. The hypothesis is

made in section 1.2 that autonomic management may be able to dynamically control facets

of a distributed storage system in order to improve performance and resource consumption

with respect to a statically configured system. Like in nature, such autonomic control is

envisioned to operate without human intervention. To provide an understanding of the

terms and concepts used throughout this thesis, the autonomic nervous system is briefly

outlined in section 2.2, followed by an introduction to autonomic management in computer

science in section 2.3. The chapter is concluded in section 2.4.

2.2 The Autonomic Nervous System

The autonomic nervous system is a control and monitoring system which exists in all mam-

mals, including humans. In the human body the autonomous nervous system coordinates

rapid responses (adjustments of the function of, for instance, organs, muscles or the diges-

tion system) to specific stimuli, without the conscious brain being aware of it. The basic

parts of the autonomous nervous system are described as:

• Receptors sense changes in the internal or external environments. Sensory input

can be in many forms, including, blood pressure, acidity in the stomach or blood

12

pH. Information about any sensory input is either sent via electrical impulses or via

different hormone levels to the brain or spinal cord.

• In the sensory centres of the brain or in the spinal cord, two separate processes are

carried out. Firstly the input is processed. This provides the brain or spinal chord

with information about the current situation of the controlled part of the human body

or a facet of it. Secondly an appropriate response is generated.

• Via a signalling system which interacts with the controlled part of the body, the re-

sponse is transmitted to organs which convert the signal into some form of action.

Examples of such actions include changes in heart rate or release of hormones which

trigger further nervous system related actions.

An example of a facet of our body functions controlled by the autonomic nervous system

without our conscious brain being aware of it is the heart rate. This is part of a well

understood phenomenon in biology, the fight- or flight-response [68]. Controlled by the

amount of specific hormones, excitement and fear increase the heart rate. On the other hand

in situations in which we relax or digest, the heart rate is decreased, which is controlled by

antagonistic hormones. The autonomic nervous system controls multiple vital functions

simultaneously in order to keep the human body literally going. Constituent components

of our body are often controlled in isolation; the autonomous behaviour of our body as a

whole, however, is determined by the autonomous nervous system.

13

2.3 Autonomic Management in Computer Science

In computer science, a system’s behaviour is referred to as autonomic if it is, for instance:

self-configuring, self-healing or self-protecting. These behaviours are often referred to as

self-* behaviours and are applied without the need for a human operator. A system’s au-

tonomic behaviour as a whole depends on the self-managing capabilities of its constituent

components [70] and on facets of those components (at a finer granularity). A system, a

component and a facet of a component describe different granularities of entities to which

autonomic management can be applied. At the finest granularity a controlled facet and the

manager together are referred to as an autonomic element [45, 39, 32].

The underlying principles of an autonomic manager are based on a control loop [45, 39, 32]

(figure 2.1) consisting of the following:

• A monitoring phase where the manager receives information about the target system

or the facet of a controlled component of the target system. This is analogous to, for

instance, hormones being sent to the autonomic nervous system in the human body.

Such pieces of information are referred to as events.

• An analysis phase in which complex situations are modelled by aggregating received

information. This is analogous to one category of operations in the sensory centres

in nature. In this work a modelled situation is expressed as an abstract metric.

• A planning phase during which decisions are made about how to react to the current

situation. This is analogous to another category of operations in the sensory systems

14

in nature. In this work such a plan is referred to as policy.

• An execution phase during which the planned reactions are carried out. This is analo-

gous to the signalling system in nature. Planned actions are applied to a target system

via effectors.

Information which is shared between all phases of the autonomic control loop is referred

to as shared knowledge.

Figure 2.1: The autonomic control loop [45].

2.4 Conclusions

This chapter described how autonomic management is inspired by the autonomic nervous

system. The concepts described here provide a conceptual framework of operations which

can be used to apply autonomic management to facets of target systems.

Chapter 3

The ASA Storage System

Outline

This chapter introduces the Autonomic Storage Architecture (ASA), which is used as exper-

imental platform in the work reported in this thesis. It outlines how several building blocks

interact with each other and explains those details which are relevant for this thesis.

15

16

3.1 Introduction

The work for this thesis is carried out as part of the development of a distributed storage

system termed the Autonomic Storage Architecture (ASA) [47, 48, 49]. In common with

other distributed storage systems like CFS [13], Ivy [66], Past [21], Oceanstore [50], Pond

[77], Koorde [42] and ConChord [3], the goal of ASA is to develop a resilient ubiquitous

distributed storage system with the following attributes:

• Data can be accessed efficiently and securely from any physical location.

• Data is stored resiliently, such that failures of individual machines and network links

do not result in data loss.

• An historical record of data is available.

ASA also has the following more specific goals:

• To provide general autonomic tuning mechanisms to allow low-level facets of the

system’s operation to be managed automatically, controlled by policies that are driven

by high-level user preferences.

• To develop specific policies suitable for managing a distributed file storage system,

and to investigate their efficiency.

17

To support the goals stated above, a modular ASA structure is defined. ASA consists of the

following layers:

• File System Adapter: Provides a file system interface.

• Abstract File System: Translates file system operations to storage requests and maps

file names to keys.

• Generic Storage: Stores and replicates data on multiple P2P nodes; uses keys to

identify data; actively maintains replicas as nodes become unavailable.

• P2P infrastructure: Returns a node for a given key. The P2P Infrastructure is a

key-based routing system; its principal functionality is to map keys to nodes and to

maintain the mapping when nodes join or leave the infrastructure.

Rather than providing a complete description of ASA, this chapter focuses on the specific

facets which are used for experimental evaluation of autonomic management. Hence, the

reminder of this chapter is as follows. After an introduction and a brief outline of ASA

in section 3.1 ASA’s P2P layer is explained in section 3.2. This is followed by explaining

relevant facets of the storage layer in section 3.3. A summary of the chapter is provided in

section 3.4.

18

3.2 P2P Layer

Fundamental concepts of ASA’s generic storage layer are based on properties of the P2P in-

frastructure StAChord, which is an implementation of the structured P2P overlay Chord [85].

Structured P2P overlay network protocols support the key-based routing (KBR) abstrac-

tion [14]. A KBR implementation allows any given abstract key value to be dynamically

mapped (or routed) to a unique live node in the overlay network. This mapping operation

is referred to as lookup. A P2P overlay actively maintains the key to node mapping despite

dynamic changes in network membership. Distributed storage systems can utilise such a

mechanism to maintain data to storage host allocations. Additionally correlations between

P2P nodes in an overlay are used to determine hosts on which data items are replicated.

Besides ASA, such correlations between the P2P infrastructure and the storage layer are

used in distributed storage systems like CFS [13], Ivy [66], Past [21], Oceanstore [50],

Pond [77], Koorde [42] and ConChord [3].

In ASA, data items are identified with keys, derived from the P2P key space, which is

organised as a ring. Figure 3.1 illustrates how StAChord is utilised by the generic storage

layer for locating the storage host for a data item identified with a specific key. The figure

shows a segment of a StAChord key ring in which a data item, identified with key 50, is

stored on node 2. StAChord’s lookup protocol will return node 2 if key 50 is looked up, as

all keys from 26 to key 80 belong to node 2.

Another property of StAChord is utilised to determine nodes for replicated data items.

Given the fixed size of the key space (KS), keys at specific distances around the ring are

19

Figure 3.1: Simplified representation of StAChord’s key to node and data mapping.

determined via a so-called cross algorithm [15]. For a replication factor of r, the data item

associated with key k is replicated on r − 1 nodes associated with keys k + n× KS
r

where

n ranges from 1 to r − 1. Figure 3.2 illustrates this with a replication factor of four, which

results in replica keys for key 5 being identified after each 90◦ along the ring.

Figure 3.2: Identification of replica nodes in the StAChord key space.

20

3.3 Generic Storage Layer

The generic storage layer provides a ubiquitous resilient mutable storage facility, for un-

structured data, with an historical record. To support the historical record, updates are

appended rather than being destructive. The main entities supported are data blocks, PIDs

and GUIDs. All entities are identified with a unique key from the underlying P2P infras-

tructure.

• A data block contains unstructured immutable data.

• A PID (Persistent Identifier) is used to denote a particular data block.

• A GUID (Globally Unique Identifier) is used to denote something with identity, such

as a file, object or directory (that means meta-data).

Figure 3.3: ASA Storage Model [49]

Figure 3.3 shows how historical data is associated with PIDs and GUIDs. Additionally to

maintaining historical versions of data items, the generic storage layer replicates data and

meta-data on multiple nodes, and actively maintains these replicas as nodes fail, misbehave

or leave the network. It is insufficient, however, for data to be replicated; the replicas

must also be accessible. The placement of replicas is thus organised so as to reduce the

probability of a malicious node being able to hinder access to particular replicas. Originally

21

inserted data is referred to with a PID created by hashing its content and replicas of this data

item are distributed as determined by the cross algorithm (section 3.2). Storage hosts for

meta-data are determined by GUIDs, which are derived from randomly selected P2P keys.

Thus the authenticity of a specific data item can be verified with this data item’s content

and the key with which it is addressed. In the original ASA implementation a replication

factor of four is chosen.

Access to any file stored in ASA results in a sequence of operations in which meta-data and

data items are fetched. A file is specified with a file path, where each element of the file

path represents meta-data identified by a GUID. As meta-data is not self-verifying, at least

three meta-data items have to be fetched before the data item can be fetched, in accordance

with the protocol outlined in [15]. The meta-data maintains pointers to historical versions

of the data. The default configuration ensures that the latest version of a data item is fetched

at any request for data. In the original implementation four replicas are available for every

data block (if none of the replica holding servers failed). Only one of these data items needs

to be received by the requesting client. Its authenticity can be verified by recomputing the

PID with the data item’s content. After receiving the data item, the meta-data items for the

next child directory can be fetched and so forth.

3.4 Conclusions

This chapter explained the fundamental building blocks of the Autonomic Storage Archi-

tecture ASA relevant for the work carried out in this thesis. It showed how the generic

22

storage layer utilises properties of the P2P infrastructure and provided an understanding of

how specific effects on the P2P infrastructure affect the generic storage layer. For instance,

incorrect key to host mappings in the P2P infrastructure would result in failed accesses to

data items or would cause the replication mechanism to break.

Chapter 4

Optimisation of P2P Overlays

Outline

This chapter investigates the scope for optimisation of P2P overlays with autonomic man-

agement in order to improve performance and resource usage. It outlines related work

and some background on the maintenance mechanisms of existing structured P2P overlay

networks. It introduces an autonomic management mechanism, the goal of which is to

detect whether maintenance effort is wasted, or required, in order to adapt the scheduling

mechanisms appropriately.

23

24

4.1 Introduction

As outlined in chapter 3, ASA and other distributed storage systems use structured P2P

overlay networks to provide scalable data location facilities even in the presence of churn

in the network membership. The wide usage of P2P overlay networks in distributed storage

systems is the motivation for this investigation.

In structured P2P overlay networks, each node maintains a set of nodes as its peer-set. The

peer-set is used to make routing decisions, and to adapt the overlay network to new nodes

joining and existing nodes leaving or failing. The validity of the peer-set in existing P2P

overlay networks is checked (and if required, repaired) periodically. These periodic opera-

tions are referred to as maintenance operations in this work. Each maintenance operation

involves the exchange of one or more messages with other nodes in the overlay network.

This means that each maintenance operation requires the usage of some network resources.

The optimal scheduling of such maintenance operations depends both on the workload –

that is, the pattern of routing calls applied to the network – and the churn in network mem-

bership – that is the temporal pattern with which nodes join or leave the network. For

example, if the network membership is completely static, then the optimal behaviour is

to perform no maintenance, since it represents pure overhead and network resources are

used up unnecessarily. Conversely, under rapid network churn it is beneficial for nodes

to expend significant maintenance effort in order to sustain a high success rate for routing

operations.

In all current structured P2P overlay protocols, maintenance operations are scheduled at a

25

statically fixed interval. Workload and churn will often vary dynamically. Even if a pre-

determined fixed interval is appropriate for the initial circumstances, it will cease to be so as

conditions vary. An autonomic management mechanism is proposed for dynamically con-

trolling maintenance scheduling, by adapting the interval between maintenance operations,

in response to changing conditions. The proposed management mechanism is governed by

a policy which has the objective to detect and correct unsatisfactory situations with respect

to performance and resource consumption. Autonomic management may balance resource

usage and performance better than a statically configured system.

This chapter is structured in the following way: in section 4.2 peer-set maintenance proto-

cols of existing overlay networks are outlined. Related work on optimisation of P2P overlay

networks in the presence of membership churn is discussed in section 4.3. This is followed

by section 4.4 where the problems of current approaches are summarised and autonomic

management is introduced to address the outlined problems. In section 4.5 an autonomic

manager for the scheduling of maintenance operations in a P2P overlay is proposed. This

is followed by some conclusions in section 4.6.

4.2 Background

Existing P2P overlay networks like Tapestry [96, 91], CAN [74], Pastry [81, 57] and Chord

[85] define protocols for updating their peer-sets when new nodes join the overlay network.

Additionally, individual nodes in each overlay periodically probe for their peers to detect

failed nodes, or changes in the key space, in order to trigger peer-set update operations.

26

None of them provides a mechanism to adapt the interval between maintenance operations

dynamically.

Because a Chord implementation is used for the work described in this thesis, Chord is

explained here in some detail. Each node is assigned a unique key and the nodes form a

logical ring, ordered on key values. Each key value k in the key space is mapped to a node

succeeding k in the key space. The peer-set of a node comprises the addresses of:

• Its predecessor and successor in the ring.

• A list of nodes following its successor (known as the successor list).

• A list of nodes (known as the finger table) at specific distances around the ring.

Figure 4.1 shows nodes 5 to node 10 which are associated with specific keys in the circular

key space. Pointers originating from node 6, indicate its fingers (node 9 and node 10),

successors (node 7 and node 8) and the predecessor (node 5).

Figure 4.1: A Chord node’s peer-set, in a simplified representation of the key space.

27

The predecessor and successor are used to form the ring. The successor list allows repair of

the ring if the successor fails. The finger table is used to support scalable routing. To lookup

a given key k, a node n determines whether n’s successor is associated with k. If that is not

the case, n’s fingers are used to query the finger identified by the closest preceding key to

the given key k. Applied to figure 4.1, this means that, if node 6 looks up a key key which

is associated with node 10, it first checks if its successor (node 7) is associated with key.

As this is not the case the closest preceding finger, with respect to the querried key, (node

9) is queried which identifies node 10 as being associated with key and thus successfully

resolves the lookup. In a network with N nodes this means that in average log(N) steps

are required to resolve a lookup.

In order to successfully resolve lookups the peer-set needs to be valid, even if the network

membership changes. In the original Chord maintenance protocol, the fingers are period-

ically verified by an operation termed fixFinger. This is done by each node by looking up

the node associated with the key at a specific distance from the executing node. Addition-

ally each node executes stabilize periodically to maintain its successor list and predecessor.

When an error in the current peer-set is detected – due to a change in network member-

ship – a more appropriate reference is established. During the stabilize operation a node n

verifies whether a new node has joined between n and its successor. If the predecessor of

n’s current successor is not n, a new node may have joined between n and n’s successor

and n updates its successors. After that n calls notify to tell the new node that n may be its

predecessor.

28

4.3 Related Work

This work investigates how performance and resource consumption can be improved in

structured P2P overlays. The problem this chapter addresses is that an optimal mainte-

nance interval in P2P overlays cannot be predicted and thus has to be adapted dynamically.

Some related work was identified which shares aspects of this work’s high-level objec-

tive of optimisation with respect to performance and resource consumption and provides

similar approaches (section 4.3.1). Other related work was identified which shares the high-

level objectives but addresses them via different approaches, retaining statically configured

maintenance intervals (section 4.3.2). All of the latter potentially face the same problem

which is that an ideal static interval cannot be predicted.

4.3.1 Dynamic Control of P2P Overlays

The work which is most closely related to this is based on the Pastry overlay [57]. The

authors propose to improve both performance and resource consumption in structured P2P

overlays by dynamically adapting the interval between maintenance operations. The op-

timisation focus however lies only on the performance, because they propose to adapt the

maintenance interval in order to achieve a specific minimum performance. Thus, their man-

ager will not change the maintenance interval once this minimum performance is achieved.

That means that in a situation in which churn keeps decreasing and the minimum perfor-

mance is reached, their manager ceases to increase the maintenance interval. In such a

situation an increasing maintenance interval correlates directly with decreasing unneces-

29

sary use of network resources. Thus resource usage is only improved up to a fixed point

by their manager. Further comparison of [57] and the approach of this thesis is provided in

chapter 7 which reports on the experimental evaluation of the approach introduced here.

[7] focuses on Chord’s stabilize operation and is based on a churn estimation mechanism.

Although this is introduced as a first step towards a self-tuned maintenance mechanism, the

dynamic adaptation of maintenance intervals is not specified nor evaluated. Their churn

estimation mechanism is based on an analytical model into which data gathered during

stabilize executions is fed. A potential problem of this approach is the scope of the input

data for the churn estimator. As only data which is gathered during maintenance operations

is processed, a high interval may result in out-dated information being used for the churn

estimator. Thus, this approach potentially results in estimations of the degree of churn

which do not represent the current situation in the case illustrated above.

4.3.2 Static Control of P2P Overlays

In [8] an adaptation of structured P2P overlays based on the Kademlia [59] overlay is pro-

posed. The maintenance interval which governs Kademlia’s maintenance operations is not

adapted dynamically. Instead an additional maintenance mechanism is developed which

improves performance, and increases or decreases maintenance overhead on top of the orig-

inal maintenance overhead depending on the exhibited churn. In more detail: Kademlia is

a combination of a P2P overlay network and a Distributed Hash Table (DHT). Kademlia’s

P2P routing protocol maintains a node’s routing state lazily. Its DHT component, however,

30

executes a periodic replica maintenance operation, during which potential routing-state er-

rors are repaired. In [8] a modification is proposed based on a distributed data structure

for maintaining failed node addresses. As the number of failed node addresses in this data

structure corresponds with the membership churn, the maintenance overhead for keeping

this list up-to-date correlates with the membership churn. Thus the resulting network usage

due to maintenance varies dynamically but the maintenance interval is not adapted.

In [94] an additional layer to a Chord overlay is proposed. Here again the maintenance

intervals are not adapted but an additional maintenance mechanism is introduced. This

is based on a second overlay layer for finger table maintenance. This layer consists of a

manually selected set of super nodes with better stability characteristics than the average

P2P participants. P2P nodes which are not in the maintenance layer do not maintain their

finger tables. However, they periodically maintain their immediate neighbours in the key-

space. The super nodes are informed about failed nodes, which triggers a distributed finger-

table repair process.

In the FS-Chord project [43] a two-step joining protocol for Chord is proposed to reduce

maintenance overhead and to improve stability. The modified joining protocol is based

on the following: a node that has sent a join request is only accepted as an overlay node

after a fixed time during which the new node’s availability is monitored. If the new node

does not fail during this time it is granted permission to fully join the overlay network.

This may stop unstable nodes from joining the overlay network. Subsequently any network

usage caused by maintenance work due to the unstable node is saved. This approach does,

however, not enable Chord to adapt to a change in the environmental conditions after the

31

monitoring period has passed.

In [9] a model of a Chord network is developed which shows that increasing the size of

the successor list in a Chord overlay network improves stability. The authors suggest the

dynamic adaptation of the successor list length. This mechanism is however not further

specified or evaluated. Even though their proposal can be considered as a dynamic adapta-

tion of the peer-set it is not based on the same principles as the approach introduced here.

It may increase the stability of a Chord ring up to a certain level, but may also reach the

point where maintenance is not executed frequently enough.

In [51] a number of modifications of Chord are introduced to improve stability in the pres-

ence of membership churn. None of the modifications is however evaluated. They comprise

periodic rejoins to maintain the structure of the Chord overlay network in the event of node

failures. Additionally, a modified lookup algorithm which improves the stability in the

event of failed successors is proposed. This involves nodes discovered during lookup op-

erations being used for peer-set maintenance. It also involves the suggestion to decrease

the stabilize interval when errors are detected, but no rule is specified for increasing the

interval.

In [52] it is experimentally evaluated whether a modified stabilize algorithm can improve

stability in a Chord network in the presence of high churn. A modification of the Chord

protocol is made which maintains a list of predecessors and successors. The interval how-

ever is kept at a fixed value. It is suggested that a small interval is desirable in networks

with high membership churn and thus stated that there is a correlation between the interval

32

and the degree of churn. However, it is not proposed to dynamically adapt the maintenance

interval.

In [53] Chord is compared with an overlay network based on a hierarchical grouping

schema. The maintenance mechanism of the hierarchical groups overlay network is not

further specified. The authors experimentally evaluate how different stabilize intervals af-

fect the lookup error rate in Chord but do not evaluate or propose dynamic adaptations.

In [55] Chord’s maintenance mechanism is analysed and it is concluded that its execution

rate is an important configuration factor. The authors analyse the correlation between main-

tenance rate and performance, stress the importance of conservative network usage and ask

the question whether an optimum maintenance rate can be learned. An analytic model is

developed for computing a lower bound maintenance rate given the time interval during

which 50% of the P2P participants leave an overlay network (this time is referred to as

half-life).

In [54] Chord joining and leaving protocols are modified to execute faster. A positive

aspect of this approach is that nodes may be able to fully establish a valid peer-set sooner

than in the original Chord protocol. Its applicability may be limited as the authors assume

a fault-free overlay network in which nodes leave only voluntarily.

33

4.4 Problem Definition

Unsatisfactory situations with respect to performance and resource consumption can be

identified in a statically configured P2P overlay. An optimum interval between peer-set

maintenance operations depends on dynamic conditions and cannot be predicted and con-

figured statically. Such a static configuration is used in the P2P overlays outlined in sec-

tion 4.2 and in most of the modified overlays as outlined in section 4.3. In the following

section the problems involved in statically configuring peer-set maintenance intervals are

discussed.

4.4.1 Evaluation Criteria

A user of an application like a decentralised distributed storage system may never interact

directly with the P2P overlay network, but nevertheless the P2P overlay may have a large

impact on the application’s perceived performance and its resource consumption. The fun-

damental operation (lookup) of a P2P overlay, which implements KBR, is to return a host

for a given key. In decentralised distributed storage systems, using KBR, at least one lookup

operation will be executed every time a data item is accessed. The time it takes to resolve

a lookup request (lookup time) is therefore a performance related metric. In the case where

the lookup fails it is assumed here that it is repeated after a specific time (lookup error

time) by some lookup fall back mechanism. From a user’s perspective lookup failures thus

increase the time until a lookup is successfully resolved. Therefore the lookup time, the

lookup error rate and lookup error time determine the performance of a P2P overlay. Addi-

34

tionally network usage may be of interest for a user if the user is billed for used resources.

It is also of interest for a developer who may be concerned with enough resources being

available for other applications [55] or for reasons outlined in chapter 1. Performance and

network usage are referred to as user-level metrics in the rest of this work. Both user-level

metrics are considered as average measurements over a specific observation period.

4.4.2 Discussion and Hypothesis

Following the definition from section 4.4.1, the performance of a P2P overlay improves as

the proportion of valid entries in the peer-set of individual nodes increases. Invalid entries

may result in wrong routing decisions or in lookups failing completely due to nodes which

have left the overlay. Thus invalid entries may require repetitions of lookup operations.

The objective of maintenance operations is to provide valid peer-sets, which happens at the

cost of some network usage.

In a situation in which no membership churn is exhibited, a fixed short interval between

maintenance operations may be disadvantageous with respect to network usage. Here the

network usage represents pure overhead and thus wasted maintenance effort as the key to

node association does not change. A fixed long interval between maintenance operations

instead may be beneficial because of reduced network usage. Additionally a long interval

potentially frees computational resources for lookup operations and is thus also beneficial

with respect to performance, especially if a workload with frequent lookups is executed.

Conversely if high network membership churn is exhibited it is beneficial for maintenance

35

intervals to be short. In such situations the node to key association changes frequently.

This requires the maintenance operations to be executed more often in order to provide a

valid peer-set. If the maintenance interval is long the peer-set may become out of date and

is thus disadvantageous with respect to performance. Here maintenance effort is required

and network usage becomes justifiable. It however, ceases to be justifiable if no workload

is executed as this does not require good performance from a user’s perspective.

The optimum maintenance interval depends thus on the workload and the membership

churn which cannot be predicted. It is hypothesised that autonomic management (as ex-

plained in chapter 2) may be able to detect whether network usage is wasted, due to un-

necessarily executed maintenance operations, and to increase maintenance intervals as an

appropriate reaction. Autonomic management may also be able to detect if maintenance

operations are required and to decrease intervals as an appropriate response. Thus it may

be able to discover an optimum maintenance interval that cannot be predicted statically,

and it may also be able to adjust the interval dynamically to keep it near an optimal value

in the presence of dynamic variations in workload and membership churn.

4.5 Autonomic Management in P2P Overlays

4.5.1 Overview

To achieve the behaviour envisioned in section 4.4.2 an autonomic manager is proposed

whose aim it is to dynamically adapt the maintenance interval in response to varying con-

36

ditions. A single manager is added to each individual node in a P2P overlay. The manager

is based on the autonomic control loop outlined in section 2.3. The current situation is mod-

elled with metrics which are extracted from monitored events. The response to a specific

situation is specified by policies and applied via effectors.

The manager’s underlying principle is to detect when maintenance effort is wasted and to

increase the current maintenance interval as an appropriate response. The manager can

also detect when more maintenance is required and the interval should be decreased as

an appropriate response. It balances out these two competing priorities by averaging all

responses. Each of a set of sub-policies determines a new maintenance interval with re-

spect to a specific metric. All intervals determined by sub-policies are averaged by an

aggregation-policy. Policy evaluations trigger the extraction of metrics values from the

monitoring data. Only events which have not been considered since the last policy evalu-

ation are extracted. The policy evaluation interval thus determines the observation period

with respect to events and metrics. Only locally generated events are processed and thus

no additional network traffic is generated when adding this manager to the P2P node.

4.5.2 Autonomic Management Components

Metrics

Non-Effective Maintenance Operation (NEMO) Metric: The NEMO metric models

the amount of effort invested in maintenance operations without effect. A metric value (de-

noted as METRIC.value, wherever appropriate) represents the number of events which

37

indicate that a maintenance operation did not update the maintained peer(s) during the

analysed observation period. A high value suggests that a lot of network usage took place

unnecessarily as either little change in the key to node allocation was detected, or main-

tenance was executed frequently enough to compensate for such changes. Conversely, a

small value implies that the network usage due to maintenance operations was effective

and could therefore be regarded as justifiable.

Error Rate (ER) Metric: An ER metric value represents the number of failed accesses

to maintained peers during the analysed observation period. A high value suggests that a

large proportion of the peer-set was not valid (meaning that it was out-of-date) when being

accessed during recent lookup operations. Conversely, a low value suggests that the peer-

set was valid due to frequent maintenance. Additionally a low value could also mean that

no lookups (workload) were executed, or that the churn was low.

Locally Issued Lookup Time (LILT) Metric: The LILT metric models the speed of

locally issued lookup requests. A LILT value is represented by the mean of all lookup times

issued during the analysed observation period. A high value suggests that poor routing

decisions, due to an invalid peer-set, increased the hop count and thus the time until lookups

were successfully resolved. Conversely a low value suggests that routing decisions and thus

the peer-set were valid and resulted in lookups completing in short times.

38

Policies

An aggregation-policy combines the responses of sub-policies by computing the mean of

the intervals specified by the sub-policies. Each sub-policy determines a new interval with

respect to a single metric in isolation. The general structure of the management process,

with respect to a sub-policy is based on a negative feedback loop [30]. The goals of the

various sub-policies may be different and may even conflict with each other; however, the

aim is that they balance each other out after some time. Each sub-policy determines a new

interval which differs from the current interval, by a magnitude (P) which is proportional

to the difference of the metric value under consideration from its ideal value. As each

metric models a specific aspect of the current situation the goal of each sub-policy is to put

the system in an ideal situation, with respect to this aspect. Additionally, the aggregation-

policy specifies the immediate execution of a maintenance operation if an error is detected.

• In an ideal situation no non-effective maintenance operations are monitored

(NEMO.value = 0). The sub-policy using the NEMO metric always specifies

an increase of the controlled interval as an appropriate response to non-ideal metric

values.

• In an ideal situation no errors are monitored (ER.value = 0). The sub-policy using

the ER metric always specifies a decrease of the controlled interval as an appropriate

response to non-ideal metric values.

• In an ideal situation monitored lookup times are 0 (LILT.value = 0). The sub-

policy using the LILT metric always specifies a decrease of the controlled interval as

39

an appropriate response to non-ideal metric values.

A new value for an interval is determined by each sub-policy as defined in formula 4.1,

where ± reflects that the NEMO sub-policy determines an increase of the controlled inter-

val and the ER and LILT sub-policies a decrease.

new interval = current interval ± current interval × P (4.1)

Factor P (formula 4.2) determines the proportion by which the interval is changed. Its un-

derlying principle is to specify that the magnitude of change correlates with the difference

between the observed metric value and the metric’s value in an ideal situation.

P = 1− 1
metric.value−t

k
+ 1

(4.2)

Formula 4.2 assumes metric.value to be greater than t, otherwise P is defined to be 0.

Factor k is a constant non-zero factor which controls the rate of change of P with respect

to the metric value. This allows to specify how rapidly an interval is changed depending on

the difference between the current metric value and its ideal value. t specifies a threshold

for metric values below which no change to the interval results. When applying the under-

lying principle to the the error rate, that means that a small error rate will result in a small

decrease, and a large error rate in a large decrease of the controlled interval. To do so, the

current metric value is mapped to a value between 0 and 1 by the term 1
metric.value−t

k
+1

in

formula 4.2.

40

To illustrate the effect of various k values, figure 4.2 shows the progression of the propor-

tion P by which an interval is changed with respect to values of the ER metric.

Figure 4.2: Relationship between P and ER values for various values of k.

As illustrated, lower k values yield more rapid policy responses. The policy configura-

tion parameters t and k allow this approach to autonomic management to be used to build

various differently behaving autonomic managers.

4.6 Conclusions

This chapter investigated the scope for optimising a P2P overlay with respect to perfor-

mance and resource consumption by autonomically controlling the maintenance schedul-

ing. Related projects identified in section 4.3 aim to improve a P2P overlay’s performance

and resource consumption by modifications of the peer-set maintenance protocols. The

work on Pastry is based on dynamic adaptation of the maintenance intervals, but this work

41

focuses on performance and does not improve resource consumption beyond a specific

point. All other related projects aim to improve a P2P overlay’s performance and resource

consumption by maintenance protocol adaptations in which the intervals remain statically

configured. This makes all of them prone to the problems discussed in section 4.4 which

are addressed by autonomic management as introduced in section 4.5. This autonomic

manager could be applied to a wide range of P2P overlays. Furthermore it has the potential

to be easily adapted to manage the scheduling of any periodic maintenance operation in

response to varying demand.

Chapter 5

Optimisation of Data Retrieval

Mechanisms in Distributed Storage

Systems

Outline

In this chapter the scope for optimisation via autonomic management of a distributed stor-

age system is investigated. The effects on performance and resource consumption of vari-

ous degrees of concurrency (DOC) in a distributed store client’s data retrieval mechanism

are analysed with the help of an analytical model. An autonomic management mecha-

nism is proposed with the aim of identifying and correcting disadvantageous situations by

dynamically adapting the DOC.

42

43

5.1 Introduction

As outlined in chapter 3, ASA and other distributed storage systems such as CFS [13],

Ivy [66], Past [21], Koorde [42], ConChord [3] and Google-FS (GFS) [27] replicate data

items on some number, R, of storage hosts in order to improve availability and resilience.

This enables a requesting client to either fetch one replica from a specific host, or to con-

currently fetch up to R replicas from different hosts. For the rest of this document, the

number of concurrently initiated fetch operations is referred to as the Degree of Concur-

rency (DOC), which ranges from 1 to R.

In this chapter the scope for optimisation with autonomic management of the DOC with

respect to performance and resource consumption is investigated. It is hypothesised that,

depending on various conditions, either a high or low DOC is more advantageous. Thus

dynamic adaptation may yield an overall benefit in comparison to a statically configured

DOC.

Performance, in this context, is defined as the average time for completing users’ get re-

quests1. Resource consumption is defined as the amount of data sent to the network by

all storage hosts involved in any get request. Both are of interest for a user and are there-

fore also referred to as user-level metrics (ULM) for the rest of this thesis. Environment

conditions are specified by the failure rate of fetch operations, by the degree of variation

between fetch times and by the available network speeds. The state of a specific condition

or combinations of various states cannot be predicted and thus an optimum DOC cannot be

1An individual get request initiates up to R concurrent fetch operations of which the fastest determines
the time for completing the get request – if no failures occur.

44

statically configured. Even if a DOC is initially optimal, it may cease to be so as conditions

vary. Autonomic management (see chapter 2) may be able to adapt the DOC dynamically

in the presence of changing conditions, or may learn an optimum DOC under unchanging

conditions in order to improve performance and resource consumption.

This chapter is structured in the following way. In section 5.2 background information is

provided on the data retrieval mechanism under consideration. This is followed in section

5.3 by an outline of other approaches to the optimisation of distributed storage systems. In

section 5.4 the problems this work addresses are discussed in order to support the develop-

ment of an analytical model which shows the effects of various DOC settings and specific

network conditions on performance and resource consumption. The model is used to illus-

trate different use cases and to argue for dynamic adaptation of the DOC. Following that, an

autonomic management mechanism for dynamically controlling the DOC in a distributed

store client is proposed in section 5.5. The chapter is summed up in section 5.6.

5.2 Background

In the previous section it is hypothesised that dynamically adapting the DOC in a distributed

storage system’s data retrieval mechanism in response to various conditions improves per-

formance and resource consumption. To allow the DOC to be varied at all, a distributed

storage system must exhibit the following properties:

• The store holds up to R identical copies of the requested data item on different phys-

45

ical server hosts. A client is aware of which replica resides on which host.

• The client only needs to retrieve one out of R replicas successfully. This in turn

implies that replicas must be self-verifying. That means that a client can itself verify

that a retrieved replica is valid.

• The self-verifying capability of replicas involved in individual get requests allows

all remaining fetch operations to be terminated after the first out of R replicas is

successfully retrieved. This results in no further network resources being consumed

(unnecessarily) after the requested item is retrieved.

• A fall-back mechanism retries fetching a data item if the previous attempt failed.

The above properties allow the adaptation of the DOC in ASA, which shares these proper-

ties with a range of other distributed storage systems. Data retrieval mechanics in existing

decentralised systems like CFS, Ivy, Koorde, and ConChord exhibit such properties2. Ad-

ditionally the same properties can be found in centralised distributed storage systems like

Google FS. A subset of the above properties can be found in PAST. This sub set could how-

ever be extended to the full set of properties as listed above by some simple modifications.

5.3 Related Work

All of the distributed storage systems outlined in section 5.2 exhibit properties which en-

able them to fetch up to R replicas concurrently. However, in none of them is the DOC

2All are built on the P2P overlay Chord (see section 4.2).

46

adapted to address disadvantageous conditions. For instance, in CFS [13] and GFS [27]

any client determines, for an individual get request, the server from which it fetches one

out of R replicas based on a performance measure. On the other hand, in Past [21] the

underlying P2P overlay Pastry [81] transparently prioritises well performing hosts during

routing operations. That means that Pastry first routes to well performing servers which

store a specific replica when the corresponding data item is requested. The approach to-

wards improvement of performance taken in PAST allows various adaptations to be made.

It can easily be modified to move the decision about which host to fetch a replica from, to

the client (see CFS and GFS). Thus this section focuses on the former approach, which is

referred to as a Server Ranking Mechanism (SRM) for the rest of this thesis.

The objective of such a SRM is to improve data retrieval performance by ranking servers

based on predictions about which host will result in the shortest fetch time3. This is based

on the assumption that historical monitoring data can be used to predict future performance

of specific hosts. A SRM provides good performance as long as conditions are not chang-

ing in an unpredictable manner, which may then result in the selection of a potentially badly

performing host. Another (obvious) disadvantage of a SRM is that specific network condi-

tions may not be taken into account by the considered performance metric. This may result

in nominating a server that is performing badly as a well performing server – for exam-

ple, if latency is used as a performance metric and the network connection exhibits a good

performance with respect to the latency but a bad one with respect to network bandwidth.

DHash is a generic block storage layer which is built using Chord. It is used in various

3Fastest servers are ranked first, failed ones at the end.

47

distributed storage projects including CFS. The measurements utilised by DHash, as used,

for instance in CFS, to determine the performance of a specific host, are based on latency.

GFS decides on the performance of a host based on IP addresses. It is assumed in GFS

that server hosts in the same subnet as the client are connected to the same network switch

and thus potentially perform better than hosts outside this network segment. In Pastry a

so-called proximity metric, which is based on the number of IP hops between two nodes, is

used to determine the performance of a specific host.

5.4 Problem Definition

In section 5.1 the hypothesis was introduced that an autonomically adapted DOC yields

benefits with respect to performance and resource consumption in comparison to a stati-

cally configured one. In section 5.2 and 5.3 it was outlined how existing distributed storage

systems which exhibit properties that would allow an adaptation of the DOC, instead ad-

dress disadvantageous situations with server ranking mechanisms (SRM).

The following unsatisfactory situations can be identified with respect to a static DOC in

combination with a SRM. An unsatisfactory situation arises when the DOC is low and

there is a large error rate for fetch operations or a large variation in the times taken to fetch

replicas. The latter may cause a SRM to be unable to make accurate predictions. In this

situation it is desirable to increase the DOC, because by retrieving more replicas in parallel

a result can be returned to the user sooner. The converse situation arises when the DOC

is high, no fetch failures are observed, there is little variation in the time it takes to fetch

48

replicas and there is a network bottleneck close to the requesting client. In this situation it

is desirable to decrease the DOC, since the low variation or error rate removes any benefit

in parallel retrieval, and the bottleneck means that decreasing parallelism reduces both

bandwidth consumption and elapsed time for the user.

In the following section both approaches towards the optimisation of distributed storage

systems (SRM and DOC adaptation) are compared. An analytic model is developed to

support this comparison. The analytical model shows how the time it takes to complete a

get request (get time) depends on available network speeds, fetch failure rates and on the

degree of variation between fetch times. Three cases are considered:

• A low DOC, in which the DOC is statically configured at a minimum (1) and no

SRM is considered.

• A high DOC, in which the DOC is statically configured at a maximum (R).

• A perfect SRM, whose performance predictions are always correct; here the DOC is

also statically configured at a minimum (1).

The time it takes to execute individual fetch operations, in order to serve a specific get

request, determines the get time in each case. In cases in which a high DOC is statically

configured, the degree by which parallel fetch operations have to share bandwidth increases

individual fetch times. A statically configured low DOC also represents cases in which a

high degree of variation in fetch times removes any benefit from a SRM as it is not able to

predict performance accurately. A perfect SRM always selects the best performing host to

fetch a specific replica.

49

All three cases are considered by the analytical model which is developed in the following

section by: defining the parameter space; developing a formula to compute the fetch time;

modelling the three cases above; and illustrating the differences between them in specific

use cases.

5.4.1 Analytical Model

The analytic model is based on a simplified distributed storage system as shown in fig-

ure 5.1; it represents one distributed store client which is connected to R servers (one per

replica). Client and servers of the simplified system in figure 5.1 are referred to as partic-

Figure 5.1: A simplified distributed storage system.

ipants where appropriate. They are connected via some interconnection4, whose internal

network links are assumed to exhibit significantly higher bandwidth and lower latency in

comparison to any link5 from a participant to the interconnection. Thus, the effect on fetch

times when data is transferred across this interconnection is assumed to be negligible.

4the disc in the centre of figure 5.1
5the individual lines from a participant to the disc in figure 5.1

50

Model parameter overview:

• Replication factor: R is the maximum number of replicas available (when no server

has failed).

• Data item size: S is the size of a replica. All replicas are assumed to have the same

size.

• Degree of concurrency: DOC is the number of concurrently initiated fetch opera-

tions. The maximum value for DOC is R and the minimum value is 1.

• Bandwidth: BWi is the available bandwidth between participant i and the intercon-

nection.

• Latency: Li is the latency of the connection between participant i and the intercon-

nection.

• Probability of failure: Pfailure is the probability that any individual fetch operation

fails.

In each of the considered cases the get time (tget) depends on the times taken by fetch

operations (fetch time), which is the elapsed time from initiating a fetch operation until the

replica is received. In cases in which a low DOC is statically configured, Pfailure represents

the probability with which the fetch operation has to be repeated and thus increases tget.

In any other case failures are either compensated for by perfect performance predictions or

redundant parallel fetch operations. In cases in which a perfect SRM is used, the smallest

fetch time (involved in a single get request) determines tget. In cases with a statically

51

configured high DOC the fetch time (and subsequently tget) depends on the bandwidth

available for individual fetch operations (BWclient/DOC) on the client link.

Fetch Time

In each case the fetch time can be expressed with a formula which is developed in the

following section by analysing the steps involved in a fetch operation, in temporal order6.

The fetch time for server i (tfetch i) has three components:

• the time for requesting a replica from server i, trequest server i

• the time for the response from server i to the interconnection, tresponse server i link

• and the time for the response from the interconnection to the client, tresponse client link

The fetch operation is initiated by a request for a replica to server i. The request itself has

negligible size therefore only latencies are significant.

trequest server i = Lclient + Lserver i (5.1)

The server then sends the replica back to the client via the interconnection. The time

tresponse server i link which it takes the server to send the replica to the interconnection is

determined by the size of the replica and the available bandwidth and latency on the server

6in consideration of the simplified system illustrated in figure 5.1

52

side, as shown in formula 5.2.

tresponse server i link =
S

BWserver i

+ Lserver i (5.2)

The last component of the fetch time is the time it takes to transfer the replica from the

interconnection to the client tresponse client link. The DOC specifies how many concurrent

fetch operations share the available bandwidth between client and interconnection.

tresponse client link =
S(

BWclient

DOC

) + Lclient =
S ×DOC
BWclient

+ Lclient (5.3)

The combination of formulas 5.1, 5.2 and 5.3 define the overall fetch time for server i,

tfetch i as shown in formula 5.4.

tfetch i = 2× Lclient + 2× Lserver i + S ×
(

1

BWserver i

+
DOC

BWclient

)
(5.4)

Get Time for the Static Low DOC Case

In the case that a low DOC (1) is configured7, the get request is initiated by fetching a

replica from a randomly selected server i. If the replica is retrieved successfully the get

request is completed. This fetch operation may however fail with a probability Pfailure. If

the fetch operation fails it is repeated with another randomly selected server. The fetch time

resulting from the random selection is denoted as tfetch rnd. For simplicity, it is assumed

that a server fails after 100% of the replica is fetched. For a successful get request, fetch

7no SRM is considered

53

operations can be repeated up to R − 1 times. Thus the sum of all probabilistic cases

determines the get time as shown in formula 5.5 (derived from formula 5.4).

tget = tfetch rnd +
R−1∑
k=1

(k × tfetch rnd × P k
failure) (5.5)

Get Time for the Static High DOC Case

In the case that a high DOC (R) is configured, the get request initiates R concurrent fetch

operations. Failures are compensated for by redundant concurrent fetch operations and thus

the fastest successful fetch operation determines the get time. In accordance with formula

5.4, tfetch i is increased by the high DOC which reduces the bandwidth for an individual

fetch operation at the client side.

54

Thus the fetch time is denoted as tfetch min, DOC=R, and determines tget as shown in 5.6.

tget = tfetch min, DOC=R (5.6)

Get Time for the Perfect SRM Case

In the case that a perfect SRM is used and a low DOC (1) is configured, the get request

initiates 1 fetch operation from the fastest server. Failures are compensated for by a perfect

prediction and thus, again, the fastest successful fetch operation determines the get time.

Note, that this takes the low DOC into account which does not reduce the bandwidth on

the client side. Thus the fetch time is denoted as tfetch min, DOC=1, and determines tget as

shown in 5.7.

tget = tfetch min, DOC=1 (5.7)

Use Case Scenarios

In the following the get time is analysed with all three of the above considered cases, with

an increasing Pfailure, and two different scenarios with respect to network speeds. In both

scenarios a data item size S of 500 [KByte] and a latency L on the server and client side

of 100 [ms] is defined. The replication factor R is 4 and for simplicity, all bandwidth and

latencies on the server side BWserver i, Lserver i are equal.

In scenario 1 (figure 5.2) the bandwidth of each server (BWserver i) link is specified as 100

[Mbps] and the bandwidth on the client side (BWclient) as 1 [Mbps]. This represents a

55

network bottleneck at the client side.

Figure 5.2: The effects of failures on the get time when a bottleneck exists at the client
side.

In figure 5.2 it is shown that a low DOC results in shorter tget than a high DOC, for failure

rates below 70 %. tget with a perfect SRM yields the same value as a statically low DOC,

even with increasing Pfailure as it is assumed that it also detects failed hosts.

56

In scenario 2 (figure 5.3) the bandwidth of each server (BWserver i) link is specified as 1

[Mbps] and the bandwidth on the client side (BWclient) as 100 [Mbps]. This represents a

network bottleneck at the the server side.

Figure 5.3: The effects of failures on the get time when a bottleneck exists at the server
side.

In figure 5.3 it is shown that a high DOC results in shorter tget than a low DOC, for high

error rates. tget with a perfect SRM yields the same value as a statically low DOC, even

with increasing Pfailure as it is assumed that it also detects failed hosts.

5.4.2 Discussion and Hypothesis

In the previous section it is shown that situations can be identified in which a high DOC is

beneficial with respect to the get time and others where a low DOC is beneficial. The effects

of a SRM on the get time are analysed under the assumption that the SRM makes perfectly

accurate predictions. Such predictions are however only possible if the available data on

57

which the SRM’s predictions are based is up-to-date and future conditions are similar to

past ones. In the case of a high degree of variation of fetch times due to, for instance, a

variation in the available network speeds, this data may cease to be valid. In this case the

resulting get time will be similar to that for a client with a statically configured low DOC.

Furthermore the degree of variation may require a high DOC to compensate for invalid

predictions.

Even though situations were identified in which a high DOC yields benefits to tget it has

disadvantageous effects on the network usage, which is proportional to the DOC. This

represents an argument to decrease the DOC if it does not generate a disadvantageous

situation with respect to tget.

Thus performance and network usage of a distributed storage system depend on the DOC

and on environmental conditions such as the degree of variation in fetch times, the failure

rate of fetch operations and the available network speeds. None of those can be predicted

statically, thus it is hypothesised that an autonomic manager may be able to adapt the DOC

in the presence of changing conditions in order to yield benefits with respect to performance

and network usage in comparison to a statically configured DOC.

58

5.5 Autonomic Management Applied to a Distributed Store

Client

5.5.1 Overview

As hypothesised in section 5.4.2, an autonomic management mechanism may be able to

detect various environmental conditions and to set an appropriate DOC in a distributed

store client. An autonomic manager is proposed here for a distributed store client which

works in combination with a SRM.

The autonomic manager is based on a generic autonomic control loop (see section 2.3)

and reuses information gathered by the SRM in order to predict the performance of specific

hosts. As the information provided by the SRM is considered as important for the manager,

the scope of this information is now briefly sketched. As part of SRM processes, every

participant in a distributed storage system periodically evaluates latency and bandwidth

on its link to an interconnection (see figure 5.1). Since a client cannot measure server-

side conditions directly, the SRM on a client periodically gathers latency and bandwidth

information from servers. In order to combine bandwidth and latency measurements, the

gathered data is used to compute an expected data transfer time. This is representative of

how long it would take to transfer a replica of a given size across links with such bandwidth

and latency. The expected data transfer time serves as a ranking metric for each server’s

performance with respect to the SRM.

The autonomic manager runs locally on each client. It extracts timestamped monitoring

59

data from the SRM and other locally monitored events. These events are used to model

specific aspects of the situation during each specific observation period via metrics. Metrics

values are extracted to represent:

• the currently used DOC;

• the fetch operation’s failure rate;

• the variation between recent fetch times;

• and the location of any network bottleneck8;

The manager’s policy decides on the magnitude by which the DOC should be varied de-

pending on the currently used DOC, the variation between fetch operations, the failure rate

and the location of the bottleneck.

• If the DOC is currently low, and the failure rate or the variation between recent fetch

operations are high, the policy determines an increase of the DOC (to the maximum

if there is a bottleneck on the client side).

• If the DOC is currently high, and the failure rate or the variation between recent fetch

operations are low, the policy determines a decrease of the DOC.

8A bottleneck on the client side, for instance, is specified by significantly less bandwidth being exhibited
on the client link than on the server link (see figure 5.1).

60

5.5.2 Autonomic Management Components

Metric values represent aspects of the state of the system in a specific observation period.

Beside the monitoring information reused from the SRM, locally monitored data is used to

compute the specific metrics. This means for the autonomic manager itself no monitoring

data is gathered which would require the use of network resources. Here follows a brief

description of how the specific metrics are defined and how they are extracted from the

monitoring data.

Metrics

Current DOC Metric: This metric represents the value of the DOC. To be consistent

with all other inputs to the policy this is modelled by a metric.

Fetch Failure Rate (FFR) Metric: The fetch failure rate metric is the ratio of failed fetch

operations to the total number of initiated fetch operations.

FFR =
number of failed fetch operations

total number of fetch operations

Fetch Time Variation (FTV) Metric: The FTV metric represents the degree of varia-

tion between all recently computed expected data transfer times, EDTT (generated by the

SRM). It is specified by the standard deviation (σ) normalised by the mean (µ) of EDTT in

the specific observation period.

61

FTV =
σEDTT
µEDTT

A high FTV suggests that there is a large variation between fetch times.

Bottleneck (BN) Metric: As for the FTV metric, SRM monitoring data is used to com-

pute the BN metric. Bandwidth is the limiting factor when sharing links between concur-

rent fetch operations. Therefore SRM server and client bandwidth measurements are used

to compute the BN metric. The BN metric is the ratio of the mean (µ) of all bandwidths

monitored on the client side to the mean of all bandwidths monitored on server side links.

BN =
µclient bandwidths
µserver bandwidths

A BN value smaller than one suggests that there is a bottleneck on the client side.

Policy

A policy controls the DOC depending on the current DOC, the FFR, the FTV and the BN

metric values. The policy is defined as follows:

• If the DOC is currently low, and FFR and FTV are high, increase the DOC to the

highest possible value.

• If the DOC is currently low, and either FFR or FTV is high, incrementally increase

the DOC.

62

• If the DOC is currently high, and FFR and FTV are low, incrementally decrease

DOC.

• If the DOC is currently high, and FFR and FTV are low and the BN determines a

bottleneck on the client side, set DOC to the minimum value (1).

Server Ranking Mechanism (SRM)

The objective of a SRM is to rank specific servers, based on a prediction of how fast each

server, involved in a specific get request, will transfer data to a client. The prediction is

based on periodically gathered monitoring data. A SRM is proposed here based on mon-

itored network bandwidth and latency of the specific server links (as illustrated in figure

5.1). The address of the host in the interconnection which lies closest to each participant is

used to determine the participant’s latency (L) and bandwidth (BW), which are gathered

periodically. In order to combine bandwidth and latency measurements the gathered data

is used to compute an expected data transfer time (EDTT) for a data item of size S. This

EDTT serves as ranking metric for each server’s performance.

EDTT = L+
S

BW

The lower the EDTT associated with a specific server, the better its ranking. At each get

request the SRM compares expected data transfer times for all involved servers.

63

5.6 Conclusions

This chapter investigated the scope for optimising a distributed storage system’s data re-

trieval mechanism by autonomically controlling the DOC. Related work on the optimisa-

tion of data retrieval mechanisms and their shortcomings was identified and analysed in

section 5.3 and 5.4. Existing systems use Server Ranking Mechanisms (SRM) to select

a specific host for fetching a replica. To address identified problems of this approach an

autonomic manager is introduced in section 5.5, which dynamically adapts the DOC and

works in combination with a SRM. This autonomic manager is envisioned to work for any

system which exhibits the properties outlined in section 5.2.

Chapter 6

A Generic Autonomic Management

Framework

Outline

This chapter introduces the requirements for an autonomic management framework for the

experimental evaluation carried out in this thesis, and concludes that existing tools and

frameworks are inadequate for the task. It introduces a new framework which has been

developed as part of this thesis. The framework is designed to be generic to allow it to be

used outwith this thesis.

64

65

6.1 Introduction

This thesis reports on the investigation of whether distributed storage systems can be im-

proved with autonomic management. A tool was needed for implementing an autonomic

manager for the distributed storage system (ASA) considered in this thesis. The tool was

envisioned to fulfil the following requirements:

• ASA and other distributed storage systems (chapter 3) consist of several layers of

abstraction. Therefore the tool was required to be generic enough to be used for all

layers.

• It was required to reduce complexity and to ease the process of developing an auto-

nomic manager. This means that it should allow a developer to focus on developing

system-specific management components rather then generic management processes,

without any complex configuration of the tool itself.

• It was required to be lightweight, to have little impact on the runtime performance

of the target system and to allow management components to operate in the same

address space as the target system.

• With regards to this research project it was required to allow development of compo-

nents in Java.

Available tools do not meet all these requirements, therefore a generic autonomic manage-

ment framework (GAMF) was developed (in Java) and introduced in this chapter.

66

In this chapter shortcomings of available tools for applying autonomic management to a

target system are briefly outlined with respect to the above requirements, in section 6.2.

The design of the GAMF is explained in section 6.3. The chapter finishes with a summary

and information about features beyond the scope of this thesis in section 6.4.

6.2 Related Work

The J2EE server manager [95], vGrid [46], AutoMate [1], k-component [20, 19], IBM

autonomic computing toolkit [11, 60] and Accord [56] were all considered as either domain-

specific, heavyweight or unnecessarily complex with respect to this work. These tools only

offer interfaces to manage specific resources in a grid system or for a J2EE server, therefore

they were considered as not sufficiently generic for the work in this thesis.

AutoMate and Accord were considered as too heavyweight and complex for the work car-

ried out as part of this thesis. Both are expected to have a significant impact on the tar-

get system’s runtime-performance as they contain P2P overlay networks for discovering

components in a distributed system, and mechanisms which extract policies from XML

formatted configuration files. These additional mechanisms also make the use of those

frameworks overly complex.

The IBM autonomic computing toolkit allows the application of autonomic management

using a wide variety of built-in interfaces which are however limited in their scope. Cus-

tomisation of such interfaces could allow this framework to be considered as generic. These

67

interfaces however require the manager to operate in a different address space to the target

system. This and the complex machinery which comes with this tool impose a significant

load on the target system. Thus the IBM autonomic computing toolkit was considered as

too heavyweight for this work. Additionally it was considered as too complex for the work

carried out as part of this research as it requires the use of a customised IDE, as well as the

configuration of the entire machinery that comes with it.

For similar reasons, the k-component architecture was not considered in this work. It pro-

vides a C++ library which defines an Adaptation Contract Description Language (ACDL)

to specify how a controlled component is adapted by some control mechanism. A Collab-

orative Reinforcement Learning methodology is used to gather information from remote

components via CORBA. Component meta-information, used for the ACDL, is stored in

separate files in XML format. This meta-information is generated via the use of custom

configuration tools.

A novel approach to describe and specify controlled systems and high level policies via

contracts is given in the Architectural Artefacts for Autonomic Distributed Systems (A3DS)

project [86]. It provides concepts and tools to specify controllable properties of target

systems and contracts for how these properties may be controlled. It also provides a speci-

fication language and a code generation application which transforms the high level policy

or property description into Java code. A3DS does not provide an autonomic manager

implementation and is thus not considered in this work.

It was decided to address the above limitations by developing a Generic Autonomic Man-

68

agement Framework (GAMF). This should incorporate the requirements stated earlier (see

section 6.1).

6.3 Design

6.3.1 Overview

The GAMF provides a generic control mechanism based on an autonomic control loop (see

figure 2.1) and a set of interfaces to allow interaction between the control mechanism and

system-specific management components (system adapters). System adapters are: event

generators and effectors which allow interaction of the control mechanism with the target

system; metric extractors and policy evaluators which provide the means for computing

a specific response, determined by policies, to an observed situation, modelled by metrics

(see chapter 2).

Figure 6.1: A target system autonomically managed using GAMF.

69

Figure 6.1 illustrates the general architecture by showing the components used for man-

aging a target system. Additionally the flow of information between management compo-

nents and target system is illustrated. An autonomically managed system consists of the

originally unmanaged target system and an autonomic manager (which itself comprises

system adapters and the GAMF). All system adapters are registered in the GAMF’s sys-

tem adapters registry. Amongst other features, this grants them permission to access the

GAMF’s shared knowledge database in which events and metric values are stored.

6.3.2 Detail

System adapters provide operations that correspond to a specific phase of the autonomic

control cycle. Their execution is triggered by the GAMF, as configured by a system adapter

developer (for instance, periodically). The information about how a specific system adapter

is triggered is held in the system adapters registry along with access permissions to the

shared knowledge database. Access to any data stored in the shared knowledge data base

is concurrency-safe.

The following types of system adapters are defined:

• Event generators provide the GAMF with time-stamped information about specific

events in the target system. An event comprises an event type, a time-stamp specify-

ing the generation time of the event and a field for additional information, specified

by the system adapter developer. In order to allow unambiguous usage of event types,

the types of events generated by an individual event generator can be registered with

70

GAMF to prevent them being used by other event generators.

• Metric extractors are used to extract monitoring data from the shared knowledge

database in order to represent a specific situation, modelled by the metric. The metric

is specified by the system adapter developer with a metric type, a time-stamp speci-

fying the computation time of the metric value, a field for additional information and

one for a numerical metric value.

• Policy evaluators evaluate the policy specified by the system adapter programmer. A

policy is used for determining which action has to be carried out in response to the

target system’s current situation (represented by specific metric values).

• Effectors carry out the specific action in the target system when triggered. An effector

is envisioned to be triggered by the policy evaluator to change a controlled system

configuration parameter and to make the system aware of the change.

GAMF includes a flexible mechanism to filter for specific events or metrics in the shared

knowledge database. Filter options include filtering for events or metrics of a specific type,

and metrics or events recorded within a specific time window. To allow reuse of system

adapters or simply to organise them, a system adapter can be categorised as being used for

managing a specific facet of the target system. Additionally different options are provided

to control when metric extractors and policy evaluators are triggered:

• scheduled at regular intervals;

• triggered by the arrival of a specific event type;

71

• triggered on an arbitrary schedule.

6.4 Conclusions and Future Work

The framework introduced here allows developers to focus on the control logic rather than

on implementation details of generic autonomic control processes and components by fac-

toring out generic parts of the autonomic control loop. It is applicable to a wide scope of

applications which are not covered by this thesis. Examples are listed in appendix C. The

GAMF is implemented in Java; its source code and additional information, including an

API, can be obtained from http://www-systems.cs.st-andrews.ac.uk/gamf.

Chapter 7

Experimental Evaluation of the

Management of P2P Nodes

Outline

The effects on performance and resource consumption of autonomic management of the

maintenance scheduling in P2P nodes were experimentally evaluated. P2P nodes were

configured with autonomic management, as proposed in chapter 4, and deployed in a local

area test-bed. The P2P nodes were exposed to various churn patterns and workloads. In the

majority of the experiments autonomically managed nodes yielded benefits with respect to

both performance and resource consumption compared to statically configured nodes.

72

73

7.1 Introduction

In chapter 4 it was hypothesised that an autonomic manager which dynamically adapts the

interval between maintenance operations in P2P overlays (section 4.5) may yield improved

performance and network usage in comparison to a statically configured system. Perfor-

mance was defined in section 4.4.1 as a combination of lookup time, error rate and lookup

error time. Performance and network usage are referred to as user-level metrics (ULM)

wherever appropriate for the rest of this chapter. The hypothesis was experimentally evalu-

ated with a local area deployment of autonomically managed and statically configured P2P

nodes which were exposed to various conditions, and the effects on individual ULMs were

compared. The static and autonomic scheduling of maintenance operations was specified

by policies. One policy determined a fixed maintenance interval in order to represent an

unmanaged system (the baseline). Two other policies determined an autonomic adaptation

of maintenance intervals as specified in chapter 4, with different configurations.

The effects of each policy on performance and network usage were determined in a series

of experiments, each specified by a different combination of:

• churn patterns (temporal patterns of nodes joining and leaving the P2P overlay);

• workloads (temporal patterns of P2P lookups);

• policies which controlled the maintenance scheduling mechanism.

Performance, in terms of lookup time, error rate and lookup error time, was measured for

each experiment by executing the workload. The network usage was measured in terms

74

of the amount of data each node sent to the network. To verify the reproducibility of the

measurements, every experiment was repeated three times.

The motivation for this research was the wide usage of P2P overlays in distributed stor-

age systems. Thus, representative conditions for specific scenarios were derived from dis-

tributed storage use cases. Experiments were carried out with components used in the ASA

storage system, which is outlined in chapter 3. ASA uses a P2P overlay which is based

on Chord [85] and is named StAChord [47]. StAChord is built in Java and uses the Rafda

Run Time (RRT) [90, 89] library as middleware. The RRT was extended with a network

traffic monitor which recorded the number of bytes sent to the network, in order to monitor

the network usage. The autonomic manager was implemented using a framework (GAMF)

developed as part of this work, which is described in chapter 6.

This chapter is structured in the following way: the implementation of autonomic man-

agement for StAChord is outlined in 7.2. The conceptual principles of the experimental

parameters, such as workload and churn pattern, as well as the machinery used to apply

them are explained in section 7.3. The experimental setup is explained in terms of the

actual configuration of policies, churn patterns and workloads; additionally the extraction

and aggregation of performance and network usage measurements are outlined in 7.4. Fol-

lowing that, a numerical breakdown of the measurements is provided in several levels of

detail in section 7.5. The obtained results are compared with results from related work in

section 7.6. In section 7.7 this chapter is concluded by discussing the results, revisiting

initial hypotheses and by looking at future work.

75

7.2 Implementation of Autonomic Management for StA-

Chord

The original maintenance mechanism of StAChord consists of the periodically executed

operations stabilize, fixNextFinger and checkPredecessor (see chapters 3 and 4). When

autonomic management was applied, the adaptation of the intervals between executions of

each operation was managed individually by a single autonomic manager. In accordance

with the used framework (GAMF), event generators and effectors were developed to allow

interaction of the autonomic manager with the target system, and metric extractors and

policy evaluators were developed to determine the interval.

The objective of the manager was to balance the requirement for potentially conflicting

maintenance intervals. The following basic principles, introduced in section 4.5.2, were

shared between the management of each maintenance operation. Each metric represented

extracted time-stamped information, originally produced by event generators. For any met-

ric value, only information monitored in a specific observation period was considered. Met-

rics were defined to represent non-effective maintenance operations (NEMO), the error rate

when accessing peers (ER), and the time it took a node to locally execute a lookup (LILT).

Sub-policies determined new intervals considering each metric in isolation by using the

metric values to compute the magnitude of the change of the specific interval, in response

to the value of the specific metric. An aggregation-policy averaged all sub-policy responses.

The magnitude of change was determined by the metric value, a threshold t, and a factor k

(see equation 4.2).

76

7.2.1 Event Generation

The operations monitored were: stabilize, checkPredecessor, fixNextFinger, lookup and

findWorkingSuccessor. The maintenance operations stabilize, checkPredecessor and fix-

NextFinger verify specific peer-sets and repair them if necessary. Each maintenance oper-

ation generated an operation-specific event whenever it was executed unnecessarily. The

routing operation lookup was called when a key to node mapping needed to be resolved. An

event was generated at each lookup execution to monitor the time it took to execute anindi-

vidual routing operation. If any remote access to a peer (fingers, successors, predecessor)

failed, a peer-specific failure-event was generated.

7.2.2 Management of the stabilize() Interval

The stabilize operation maintains the successor and the successor list, both accessed during

stabilize and lookup operations. Thus the following metrics were used to determine a new

interval between stabilize executions, in order to assess whether maintenance-effort was

wasted or if more effort was required (section 4.5.2):

• NEMOstabilize: The stabilize operation had an effect if a new successor was found

and a new successor list item was installed. The number of any other outcomes of

stabilize was reflected by the NEMOstabilize metric value.

• ERstabilize: Any failed access to a successor triggered a call of findWorkingSucces-

sor which installed a new successor from the successor list. Thus the number of

77

findWorkingSuccessor calls determined the ERstabilize metric value.

• LILTstabilize: The mean time it took lookup calls to complete (averaged over an

observation period) was used as the LILTstabilize metric value.

Sub-policies determined new intervals with respect to each individual metric in isolation,

which were then averaged by an aggregation-policy. The sub-policies which determined

a new interval with respect to ERstabilize and LILTstabilize metrics determined a decrease.

The NEMOstabilize metric specific sub-policy determined an increase. For the extraction

of any metric only monitoring data within a specific observation period was considered.

This applies also to the management of any of the following maintenance operations.

7.2.3 Management of the fixNextFinger() Interval

The fixNextFinger operation maintains the items in the finger table (fingers), accessed dur-

ing lookup and fixNextFinger execution. Thus the following metrics were used to determine

a new interval between fixNextFinger executions, in order to assess whether maintenance-

effort was wasted or if more effort was required (section 4.5.2):

• NEMOfixNextF inger: The fixNextFinger operation had an effect if a new finger table

item was installed. The number of any other outcomes of fixNextFinger was reflected

by the NEMOfixNextF inger metric value.

• ERfixNextF inger: The number of events indicating failed calls to any finger deter-

mined the ERfixNextF inger metric value.

78

• LILTfixNextF inger: The mean time it took lookup calls to complete (averaged over

an observation period) was used as the LILTfixNextF inger metric value.

7.2.4 Management of the checkPredecessor() Interval

In contrast to the other maintenance operations, checkPredecessor only verifies the prede-

cessor and sets its address to null if an access to the predecessor has failed, whereas the

peer-set maintenance operations stabilize and fixNextFinger verify peers and install new

ones if required. In contrast to fingers or successors, a predecessor access is not initiated by

any local P2P operation other than by checkPredecessor. Thus the following metrics were

used to determine a new interval between checkPredecessor executions, in order to assess

whether maintenance-effort was wasted or if more effort was required (section 4.5.2):

• NEMOcheckPredecessor: checkPredecessor had an effect if the predecessor was changed,

NEMOcheckPredecessor was defined as the total number of times that checkPredeces-

sor did not have an effect.

• ERcheckPredecessor: The number of failed connections to the predecessor node was

used to compute ERcheckPredecessor metric value.

Note: LILT was not considered when computing the interval between checkPredecessor

calls, as the predecessor was not accessed during a call to the lookup operation.

79

7.3 Experimental Parameters

The effects of the autonomic manager, outlined in section 7.2, on StAChord’s performance

and network usage were measured in various experiments. Each experiment involved a

particular workload (a temporal pattern of lookup requests) and membership churn (a tem-

poral pattern of nodes joining and leaving the overlay). As the motivation for this research

is the use of P2P overlays in distributed storage systems, workloads and churns were de-

rived from distributed storage use cases. In each of the use cases a P2P overlay as used in

ASA was considered. This means that the nodes of which the P2P overlay was comprised

represent individual storage servers. One of these storage servers acted as a dedicated gate-

way to issue lookups during the application of workloads. Here the general concepts and

motivations for both workload and churn patterns are explained as well as the machinery

used for applying them. The configurations used in the experiments can be found in section

7.4.

7.3.1 Churn Pattern

Each churn pattern modelled the behaviour of a set of nodes, in terms of a sequence of

alternating on-line and off-line phases for each node.

• During on-line phases a node can be routed to by its key.

• During off-line phases a node cannot be routed to by its key.

80

The durations of these phases were pseudo-randomly generated according to two normal

distributions, one for on-line and one for off-line phases. Thus the churn pattern was de-

fined by the two distributions.

Example Churn Pattern

The following example shows how a churn pattern was applied to an individual node by the

machinery. The churn pattern was given by the on-line and off-line phase-durations. Each

phase-duration was selected from a normal distribution of values which was specified by its

mean and standard deviation (µton/off−line
±σton/off−line

). A duration defined the minimum

overall length of all alternating phases. All durations are given in seconds, [s].

• duration: 500[s]

• ton−line : 102± 3[s]

• toff−line : 106± 10[s]

Figure 7.1 illustrates the behaviour of an individual node due to the above churn pattern,

which resulted in alternating on-line and off-line phases for an overall duration of 518 [s].

Figure 7.1: Temporal pattern of on-line/off-line phases of an individual node.

81

All participating nodes in an overlay, as used in the experiments, exhibited similar be-

haviour to that illustrated in figure 7.1 as a result of the churn pattern just described. The

particular length of each phase was pseudo-randomly selected from the corresponding dis-

tribution. Additionally the type of the first phase (on-line or off-line) was also selected

pseudo-randomly. The motivation for the pseudo-randomness was that churn patterns were

required to exhibit variation during the course of an experiment and between nodes but not

between repetitions of experiments with the same churn pattern configuration.

Distributed Storage Usage Scenarios/Churn Patterns

The conceptual approach towards the simulation of specific churn patterns as described

above was used to support the following four usage scenarios. The four scenarios represent

edge cases and combinations of edge cases in order to have significant variations between

the tested scenarios. In each scenario one of the nodes was a dedicated gateway through

which a workload was executed. All other nodes exhibited behaviour corresponding to the

scenarios. The gateway was permanently on-line because it was required by any node to

join the overlay at the initiation of any node’s on-line phase and by the machinery which

applied the workload, for issuing lookups. The scenarios evaluated were:

• A low membership churn in which the overlay is composed of nodes representative

of dedicated servers that join the network and rarely leave it. In this scenario a high

interval between maintenance operations is desired.

• A high membership churn in which the overlay is composed of nodes representative

82

of workstations that join and leave with a high frequency. In this scenario a short

interval between maintenance operations is desired.

• A locally varying membership churn in which the overlay is composed of nodes

representative of either servers or workstations with different joining and leaving

patterns. In this scenario it is desired that nodes which are exposed to high churn

maintain links to their peers with a higher frequency than those exposed to low churn.

• A temporally varying membership in which the overlay is composed of nodes which

change their behaviour over time, from behaving like workstations to behaving like

servers and vice versa. Workstations exhibit high churn whereas servers exhibit low

churn. In this scenario small intervals are desirable when nodes exhibit high churn

and vice versa in periods of low churn.

7.3.2 Workload

Each workload was specified as a temporal pattern of P2P lookups, which were executed

via the previously introduced gateway. Machinery was developed which allowed the ex-

pression of various temporal lookup patterns representing four scenarios which starkly dif-

fer from each other. These can be categorised as synthetic or file system specific. In each

type of workload the keys were pseudo-randomly generated, to allow a variation of keys

within an individual experiment but not between repetitions.

83

Synthetic Workloads

The evaluated synthetic workloads were:

• To represent scenarios in which no or very few lookups were executed, a synthetic

light weight workload was defined. Such a workload was specified by a number of

l lookups which were spread evenly over the experimental duration. The interval

between lookups was d seconds.

• To represent scenarios in which lookups were executed at a high rate a synthetic

heavy weight workload was defined. Such a workload was specified by l lookups

which were executed sequentially without any delay between them.

• To represent scenarios in which a workload exhibits alternating phases of heavy and

light weight workloads, a synthetic variable weight workload was defined. Such a

workload was specified by l sequential lookups which were spread over the experi-

mental duration. The spreading factor was specified by s and d. s sequential lookups

were executed without any delay between them, and after every sth lookup a delay

of d seconds was exhibited.

File System Specific Workload

To represent a distributed storage usage scenario, a workload specific for a file system

workload was defined. File system operations were extracted from existing “real world”

file system traces and the corresponding ASA operations were generated. These ASA

84

operations corresponded with temporal patterns of lookup operations in ASA’s P2P layer.

This transformation was based on ASA semantics as described in chapter 3. More details

are available in the appendix A.1.4.

7.4 Experiment Setup

7.4.1 The Test-Bed

The experiments reported here were conducted on a local area test-bed consisting of 16

dedicated hosts each with a 3.00GHz Intel R©Pentium R©4 CPU and 1GB of RAM. The

hosts were connected to a dedicated switch and isolated from the rest of the network. A

single overlay node was executed on each network host to ensure that the performance of

the overlay network was not skewed by multiple overlay nodes competing for resources

(CPU-time, memory and network bandwidth) within a host. A separate host, the workload-

executor, ran the workload and conducted performance measurements. Each participating

node monitored the number of bytes it sent and received as well as autonomic management

details. To avoid measurements being skewed by collecting data from the individual hosts

during an experimental run, monitoring data was kept locally and collected after each ex-

periment finished. As monitoring data was time-stamped the system clocks on all hosts

were synchronised using NTP [63]. Information about the motivation for choosing this

specific test-bed can be found in appendix A.1.5.

85

7.4.2 Derivation of User-Level Metrics

The experiments1 were carried out to measure the effects of the various policies on the user-

level metrics (ULM) performance and network usage. Single values for both performance

and network usage was computed by aggregating measurements for each experiment in

order to compare effects of the specific policies. To verify reproducibility each experiment

was repeated three times.

Measurements were aggregated over observation periods of 5 minutes. Performance mea-

surements were derived from the execution of workload lookups. Performance was pre-

viously defined in section 4.4.1 as a combination of lookup time, lookup error rate and

lookup error time2 collected during individual observation periods. Network usage was

measured as the amount of data all nodes sent to the network during each individual obser-

vation period. The time during which monitoring data was gathered in one experimental

run (experiment run time) was the time interval from the first lookup until the last, whether

it was successful or not.

To highlight the fact that a performance measurement was computed for each observation

period, the performance is referred to as expected lookup time for the rest of this thesis. The

motivation for this notion was that a lookup would have been expected to complete after

some time if a fall-back mechanism retried failed lookups until they succeeded. Thus for

modelling the expected lookup time, texpected, it is assumed that any given lookup succeeds,

after a lookup time tlt, with a probability psuccess. Conversely any given lookup may fail

1An experiment is specified by the combination of a specific churn pattern, workload and policy for
managing maintenance scheduling.

2All are referred to as secondary ULM wherever appropriate for the rest of this chapter.

86

with a probability pfailure after a lookup error time, tlet has passed. Every failure is followed

by a retry, which is repeated n times. Thus, the expected lookup time is given by the

weighted sum of all possible cases as shown in formula 7.1.

texpected = tlt × psuccess +
n∑
i=0

(
(tlt + i× tlet)× psuccess × pifailure

)
(7.1)

This resulted in (derived) ULM monitoring data being available in form of progressions

of expected lookup times and network usages, each for individual observation periods.

Including the repetitions, three progressions were available for each ULM. The individual

expected lookup times and network usages for each observation period, including their

repetitions, were used to create distributions of expected lookup times and network usages.

In order to compare the effects of specific policies on an individual ULM, the arithmetic

mean of the distribution was calculated.

7.4.3 Churn Pattern Configurations

The four churn patterns were specified by pseudo-randomly selected values3, as:

• Low membership churn:

– ton−line >> 2[h]

– toff−line : 157± 20[s]

3Specified as explained in section 7.3.1.

87

• High membership churn4:

– ton−line : 200± 40[s]

– toff−line : 100± 20[s]

• Locally varying membership churn: 25% of all P2P nodes were representative of

dedicated servers which exhibited low churn. 75% of the P2P nodes were represen-

tative of user workstations which exhibited high churn.

• Temporally varying membership churn: a phase in which all nodes exhibited low

churn, with a duration of 1000 [s], followed by a phase in which all nodes exhibited

high churn, again with a duration of 1000 [s] and so forth.

The churn patterns were held constant between experiment repetitions.

7.4.4 Workload Configurations

The following workload specifications5 were derived from preliminary work, as reported

in appendix A.1:

• Synthetic light weight workload: 10 lookups were issued in total; between two

lookups a period of 300 seconds of inactivity was configured.

• Synthetic heavy weight workload: 6000 successive lookups were issued.

4This was a random churn pattern amongst the highest churn patterns the experimental platform supported.
5See section 7.3.2 for definitions and examples.

88

• Synthetic variable weight workload: 1000 lookups were issued in total; 100 succes-

sive lookups were followed by 300 seconds of inactivity.

• File system specific workload: a temporal sequence of 14576 P2P lookups derived

from a file system trace. In order to represent original ASA semantics, the lookups

were organised in sets of keys, those representative of keys for meta-data were looked

up in parallel and those representative of keys for data in sequence. The lookups were

spread over the experimental duration in accordance with the file system workload.

More details are available in the appendix A.1.4.

7.4.5 Policy Parameter Configurations

Three different policies for scheduling maintenance operations were defined using the au-

tonomic management mechanism6. The management mechanism consisted of an aggrega-

tion policy which balanced out interval recommendations of sub-policies which analysed

individual metrics in isolation. Each sub-policy determined an increased or decrease of

the current interval proportional to the difference of the analysed metric value to its corre-

sponding ideal value7. A threshold t determined which metric values were ignored and a

constant factor k determined the rate of change. Values for t and k were configured specifi-

cally for the individual sub-policies but then had the same values for each of the individual

maintenance operations8. NEMOt, NEMOk, ERt, ERk, LILTt, LILTk were referred

to as policy parameters.

6See section 7.2 and 4.5 for more details.
7The NEMO specific sub-polices determined an increase, ER and LILT a decrease.
8stabilize, fixNextFinger, checkPredecessor

89

• Policy 0: This policy left nodes unmanaged but still incurred the overhead of the

management processes in order to allow comparison.

• Policy 1: This policy determined a new interval between any maintenance operation

based on the operation-specific metrics outlined above. The policy parameters were

derived from preliminary experiments (appendix A.1.3) with the objective of finding

the most suitable parameter set.

• Policy 2: Like policy 1, this policy determined a new interval between any mainte-

nance operation based on the operation-specific metrics outlined above. This policy

was configured to ignore LILT metrics and to aggressively react to the other metrics.

All policies were evaluated every two seconds. Two seconds was also used as an initial

maintenance interval. Thus the configuration of policy 0 resulted in a statically configured

interval for each maintenance operation of two seconds. This maintenance interval was

derived from the preliminary experiments reported in appendix A.1.1 as the most suitable

static interval.

7.5 Experimental Results

7.5.1 Overview

Autonomic management yielded a significant improvement of the observed user-level met-

rics (expected lookup time and network usage, see section 7.4.2) in the majority of the

90

conducted experiments, in comparison to a static configuration of P2P nodes. Each ex-

periment was specified by the combination of a specific churn pattern, a workload and

the policy which specified the management of the peer-set maintenance scheduling in de-

ployed nodes. Every experiment was repeated three times to verify the reproducibility of

the observed effects. In the following, the experiments are organised by churn pattern and

workload for ease of comparison of the effects of a specific policy on an individual ULM.

Four different churn patterns were specified in section 7.4.3 and four different workloads in

7.4.4. Sixteen different groups of experiments were conducted in each the effects of three

policies were measured separately. Within each group the churn pattern and workload was

the same while the policy varied. Policy 0 represented an unmanaged system and policies 1

and 2 autonomically managed systems (see section 7.4.5). When comparing the effects of

policies in one group of experiments, the smallest ULM value denoted the most beneficial

policy.

Table 7.1 shows the number of experiments in which each policy yielded the greatest ben-

efit, with respect to the expected lookup time (ELT) and the network usage (NU) individ-

ually and to both in combination. Policy 0 gave the best results in fewer experiments than

policy 1 and policy 2.

policy description ELT NU ELT & NU
2 autonomic2 6 12 5
1 autonomic1 8 3 0
0 static 2 1 0

Table 7.1: The number of experiment groups (out of a total of 16) in which each policy
yielded the greatest benefits.

91

Table 7.2 provides an holistic view of the effects of autonomic management. It shows

the mean ULMs in managed systems normalised to an unmanaged system. Thus every

normalised ULM less than 1 represents a benefit of the specific autonomic management

policy with respect to the unmanaged system. More details are provided in appendix A.2.

experiment specification policy 1 policy 2

workload churn pattern
expected
lookup
time

network
usage

expected
lookup
time

network
usage

sy
nt

he
tic

lig
ht

w
ei

gh
t

low churn 0.725 0.09 0.705 0.028
high churn 0.814 0.548 0.817 0.353
locally varying churn 0.835 0.454 1.207 0.438
temporally varying churn 0.807 0.293 0.979 0.178

sy
nt

he
tic

he
av

y
w

ei
gh

t

low churn 0.727 0.314 0.698 0.23
high churn 0.605 1.333 0.693 0.983
locally varying churn 0.085 1.2679 0.183 1.082
temporally varying churn 0.562 0.541 0.672 0.4

sy
nt

he
tic

va
ri

ab
le

w
ei

gh
t

low churn 0.714 0.111 0.7 0.054
high churn 0.362 1.202 0.364 0.781
locally varying churn 3.239 0.416 2.954 0.421
temporally varying churn 1.559 0.258 0.974 0.245

fil
e

sy
st

em
sp

ec
ifi

c low churn 0.804 0.341 0.787 0.293
high churn 5.142 0.47 1.089 0.523
locally varying churn 0.6 0.453 0.592 0.882
temporally varying churn 0.862 0.595 0.932 0.409

Table 7.2: A summary of all normalised ULMs.

Bold and underlined values in table 7.2 represent results which were not statistically signif-

icantly different from the baseline (policy 0), according to a visual approximation test for

significance. This test was conducted following guidelines from [40]. It involved the com-

putation of the 90% confidence interval of the mean (ciµ) of the corresponding user level

metrics and evaluating whether the confidence intervals overlapped. 25% of the compar-

isons shown in table 7.2 were not significantly different. In addition t-tests were carried out
9In contrast to the visual approximation, a t-test results in a significant difference in this case.

92

to evaluate the probabilities of the compared data sets being statistically significantly differ-

ent from each other. All t-test results are available in appendix A.2.18. The comparison of

expected lookup times abstracts over the variation of the underlying raw data (lookup time,

lookup error time and lookup error rate) for simplicity. Samples of the raw data as pro-

vided in appendix A.2 for each measurement show that statistically significant differences

can be identified in the raw data used to derive the expected lookup time. As an example the

figures 7.2a,7.2b and 7.2c show the ciµ (with 90% confidence) for all performance-related

raw measurements in experiments with heavy weight workload and high churn.

(a) Lookup Time (b) Lookup Error Time (c) Lookup Error Rate

Figure 7.2: Visual Approximation for Statistical Significance of secondary ULMs

7.5.2 Detailed Analysis

Benefit was achieved by the autonomic manager, by successfully detecting unsatisfactory

situations and adapting the interval of the controlled maintenance operation accordingly. In

order to explore the potential of autonomic management, the focus here lies on analysing

the experiments in which autonomic management did best. These were experiments in

which a synthetic heavy weight workload was executed (table 7.2).

93

Experiments with Low Churn

Here the progressions of the expected lookup time, the network usage and the maintenance-

interval progressions are portrayed. As it was observed that intervals of the individual main-

tenance operations progressed at a similar rate, only the finger table maintenance interval

progression is shown. All progressions show the mean values of the portrayed observ-

able averaged over three experimental runs in each specific observation time window; the

observation time window was specified as five minutes.

The progressions are also specified this way in all of the following sub-sections in which

the effects of autonomic management are analysed in detail. All progressions stop after the

first sixty minutes of the experimental run time and the same scale is used in all figures

showing the same observable to ease comparison between the individual plots.

Figure 7.3: Expected lookup time progression with
synthetic heavy weight workload and low churn.

Figure 7.3 shows that, under low churn, the expected lookup time of nodes which were

managed with policies 1 and 2 improved within the first few minutes with respect to un-

94

Figure 7.4: Network usage progression with
synthetic heavy weight workload and low churn.

Figure 7.5: Maintenance-interval progression with
synthetic heavy weight workload and low churn.

managed nodes. After this time no significant improvement was observed. This corre-

sponds with the network usage progression shown in figure 7.4 - after a few minutes the

network usage of managed nodes did not further improve significantly versus unmanaged

nodes. Further analysis showed that the network usage with managed nodes is mainly due

to the execution of lookups in the workload, because hardly any maintenance traffic oc-

95

curred after a few minutes experimental run time. The network usage progression shown

in figure 7.4 exhibits a drop at the end of the experimental run time. This drop is an arte-

fact of the data representation method, which (potentially) applies to any of the following

plotted network usage progressions. Data sent during the observation period within which

the experiment finished is averaged over that entire observation period.

The effects on the individual ULMs are a result of the maintenance interval adaptation

shown in figure 7.5. In experiments with low churn, autonomic management detected an

unsatisfactory situation with respect to network usage which was corrected with an increase

of the maintenance interval. This decreased the amount of work each node spent (unnec-

essarily) maintaining its peer-set, and subsequently reduced the amount of data sent to the

network in comparison with unmanaged nodes. Additionally, a reduction in the work spent

on maintenance operations left more computational capacity for dealing with lookup op-

erations. This decreased the monitored lookup time and subsequently the expected lookup

time as no errors occurred in such situations. Policy 2 reacted, as specified, more aggres-

sively to observed metrics and increased the maintenance interval at a higher rate than

policy 1. More details are available in appendix A.2.6.

Experiments with High Churn

Figure 7.6 shows that after the first few minutes the expected lookup time of unmanaged

nodes progressed to much higher values than with managed nodes. The expected lookup

time measured in an experiment with nodes managed by policy 2 exhibited a peak after

twenty-five minutes run time. Additional analysis showed that this peak and the relatively

96

Figure 7.6: Expected lookup time progression with
synthetic heavy weight workload and high churn.

Figure 7.7: Network usage progression with
synthetic heavy weight workload and high churn.

high values for the expected lookup time of unmanaged nodes were due to an increased

error rate in both cases. This increase in the error rate, of nodes managed by policy 2, was

compensated for by a decrease of the maintenance interval as illustrated in the magnified

interval progression in figure 7.8.

The relatively high values for network usage in networks with unmanaged nodes in the first

97

Figure 7.8: Maintenance-interval progression with
synthetic heavy weight workload and high churn.

few minutes, shown in figure 7.7, result from the low expected lookup times during this

time. Low expected lookup times result in more lookups having been issued in the same

time than with higher expected lookup times, which subsequently caused more data to be

sent to the network during such a phase.

Figure 7.8 shows that autonomic management detected an unsatisfactory situation with

respect to the experienced churn and reacted by reducing the maintenance intervals. That

resulted in a decrease in the number of failed lookups and subsequently the expected lookup

time of managed nodes. Even though high churn was simulated, nodes experienced phases

in which the churn allowed autonomic management to temporarily increase the mainte-

nance intervals. This resulted in a better trade-off between work spent for maintenance and

expected lookup time than in unmanaged nodes. Here again, policy 2 reacted more aggres-

sively to observed metrics and kept the maintenance interval at higher levels than policy 1.

More details are available in appendix A.2.7.

98

Experiments with Locally Varying Churn

Figure 7.9: Expected lookup time progression with
synthetic heavy weight workload and locally varying churn.

Figure 7.10: Network usage progression with
synthetic heavy weight workload and locally varying churn.

In experiments with locally varying churn 25% of the nodes exhibited low churn (referred

to as low churn nodes), while the rest exhibited high churn (referred to as high churn

nodes). Figure 7.9 shows a peak in the expected lookup time of nodes managed by policy

2, after twenty-five minutes. This peak was identified as a result of an increased error rate

99

Figure 7.11: Maintenance-interval progression with
synthetic heavy weight workload and locally varying churn.

after additional analysis. Figure 7.9 also shows an increase of the expected lookup time in

unmanaged nodes after the first twenty-five minutes. Additional analysis showed that this

increase (and the further increase of policy 0) was due to a combination of an increase in the

error rate and the time it took to successfully resolve lookups. The increase of the expected

lookup time is reflected by the network usage progression in figure 7.10. As lookups took

longer the network was less congested in an individual observation period. Thus, it took

longer to finish the entire workload in experiments with unmanaged nodes.

In this experiment, heterogeneous behaviour was exhibited. This caused autonomic man-

agement to apply two categories of actions. Maintenance intervals were set to a low value

for high churn nodes, and to a high value for low churn nodes. The driver for the adapta-

tion in low churn nodes was the detected degree of churn whereas the interval for the high

churn nodes was reset to the initial value every time they (re)joined the network. Therefore

management actions are plotted separately for both categories in figure 7.11. A network

100

consisting only of low churn nodes would have been expected to exhibit management ac-

tions similar to the ones shown in figure 7.5, whereas a network consisting only of high

churn nodes would have been expected to exhibit management actions similar to the ones

shown in figure 7.8. Even though low churn nodes never left the network, autonomic man-

agement never set any interval at such high values as it did for nodes in a network with a

homogeneous low churn (see figure 7.5). In fact, the progression shows that management

even reduced the maintenance intervals on low churn nodes to a value close to the initial

value, when appropriate. By decreasing intervals on nodes exposed to high churn and in-

creasing intervals on nodes exposed to low churn, the management resulted in an overall

decrease of the error rate and subsequently a decrease of the expected lookup time and an

overall decrease of the network usage with respect to a network with unmanaged nodes.

More details are available in appendix A.2.8.

Experiments with Temporally Varying Churn

Figure 7.12: Expected lookup time progression with
synthetic heavy weight workload and temporally varying churn.

101

Figure 7.13: Network usage progression with
synthetic heavy weight workload and temporally varying churn.

Figure 7.14: Maintenance-interval progression with
synthetic heavy weight workload and temporally varying churn.

Figure 7.12 shows the progression of the expected lookup time with a temporally varying

churn. Here nodes exhibited phases of low churn alternating with phases with high churn,

each phase lasted about 1000 seconds (17 minutes). When comparing figures 7.12, 7.13

and 7.14 it can be seen that the autonomic manager successfully detected unsatisfactory

situations with respect to wasted effort in low churn phases and increased maintenance in-

102

tervals. Conversely, in high churn phases it detected that maintenance effort is required

and decreased the intervals. The peak of the expected lookup time (for policy 1) at minute

twenty in figure 7.12 corresponds with the start of the high churn phase. It shows a high

expected lookup time due to errors which were caused by peer-sets being out of date. Un-

managed nodes exhibit a relatively high error rate towards the end of the experimental

runtime which corresponds with an increase of the expected lookup time with unmanaged

nodes. The network usage progression plotted in figure 7.13 shows that autonomic manage-

ment caused more resources to be spent in high churn phases than with unmanaged nodes.

The effects on the individual ULM were the result of the maintenance interval progression

as shown in figure 7.14. It shows that the interval adaptation carried out by the autonomic

manager corresponds with the degree of churn in the specific phases. Autonomic manage-

ment yielded an adaptation of the controlled intervals in response to the changing situations

quickly enough to result in an overall benefit. More details are available in section A.2.9.

Here it can be again identified that policy 2 reacted more aggressively than policy 1 and

thus resulted in a greater benefit.

Disadvantages of Autonomic Management

Autonomic management was beneficial in most of the experiments in which it was com-

pared with a static configuration. Performance was improved in some scenarios at the cost

of the network usage, which seemed reasonable in those specific scenarios. However, about

19 % of experiments were identified where the tested autonomic policy had a negative ef-

fect on performance (table 7.2). Those were in most cases due to the frequency of lookup

103

requests, the resulting amount of available data used as input for the manager, and the re-

sulting management actions. Interesting negative effects were identified with synthetic light

weight workload and high churn; they are representative of a general potential shortcoming

of this manager with respect to these specific situations.

During some observation periods in these experiments, more lookup errors occurred with

managed than with unmanaged nodes, which resulted in longer expected lookup time. The

lookup error rate had approximately the same trend as the progression of the gateway’s

finger table error rates (ERfixNextF inger, see section 7.2.3). This means that, because of too

high intervals, out-dated finger table entries at the gateway were accessed during workload

execution in such situations.

The reason for autonomically managed nodes with synthetic light weight workload ending

up in such a situation was the limited amount of monitoring/input data available to the

manager due to the frequency of lookups. A relatively small number of infrequent lookup

requests correlated with relatively few failures, even though high churn was exhibited. This

was subsequently interpreted by the manager as a low requirement for more maintenance

operations. As defined by the autonomic manager’s policy, a high error rate was not only

interpreted as a strong requirement for a decrease of maintenance intervals, but additionally

it initiated immediate maintenance operations. Thus, autonomic management did not apply

the desired action in such a scenario with a light weight workload. With a heavy weight

workload a lookup failure resulted in the immediately following lookup having an up-

dated peer-set available. With high churn and synthetic heavy weight workload, more

lookups also increased the probability of failures which resulted in a greater requirement

104

for decreasing the interval. This is illustrated by comparing the progression of maintenance

intervals on the gateway in experiments with synthetic heavy versus light weight workload

execution and where a high churn is exhibited in figure 7.15.

Figure 7.15: Interval progressions with high churn and synthetic heavy versus light weight
workload (policy 1).

7.5.3 Analysis of Reproducibility

Three repetitions (referred to as runs 1, 2 and 3) of each experiment were executed to inves-

tigate reproducibility. A similarity metric was defined as the standard deviation normalised

(NSD) with the mean of the expected lookup times in the corresponding monitoring pe-

riods of the three repetitions of an experiment. This provided a set of NSD values for 3

repetitions of an experimental run. NSD values were aggregated by computing the mean,

in order to produce a single NSD measure for each experiment.

Figure 7.16 shows the cumulative frequency distribution of all similarity metric values,

105

Figure 7.16: NSD cumulative frequency plot.

computed for all three policies in all sixteen groups of experiments. Perfect reproducibility

would have been represented by a NSD of 0.0, which is illustrated as a line in figure 7.17.

To show how the expected lookup times progressed in individual experimental runs with a

specific NSD value, some selected experiments are portrayed in figures 7.17a and 7.17b.

They do not show much variation of the progressions of the expected lookup times and thus

on the effects of autonomic management. To summarise, about 50% (the median) of the

experiments resulted in an NSD < 0.2 and therefore the reproducibility was considered to

be sufficient.

106

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60

ex
pe

ct
ed

 lo
ok

up
 ti

m
e

[m
s]

elapsed time[min]

run 1
run 2
run 3

(a) Average NSD value of 0.23 (variable-weight
workload, high churn, policy 2)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 10 20 30 40 50 60

ex
pe

ct
ed

 lo
ok

up
 ti

m
e

[m
s]

elapsed time[min]

run 1
run 2
run 3

(b) Average NSD value of 0.01 (heavy-weight
workload, low churn, policy 2)

Figure 7.17: Expected lookup time progressions for individual runs of selected
experiments

7.6 Comparison with Related Work

In section 4.3 it is outlined how Ratul Mahajan et. al. [57] evaluated the dynamic adaptation

of Pastry maintenance intervals in order to improve performance and resource consump-

tion. Even though no direct experimental comparison was made, some additional data is

presented which supports the hypothesis that more benefit may be achieved with the man-

ager introduced here.

The Pastry optimisation focuses on performance because it adapts the maintenance interval

in order to achieve a specific minimum performance. In a situation in which churn de-

creases, this will result in their manager stopping increasing the maintenance interval once

the minimum performance is reached, even though churn keeps decreasing. In such a situ-

ation an increasing maintenance interval correlates directly with decreasing unnecessarily-

used network resources. Thus resource usage is not improved beyond a fixed point by their

manager.

107

The approach introduced in this thesis will increase the maintenance interval as long as

no increase in churn is detected. This behaviour was illustrated in the detailed analysis in

section 7.5. Figure 7.18 and 7.19 illustrate this here again in different experiments with a

synthetic light weight workload.

Figure 7.18: Maintenance-interval progression with
synthetic light weight workload and low churn.

If the churn level changes and causes an error, maintenance operations will be executed

immediately to reduce the possibility of having an outdated peer-set and the interval is de-

creased. Thus the network usage reduction will not stop at a fixed point if the manager

introduced here is used, but still compensates for increased churn by decreasing the in-

terval. It is shown in the maintenance-interval progression in figure 7.19 in experiments

with temporally varying churn in which nodes exhibited alternating phases of high and low

churn, each for a duration of about fifteen minutes.

108

Figure 7.19: Maintenance-interval progression with
synthetic light weight workload and temporally varying churn.

7.7 Conclusions and Future Work

In the experiments reported in this chapter it was demonstrated that significant benefit can

be achieved by controlling a P2P overlay’s maintenance scheduling mechanism autonom-

ically, as shown by the example of ASA’s underlying P2P overlay StAChord. It was hy-

pothesised that autonomic management may yield benefits under dynamic conditions by

adapting the intervals appropriately. A further hypothesis stated that under static condi-

tions autonomic management may yield benefits by causing the individual ULMs to con-

verge at better values than an unmanaged system. Both hypotheses are considered to be

successfully evaluated. It has been demonstrated that autonomic management is able to

detect situations in a dynamic environment in which maintenance effort is wasted or when

more maintenance work is required (see figures 7.12 and 7.13). It was also demonstrated

that in the case of homogeneously uniform environments, the autonomic manager caused

the individual ULMs to converge over time to values much better than in an unmanaged

109

system (see figure 7.3, 7.4, 7.6 and 7.7). However, situations have been identified in which

this approach to autonomic management made things worse and thus bears some potential

for improvement, which is discussed in the following.

7.7.1 Suggestions for Adaptations of Chord

A fall-back mechanism when accessing faulty fingers could improve the benefit which can

be gained from autonomic management of the maintenance scheduling.

In the Chord implementation used for these experiments a lookup request fails if the lookup

involves an access to a finger which points to a host which is not available anymore. This

means the information in the finger table is out-dated. Increasing churn correlates with

the probability for a finger to be out-dated. This suggestion for improvement is based on

an existing fall-back mechanism which selects the next node from the successor list in

the event of an out-dated successor being accessed. The fall-back mechanism for finger

table accesses suggested is to select the next node from a list of nodes in the event of an

access to a specific finger failing. Such a list could be equivalent to a specific finger’s

successor list. This adaptation would be an improvement in combination with autonomic

management because accesses to failed fingers would not result in an error, since the fall-

back mechanism would provide an alternative finger and the autonomic manager would

initiate a maintenance operation immediately after an error was detected. This may allow

an autonomic manager to set the interval to a high value after a long period of low churn

but also keeps the finger table reasonably up-to-date if a sudden high churn is exhibited. A

110

trade-off resulting from this improvement is that more information needs to be transferred

over the network when maintaining a finger list than when maintaining a single finger.

Another option which may address this issue would be to modify Chord’s lookup operation

to choose another finger from the finger table if the accessed finger points to a node which

has already left the overlay. This may increase the numbers of hops required for a lookup,

but on the other hand no additional overhead would be introduced when transferring infor-

mation about a node across the network when maintaining a node’s finger table.

7.7.2 Encountered Nodes in the Network

In addition to the benefits determined by expected lookup time and network usage, experi-

ments showed that in an overlay consisting of autonomically managed nodes, more nodes

stayed connected with their peers than in experiments with unmanaged nodes. This was

considered to be a benefit of autonomic management with respect to performance for the

following reasons.

In the experiments reported here, the number of nodes connected to the rest of the net-

work was periodically monitored and averaged over an experimental run. The number of

encountered nodes available in the overlay network depended on the accuracy of the gate-

way’s finger table. This was due to the network-join protocol, in which a joining node

executes a lookup via a known node to locate its successor for initiating its peer-set. In this

work, the gateway was used as the known node for joining nodes. It was managed with the

same management mechanism as the rest of the P2P nodes. If the management caused the

111

gateway to have out-dated finger table entries, joining nodes could not find their successor

and consequently were left out of the overlay network. Additionally, any participating peer

with an out-dated peer-set could cause the joining or discovery process to break. Thus the

greater the number of discovered nodes in experiments with a high churn, the more up-to-

date the peer-set, and the greater the benefit of a specific policy with respect to the number

of participants and subsequently to performance.

In more detail: the node discovery process was carried out in every experimental run re-

ported here at every 50 seconds. By making use of the circular key order, the gateway’s

successor was asked for its successor and so forth until the successor was reached again.

The number of detected successors indicated how many nodes were present in the overlay

network. The mean number of detected nodes was computed over an entire experimental

run. As a representative example, the numbers of encountered nodes in experiments with

networks with high membership churn are analysed in the following. The mean number

of detected nodes was normalised with respect to the number detected in experiments in

which nodes managed with policy 0 were used. When a synthetic heavy weight workload

(under which autonomic management gained the highest benefit) was executed, policy 1 re-

sulted in 65% and policy 2 in 33% more node encounters than in networks with unmanaged

nodes. When all the normalized node encounters were averaged over experiments in which

a high churn was exhibited and every workload pattern was executed, policy 1 resulted in

3.4% and policy 2 in 2.1% more node encounters than in networks with unmanaged nodes.

Thus it can be said that autonomic management improved the performance with respect to

nodes that stayed connected to the overlay even under high churn.

112

7.7.3 Alternative Validation Approaches

In the evaluation reported here the effects of the specific policies on individual ULMs were

quantified with a single value for each ULM. For instance, the single value for the expected

lookup time for an individual experiment was represented by the mean of all expected

lookup times, computed for individual observation periods. An individual expected lookup

time was only computed if monitoring values for lookup times and lookup error times were

available for the observation period under consideration. Thus, no expected lookup time

was computed if all lookups failed in this observation period. It was however the case that

in a small number of cases no expected lookup times were computed as all lookups in some

observation periods failed (for instance in experiments with light weight workload and high

churn).

An alternative method for quantifying the effects on both ULMs, which captured such

situations, showed that autonomic management also yields benefits if ULMs in such ob-

servation periods were not missed out. Appendix A.2.19 provides results from a holistic

quantification method in which one single expected lookup time was computed for an en-

tire experiment, using the means of all monitored lookup error times and lookup times as

well as the lookup error rate computed over the entire experimental run time. However,

this holistic approach towards quantifying the effects of the specific policies does not allow

to use one set of numbers for showing progressions of the specific user-level metrics and

for extracting a single number for each policy to quantify its effect on a specific ULM.

Additionally, spikes in the monitoring data could skew the results. Thus the holistic quan-

113

tification method was not used for this chapter but is however provided in appendix A.2.19

for comparison reasons.

7.7.4 Wider Contribution

As the motivation for this research is the application of P2P overlays in distributed storage

systems (see chapter 1 and 3), this work is a contribution to the area of distributed stor-

age systems. Additionally this chapter makes a contribution to autonomic management of

peer-set maintenance in P2P overlays in general by evaluating the autonomic management

approach outlined in section 7.2. Current P2P overlays execute periodic maintenance op-

erations as outlined in section 4.2. Any such overlay could be adapted to use a similar

manager to the one introduced here.

Chapter 8

Experimental Evaluation of the

Management of Distributed Store

Clients

Outline

The autonomic manager introduced in chapter 5 was used with a local area deployment of

the ASA distributed storage system. A range of management policies were tested under

conditions specified by churn pattern, file access workload, variation of network speed and

data item size. The experiments reported here show that autonomic management leads to

improved data retrieval times and network usage in the presence of various combinations

of conditions.

114

115

8.1 Introduction

This chapter reports on the experimental evaluation of the approach to autonomic manage-

ment of distributed storage systems proposed in chapter 5. In chapter 5 it was hypothesised

that a distributed storage system in which an autonomic manager is used for dynamically

adapting the number of concurrent fetch operations (DOC) may yield better performance

and resource consumption in various network conditions than a statically configured one.

In an unmanaged system, two unsatisfactory situations can be identified with respect to the

data retrieval time (get time) and the network usage. These are also referred to as user-

level metrics, ULM. The first problem arises when the DOC is low and there is a large

variation in the times taken to retrieve replicas from various servers. In this situation it is

desirable to increase the DOC, because by retrieving more replicas in parallel, a result can

be returned to the user sooner. The converse situation arises when the DOC is high, there

is little variation in retrieval time and there is a network bottleneck close to the requesting

client. In this situation it is desirable to decrease the DOC, since the low variation removes

any benefit from parallel retrieval, and the bottleneck means that decreasing parallelism

reduces both bandwidth consumption and elapsed time for the user. As reported in section

5.3, some distributed storage systems use a server ranking mechanism (SRM) to optimise

the distributed storage system.

In section 5.4 situations were identified in which either a statically low DOC, a statically

high DOC or a low DOC in combination with a SRM configuration yields the greatest

benefit. It was found that in situations where a specific configuration is beneficial the others

116

may not be. It was experimentally evaluated whether autonomic management is able to set

an appropriate DOC in each situation. The effects of an autonomic manager and a SRM on

both ULMs were measured in such situations and compared with static configurations. This

managed client was deployed in a local area test-bed and exposed to various conditions.

This chapter is structured as follows. Section 8.2 reports how autonomic management was

implemented and applied to an ASA client. In section 8.3 the experimental parameters:

churn pattern, workload, variation of available network speed, and data item size are spec-

ified. Section 8.4 outlines the configuration of experimental parameters and the test-bed,

including an explanation of how the ULMs get time and network usage were monitored

and how they are summarised in order to determine the benefit of autonomic management.

Experimental results are shown in section 8.5. The chapter finishes with some conclusions

about the reasons for the monitored effects and potential future work in section 8.6.

8.2 Implementation of Autonomic Management for an ASA

Store Client

An autonomic manager and a SRM were developed based on the proposal made in section

5.5, and implemented using the generic autonomic management framework GAMF, which

was introduced in chapter 6. This section reports on the implementation of the managed

distributed storage client as it was used for the experiments reported in this chapter.

A manager was added to an ASA client to adapt the DOC used for all get requests. Poli-

117

cies periodically increased or decreased the DOC depending on some metrics. Each metric

value specified different aspects of the system’s state during a specific time window, ex-

tracted from local events. Only events which were not analysed during a previous policy

evaluation were considered. The events included reused SRM monitoring data. The met-

rics used were: the current DOC, the failure rate of fetch operations FFR, the variation in

fetch times FTV , and the bottleneckBN which specified the ratio of bandwidths available

on the server and client links. The ASA client and its modifications are outlined below,

followed by information about the SRM and some details about the autonomic manager.

8.2.1 ASA Client

An ASA client includes a data retrieval mechanism for persistent data items, addressed

with PIDs which lie in the P2P key space. Each data item is replicated four times when

it is stored in ASA. The PID of each replica is specified by the cross algorithm (section

3.3). On a request for a specific PID a list of four server addresses is produced. Each of

the servers identified with those addresses holds an identical data item, of which only one

needs to be successfully fetched (see chapter 3).

The original ASA client was extended with a configurable DOC parameter. This allowed

multiple replicas to be fetched concurrently during individual get requests. After the first

replica was retrieved successfully, remaining fetch operations were terminated by killing

the corresponding fetch threads.

118

8.2.2 Server Ranking

For an individual get request, the SRM ranked specific hosts, based on a prediction of how

fast each server involved would transfer data to a client (fastest first, failed hosts at the end).

The SRM’s predictions were based on periodically gathered monitoring data. In order to

gather this monitoring data1 on individual participants, low level monitoring machinery

(LLMM) was developed as part of the SRM and used in all clients and servers. To probe

for LLMM monitoring data on certain known server hosts, further SRM monitoring ma-

chinery (SR3M) was developed, which was run only on a client. Data gathered by SR3M

was used by the SRM on a client to make the above-mentioned predictions.

LLMM

The LLMM was developed to periodically measure bandwidth and latency on a network

link between a host which executes the LLMM (LLMM-executor) and an interconnection

as introduced in the analytical model in section 5.4. Such a link was specified by the ad-

dress of the specific LLMM-executor and a statically configured known host address in the

interconnection which lies closest to the LLMM-executor. The monitoring of bandwidth

and latency involved time measurements of three ping requests [33], each with a specific

packet size, from the LLMM-executor to the specific known host. First a single ping with

a negligible packet size was sent to avoid the measured times being skewed by a delay due

to an ARP [72] request. No time was measured for the first ping. The second ping, of the

same size as the first one, was carried out to derive the latency from its round trip time.
1bandwidth and latency on the links between a participant and the interconnection (figure 5.1)

119

The third ping was sent using a packet size (S) significantly bigger than the first two pings.

The payload of the third ping and its round trip time were used to compute the bandwidth.

The monitored bandwidths and latencies were stored locally by the LLMM-executor and

provided for a remote caller on request.

SR3M

The client-specific monitoring component, SR3M, periodically contacted certain known

servers to gather bandwidth and latency monitoring data. Gathered server-specific data was

stored locally on the client along with client-specific bandwidth and latency measurements

monitored by a local LLMM executed on the client.

Ranking of Servers

Monitoring data gathered from servers was used to compute an expected data transfer

time (EDTT), for each server, as proposed in section 5.5.2. Based on the assumption that

variation originates from bandwidth and latency on the server side, only monitoring data

from servers was considered when computing the EDTT. Which represented the expected

time to transfer a data item with a specific size across a link with the monitored bandwidth

and latency. Server-specific EDTTs were used to rank servers.

120

8.2.3 Autonomic Management Details

An event generator was added to the ASA client and to the SRM to provide the autonomic

manager with information to compute metric values. It generated network speed monitoring

events containing information about bandwidth, latency and the address on which host (the

LLMM-executor) the data was monitored. Additionally EDTT events were generated for

every computed EDTT. With respect to the ASA client’s data retrieval mechanism fetch

failure events and initiated fetch operation events were generated.

A metric extractor was used to compute the FFR, the FTV and the BN metric values as

specified in section 5.5. Only events generated in a specific observation period were con-

sidered. The FFR metric was the ratio of failures to initiated fetch operations. If no oper-

ations (which also implies no errors) were monitored, the failure rate was defined to be 0.

The FTV was specified by the standard deviation normalised by the mean of all EDTTs. If

no monitoring data was available to compute the FTV metric, the metric value was defined

to be 0. The BN metric was the ratio of the mean of all monitored client bandwidths to the

mean of all server bandwidths. If no monitoring data was available to compute this metric,

the metric value was defined as 1. For providing consistent policy input a metric extractor

was implemented to report the currently used DOC as a metric.

121

The policy was defined as follows:

• If the DOC is smaller than the maximum DOC, and FFR and FTV are high, set the

DOC to the highest possible value.

• Else if the DOC is smaller than the maximum DOC, and FFR or FTV is high, incre-

mentally increase the DOC.

• Else if the DOC is greater than the minimum DOC, and FFR and FTV are low,

decrease the DOC.

– If BN denotes a bottleneck on the client side, set the DOC to the minimum DOC

value (1).

– Else incrementally decrease the DOC.

A FFR or FTV metric value was specified to be high or low if it was greater or smaller than

a specific threshold. A bottleneck at the client side was determined by BN values smaller

than a specific threshold. Each policy evaluation triggered the metric extractor to compute

the specific metrics and to apply a new DOC via an effector.

8.3 Experimental Parameters

Various policies were configured using the autonomic manager introduced in the previ-

ous section (8.2). The effects of policies on performance and resource consumption were

experimentally evaluated in a local area ASA deployment, exposed to various conditions.

122

These conditions varied in churn pattern, workload, variation of available network speed,

and data item size. In this section the conditions are defined in a general way and the

machinery via which specific conditions were applied are explained. The configuration of

specific conditions, for instance the particular data size or the particular churn pattern, are

defined in a further section (8.4).

8.3.1 Data Item Size

The least complex experimental parameter was the data item size. It specified the uniform

size of all data items retrieved from ASA servers during get requests. Data items of the

specific size were uploaded before the experimental runs via standard ASA client and server

interfaces and stored on the ASA servers’ file system.

8.3.2 Workload

A workload specified a temporal pattern of get requests made against the distributed store

client. The same principle as in the experiments reported in chapter 7 was used to specify

light weight workloads, heavy weight workloads and variable weight workloads. The PIDs

used to request specific data items were pseudo-randomly generated to allow the sequence

of PIDs to be reproducible between experiment repetitions.

123

8.3.3 Churn Pattern

A churn pattern specified a temporal pattern with which storage servers were on-line or

off-line, using the same principles as in the experiments reported in chapter 7 to support

low churn, high churn and temporally varying churn patterns.

8.3.4 Network Speed

The network speed specified the bandwidth and latency between individual client and

servers and an interconnection2. In the experimental setup used here the interconnection

was represented by a central router via which all IP traffic was routed. Figure 8.1 shows

the logical network topology used to represent a simplified distributed storage system.

Figure 8.1: A simplified distributed storage system.

2see chapter 5

124

The network speed specified latency and bandwidth between client and servers and the cen-

tral router. Bandwidth and latency applied to a specific link was the same in both directions.

Two categories of network speed configurations were defined, a uniform and a tempo-

rally varying one. In uniform network speed configurations, all servers exhibited the same

network speed; they were used to simulate scenarios in which a network bottleneck was

exhibited on the client or server side or on neither side.

Simulated scenarios with uniform network speed configurations:

• bottleneck on client side: The bandwidth between the client and the central router

was significantly lower than between the individual servers and the central router.

The latency between the client and the central router was significantly higher than

between the individual servers and the central router.

• bottleneck on server side: The bandwidth between the client and the central router

was significantly higher than between the individual servers and the central router.

The latency between the client and the central router was significantly lower than

between the individual servers and the central router.

• no bottleneck: All links between the individual participants and the central router

exhibited the same bandwidth, no latency was configured.

These network speed configurations did not change during the course of an experiment.

125

Simulated scenario with temporally varying network speed configuration: The net-

work speed varied between individual links to the central router and also varied over time.

The configured bandwidth and latency values were pseudo-randomly selected from ranges

of bandwidth and latency values, defined by maximum and minimum values. This pro-

vided variation between the network speeds of the individual links during an experimental

run, but allowed reproduction of the same network speed patters between repetitions of ex-

perimental runs. A high bandwidth value directly correlated with a low latency value. For

instance, a configuration with a maximum bandwidth of 100 Mbps, a minimum bandwidth

of 1 Mbps, a maximum latency of 100 ms and a minimum latency of 1 ms would result in

a latency of 1 ms if a bandwidth of 100 Mbps were selected. At regular intervals a new

network speed configuration was generated on every link.

Implementation: The network traffic shaping was implemented on the central router fol-

lowing guidelines from [38, 37, 35] using the Linux traffic control software tc, as available

in CentOS 5 (kernel 2.6.18-8.el5).

8.4 Experiment Setup

This section reports on the configuration values of the experimental parameters, including

the churn pattern, workload, network speed, data item size and the autonomic manager

configurations. Additional preliminary work is reported in appendix B.1, including the

derivation of specific configurations and evaluations of the experiment harness.

126

8.4.1 The Test-Bed

The experiments were carried out in the same test-bed as used for P2P layer experiments,

described in section 7.4.1. The network configuration was adapted so that one of the com-

puters in the test-bed acted as the central router (see section 8.3.4). The client was config-

ured with global knowledge of all storage server addresses and their key ranges.

8.4.2 Derivation of User-Level Metrics

These experiments were carried out to evaluate the effect on performance and resource

consumption of specific policies which varied the DOC in response to specific conditions.

Performance was measured in terms of the time it took to complete get requests3, the error

rate and the time after which failing get requests reported an error. The network usage was

obtained from the Linux traffic shaping software tc.

Above performance measurements were combined to give an expected get time using the

same principles and motivations as for computing an expected lookup time in the experi-

ments with ASA’s P2P layer (see section 7.4.2, formula 7.1). To obtain the expected get

time, the get time, the get error rate and the get error time were aggregated over observa-

tion periods of five minutes. The network usage measurement differed from earlier P2P

layer-specific experiments due to a change in the version of the RAFDA middleware. A

new version in which the network traffic monitor was not implemented anymore was used

here. Therefore tc-statistics were used to record the total amount of data sent from storage
3part of the executed workload

127

servers to the central router. Each experiment (specified by churn pattern, workload, data

item size, network speed and policy) was repeated three times to verify the reproducibil-

ity of the observed effects. As in the P2P layer experiments, all expected get time values

were aggregated over all three experiments and averaged in order to present a single per-

formance measurement per experiment. The network usage was also specified by the mean

of the three measurements (one measurement was available per experimental run).

8.4.3 Data Item Size Configurations

Two data item sizes were defined, one as 1024 KB and another one as 100 KB. These sizes

were chosen after preliminary test runs showed that larger data item sizes caused out of

memory exceptions in the experimental harness, while much smaller data item sizes did

not give the manager enough time to show its full potential in situations with heavy weight

workloads.

8.4.4 Workload Configurations

A heavy weight workload, a light weight workload and a variable weight workload were

specified similar to the corresponding synthetic workloads in section 7.3.2. The workload

determined the temporal pattern of get requests. The heavy weight workload contained 300

sequential get requests. The light weight workload contained 10 sequential get requests,

with 120 seconds delay between each of them. The variable weight workload was config-

ured to execute 3 sequential get requests, one after the other, with a delay of 120 seconds

128

after each sequence of 3 get requests. The entire variable weight workload contained 30 get

requests. The motivation for the specific configuration parameters of all workloads was to

give the manager enough time to show its full potential and to stress the system to present

a range of scenarios which starkly vary from each other.

8.4.5 Churn Pattern Configurations

Churn patterns were defined identically to the corresponding ones in section 7.3.1, repre-

sentative of a storage server network with low membership churn, high membership churn

and temporally varying membership churn. The low churn kept all storage nodes on-line

for the duration of an entire experimental run. The high churn pattern had on-line durations

of 37 (+/-5) seconds and off-line durations of 27 (+/-2) seconds. The temporally varying

churn pattern was configured with about 5 minutes low churn followed by about 5 minutes

high churn. In the high and temporally varying churn patterns an initial additional on-line

phase of 20 (+/-5) seconds was included.

8.4.6 Network Speed Configurations

The static network speed configurations simulated network bottlenecks on either client,

server or neither side. Each server and the client experienced a statically configured band-

width and latency on their link to the central router for the entire experimental duration.

The following values were used:

129

• A bottleneck at the server side:

– Client bandwidth 78 Mbps & latency 0 ms

– Uniform server bandwidth 3 Mbps & latency 20 ms

• A bottleneck at the client side:

– Client bandwidth 3 Mbps & latency 20 ms

– Uniform server bandwidth 22 Mbps & latency 0 ms

• No bottleneck:

– Client bandwidth 18 Mbps & latency 0 ms

– Uniform server bandwidth 18 Mbps & latency 0 ms

The temporally varying configuration changed the network speed configurations of the indi-

vidual links every 10 seconds. Each individual link was configured with a pseudo-randomly

selected latency from 0 ms to 20 ms and a bandwidth from 220 kbps to 22 Mbps.

In all of the configurations the maximum value for the latency of 20 ms was chosen after

carrying out some network speed measurements on a common workstation connected via

DSL to the internet. The sum of all configured bandwidths (on the client and server links to

the central router) was chosen to not exceed the physical maximum of 94 Mbps4. 18 Mbps

was used as the bandwidth for the individual links in configurations in which no bottleneck

was exhibited, in order to equally share the network capacity amongst individual links.

4derived from measurements, part of the preliminary work, see appendix B.1

130

8.4.7 Policy Parameter Configurations

The behaviour of the policy introduced in section 8.2.3 was configurable via specific policy

parameters, including metric specific thresholds and initial DOC values. The effects of five

different DOC management policies on performance and resource consumption were eval-

uated. Two policies set a statically configured DOC; the other three performed autonomic

adaptation of the DOC, as introduced in section 8.2. In order to make a fair comparison the

autonomic manager was used to apply the static DOC configurations, but was configured

not to react to any events.

All policies were evaluated once per 1 minute; this also determined the monitoring interval

over which events for individual metrics were extracted. The autonomic management pol-

icy determined a new DOC depending on metric values for the fetch failure rate (FFR), the

fetch time variation (FTV), and the bottleneck (BN). Thresholds defined whether a specific

metric value was (too) high or (too) low. The three autonomic management policies had in

common that the threshold for the FTV (TFTV) and the threshold for BN (TBN) were kept

at constant values5. The threshold for the FFR metric (TFFR) was varied between the poli-

cies. Thus the behaviour of the autonomic management policies varied with respect to how

eagerly they reacted to failures. As policy 0 and as a baseline the static configured DOC=1

was chosen. The motivation for that baseline was that this configuration, in combination

with a SRM, is most comparable to existing systems as outlined in section 5.3. All policy

parameter configurations are shown in table 8.1.

5Both thresholds were derived from preliminary experiments as outlined in appendix B.1.4.

131

policy TFFR TFTV TBN initial DOC policy type description
0 - - - 1 static STDOC=1

1 - - - 4 static STDOC=4

2 0.1 0.2 0.8 1 autonomic AMTFFR=0.1

3 0.3 0.2 0.8 1 autonomic AMTFFR=0.3

4 0.5 0.2 0.8 1 autonomic AMTFFR=0.5

Table 8.1: DOC Management Policy Configuration.

8.4.8 Server Ranking Mechanism Configuration

LLMM and SR3M components monitored and gathered data as described in section 8.2.2.

Both were configured to execute monitoring and data gathering operations every 15 sec-

onds. Additionally the address to which the LLMM sent pings in order to measure band-

width and latency was configured at each individual server or client as its gateway address6.

The data item size which was used to compute the EDTT was statically configured to be 1

MB at each client and server.

8.5 Experimental Results

8.5.1 Overview

The effects on the expected get time (EGT) and network usage (NU) of five DOC manage-

ment policies were experimentally evaluated with three churn patterns, three workloads,

four network speed configurations and two data sizes.

6represented by the central router in each case

132

In chapter 5 it was predicted that a statically configured low DOC would result in the best

performance in cases in which a bottleneck exists on the client side or if no bottleneck is

exhibited. Conversely in scenarios with a bottleneck on the client side or with temporally

varying network speeds a static high DOC was predicted to result in the best performance,

at the cost of additional resource usage. Autonomic management detected such situations

and adapted the configuration accordingly without any prior knowledge of the existing

conditions. This resulted in an overall improvement of performance at the cost of some

additional resource usage when averaging expected get time and network usage over all the

experiments. An analysis of the statistical significance of compared data sets was carried

out following guidelines from [40]. It shows overlaps of the 90% confidence intervals of

the means of the compared measurement, as shown in figures 8.2 and 8.3.

Figure 8.2: Visual Approximation for Statistical Significance of EGT measurements

In addition t-tests were carried out to evaluate the probabilities of the compared data sets

being statistically significantly differently from each other. The results are presented in

133

Figure 8.3: Visual Approximation for Statistical Significance of NU measurements

table 8.2 and 8.3. The p-value represents the probability that the compared measurements

are not statistically significantly different.

policy 0 vs. p-value
4 0.44
3 0.23
2 0.19
1 0.00

Table 8.2: t-test Results for Expected Get Times

policy 0 vs. p-value
4 0.20
3 0.18
2 0.18
1 0.00

Table 8.3: t-test Results for Network Usage

As in chapter 7 the expected get time was computed, based on measurements for get time,

get error time and get error rate (see section 8.4.2). Figure 8.4 shows that, in contrast to

134

the expected get time, the differences between get times resulting from autonomic manage-

ment are significantly smaller than the ones resulting from any of the statically configured

systems. Figure 8.5 shows that some of the confidence intervals for get error time overlap.

The distributions of get times and get error times represent the raw data with sample sizes

of about 20,000 and 5,000 individual measurements for each policy. The overall percent-

ages of failed get requests are shown in table 8.4. The overall get error rate represents the

get error rate per policy over all experiments.

Figure 8.4: Visual Approximation for Statistical Significance of the Get Time

policy description get error rate [%]
4 AMTFFR=0.5 17
3 AMTFFR=0.3 19
2 AMTFFR=0.1 23
1 STDOC=4 19
0 STDOC=1 17

Table 8.4: Overall Error Rate of Get Requests

The issue of the high probability that some data sets were not statistically significantly dif-

135

Figure 8.5: Visual Approximation for Statistical Significance of the Get Error Time

ferent is discussed in more detail in section 8.6. For simplicity the expected get time is

used to analyse effects on performance in the following sections, rather than the individ-

ual secondary ULMs. To analyse effects of autonomic management on expected get time

and network usage in more detail results are grouped in this section by the network speed

configurations. Each of the following groups contains 18 experiments, specified by churn

pattern, workload and data item size, in which each of the policies was tested. A combined

analysis can be found in appendix B.2.

The results are organised in tables 8.5 to 8.8 showing the total number of experiments in

which each policy yielded the shortest expected get time (EGT), the lowest network usage

(NU) and a combination of both (EGT & NU), for the individual network speed configura-

tions. Tables B.3 to B.9 quantify the effects on EGT and NU individually (normalised to

policy 0) and can be found in appendix B.2.

136

policy description EGT NU EGT & NU
4 AMTFFR=0.5 2 2 1
3 AMTFFR=0.3 5 3 1
2 AMTFFR=0.1 4 7 1
1 STDOC=4 1 0 0
0 STDOC=1 6 6 3

Table 8.5: The number of experiments (out of a total of 18) in which the specific policies
yielded the greatest benefits (bottleneck on the client side).

policy description EGT NU EGT & NU
4 AMTFFR=0.5 3 5 1
3 AMTFFR=0.3 3 2 2
2 AMTFFR=0.1 3 3 0
1 STDOC=4 4 0 0
0 STDOC=1 5 8 3

Table 8.6: The number of experiments (out of a total of 18) in which the specific policies
yielded the greatest benefits (no bottleneck).

policy description EGT NU EGT & NU
4 AMTFFR=0.5 0 3 0
3 AMTFFR=0.3 1 4 1
2 AMTFFR=0.1 1 2 0
1 STDOC=4 13 0 0
0 STDOC=1 3 9 2

Table 8.7: The number of experiments (out of a total of 18) in which the specific policies
yielded the greatest benefits (bottleneck on the server side).

policy description EGT NU EGT & NU
4 AMTFFR=0.5 1 0 0
3 AMTFFR=0.3 6 0 0
2 AMTFFR=0.1 5 0 0
1 STDOC=4 5 1 1
0 STDOC=1 1 17 1

Table 8.8: The number of experiments (out of a total of 18) in which the specific policies
yielded the greatest benefits (temporally varying network speed configuration).

137

8.5.2 Detailed Analysis

Some randomly chosen experiments for each network speed configuration are analysed in

more detail in the following paragraphs, in order to explain the reasons for the effects of

the individual policies on both ULMs, and how they evolved. Each analysis contains a plot

of the expected get time over time. It shows the values averaged over five minute intervals

and over three experiment repetitions. The individual expected get time values were also

used for computing a single performance measurement for each experiment. Additionally

the progression of the DOC is plotted, but with a smaller interval than the expected get time

progression (1 minute), in order to allow more detail to be displayed. Progression plots of

the same type use the same scale for comparability reasons. No progression of the network

usage was plotted, as only a measurement of the total network usage was available for each

experimental run due to the measurement technique (section 8.3.4).

Static Client-Side Bottleneck

For scenarios with a (static) network bottleneck on the client-side, policies which kept the

DOC at a low value resulted in the shortest expected get times and the lowest network usage

(table 8.5), as predicted. Such a situation was identified in an experiment with high churn,

heavy weight workload, a bottleneck at client-side, and large data items. Table 8.9 shows

the effect of the individual policies on the expected get time (EGT) and the network usage

(NU). Both are normalised with respect to the corresponding measurements resulting from

the baseline (policy 0, STDOC=1).

138

policy description EGT [%] NU [%]
4 AMTFFR=0.5 106 103
3 AMTFFR=0.3 116 104
2 AMTFFR=0.1 116 104
1 STDOC=4 122 112

Table 8.9: Effects of the individual policies on EGT and NU with respect to the baseline.

Figure 8.6: EGT progression for an experiment with a static client-side bottleneck.

Figure 8.7: DOC progression for an experiment with a static client-side bottleneck.

The expected get time progression (figure 8.6) and the aggregated EGT values (table 8.9)

shows that a low DOC corresponds here to the lowest expected get time. The policy that

139

achieved the lowest expected get time was policy 0 (STDOC=1); it kept the DOC at a fixed,

minimum value. This resulted in the same policy yielding the lowest network usage. An

analysis of how the DOC values were adapted by the autonomic manager (figure 8.7) shows

that autonomic management kept the DOC at small values which resulted in significantly

better performance than policy 1 (in which a high DOC was statically configured). Any in-

crease in the DOC in this case resulted in competition for resources between the individual

fetch operations on the client link. A low DOC subsequently also resulted in a low network

usage. The duration of the experiments in which policy 1 was tested was longer than that of

any other experiment due to the increased expected get times resulting from the high DOC.

Static Configuration with No Bottleneck

For scenarios in which no (static) network bottleneck was configured, policies that kept the

DOC at low values resulted in the shortest expected get times and lowest network usage

(table 8.6), as predicted. Such a situation was identified in an experiment with low churn,

heavy weight workload, no bottleneck and big data items. Table 8.10 shows the effects of

the individual policies on the expected get time (EGT) and the network usage (NU). Both

are normalised with respect to the corresponding measurements resulting from the baseline

(policy 0, STDOC=1).

Similar reasons can be identified for the effects of the specific policies on the expected get

times and the network usage as in experiments with a bottleneck at the client-side, analysed

earlier. The network speed configuration in which no bottleneck was configured allowed

equal bandwidths on the client and server links. This caused competition for bandwidth

140

policy description EGT [%] NU [%]
4 AMTFFR=0.5 102 102
3 AMTFFR=0.3 107 108
2 AMTFFR=0.1 106 107
1 STDOC=4 204 165

Table 8.10: Effects of the individual policies on EGT and NU with respect to the baseline.

Figure 8.8: EGT progression for an experiment with no bottleneck.

Figure 8.9: DOC progression for an experiment with no bottleneck.

between individual fetch operations when the DOC was high, as was the case (to a higher

degree though) in experiments in which a (static) bottleneck at the client side was config-

141

ured. The duration of the experiments shown in figures 8.8 and 8.9 appears to be short in

comparison to earlier (corresponding) plots. This is due to the network configuration which

allowed data to be transferred at a faster rate than in experiments with other network speed

configurations and thus caused the experiment to finish sooner. As in experiments with a

(static) bottleneck at the client side, here policies with a high DOC resulted in a longer

experimental run time than any other policies.

Static Server-Side Bottleneck

For scenarios in which a (static) network bottleneck on the server-side was experienced,

policies which kept the DOC at a high value resulted in the shortest expected get times

and lowest network usage (see table 8.7), as predicted. This is the analysis of an exper-

iment with high churn, heavy weight workload, large data items and a bottleneck at the

server-side. Table 8.11 shows the effects of the individual policies on the expected get time

(EGT) and the network usage (NU). Both are normalised with respect to the correspond-

ing measurements resulting from the baseline (policy 0, STDOC=1). The differences in the

EGT values are insignificant. The effects of the individual policies on the network usage

correspond with a configured and adapted high DOC.

policy description EGT [%] NU [%]
4 AMTFFR=0.5 99 127
3 AMTFFR=0.3 98 142
2 AMTFFR=0.1 99 128
1 STDOC=4 91 216

Table 8.11: Effects of the individual policies on EGT and NU relative to the baseline.

142

Figure 8.10: EGT progression for an experiment with a static server-side bottleneck.

Figure 8.11: DOC progression for an experiment with a static server-side bottleneck.

The EGT progression (figure 8.10) and the aggregated EGT (table 8.11) identify policy 1

(STDOC=4) as the policy resulting in the lowest expected get time, as predicted for such a

network speed configuration. This policy kept the DOC at a fixed, high value which was

reflected by the network usage. Figure 8.11 shows that autonomic management slowly pro-

gressed from an initially low value to a high DOC. The increase in the DOC corresponds to

the decrease in the expected get time. A further analysis reveals that the autonomic man-

143

ager increased the DOC due to the increased fetch time variation metric (FTV) and fetch

failure rate metric (FFR). This was a result of the congested links on the server-side which

had a only a reduced bandwidth available, and of the high churn. The policy was designed

to adapt the degree of modification of the DOC depending on the FFR and FTV. The value

of the BN metric was used to determine the magnitude of the change of the DOC. A fur-

ther analysis, which dealt with an other experiment with the same specifications (other then

different workload), shows similar results. In that experiment the get requests were issued

less frequently than in the experiment reported. Subsequently there was less congestion at

the server links and fewer fetch operations failed. Hence the DOC was increased at a lower

rate than in the experiment reported above.

Temporally Varying Network Speed

For scenarios in which a temporally varying network speed was configured, policies which

kept the DOC at a high value resulted in the shortest expected get times and lowest network

usage (table 8.8), as predicted. Here the variation in fetch times is too high for the SRM

to make accurate predictions and thus removes any benefit from it. Such a situation was

identified in an experiment with low churn, light weight workload, temporally varying

network speed and big data items. Table 8.12 shows the effect of the individual policies on

the expected get time (EGT) and the network usage (NU). Both are normalised with respect

to the corresponding measurements resulting from the baseline (policy 0, STDOC=1).

The expected get time progression (figure 8.12) and aggregated EGT values (table 8.12)

show that a high DOC corresponds here again with the lowest expected get time. The

144

policy description EGT [%] NU [%]
4 AMTFFR=0.5 71 188
3 AMTFFR=0.3 65 168
2 AMTFFR=0.1 67 175
1 STDOC=4 69 153

Table 8.12: Effects of the individual policies on EGT and NU with respect to the baseline.

Figure 8.12: EGT progression for an experiment with temporally varying network speed.

Figure 8.13: DOC progression for an experiment with temporally varying network speed.

reason for this is that any prediction the SRM made was invalid due to the high frequency

with which network speeds varied. The EGT peak of a system managed by policy 0 after

145

about 5 minutes run time is due to the monitored get time and not due to get errors. The

policy which achieved the lowest expected get time was policy 3 (AMTFFR=0.3). Here the

difference between policies which kept the DOC at a high-level (which is the optimum in

this case) was again quite small. However, after 15 minutes experimental run time a small,

but visible, drop of the DOC by policy 3 can be identified despite any aggregation in figure

8.13. This allows the speculation that autonomic management would have set the DOC

to a small value if, after a phase of temporally varying network speed, a phase with static

network speed had been exhibited. Such an adaptation happened in experiments with static

network speed as illustrated in figure 8.6. The initial DOC value used for autonomically

managed systems was chosen to be 1. However, it appears in figure 8.13 as a higher value

due to the aggregation and averaging of all DOC values for each interval (aggregation

period).

8.5.3 Analysis of Reproducibility

Three repetitions (referred to as runs 1, 2 and 3) of each experiment were executed in order

to verify reproducibility. To analyse this a similarity metric with respect to the expected

get time was defined, in the same way as with the expected lookup time in chapter 7. The

similarity metric was specified as the standard deviation of corresponding values from the

three runs normalised by the mean (NSD). Figure 8.14 shows the cumulative frequency

distribution of all similarity metric values, computed for all five policies in all seventy-two

experiment groups. Ideally all of the experiments should exhibit a NSD of 0.0, which is

represented by the straight line. The plot shows that the normalised standard deviation for

146

Figure 8.14: Cumulative frequency plot of all NSD - similarity metrics.

the majority of the experiments is quite low, which suggests that there was little variation

between the effects on the expected get time.

Some arbitrarily selected expected get time progressions from individual experimental runs

are plotted to illustrate the relationship between the get times and specific NSD values.

More than 75% (the third quartile) of the experiments resulted in anNSD < 0.13 therefore

the individual runs are considered as sufficiently reproducible.

147

Figure 8.15: Expected get time progressions in experiment repetitions with synthetic light
weight workload, high churn, no bottleneck, small data items, and managed by policy 1

(NSD ≈ 0.06).

Figure 8.16: Expected get time progressions in experiment repetitions with light weight
workload, low churn, temporally varied network speeds, and managed by policy 2

(NSD ≈ 0.13).

8.6 Conclusions and Future Work

In the experiments reported in this chapter it was demonstrated that an autonomically man-

aged distributed storage client is able to detect unsatisfactory situations with respect to the

148

performance and resource consumption and to correct them by adapting the DOC accord-

ingly. Autonomic management was compared here with two static configurations (policy

0, policy 1), each of which represented an optimal configuration for specific categories

of scenarios. As predicted in chapter 5, in the category of experiments in which policy

0 represented an ideal configuration, policy 1 was disadvantageous and vice versa. Au-

tonomic management adopted the DOC accordingly in each category appropriately and

resulted thus in greater performance at the cost of some additional network usage. The

differences in the effects of autonomic management on the user-level metrics expected get

time and network usage were however not statistically significantly different with respect

to the statically configured system (policy 0). The effects of autonomic management on

the raw measurements of the get time however show a significant improvement. In the

chosen experimental structure autonomic management had to compete against ideal static

configurations in each category of experiments. The disadvantage of this setup was that it

did not represent scenarios in which the dynamic adaptation of the DOC would have been

an advantage. Such an experimental setup is proposed in section 8.6.2. Additionally situ-

ations have been identified in which this approach to autonomic management bears some

potential for improvement (section 8.6.1).

8.6.1 Suggestions for Adaptations of the Managed ASA Client

In experiments with static server-side bottleneck configurations the DOC approached the

predicted optimum (4) slowly. In the analysis reported in section 8.5.2, the DOC ap-

proached, but never reached, the optimum value over the course of the entire experimental

149

run. A greater benefit could be achieved if autonomic management would set the DOC to

an optimum value more quickly. This could be achieved by a more complex policy.

8.6.2 Alternative Management Approaches

The autonomic policy model used in the reported experiments was based on the idea that a

single policy identifies both cases, one where the DOC is too high, and the other one where

it is too low. A sub-policy approach as used in the P2P experiments could be adopted,

which balances out requirements for an increase or a decrease in the DOC.

Such a policy would determine a new DOC depending on approximately the same metrics

as used here. The policy would consist of an aggregation policy and sub-policies. A churn

sub-policy would determine an increase in the DOC based on the observed FFR and FTV

metrics in isolation. Instead of the current DOC, a metric would be used which represents

unnecessary effort, or fetch operations (UFO). Out of a number n of concurrently initiated

fetch operations only 1 successfully finished operation is necessary. This means that, when

a DOC of 3 is configured, at most 2 fetch operations are unnecessary. If, however, 1 of the

2 remaining fetch operations fails, only 1 operation is unnecessary. A high value for the

UFO metric suggests that a lot of effort (and subsequently network resources) is wasted in

fetching. The unnecessary work policy determines a decrease of the DOC, also in isolation.

A bottleneck sub-policy determines the rate of change. All are combined by the aggregation

policy which finally specifies a new DOC. Clearly there may be more issues to consider,

and this would represent a promising future experiment.

150

8.6.3 Alternative Validation Approaches

In an experimental configuration in which phases with different requirements for an ideal

DOC setting were exhibited, autonomic management would probably have been more ben-

eficial, than the experiments reported here. Examples include experiments in which a phase

during which a static bottleneck exists on the client side is followed by a phase during

which varying network speeds are exhibited and so forth. During the first phase a low

DOC would result in the greatest benefit. Conversely a high DOC would result in the

greatest benefit in the second phase. Autonomic management may yield greater and more

significant improvements than a statically managed system in such scenarios by adapting

the DOC appropriately during the various different phases. Additionally experimental run

times should be long enough to allow autonomic management to show its full potential.

Situations where this was not the case were identified here in experiments with small data

items and a heavy weight workload.

8.6.4 Wider Contribution

Even though this evaluation was carried out with an implementation of the distributed stor-

age system ASA, it might be exploited in other distributed storage systems beyond this

thesis. Any system discussed in chapter 5 could be simply adapted to use the autonomic

manager introduced here. Even if the autonomic manager is not required in any of those

systems, the server ranking mechanism can be used in isolation for any other system in

which network speed measurements are important.

Chapter 9

Conclusions and Future Work

Outline

This chapter concludes the thesis by summarising the work carried out and revisiting the

hypotheses originally made, and goals stated. The contributions that this thesis makes to

distributed storage systems architecture, autonomic, P2P and cloud computing are outlined

and a synopsis of possible future work is provided.

151

152

9.1 Thesis Summary

In this thesis the hypothesis was evaluated that an autonomically managed distributed stor-

age system yields better resource consumption and performance than a statically configured

system. Autonomic management was applied to the peer-to-peer (P2P) and data retrieval

components of ASA, a distributed storage system. The effects were measured experimen-

tally under various conditions, including specific workloads and churn patterns. The man-

agement policies and mechanisms were implemented using a generic autonomic manage-

ment framework developed during this work.

In the experiments with ASA’s P2P component the peer-set maintenance intervals were

autonomically adapted in response to various conditions, and the effects on user-perceived

performance and network usage1 compared with a P2P overlay in which the maintenance

intervals were statically configured. The effects of a single static configuration were com-

pared with two autonomic managers. The statically configured system resulted in the great-

est performance in about 13% of the conducted experiments and in the lowest network us-

age in 6%. In all other experiments the two autonomically managed systems resulted in

either the greatest performance or lowest network usage. In about 31% of the experiments

one of the autonomic management policies resulted in the greatest performance and the

lowest network usage in combination. The statically managed system never resulted in a

combination of the greatest performance and lowest network usage. The majority of the im-

provements were statistically significant. More details about the results of the experimental

evaluation are available in chapter 7.

1See section 7.4.2 for a detailed specification of performance and network usage.

153

In experiments with the data retrieval component, the Degree of Concurrency (DOC) in

ASA’s data retrieval mechanism was autonomically adapted. The effects on user-perceived

performance and network usage2 were compared with a static configuration. Here two

statically configured systems were compared with three autonomically managed systems.

The static configurations were optimised for specific scenarios. The static configurations

resulted in the greatest benefits in the scenario for which they were optimised; autonomic

management yielded an overall improvement with respect to the user-perceived perfor-

mance (P) at the cost of some additional network usage (NU). The resulting P and NU

measurements of the specific policy, normalised by the policy static1 and averaged over

all experiments, are shown in table 9.1. The effects shown in table 9.1 are however small

management P [%] NU [%]
autonomic3 96 114
autonomic2 96 114
autonomic1 97 114
static2 115 153
static1 100 100

Table 9.1: Averaged Performance and Network Usage

and an analysis of statistical significance resulted in most of them not being significant.

This is a result of the chosen experimental setup in which the autonomic management

policies had to compete against static configurations which were specialised for each type

of experiment. That means that none of the experiments required an dynamic adaptation

due to autonomic management in order to improve performance or resource consumption.

This issue is discussed in more detail in chapter 8. It is hypothesised that an experimental

scenario with alternating phases, which differ with respect to the requirement for an ideal
2See section 8.4.2 for a detailed specification of performance and network usage.

154

configuration, would allow autonomic management to yield more significant benefits than

it did here.

9.2 Contributions

The work carried out for this thesis deals with aspects of various areas in computer science.

These areas include distributed storage systems architecture, P2P computing, autonomic

computing, and cloud computing. The findings and conclusions of this work could be

exploited in any of the above-mentioned areas, and are outlined here as contributions to

each specific area in turn.

9.2.1 Distributed Storage Systems Architecture

In chapters 4 and 7, the autonomic control of the scheduling of maintenance mechanisms

was investigated. Even though the focus in those chapters lay on the maintenance mech-

anism of P2P overlays, the work carried out contributes to distributed storage systems in

general. As outlined in chapters 3 and 7 various other distributed storage systems are

built on Chord or another P2P overlay which carries out periodic peer-set maintenance

operations. Thus all those distributed storage systems could be improved with a similar

autonomic management mechanism to the one introduced in chapter 4.

A similar approach could also be used for centralised distributed storage systems like the

Google File System (GFS) [27]. GFS does not utilise any P2P overlay for data to host map-

155

pings, however it does carry out mapping-maintenance operations at static intervals. Here

autonomic management could be used to adapt the intervals depending on the changing

conditions in the same ways as were introduced in chapter 4.

In work on distributed storage systems like, for instance, PAST [21] and OceanStore [78],

the ability to relocate data items to address membership churn, in order to maintain fault-

tolerance, is referred to as a self-organising property. The investigation of autonomic man-

agement in the P2P layer has also an effect on this self-organising property of decentralised

distributed storage systems. Decentralised distributed storage systems like, for instance,

PAST [21] and OceanStore [78] claim to be self-organising. This self-organising capability

relies on the underlying P2P layer to detect changes in the key to node mapping and to re-

port them to a higher level storage layer. This storage layer then triggers data maintenance

operations. An autonomically managed P2P overlay would improve the self-organising

property of decentralised distributed storage systems because it evidently improved the ca-

pability of a P2P overlay to adapt its maintenance operations to various levels of churn.

When analysing the scope for optimisation with autonomic management of ASA’s data

retrieval component in chapter 5, an autonomic manager was introduced which can be

used for other systems as well as for ASA. A wide range of distributed storage systems

was identified in this chapter which are able to adapt the DOC. Additionally, the Server

Ranking Mechanism (SRM) could be used in the same way in other similar distributed

storage systems.

This work can be exploited for the design of any distributed storage system in which peri-

156

odic maintenance operations are used or in which redundant data items can be fetched from

multiple servers.

The reported experimental investigations included the simulation of scenarios which poten-

tially occur when a distributed storage system is used to harness storage on user work sta-

tions. For instance, membership churn patterns (see sections 7.3 and 8.3) are representative

of churn due to users in a corporate network. Another example is the varying network speed

as used in experiments with ASA’s data retrieval mechanism (section 8.3). This is represen-

tative of situations in which users execute network operations whilst a distributed storage

system uses their workstations as storage providers. Here the distributed storage system

has to share the available network speed with other applications. Autonomic management

was beneficial in the majority of the experiments as it adapted the controlled parameters

in response to such conditions. Thus it can be concluded that autonomic management, as

used here, supports the usage of systems which harness storage on user workstations.

Such an application of distributed storage systems seems reasonable when considering the

growing demand for storage [93] as well as the decrease in price and the increased avail-

ability of computing devices [75]. Studies carried out by Microsoft conclude that the disk

space of desktop (user) computers is mostly unused and is becoming less used over time

[16, 17, 18]. In other studies carried out by Microsoft, changes in the usage patterns of

file systems over five years (2000 - 2004) were analysed [2]. One can extrapolate from the

progression of file system capacity and usage that the total amount of unused disk capacity

on individual user workstations has increased by about 90% within five years, up to tens

of GB. Although the research projects cited above report on historical usage of storage,

157

a potentially long term benefit could be obtained by harnessing unused storage on user

machines. By extrapolating Moore’s Law [64] and Bell’s Law [6], it can be assumed that

the capacity and performance of computing devices will improve over the next few years.

Thus such an application of distributed storage systems may allow access to an already

immensely big and still growing reservoir of storage.

9.2.2 P2P Computing

The investigation of the management of the scheduling of maintenance operations is ap-

plicable to a wide range of P2P overlays as reported in chapter 4. P2P overlays are not

only used exclusively for distributed storage systems and are a research area in their own

right. Thus the work reported in correlating chapters 4 and 7 can be not only considered as

a contribution to distributed storage architecture but also to P2P computing.

9.2.3 Autonomic Management

This work makes a two-fold contribution to autonomic management. Firstly it allows the

extraction of a set of guidelines on how to identify facets or components of an unmanaged

target system which can be improved by applying autonomic management. Requirements

for autonomically managed systems are often summarised with self-* (see chapter 2). This

thesis describes how parameters are identified in ASA which would benefit from being

adapted in an autonomic manner to changing conditions. This effectively makes ASA a

self-* system. The same principles can be applied to any unmanaged target system and thus

158

the corresponding chapters (4 and 5) provide representative examples of how to achieve

this. Secondly, the generic autonomic management framework developed as part of this

work (chapter 6) can be used to introduce autonomic management to systems outwith the

scope of this thesis. This can be considered to be a contribution to the field of autonomic

computing in its own right.

9.2.4 Cloud Computing

Recently the term cloud computing has become popular as a description of a network of

computers through which services are provided. Such clouds are usually considered as

huge internet scale distributed systems [26]. Clouds can however also be composed out

of computers in local area networks such as a company’s corporate network. Such clouds

can then be referred to as ad-hoc clouds which can operate a cloud infrastructure on exist-

ing non-dedicated hardware like users’ desktop computers or workstations. This includes

benefits like very low additional cost and retaining control over data and processing. A

distributed storage system which harnesses storage capacities on user workstations in a

corporate network is an example of how such an ad-hoc storage cloud could be configured.

Distributed cloud services other than storage may also benefit from autonomic management

of specific distributed operations such as periodic maintenance or data accesses, as investi-

gated here. In [61] the authors state that cloud systems can be described as on-demand self-

services which can be acquired and used without the use of human interaction. With respect

to on-demand self-services cloud systems can be considered as autonomic systems which

share similar requirements to the autonomic distributed storage system investigated by this

159

thesis. A first step towards the integration of autonomic management and cloud systems is

reported in [87]. It introduces a metascheduler which dynamically adds and removes cloud

nodes from a gateway service, used by a distributed application. The metascheduler makes

its decisions based on the comparison of some performance heuristics with some statically

configured thresholds. The use of the metascheduler is limited to a specific grid applica-

tion. It however represents a use case for nesting autonomic managers, as discussed in this

thesis (appendix C.3). The metascheduler could be implemented as an autonomic manager

which evaluates the performance heuristic. The threshold this autonomic manager uses

would then be controlled by another autonomic manager based on some high level policy.

Guidelines for the application of autonomic management can be extracted from this thesis;

it can thus be considered as a contribution to cloud computing.

9.3 Future Work

Some potential future work packages were already suggested in chapters 7 and 8. They

include suggestions for improvements of the managed components in combination with

the management; alternative management approaches; and different evaluation approaches.

All of them are outlined in the corresponding chapters. An addition to these future work

packages might be the evaluation of the effects of autonomic management on other facets

of distributed storage systems. Such facets have been identified during the course of this

work but not experimentally evaluated. Examples include the autonomic management of

the scheduling of storage maintenance operations or the autonomic management of the

160

degree of fragmentation. Both examples are briefly outlined in the following to motivate

future research projects.

9.3.1 Autonomic Management of Storage Maintenance Operations

Data in decentralised distributed storage systems such as ASA is replicated on multiple

host machines in order to improve its availability in the event of host machines failing. A

certain number of replicas must always be available to maintain fault-tolerance. The detec-

tion of failed hosts and the copying of corresponding replicas to new hosts, which take over

the key space of the failed host, is initiated, for instance, in ASA when P2P routing errors

are observed. It is possible that replicas can be missed out which might have been agreed

to be stored at such new hosts while the host was transiently unavailable or running slowly.

Such issues need to be addressed by a maintenance operation which regularly searches for

missing replicas. The responsible mechanism is referred to as a storage maintenance mech-

anism in ASA. In the original ASA design, every host runs a storage maintenance mecha-

nism which periodically searches for and fetches missing replicas. Similar unsatisfactory

situations can be identified here as for a periodic P2P peer-state maintenance operation,

executed at statically configured intervals (see chapter 4). Autonomic management may

be able to discover and correct unsatisfactory situations, similarly to the ones outlined in

chapter 4, by autonomically adapting the corresponding interval.

161

9.3.2 Autonomic Management of Data Fragmentation

In storage systems in general, data items are often split up into smaller blocks. In a dis-

tributed storage system like ASA, the sizes of individual data blocks affect how data is

distributed over the network; this specifies how evenly the storage hosts’ storage capacities

are utilised (degree of data distribution). The sizes of the data blocks also affect the time

it takes to return a requested data item (get time). The amount of data transferred over the

network is also affected, mainly due to maintenance and administrative overhead. As in

any of the investigations carried out as part of this thesis, an optimal data block size de-

pends on various conditions and cannot be predicted statically. Even if a data block size

seems to be ideal initially, it may cease to be so as conditions vary. Clearly this issue needs

to be analysed in more depth by, for instance, developing an analytic model as in chap-

ter 5. However, autonomic management may be able to adapt the data block size in the

presence of a changing environment in order to achieve better performance and resource

consumption than a statically configured system would do.

9.3.3 Combination of Autonomic Elements

In chapter 2, the behaviour of an autonomically controlled system is described as being

dependent on the autonomic behaviour of its constituent parts (autonomic elements). The

autonomically managed scheduling mechanisms of ASA’s P2P component and the man-

aged DOC of the data retrieval mechanism correspond to individual autonomic elements.

It was not within the scope of this work to evaluate the effect of autonomic management on

162

performance and resource consumption if more than one facet was autonomically managed

concurrently. It would however be an interesting future experiment to do so.

9.4 Conclusions

In chapter 1 the hypothesis was made that autonomic management may be able to set a

configuration which results in better performance and resource consumption than any that

can be set a priori. An autonomic manager was envisioned to work without the need for

a human operator. One of ASA’s design goals was stated in chapter 3 as: A general

autonomic tuning mechanism should be provided to allow low-level aspects of the system’s

operation to be managed automatically, controlled by policies that are driven by high-level

user preferences.

The hypothesis about the effects of autonomic management on resource consumption and

performance was experimentally evaluated, analysed and reported in chapters 7 and 8. In

both evaluations (a relatively small number of) cases have been identified in which the stat-

ically configured ASA components resulted in better performance and resource consump-

tion than the autonomically managed ones. Following this, improvements of the specific

manager (in combination with the managed component) were made in the corresponding

chapters. However in the majority of the experiments the autonomically managed ASA

components successfully identified and corrected unsatisfactory situations with respect to

performance and resource consumption. This allows the conclusion that the hypothesis,

that autonomically managed components may result in better performance and resource

163

consumption than statically configured ones in various (changing) conditions, was suc-

cessfully tested and found to hold.

The autonomic manager was envisioned to adapt any target system in response to vari-

ous conditions without human interaction. The above outlined detection and correction of

unsatisfactory situations happened autonomically by the manager without the need of a hu-

man administrator. Thus the corresponding design goal of the autonomic manager can be

considered to have been met. An ASA design goal with respect to the autonomic manager

stated that the manager’s behaviour was envisioned to be governed by high-level policies.

This is also considered as having been fully met as the autonomic management cycle and

the developed framework use policy evaluators as fundamental building blocks.

9.5 Final Thoughts

This thesis reports on the benefits of a distributed storage system to which an autonomic

manager is added. This allows the provision of storage via the utilisation of user worksta-

tions in an ad-hoc storage cloud. The differences between a dedicated data centre or storage

server network and such an ad-hoc storage cloud were not analysed in this thesis. It can

however be speculated that an ad-hoc storage cloud which provides comparable services

like, for instance, a dedicated storage server will save the cost of building up a dedicated

infrastructure in addition to an existing network of workstations. If users operating the

latter should be provided with a storage system, then money, electrical power consumption

and of course hardware can be saved by such a system, compared to a dedicated one. It can

164

further be speculated that this work allows an economical and environmental improvement

in the way that storage is provided in a corporate environment. Clearly more issues have

to be addressed until this vision becomes reality, but this work may serve as a first step

towards a new and better way of providing storage in corporate networks in comparison to

contemporary approaches.

Finally, a last philosophical thought about the shared properties of the analysed effects of

the autonomic management mechanisms introduced here. Both have in common that a

better trade-off between resource consumption and performance than possible in statically

configured systems was achieved. They showed that the more eagerly it was tried to im-

prove a system’s performance, the more likely the opposite effect was achieved in some

situations. That means better performance would have been achieved with less effort. This

might be applicable to a much wider area than just distributed storage systems, even to

situations in our everyday life.

Appendix A

P2P Layer Experiments

A.1 Preliminary Work

A number of experimental parameters used for the investigations reported in chapter 7 were

derived from preliminary experiments. The purpose of these preliminary experiments was

to gather data in order to make decisions as to how to configure the autonomic manager

and experimental parameters.

Preliminary investigated experimental parameters were:

• The static maintenance interval, which determined the fixed interval with which un-

managed nodes were configured and with which autonomically managed nodes were

initiated. A poorly chosen interval may have prevented a fair comparison between

statically configured and autonomically managed nodes.

165

APPENDIX A. P2P LAYER EXPERIMENTS 166

• The workload length, which determined the duration of a single experimental run and

thus the time the autonomic manager had available to adapt the controlled system. In

order to identify autonomic management as the cause for monitored changes in the

system, the duration had to be long enough.

• The policy parameters, which determined the autonomic manager’s behaviour. Poorly

chosen parameters may have resulted in autonomic management either being harmful

or showing only very little effect.

Additionally to the derivation of experimental parameters in appendix A.1.1, A.1.2 and

A.1.3, preliminary work was carried out with respect to the derivation of P2P workload

from FS traces as reported in A.1.4 and the selection of the experimental platform in A.1.5.

A.1.1 Static Maintenance Intervals

This investigation was carried out to test various static maintenance intervals in order to

select a suitable static interval for all succeeding experiments. The selected interval was

then used to configure the manager’s initial interval and the static interval in the unmanaged

nodes. It was found that an interval of 2000 [ms] resulted in the greatest benefit. Benefit was

derived from averaged and normalised measurements of: network usage, lookup error rate

and lookup time for each tested interval1. The motivation for this experiment was to provide

the means for a fair comparison of statically configured and autonomically managed nodes.

1In this preliminary experiments no lookup error time was monitored, thus no expected lookup time as in
chapter 7 was computed.

APPENDIX A. P2P LAYER EXPERIMENTS 167

Nodes were deployed in networks with high membership churn and in networks with low

membership churn and a synthetic heavy weight workload was executed. Each experiment

was repeated three times and all of the monitored measurements were averaged, in order

to provide a single measurement for each interval. In order to allow comparison with other

experiments an autonomic management process was executed but every sub-policy was

configured with a threshold t of ∞; this kept the nodes effectively unmanaged. In initial

test runs, which were carried out prior to this investigation, 2000 [ms] yielded the biggest

benefit, therefore an interval of 2000 [ms] was used here as the baseline.

Table A.1 shows all normalised and averaged measurements for the tested intervals. The

smaller the normalised and averaged measurement, the greater was the benefit of the cor-

responding interval.

interval [ms] normalised and averaged measurements [%]
10 128
100 190
1000 185
2000 100
10,000 114
100,000 26

Table A.1: Combined, averaged interval-specific ULM overview.

The results in table A.1 give the impression that an interval of 100,000 [ms] yielded the

greatest benefit. However, when analysing the number of encountered nodes in the network

it was found that no network was established in any experiment with an interval of 100,000

[ms]. Figure A.1 shows the number of encountered nodes averaged over 3 experiment

repetitions and over 5 minutes in a network with low membership churn, as a representative

example.

APPENDIX A. P2P LAYER EXPERIMENTS 168

Figure A.1: Progression of the number of encountered network nodes.

In an empty network, lookups were locally resolved by the gateway. This resulted in shorter

lookup times, less network usage and no lookup errors for nodes which were maintained

every 100,000 [ms] in comparison to other intervals. Therefore it can be concluded that an

interval of 2000 [ms] yielded the greatest overall benefit and was thus used in succeeding

experiments.

A.1.2 Workload Length

This preliminary investigation was carried out to establish the minimum time that an ex-

periment should be allowed to run for in order to give autonomic management a chance

for its full behaviour to be exhibited. The time it takes to issue all lookups of a workload

determines the experimental runtime.

Experiments were carried out in which nodes were managed with different scheduling poli-

cies and deployed in a network with high membership churn under a synthetic heavy weight

APPENDIX A. P2P LAYER EXPERIMENTS 169

workload. Each policy, churn pattern and workload combination was repeated three times.

The manager’s configuration was derived from initial test runs which were carried out prior

to this investigation. To identify if autonomic management resulted in a change of the

controlled intervals the finger table maintenance interval progression on the gateway was

plotted in figure A.2.

Figure A.2: Progression of the finger table maintenance interval on the gateway.

Figure A.2 shows that after an experiment runtime of about 40 minutes all maintenance

progressions stabilise between some range. Therefore 40 minutes were considered as a long

enough experimental duration to identify significant changes in the controlled system. In

this investigation a workload of about 6000 sequential lookups correlated with 40 minutes

run time. This information was used in succeeding experiments to define the workload

length as due to the large number of experiments longer experiment durations would not

have been feasible.

APPENDIX A. P2P LAYER EXPERIMENTS 170

A.1.3 Sampling the Policy Parameter Space

This preliminary evaluation was carried out to find a suitable set of parameters for config-

uring the manager’s policy2. Various parameters were tested, those which resulted in the

greatest benefit with respect to performance and network usage were used in succeeding

experiments in order to make a fair comparison between unmanaged and managed systems.

The same definition for benefit as in section A.1.1 was used.

Experiments were carried out in a network with low membership churn and a network with

high membership churn. A synthetic heavy weight workload was executed during each

experiment. An experiment was specified with a policy parameter set, workload and churn

pattern. Each experiment was repeated three times. The tested policy parameters were:

• Threshold t for the sub-policy which determined an interval with respect to LILT,

(LILTt).

• Factor k for the sub-policy which determined an interval with respect to LILT, (LILTk).

• Factor k for the sub-policy which determined an interval with respect to ER, (ERk).

• Factor k for the sub-policy which determined an interval with respect to NEMO,

(NEMOk).

The thresholds for ER and NEMO related sub-policies were statically defined as 0.

In four series of experiments various values for one parameter were tested, all other pa-

rameters were statically configured. The values were not varied during an individual ex-
2See section 4.5.2 for the definition of the sub-policies and correlating parameters.

APPENDIX A. P2P LAYER EXPERIMENTS 171

perimental run. The value of the varied parameter which yielded the greatest benefit was

chosen as the winning parameter for an individual series. This resulted in a parameter set

of optimum parameters, which were then tested in combination in a final series with a set

of parameters from initial test runs. As baseline for each series statically configured nodes

were used (see section A.1.1).

Policy Configuration

The autonomic adaptation of the intervals between stabilize, fixNextFinger and checkPre-

decessor operations was governed by policies which were of the same structure but were

evaluated independently from each other. Each policy consisted of an aggregation-policy

and of sub-policies (section 4.5.2). Each sup-policy determined an interval in reference

to a single metric (NEMO, ER and LILT). For reasons of simplicity, each policy’s sub-

policies were configured with the same values for t and k. This means that the NEMO

sub-policy used for tuning the interval between stabilize operations was parameterised

with the same t and k values as the NEMO sub-policy used for tuning the intervals be-

tween fixNextF inger and checkPredecessor. The same applies for the various ER and

LILT sub-policies (with the caveat that LILT is not considered in the checkPredecessor-

interval adaptation).

APPENDIX A. P2P LAYER EXPERIMENTS 172

Tested Policy Parameters per Series and Results

NEMO ER LILT
policy parameter set k t k t k t
1 8 0 8 0 800 100
2 8 0 8 0 800 200
3 8 0 8 0 800 400
4 8 0 8 0 800 800
5 8 0 8 0 800 1600
6 8 0 8 0 800 3200
7 8 0 8 0 800 ∞

Table A.2: Management policy parameters in series A (LILTt).

NEMO ER LILT
policy parameter set k t k t k t
1 8 0 8 0 100 800
2 8 0 8 0 200 800
3 8 0 8 0 400 800
4 8 0 8 0 800 800
5 8 0 8 0 1600 800
6 8 0 8 0 3200 800
7 8 0 8 0 ∞ 800

Table A.3: Management policy parameters in series B (LILTk).

NEMO ER LILT
policy parameter set k t k t k t
1 8 0 1 0 800 800
2 8 0 2 0 800 800
3 8 0 4 0 800 800
4 8 0 8 0 800 800
5 8 0 16 0 800 800
6 8 0 32 0 800 800
7 8 0 ∞ 0 800 800

Table A.4: Management policy parameters in series C (ERk).

APPENDIX A. P2P LAYER EXPERIMENTS 173

NEMO ER LILT
policy parameter set k t k t k t
1 1 0 8 0 800 800
2 2 0 8 0 800 800
3 4 0 8 0 800 800
4 8 0 8 0 800 800
5 16 0 8 0 800 800
6 32 0 8 0 800 800
7 ∞ 0 8 0 800 800

Table A.5: Management policy parameters in series D (NEMOk).

The parameter set which yielded the greatest benefit in series A was policy parameter set

5 (LILTt = 1600); in series B, policy parameter set 7 (LILTk = ∞); in series C, policy

parameter set 6 (ERk = 32); and in in series D, policy parameter set 4 (NEMOk = 8). A

combination of those were compared with a configuration derived from initial test runs in

series E.

NEMO ER LILT
policy parameter set k t k t k t
1 8 0 32 0 ∞ 1600
2 5 0 10 1 800 1600

Table A.6: Management policy parameters in series E.

In series E, the winners from series A - D (set 1) resulted in the greatest benefit.

Findings

Policy parameter set 1 in series E (table A.6) resulted in the greatest overall benefit and was

thus used in succeeding experiments. Additionally to that it was found that considering the

metric LILT (and subsequently the related sub-policy) is disadvantageous. In series A

APPENDIX A. P2P LAYER EXPERIMENTS 174

in networks with low membership churn, the lookup time worsened with respect to an

unmanaged network with decreasing values for LILTt. This had the highest (negative)

effect on the ranking metric for benefit in that series. The reason for this was that low

LILTt values decreased the managed interval and kept it at a low level, even though short

maintenance intervals were not required in networks with low membership churns. This

caused a P2P node to spend computing resources on maintenance instead of performing

lookups.

A.1.4 File System Specific Workload Generation

Some preliminary work was carried out with the objective to translate a file system work-

load into a corresponding temporal pattern of ASA lookup requests. This work involved

the selection of an appropriate “real world” file system trace and the translation of this trace

to a P2P workload.

File System Traces

Most of the identified available work on file system workloads [65, 4, 28, 97, 88, 80] does

not include complete file system traces. The most recent available complete traces iden-

tified recorded various FS operations (including read and write) on workstations used by

undergraduates at the University of Berkeley in 1996 [79]. The Berkeley traces have been

made anonymous by translating the file names (including file paths) to numerical identifiers

for privacy reasons. Of these Berkeley traces a file system trace of one individual work-

APPENDIX A. P2P LAYER EXPERIMENTS 175

station (host 30) from the 14th December 1996 was randomly selected to be used for the

experiments reported in chapter 7.

Transformation of File System Traces

To translate a file system trace into a pattern of P2P lookups read and write operations

were extracted and transformed in corresponding ASA operations as described in chapter

3. Every directory along the path to a file is looked up separately; every data and meta-data

item is replicated four times, in accordance with the ASA cross-algorithm (see chapter 3).

A file path was represented by an unique file identifier. The length of the path was selected

from a distribution of values based on work carried out by Microsoft Research Labs [2, 17].

Every element along this virtual file path was transformed into keys representative for data

and meta-data. As data is self-verifying it was associated in a single lookup, preceded by a

set of parallel lookups for meta-data.

A.1.5 Choosing a Local Area Test-Bed

The motivation for choosing a local area test-bed in which nodes were deployed on multiple

machines was that such an experimental platform is representative of envisioned ASA use

cases. Additionally other options have do have limitations, with respect to this work, as

briefly outlined in the following. Other options included P2P simulator such as p-sim [62],

peersim [41], j-sim [29] or any other listed in [44, 67] as well as a wide area deployment

like Planet Lab [71].

APPENDIX A. P2P LAYER EXPERIMENTS 176

Existing P2P simulators simulate membership churn and workload specific to file sharing

applications like napster [83] or gnutella [83]. Such scenarios are not relevant for this

work as users in a distributed storage system behave differently from users that use P2P

file sharing tools. Users of a file sharing tool may have no interest in staying on-line after

they have completed their download, but users of a distributed storage system will not im-

mediately disconnect after every operation. Workloads specific to file sharing applications

[73, 84, 82] mainly consist of searches and downloads, whereas P2P infrastructures used

for distributed storage systems experience workloads resulting from file system operations

(see [31]).

Wide area deployments such as Planet Lab may experience high variation of the available

network speeds because of being connected through multiple hops via the internet. This

can skew the measurements of interest as, for this work, specific conditions are repeated in

order to verify reproducibility of management actions. By not having full control over the

infrastructure, variance in the network conditions between repetitions of the experiments

which were supposed to be executed here under identical conditions may occur. Recent

work [69] shows that a user of Planet Lab may observe a significant number of undesired

or uncontrollable failures. To verify that autonomic management applies the same actions

in identical, repeated, conditions experiments had to be reproducible. Therefore a local

area test-bed was considered as more appropriate for the work reported here as a wide area

test-bed.

APPENDIX A. P2P LAYER EXPERIMENTS 177

A.2 P2P Experimental Results

A.2.1 Introduction

In the following sections detailed results from the experiments outlined in chapter 7 are

reported.

Each report (section A.2.2 - A.2.17) shows the primary and secondary user-level metrics

(ULM) values as specified in 7.4.2 for a specific policy, and information about their dis-

tribution. Policy 1 was configured with parameters derived from preliminary experiments

and policy 2 was configured to exhibit an aggressive behaviour. Policy 0, the baseline,

represented unmanaged nodes which were configured with a static interval.

The difference between the effects of the specific policies on the individual primary ULMs

(expected lookup time and network usage) are illustrated as bars normalised with respect

to the results from unmanaged nodes (policy 0). Each normalised user-level metric with

a value of less than 100% therefore indicates an improvement of the specific ULM. Bars

in the plot which were above a certain height have been cut off for readability reasons.

Such a cut-off is indicated by an upwards arrow (↑) at the top of a cut-off bar and the

information about the actual height of the bar. The raw data used for computing these

normalised primary ULMs is listed below in a table. This table contains the mean val-

ues of the distribution of all primary ULMs combined from the specific experimental run

repetitions. The distributions were generated by computing primary ULM values for five

minute observation periods. The means of these distributions were used to quantify the

APPENDIX A. P2P LAYER EXPERIMENTS 178

effects of the specific policies in the plots. The table is followed by an individual table

for each policy showing distribution characteristics of all primary and secondary user level

metric distributions. The primary ULM expected lookup time is abbreviated as ELT , and

the network usage as NU . The secondary ULM lookup time is abbreviated as LT , the

lookup error time as LET , and the lookup error rate as LER. The distributions for ELT ,

NU and LER represent corresponding aggregated measurements over 5 minute intervals

in individual experimental runs. LT and LET however represents distributions of individ-

ual measurements taken during the course of all experimental runs with the specific policy,

churn and workload. Each distribution is characterised by the minimum value (min), the

90% confidence interval of the mean [40] given by (ciµ), the standard deviation (s), the

first quartile (Q1), the second quartile (Q2), the third quartile (Q3) and the maximum value

(max). Unavailable values are abbreviated as NA; lookup error time values, for instance,

were only monitored in experiments in which errors occurred.

All descriptive statistics in this work were computed using the Commons-Math: The Apache

Commons Mathematics Library, commons-math 1.2, [25].

APPENDIX A. P2P LAYER EXPERIMENTS 179

A.2.2 Synthetic Light Weight Workload with Low Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.3: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 720 60
policy 1 522 5
policy 2 507 2

Table A.7: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 180

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 720±62 207 357 516 777 857 1075
NU (primary) [MB/5 min] 60±6 20 2 66 66 68 68
LT (secondary) [ms] 720±62 207 357 516 777 857 1075
LET (secondary) [ms] NA NA NA NA NA NA NA
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.8: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 522±43 145 291 406 535 607 875
NU (primary) [MB/5 min] 5±1 4 0 3 4 7 16
LT (secondary) [ms] 522±43 145 291 406 535 607 875
LET (secondary) [ms] NA NA NA NA NA NA NA
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.9: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 507±36 121 291 425 567 606 635
NU (primary) [MB/5 min] 2±0 1 0 1 1 2 5
LT (secondary) [ms] 507±36 121 291 425 567 606 635
LET (secondary) [ms] NA NA NA NA NA NA NA
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.10: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 181

A.2.3 Synthetic Light Weight Workload with High Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.4: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 562 33
policy 1 457 18
policy 2 459 12

Table A.11: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 182

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 562±92 296 176 398 551 637 1710
NU (primary) [MB/5 min] 33±4 13 0 32 37 40 43
LT (secondary) [ms] 562±92 296 176 398 551 637 1710
LET (secondary) [ms] 11±4 4 8 8 11 13 13
LER (secondary) [%] 7±8 25 0 0 0 0 100

Table A.12: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 457±60 166 128 386 482 544 779
NU (primary) [MB/5 min] 18±2 7 0 17 21 22 23
LT (secondary) [ms] 457±60 166 128 386 482 544 779
LET (secondary) [ms] 16493±27105 49431 11 13 17 20 148308
LER (secondary) [%] 30±14 47 0 0 0 100 100

Table A.13: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 459±100 265 149 311 428 527 1434
NU (primary) [MB/5 min] 12±1 4 0 9 12 15 17
LT (secondary) [ms] 459±100 265 149 311 428 527 1434
LET (secondary) [ms] 12555±20540 41412 9 13 47 49 137418
LER (secondary) [%] 37±15 49 0 0 0 100 100

Table A.14: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 183

A.2.4 Synthetic Light Weight Workload with Locally Varying Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.5: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 689 40
policy 1 575 18
policy 2 831 17

Table A.15: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 184

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 689±75 248 137 550 708 830 1091
NU (primary) [MB/5 min] 40±4 13 1 41 43 45 49
LT (secondary) [ms] 689±75 248 137 550 708 830 1091
LET (secondary) [ms] NA NA NA NA NA NA NA
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.16: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 575±72 224 151 422 612 712 944
NU (primary) [MB/5 min] 18±2 7 0 17 19 23 26
LT (secondary) [ms] 575±72 224 151 422 612 712 944
LET (secondary) [ms] 186±109 133 10 55 201 301 331
LER (secondary) [%] 13±10 35 0 0 0 0 100

Table A.17: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 831±185 574 136 448 701 947 2122
NU (primary) [MB/5 min] 17±3 10 0 10 18 25 35
LT (secondary) [ms] 831±185 574 136 448 701 947 2122
LET (secondary) [ms] 56±76 93 9 9 11 149 195
LER (secondary) [%] 13±10 35 0 0 0 0 100

Table A.18: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 185

A.2.5 Synthetic Light Weight Workload with Temporally Varying Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.6: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 643 44
policy 1 518 13
policy 2 629 8

Table A.19: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 186

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 643±75 232 139 463 602 871 1077
NU (primary) [MB/5 min] 44±5 18 1 37 42 60 67
LT (secondary) [ms] 643±75 232 139 463 602 871 1077
LET (secondary) [ms] 397±631 767 13 13 14 1165 1548
LER (secondary) [%] 13±10 35 0 0 0 0 100

Table A.20: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 518±48 152 308 441 466 604 935
NU (primary) [MB/5 min] 13±2 6 0 9 14 17 22
LT (secondary) [ms] 518±48 152 308 441 466 604 935
LET (secondary) [ms] 12±0 0 12 12 12 12 12
LER (secondary) [%] 10±9 31 0 0 0 0 100

Table A.21: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 629±162 503 152 311 466 680 2039
NU (primary) [MB/5 min] 8±2 5 0 4 7 12 18
LT (secondary) [ms] 629±162 503 152 311 466 680 2039
LET (secondary) [ms] 15855±15113 18374 8 9 14820 32735 33771
LER (secondary) [%] 13±10 35 0 0 0 0 100

Table A.22: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 187

A.2.6 Synthetic Heavy Weight Workload with Low Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.7: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 613 69
policy 1 445 22
policy 2 428 16

Table A.23: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 188

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 613±7 25 538 611 619 627 640
NU (primary) [MB/5 min] 69±4 15 17 73 74 74 75
LT (secondary) [ms] 613±3 228 89 444 615 774 2505
LET (secondary) [ms] NA NA NA NA NA NA NA
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.24: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 445±6 19 425 431 438 458 501
NU (primary) [MB/5 min] 22±3 8 13 17 18 22 41
LT (secondary) [ms] 445±2 152 86 354 445 552 2234
LET (secondary) [ms] NA NA NA NA NA NA NA
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.25: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 428±4 12 394 421 430 436 444
NU (primary) [MB/5 min] 16±2 5 8 14 15 16 27
LT (secondary) [ms] 428±2 142 87 322 419 549 1895
LET (secondary) [ms] 206±0 0 206 206 206 206 206
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.26: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 189

A.2.7 Synthetic Heavy Weight Workload with High Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.8: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 727 25
policy 1 440 33
policy 2 504 24

Table A.27: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 190

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 727±71 229 476 509 713 927 1168
NU (primary) [MB/5 min] 25±7 23 1 2 22 47 50
LT (secondary) [ms] 590±4 256 97 406 623 750 4102
LET (secondary) [ms] 152±25 1181 6 67 99 110 45045
LER (secondary) [%] 26±9 29 1 3 18 37 86

Table A.28: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 440±9 30 372 435 449 455 501
NU (primary) [MB/5 min] 33±2 6 13 33 34 36 38
LT (secondary) [ms] 434±3 208 94 278 412 558 2336
LET (secondary) [ms] 196±10 160 6 86 185 263 1506
LER (secondary) [%] 4±0 2 1 3 3 4 7

Table A.29: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 504±66 210 332 411 422 522 1071
NU (primary) [MB/5 min] 24±2 7 4 24 26 28 33
LT (secondary) [ms] 409±3 198 85 275 389 523 3555
LET (secondary) [ms] 482±247 6545 6 142 185 251 165072
LER (secondary) [%] 11±3 10 5 7 8 11 56

Table A.30: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 191

A.2.8 Synthetic Heavy Weight Workload with Locally Varying Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.9: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 6495 23
policy 1 552 30
policy 2 1190 25

Table A.31: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 192

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 6495±3107 15574 390 576 2120 8655 126505
NU (primary) [MB/5 min] 23±4 21 0 6 13 51 57
LT (secondary) [ms] 840±9 657 98 416 647 944 6366
LET (secondary) [ms] 2447±531 17738 6 74 166 525 239475
LER (secondary) [%] 33±5 24 0 2 43 53 69

Table A.32: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 552±117 389 375 438 460 474 2522
NU (primary) [MB/5 min] 30±3 8 1 27 32 34 39
LT (secondary) [ms] 444±3 204 84 279 421 589 2545
LET (secondary) [ms] 871±639 12153 6 143 186 236 251373
LER (secondary) [%] 5±1 3 0 3 6 7 13

Table A.33: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 1190±325 1282 438 536 986 1268 7995
NU (primary) [MB/5 min] 25±2 9 5 17 27 33 42
LT (secondary) [ms] 541±6 438 93 283 444 662 4759
LET (secondary) [ms] 1527±473 15181 6 141 186 243 239224
LER (secondary) [%] 18±4 15 0 8 11 35 59

Table A.34: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 193

A.2.9 Synthetic Heavy Weight Workload with Temporally Varying Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.10: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 804 51
policy 1 452 28
policy 2 540 20

Table A.35: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 194

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 804±172 629 519 545 579 628 2684
NU (primary) [MB/5 min] 51±5 19 0 45 53 68 74
LT (secondary) [ms] 622±5 408 98 409 570 739 6912
LET (secondary) [ms] 196±27 745 7 97 105 128 30077
LER (secondary) [%] 10±6 24 0 0 1 5 100

Table A.36: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 452±41 131 161 417 438 466 1030
NU (primary) [MB/5 min] 28±3 9 8 22 29 35 40
LT (secondary) [ms] 418±3 198 85 276 412 543 2662
LET (secondary) [ms] 411±343 6669 6 177 184 231 213399
LER (secondary) [%] 5±2 6 0 0 3 11 19

Table A.37: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 540±58 195 321 435 445 578 1088
NU (primary) [MB/5 min] 20±2 7 0 16 20 27 31
LT (secondary) [ms] 444±2 185 85 304 425 560 2335
LET (secondary) [ms] 916±571 12514 6 179 185 233 246854
LER (secondary) [%] 7±3 11 0 0 1 7 32

Table A.38: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 195

A.2.10 Synthetic Variabale Weight Workload with Low Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.11: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 636 63
policy 1 454 7
policy 2 445 3

Table A.39: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 196

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 636±6 23 593 618 633 654 699
NU (primary) [MB/5 min] 63±4 16 8 67 68 68 69
LT (secondary) [ms] 638±7 235 98 461 643 797 2315
LET (secondary) [ms] NA NA NA NA NA NA NA
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.40: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 454±7 24 426 437 451 462 525
NU (primary) [MB/5 min] 7±1 4 3 4 6 8 18
LT (secondary) [ms] 454±5 152 97 366 455 565 1826
LET (secondary) [ms] NA NA NA NA NA NA NA
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.41: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 445±4 14 425 435 446 456 472
NU (primary) [MB/5 min] 3±0 1 1 3 3 4 7
LT (secondary) [ms] 445±4 142 95 363 452 554 1836
LET (secondary) [ms] NA NA NA NA NA NA NA
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.42: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 197

A.2.11 Synthetic Variabale Weight Workload with High Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.12: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 1134 17
policy 1 410 21
policy 2 413 13

Table A.43: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 198

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 1134±469 1611 464 550 838 986 9665
NU (primary) [MB/5 min] 17±6 19 0 0 4 38 45
LT (secondary) [ms] 566±12 277 98 373 555 722 2535
LET (secondary) [ms] 243±152 3572 8 97 102 107 132041
LER (secondary) [%] 50±12 42 0 1 84 86 90

Table A.44: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 410±22 78 278 338 418 459 559
NU (primary) [MB/5 min] 21±2 7 0 19 23 25 27
LT (secondary) [ms] 405±6 194 97 274 371 519 1977
LET (secondary) [ms] 122±10 105 6 85 87 144 633
LER (secondary) [%] 9±6 20 0 1 2 8 86

Table A.45: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 413±35 123 128 314 423 497 628
NU (primary) [MB/5 min] 13±2 6 0 11 14 17 24
LT (secondary) [ms] 389±7 202 89 244 354 506 2047
LET (secondary) [ms] 174±9 106 6 86 183 233 576
LER (secondary) [%] 13±6 20 0 1 6 15 86

Table A.46: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 199

A.2.12 Synthetic Variabale Weight Workload with Locally Varying
Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.13: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 574 45
policy 1 1858 19
policy 2 1695 19

Table A.47: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 200

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 574±28 97 367 535 574 601 1021
NU (primary) [MB/5 min] 45±1 3 37 43 45 47 50
LT (secondary) [ms] 570±8 267 98 367 551 758 2096
LET (secondary) [ms] 966±262 1021 11 195 389 1726 4901
LER (secondary) [%] 1±1 3 0 0 0 1 19

Table A.48: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 1858±1360 5031 356 431 460 512 29491
NU (primary) [MB/5 min] 19±1 5 2 17 19 22 25
LT (secondary) [ms] 444±6 200 98 282 427 589 2169
LET (secondary) [ms] 6804±4396 34634 7 143 188 279 223616
LER (secondary) [%] 7±3 11 0 0 2 9 42

Table A.49: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 1695±967 3575 369 490 612 1434 21953
NU (primary) [MB/5 min] 19±3 10 4 12 16 25 40
LT (secondary) [ms] 572±16 477 99 279 470 673 3561
LET (secondary) [ms] 2413±1427 18462 6 52 183 239 198501
LER (secondary) [%] 18±5 18 0 1 12 33 71

Table A.50: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 201

A.2.13 Synthetic Variabale Weight Workload with Temporally Vary-
ing Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.14: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 570 52
policy 1 889 13
policy 2 555 13

Table A.51: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 202

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 570±21 72 335 525 575 626 689
NU (primary) [MB/5 min] 52±3 10 40 45 47 63 68
LT (secondary) [ms] 575±8 257 96 390 552 735 2111
LET (secondary) [ms] 162±56 144 14 49 143 231 495
LER (secondary) [%] 1±0 1 0 0 0 1 5

Table A.52: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 889±754 2633 149 386 444 489 15548
NU (primary) [MB/5 min] 13±2 7 0 10 13 19 24
LT (secondary) [ms] 435±5 168 95 312 418 540 2148
LET (secondary) [ms] 8327±13486 103703 7 85 86 144 1311880
LER (secondary) [%] 7±6 23 0 0 0 3 100

Table A.53: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 555±49 172 253 450 518 615 1162
NU (primary) [MB/5 min] 13±2 7 3 7 12 19 26
LT (secondary) [ms] 479±6 186 96 362 461 588 2028
LET (secondary) [ms] 252±54 725 7 181 224 267 15926
LER (secondary) [%] 15±6 21 0 0 1 28 77

Table A.54: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 203

A.2.14 File System Specific Workload with Low Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.15: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 877 76
policy 1 705 26
policy 2 690 22

Table A.55: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 204

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 877±6 26 787 868 884 890 911
NU (primary) [MB/5 min] 76±2 11 21 79 79 80 81
LT (secondary) [ms] 876±2 314 97 655 899 1110 2491
LET (secondary) [ms] 78±0 0 78 78 78 78 78
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.56: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 705±3 14 684 694 699 714 732
NU (primary) [MB/5 min] 26±2 8 7 23 24 27 48
LT (secondary) [ms] 705±2 244 96 541 742 899 2546
LET (secondary) [ms] NA NA NA NA NA NA NA
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.57: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 690±6 25 603 685 695 704 727
NU (primary) [MB/5 min] 22±1 5 2 22 22 23 34
LT (secondary) [ms] 690±2 238 93 530 726 887 2008
LET (secondary) [ms] NA NA NA NA NA NA NA
LER (secondary) [%] 0±0 0 0 0 0 0 0

Table A.58: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 205

A.2.15 File System Specific Workload with High Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.16: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 720 45
policy 1 3704 21
policy 2 784 23

Table A.59: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 206

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 720±26 97 426 699 734 758 1003
NU (primary) [MB/5 min] 45±4 15 2 45 50 52 58
LT (secondary) [ms] 726±3 341 86 506 715 934 6065
LET (secondary) [ms] 129±5 341 6 64 89 126 21026
LER (secondary) [%] 10±7 25 0 2 3 4 97

Table A.60: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 3704±436 2528 455 688 4739 5327 14954
NU (primary) [MB/5 min] 21±2 11 0 15 20 24 45
LT (secondary) [ms] 1497±16 1970 97 506 732 1092 17915
LET (secondary) [ms] 3736±4763 205918 6 80 142 375 14630025
LER (secondary) [%] 8±2 17 0 0 3 7 92

Table A.61: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 784±73 263 468 642 658 967 1688
NU (primary) [MB/5 min] 23±3 12 0 16 30 32 35
LT (secondary) [ms] 609±3 271 86 418 616 781 5744
LET (secondary) [ms] 230±43 3153 6 72 118 183 244865
LER (secondary) [%] 26±9 32 1 6 10 19 90

Table A.62: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 207

A.2.16 File System Specific Workload with Locally Varying Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.17: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 6511 30
policy 1 3908 13
policy 2 3854 26

Table A.63: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 208

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 6511±1001 8254 694 1431 4700 6031 52998
NU (primary) [MB/5 min] 30±2 13 5 18 30 38 61
LT (secondary) [ms] 1821±16 1991 98 591 925 2479 22314
LET (secondary) [ms] 6117±781 28939 6 191 449 993 241662
LER (secondary) [%] 18±2 18 0 3 6 37 68

Table A.64: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 3908±398 2593 600 982 3866 5946 9414
NU (primary) [MB/5 min] 13±2 15 1 2 3 28 49
LT (secondary) [ms] 1053±8 946 97 529 759 1051 6816
LET (secondary) [ms] 2027±260 15234 6 90 368 852 247382
LER (secondary) [%] 37±3 22 0 10 51 55 60

Table A.65: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 3854±660 3971 525 818 2401 5529 21939
NU (primary) [MB/5 min] 26±2 10 10 18 24 35 49
LT (secondary) [ms] 798±5 571 90 453 709 943 5477
LET (secondary) [ms] 2716±421 21396 6 99 360 562 274519
LER (secondary) [%] 30±4 23 1 8 28 52 68

Table A.66: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 209

A.2.17 File System Specific Workload with Temporally Varying Churn

Summarised Effects of Policies on Expected Lookup Time and Network Usage

Figure A.18: normalised mean ULM values

policy mean expected lookup time [ms] mean network usage [MB/5 min]
policy 0 783 58
policy 1 675 34
policy 2 730 24

Table A.67: mean ULM values

APPENDIX A. P2P LAYER EXPERIMENTS 210

Summary of ULM Distributions

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 783±17 69 467 743 777 841 876
NU (primary) [MB/5 min] 58±4 15 3 54 58 63 80
LT (secondary) [ms] 770±3 322 86 551 783 1004 4684
LET (secondary) [ms] 114±6 232 5 47 54 73 8667
LER (secondary) [%] 3±2 10 0 0 1 2 70

Table A.68: ULM distributions, measured with unmanaged nodes (policy 0).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 675±14 55 496 636 690 713 791
NU (primary) [MB/5 min] 34±2 7 10 30 35 40 46
LT (secondary) [ms] 654±2 263 86 471 669 842 2625
LET (secondary) [ms] 330±9 258 6 211 327 414 9940
LER (secondary) [%] 5±1 5 0 0 3 7 18

Table A.69: ULM distributions, measured with managed nodes (policy 1).

ULM unit ciµ s min Q1 Q2 Q3 max
ELT (primary) [ms] 730±85 335 272 570 681 754 2353
NU (primary) [MB/5 min] 24±2 9 0 20 25 29 41
LT (secondary) [ms] 608±2 273 85 388 617 817 2724
LET (secondary) [ms] 1002±674 25285 6 145 282 381 1466637
LER (secondary) [%] 9±3 14 0 0 2 10 60

Table A.70: ULM distributions, measured with managed nodes (policy 2).

APPENDIX A. P2P LAYER EXPERIMENTS 211

A.2.18 Analysis for Statistical Significance

An analysis of the statistical significance of the differences between the data sets was car-

ried out following guidelines for a t-test from [40] and by using Commons-Math: The

Apache Commons Mathematics Library, commons-math 1.2, [25]. The p-values, shown

in table A.71 represent the probabilities that any differences in the monitored effects were

only due to chance.

experiment specification policy 1 policy 2

workload churn pattern
expected
lookup
time

network
usage

expected
lookup
time

network
usage

sy
nt

he
tic

lig
ht

w
ei

gh
t

low churn 0.000 0.000 0.000 0.000
high churn 0.123 0.000 0.222 0.000
locally varying churn 0.078 0.000 0.249 0.000
temporally varying churn 0.027 0.000 0.903 0.000

sy
nt

he
tic

he
av

y
w

ei
gh

t

low churn 0.000 0.000 0.000 0.000
high churn 0.000 0.074 0.000 0.925
locally varying churn 0.002 0.039 0.007 0.517
temporally varying churn 0.002 0.000 0.022 0.000

sy
nt

he
tic

va
ri

ab
le

w
ei

gh
t

low churn 0.000 0.000 0.000 0.000
high churn 0.016 0.341 0.017 0.297
locally varying churn 0.129 0.000 0.065 0.000
temporally varying churn 0.492 0.000 0.647 0.000

fil
e

sy
st

em
sp

ec
ifi

c low churn 0.000 0.000 0.000 0.000
high churn 0.000 0.000 0.181 0.000
locally varying churn 0.000 0.000 0.000 0.012
temporally varying churn 0.000 0.000 0.318 0.000

Table A.71: T-Test Results.

A.2.19 Holistic Quantification of the Effects of Autonomic Manage-

ment

Here a holistic approach towards the quantification of the effects of autonomic management

is presented. The method for quantifying the effects of autonomic management on perfor-

APPENDIX A. P2P LAYER EXPERIMENTS 212

mance and resource consumption reported in chapter 7 is based on computing values for

the expected lookup time for each observation time window. In a situation in which only

successful lookups were executed for each observation period, the expected lookup time

was equal to the monitored lookup time. In the case of errors it was computed as outlined

in section 7.4.2, but only if monitoring data for at least one successful lookup was avail-

able. This approach provided a single set of values for quantifying the effects of autonomic

management and showing how they changed over time. The shortcoming of this approach

however was that observation periods in which only errors occurred were not considered

when making an overall quantification of the effects.

It is also possible to quantify the effects of autonomic management in other ways which also

detect the significant advantages of autonomic management. In this approach, the expected

lookup time is computed by averaging all secondary ULMs over the entire experimental

run time and over all repetitions. The amount of data sent to the network during the entire

experimental run is used to quantify the network usage. This approach considers monitor-

ing data in a more holistic way than by breaking it up into observation periods. However

it does not provide a single set of values for showing ULM progressions and distributions

and was therefore not used in chapter 7. In table A.72 the number of experiment groups3

in which each policy yielded the greatest benefit, with respect to the expected lookup time

(ELT) and the network usage (NU) individually and to both in combination. Policy 0 gave

the best results in fewer experiments than policy 1 and 2.

policy description ELT NU ELT & NU
2 autonomic2 8 13 7
1 autonomic1 6 3 1
0 static 2 0 0

Table A.72: The number of experiment groups (out of 16) in which the specific policies
yielded the biggest (holistic) benefits.

3An experiment was specified by churn pattern, workload and policy; groups of experiments by churn
pattern and workload.

APPENDIX A. P2P LAYER EXPERIMENTS 213

Table A.73 shows how much autonomic management affected the observed ULMs in the

various experiments that were conducted. It shows the specific mean ULMs in managed

systems normalised with respect to the corresponding ones in an unmanaged system in the

same experiment. Thus every normalised ULM < 1 represents a benefit of the specific au-

tonomic management policy with respect to the unmanaged system. This provides an easy

way to show that autonomic management also yielded significant benefits with a holistic

analysis. Differences to the approach used in chapter 7 are outlined in section 7.7.3.

experiment specification policy 1 policy 2
workload churn pattern ELT NU ELT NU

sy
nt

he
tic

lig
ht

w
ei

gh
t

low churn 0.73 0.09 0.7 0.03
locally varying churn 0.89 0.45 1.24 0.44
temporally varying churn 0.73 0.29 4.21 0.18
high churn 13.4 0.55 14.02 0.35

sy
nt

he
tic

he
av

y
w

ei
gh

t

low churn 0.73 0.22 0.70 0.16
locally varying churn 0.36 0.56 0.60 0.67
temporally varying churn 0.68 0.39 0.79 0.34
high churn 0.57 1.29 0.61 0.95

sy
nt

he
tic

va
ri

ed
w

ei
gh

t

low churn 0.71 0.10 0.70 0.05
locally varying churn 1.52 0.47 1.75 0.47
temporally varying churn 1.52 0.29 0.94 0.24
high churn 0.39 1.24 0.39 0.81

fil
e

sy
st

em
sp

ec
ifi

c low churn 0.8 0.26 0.79 0.22
locally varying churn 0.7 0.28 0.57 0.46
temporally varying churn 0.86 0.51 0.91 0.4
high churn 2.42 1.7 1 0.47

Table A.73: A summary of all normalised holistic ULMs.

Appendix B

Data Layer Experiments

B.1 Preliminary Work

Preliminary work was carried out in order to make decisions as to how to configure the

autonomic manager and to calibrate the experimental harness used in the experiments re-

ported in chapter 8.

B.1.1 Network Speed Configuration Verification

To verify that the network speed was applied correctly with tc (see section 8.3.4), sample

configurations were tested with the third-party tool iperf [22] and with traceroute [58].

Measurements were carried out with a sample set of three hosts and the central router as

introduced in section 8.3.4. The bandwidth between the hosts and the central router, and on

the complete path between client and server was measured using iperf. The latency from

one host to another via the central router was measured using traceroute. All measurements

were carried out bi-directionally and repeated three times.

214

APPENDIX B. DATA LAYER EXPERIMENTS 215

The results showed that the measurements with respect to bandwidth varied on average by a

factor of 0.044 in comparison to the configured bandwidth. The measurement with respect

to latency varied by a factor of 0.045 in comparison to the configured latency. Thus, and

due to the absence of feasible alternatives, tc was considered to be accurate enough to be

used for simulating various network conditions.

B.1.2 Bandwidth Estimation

This preliminary work was carried out to test various SRM (see sections 5.5.2 and 8.2.2)

configurations in order to select the one which provided a sufficiently accurate bandwidth

estimation.

The SRM uses low level monitoring machinery (LLMM) which periodically estimates the

bandwidth between two specific hosts. ICMP ping requests with different (configurable)

packet sizes were used to measure the ping time and compute the available bandwidth from

it. The biggest ICMP packet size used for this measurement determines the accuracy of

the measurement. It was assumed that the biggest possible ICMP payload results in the

most accurate measurement. However, this calibration was driven by the motivation to

find the smallest payload size which is sufficiently accurate. The LLMM was tested in

isolation and as part of the ASA components which were deployed here. It was exposed to

a subset of the conditions in the experiments reported in chapter 8. In each case the LLMM

was configured with four different ICMP payloads; 65507 bytes is the maximum payload

allowed by the ping utility.

APPENDIX B. DATA LAYER EXPERIMENTS 216

The tested payloads were:

• 65507 bytes

• 32253 bytes

• 16126 bytes

• 8063 bytes

The results showed that 50% of the maximum possible ICMP packet size (32253 bytes)

provided sufficiently accurate bandwidth measurements. The bandwidth estimation results

varied from the configured bandwidth by a factor between 0.03 and 0.08.

B.1.3 Network Speed Configuration

This preliminary work was carried out to give an indication of the range of values for

latency that can be used to simulate small network speeds.

The latency was measured from a typical user’s workstation connection via a private BT

Total Broadband internet connection to a host in the same network in which the ASA stor-

age cloud1 was located. Measurements were conducted at various times of the day. The

latency was measured on the first hop between the workstation and the above-mentioned

host. The local area network (LAN) connection between the workstation and the modem

was ignored2. The reason for ignoring it was that such a LAN connection would not rep-

resent a connection with limited network speed. The average measured round trip time

was 42 ± 1.8 [ms]; a latency of 20 [ms] was thus configured in the experiments in which

limited network speed was simulated.

1as used for the experiments reported in chapters 7 and 8
2This link was specified with RFC 1918 [76] addresses.

APPENDIX B. DATA LAYER EXPERIMENTS 217

B.1.4 Autonomic Manager Configuration

These preliminary experiments were carried out to get an intuition of how to configure

the autonomic manager used in the experiments reported in chapter 8. The autonomic

manager determines a new DOC depending on an observed fetch failure rate (FFR) metric,

a bottleneck (BN) metric and a fetch time variation (FTV) metric. A threshold can be

configured for each metric to determine whether this specific metric value is high or low.

All metrics were measured in preliminary experiments with high and low churn, a heavy

and a light weight workload, small and big data item sizes, bottlenecks on client, server

and on neither side as well as with a statically high and low configured DOC. The metrics

were averaged over all experiments, which included, all together, three repetitions of each

experiment.

metric min mean standard deviation median Q3 max
FFR 0 0.143 0.26 0 0.188 0.75
FTV 0.021 0.034 0.004 0.033 0.036 0.046
BN 0.956 1.004 0.021 1.003 1.016 1.065

Table B.1: Observed and averaged metrics values.

A FFR threshold determines the failure rate below which no responses (increase of the

DOC) are initiated by the autonomic manager. The FFR metric values shown in table

B.1 exhibited a stark variation as it was aggregated over high and low churn. Therefore a

range of thresholds (0.1, 0.3 and 0.5), was used in the experiments reported in chapter 8.

Like the FFR threshold, the FTV threshold also determines a metric value below which no

responses are initiated by the DOC. The variation of fetch times as shown by FTV metrics

values in table B.1 are monitored even though no network speed variation was configured.

Therefore a FTV threshold, below which no policy response is triggered was chosen to be

0.2, significantly above the maximum observed variation. The BN threshold determines

that a bottleneck is present at the client side, if any monitored BN metric is smaller than

APPENDIX B. DATA LAYER EXPERIMENTS 218

the corresponding threshold. Only BN metric values monitored in experiments in which no

bottlenecks were exhibited are shown in table B.1. A BN threshold of 0.8 was chosen for

the experiments reported in chapter 8.

B.2 Experimental Results

B.2.1 Introduction

The following sections provide additional detailed results to those reported in chapter 8.

This section explains how they are organised and what information each report contains.

After an overview of the policies and of how often individual policies yielded the greatest

in section B.2.2, details about the effects of individual policies on the expected get time

(EGT) and the network usage (NU) are provided in sections B.2.3 to B.2.6. The detailed

results in sections B.2.3 to B.2.6 are grouped by network speed configuration. All experi-

ments in which a static bottleneck at the server was exhibited are reported in section B.2.3,

all in which a bottleneck on the client side was exhibited are reported in section B.2.4 and

so forth. Each of these sections contains two tables, one with the effects of the individual

policy on the specific ULM, another one explaining the abbreviations used to specify the

individual experiment. The effects are normalised by the baseline in the corresponding ex-

periment. As baseline (policy 0) a static DOC configuration with no concurrency was used

(in combination with a SRM).

B.2.2 Policy Effects Overview

Table B.2 indicates how often each policy resulted either in the shortest expected get time

(EGT), the lowest network usage (NU) and in both in combination (out of 72 different

APPENDIX B. DATA LAYER EXPERIMENTS 219

experiment groups).

policy description EGT NU EGT & NU
4 AMTFFR=0.5 6 10 2
3 AMTFFR=0.3 15 9 4
2 AMTFFR=0.1 13 12 1
1 STDOC=4 23 1 1
0 STDOC=1 15 40 9

Table B.2: Benefits summary.

Table B.2 contains a brief description of each policy. Policy 0, the baseline, has a statically

configured low DOC (1). Policy 1 has a statically configured high DOC (4). Policies 2 -

4 are policies which specify an autonomic adaptation of the DOC. The autonomic policies

vary in terms of the threshold for the number of failed fetch operations per observation

period.

APPENDIX B. DATA LAYER EXPERIMENTS 220

B.2.3 Static Bottleneck at Server Side

policy 1 policy 2 policy 3 policy 4
experiment specification EGT NU EGT NU EGT NU EGT NU

CP1 WL1 DS1 1.041 3.580 1.003 1.027 1.002 1.052 1.003 1.054
CP1 WL1 DS2 0.913 3.675 1.009 0.994 0.991 1.055 1.005 0.994
CP1 WL2 DS1 1.005 1.809 0.994 0.996 1.000 1.014 1.006 0.995
CP1 WL2 DS2 0.908 1.088 1.004 0.985 0.985 1.000 1.027 1.000
CP1 WL3 DS1 1.024 2.497 1.011 0.989 1.003 0.982 1.004 0.993
CP1 WL3 DS2 0.895 1.362 0.992 1.041 0.992 1.004 1.005 0.998
CP2 WL1 DS1 0.912 2.157 0.989 1.278 0.976 1.419 0.988 1.267
CP2 WL1 DS2 0.828 2.124 0.967 1.157 0.973 1.149 0.985 1.125
CP2 WL2 DS1 0.976 1.639 1.006 1.000 0.965 0.990 1.023 1.007
CP2 WL2 DS2 0.897 1.057 1.013 1.000 1.017 1.000 0.962 1.000
CP2 WL3 DS1 0.975 1.308 1.019 1.024 1.015 1.026 1.002 1.015
CP2 WL3 DS2 0.937 1.161 0.984 1.002 1.020 1.002 0.957 1.001
CP3 WL1 DS1 0.981 2.688 1.043 1.366 1.027 1.341 1.037 1.401
CP3 WL1 DS2 0.836 2.123 1.012 1.153 0.979 1.144 0.990 1.138
CP3 WL2 DS1 1.017 1.782 1.045 1.010 1.010 1.025 1.055 1.030
CP3 WL2 DS2 0.849 1.082 0.960 0.992 0.976 0.999 0.972 0.999
CP3 WL3 DS1 0.980 1.989 1.013 1.009 0.996 0.999 1.013 1.005
CP3 WL3 DS2 0.841 1.228 0.998 1.006 0.995 1.006 0.978 1.002

Table B.3: Effects on ULM when bottleneck is on the server side.

abbreviation description
CP1 low churn
CP2 high churn
CP3 temporally varying churn
WL1 heavy weight workload
WL2 light weight workload
WL3 temporally varying workload
DS1 big data item size
DS2 small data item size

Table B.4: Abbreviations

APPENDIX B. DATA LAYER EXPERIMENTS 221

B.2.4 Static Bottleneck at Client Side

policy 1 policy 2 policy 3 policy 4
experiment specification EGT NU EGT NU EGT NU EGT NU

CP1 WL1 DS1 2.363 1.161 1.001 0.998 0.999 1.002 1.000 0.998
CP1 WL1 DS2 1.562 1.502 0.990 1.009 1.003 0.999 1.001 1.001
CP1 WL2 DS1 2.674 1.637 1.009 1.001 0.999 1.004 1.006 0.988
CP1 WL2 DS2 1.492 1.081 0.992 0.998 1.001 1.000 0.991 0.963
CP1 WL3 DS1 2.432 1.734 0.998 0.994 1.004 0.998 1.003 0.995
CP1 WL3 DS2 1.728 1.224 1.003 0.998 0.997 1.017 1.000 1.025
CP2 WL1 DS1 1.220 1.122 1.164 1.037 1.158 1.040 1.062 1.026
CP2 WL1 DS2 1.007 1.348 0.991 1.079 1.026 1.084 1.011 1.070
CP2 WL2 DS1 1.707 1.335 1.007 1.003 0.954 0.993 1.008 1.003
CP2 WL2 DS2 1.209 1.044 1.043 0.999 1.020 1.000 1.022 1.000
CP2 WL3 DS1 1.255 1.165 1.040 1.016 1.069 1.035 1.011 1.005
CP2 WL3 DS2 1.094 1.077 0.938 1.000 0.947 1.002 0.989 1.001
CP3 WL1 DS1 1.589 1.154 1.088 1.022 1.092 1.018 1.048 1.022
CP3 WL1 DS2 0.978 1.327 0.988 1.072 1.016 0.997 0.982 1.082
CP3 WL2 DS1 2.115 1.426 1.005 0.999 1.009 1.012 1.002 1.011
CP3 WL2 DS2 1.125 1.053 1.022 0.983 1.002 0.996 1.001 1.004
CP3 WL3 DS1 1.760 1.531 0.964 1.066 0.984 1.070 0.957 1.059
CP3 WL3 DS2 1.192 1.115 1.015 0.997 0.994 1.000 1.007 1.000

Table B.5: Effects on ULM when bottleneck is on the client side.

abbreviation description
CP1 low churn
CP2 high churn
CP3 temporally varying churn
WL1 heavy weight workload
WL2 light weight workload
WL3 temporally varying workload
DS1 big data item size
DS2 small data item size

Table B.6: Abbreviations

APPENDIX B. DATA LAYER EXPERIMENTS 222

B.2.5 No Bottleneck

policy 1 policy 2 policy 3 policy 4
experiment specification EGT NU EGT NU EGT NU EGT NU

CP1 WL1 DS1 2.042 1.651 1.060 1.074 1.069 1.085 1.024 1.023
CP1 WL1 DS2 1.523 1.985 1.001 1.006 0.990 1.010 0.998 1.006
CP1 WL2 DS1 1.649 1.598 0.987 1.028 1.005 1.015 1.008 1.009
CP1 WL2 DS2 0.955 1.032 1.095 1.002 1.015 1.009 0.970 1.001
CP1 WL3 DS1 1.786 2.015 0.980 1.004 0.971 0.992 0.978 0.993
CP1 WL3 DS2 1.055 1.160 0.989 0.987 1.021 0.991 0.974 1.002
CP2 WL1 DS1 1.290 1.428 1.193 1.167 1.115 1.127 1.097 1.077
CP2 WL1 DS2 0.894 1.243 1.008 0.986 1.038 0.963 1.042 0.955
CP2 WL2 DS1 1.239 1.325 0.995 1.000 0.999 1.001 0.997 0.999
CP2 WL2 DS2 1.084 1.041 1.005 1.000 1.083 1.001 1.085 0.999
CP2 WL3 DS1 1.381 1.669 0.988 0.987 0.965 0.985 0.995 0.997
CP2 WL3 DS2 1.075 1.132 1.050 1.003 1.012 1.000 0.987 0.999
CP3 WL1 DS1 1.440 1.623 1.100 1.134 1.151 1.077 1.049 1.051
CP3 WL1 DS2 0.860 1.300 0.991 1.078 0.960 1.040 1.011 0.987
CP3 WL2 DS1 1.478 1.413 1.017 0.998 1.028 1.003 1.014 1.002
CP3 WL2 DS2 1.052 1.063 0.993 1.007 1.064 1.008 1.006 1.008
CP3 WL3 DS1 1.573 1.881 1.012 0.988 1.009 1.003 0.997 1.007
CP3 WL3 DS2 0.976 1.131 1.040 1.005 1.004 1.004 0.994 1.006

Table B.7: Effects on ULM when there is no bottleneck on either side.

abbreviation description
CP1 low churn
CP2 high churn
CP3 temporally varying churn
WL1 heavy weight workload
WL2 light weight workload
WL3 temporally varying workload
DS1 big data item size
DS2 small data item size

Table B.8: Abbreviations

APPENDIX B. DATA LAYER EXPERIMENTS 223

B.2.6 Temporally Varying Network Speed

policy 1 policy 2 policy 3 policy 4
experiment specification EGT NU EGT NU EGT NU EGT NU

CP1 WL1 DS1 0.947 2.336 0.930 2.320 0.931 2.343 0.945 2.340
CP1 WL1 DS2 0.441 2.927 0.788 1.464 0.841 1.425 0.776 1.481
CP1 WL2 DS1 0.690 1.526 0.668 1.747 0.652 1.680 0.705 1.883
CP1 WL2 DS2 0.991 1.088 0.948 1.114 0.956 1.144 1.225 1.170
CP1 WL3 DS1 0.827 1.988 0.850 1.960 0.742 1.996 0.875 2.059
CP1 WL3 DS2 0.801 1.153 0.827 1.087 0.752 1.101 0.826 1.157
CP2 WL1 DS1 0.757 1.745 0.732 1.848 0.736 1.863 0.757 1.860
CP2 WL1 DS2 0.760 1.272 0.862 1.380 0.916 1.588 0.937 1.522
CP2 WL2 DS1 1.214 1.394 0.923 1.316 1.095 1.461 1.366 1.399
CP2 WL2 DS2 0.807 1.019 0.789 1.030 0.738 1.028 0.763 1.034
CP2 WL3 DS1 0.692 1.399 0.675 1.395 0.719 1.400 0.768 1.352
CP2 WL3 DS2 0.801 1.099 0.811 1.091 0.750 1.070 0.829 1.094
CP3 WL1 DS1 0.869 1.941 0.884 1.857 0.815 2.049 0.903 2.038
CP3 WL1 DS2 0.665 1.378 0.861 1.611 0.705 1.082 0.796 1.667
CP3 WL2 DS1 1.103 1.315 1.224 1.249 1.264 1.354 1.264 1.386
CP3 WL2 DS2 0.531 0.994 0.693 1.004 0.562 1.057 0.662 1.037
CP3 WL3 DS1 0.499 1.704 0.522 1.539 0.617 1.580 0.506 1.675
CP3 WL3 DS2 0.742 1.095 0.753 1.101 0.767 1.102 0.687 1.106

Table B.9: Effects on ULM when network speed varies temporally.

abbreviation description
CP1 low churn
CP2 high churn
CP3 temporally varying churn
WL1 heavy weight workload
WL2 light weight workload
WL3 temporally varying workload
DS1 big data item size
DS2 small data item size

Table B.10: Abbreviations

Appendix C

GAMF

In chapter 6 the generic autonomic management framework GAMF was introduced. The

following sections briefly outline how the GAMF can be used for applying autonomic

management to various target systems outwith the scope of this thesis.

C.1 Customising Triggers

The internal GAMF building blocks which are used to initiate the execution of metric ex-

tractors or policy evaluators are referred to as triggers. Triggers for periodically triggering

or for triggering at the arrival of a specific event are provided by the GAMF. If needed,

triggers can be customised by the system adapter developer. In such cases the provided

trigger-interface and system-adapter-interface need to be implemented. This can be useful

if a triggering mechanism is required for handling complex scheduling, for instance, the

evaluation of a policy every 100th time a specified event type is recorded; or to trigger an

evaluation if, after a given time, no event of a given event type arrives.

224

APPENDIX C. GAMF 225

C.2 Triggering By Combining System Adapters

If a policy evaluation is very expensive, with respect to compute resource usage, it can be

configured that it is, for instance, only evaluated in specific conditions. Such conditions

can be represented by specific metric values. This can be achieved without customising

triggers by combining a metric extractor with an event generator. In such a case the metric

extractor can generate an event when a metric value is above a certain threshold. A policy

can be configured to be triggered at the arrival of a specific event type (generated by the

metric).

C.3 Nesting Autonomic Managers

It may be required that an autonomically managed system is controlled by a higher level

manager, via provision of effectors. This might be useful if the behaviour of a manager

can be configured with some constant parameters (as it is the case in chapter 4). If this

behaviour should be again controlled autonomically, nested autonomic managers can be

used. In such a case an autonomically managed system is considered as the target system

by a higher level manager (figure C.1). The lower level manager may be controlled by a set

of parameters directly influencing its policy objectives. GAMF can provide events through

which a higher level manager can gather information.

C.4 Supporting Team Development

In a large scale development project with more than one system adapter developer, working

on multiple system adapters, it may become very complex to keep track of the system

adapters used and how they interact with each other. It may even be more complex and

APPENDIX C. GAMF 226

high level manager

low level manager

target system

event generatoreffector

association

Figure C.1: Nested Manager

therefore error prone if various individual system adapters are reused for the management

of multiple facets. GAMF’s registration mechanism prevents accidental removal of system

adapters during a reassembly of the management components if GAMF is configured to do

so.

C.5 A Target System Without Access to Source

In the experimental work reported in this thesis, an autonomic manager was added to a

system whose source was available. Here it is briefly outlined how GAMF can be used to

apply autonomic behaviour to a system whose source is not available. The focus of this

use case lies on the interaction between the manager and the target system as provided by

the event generator and effector. The objective of the manager is to control the resource

allocation of a specific web site autonomically in order to maintain free resources for other

websites on the same host in the case that the website under consideration exhibits a high

access rate.

The target system in this case is a web server, whose source code is not available. The web

server’s configuration files and the log files allow read and write access. GAMF runs in a

APPENDIX C. GAMF 227

separate address space but on the same physical machine as the web server. The website

consists of an application which carries out resource consuming computations. If the num-

ber of accesses to the application per observation period exceeds a specific threshold, the

configuration setting for the number of web server child processes is reduced in order to

allow other services on the web server to use enough CPU.

A log file watcher which implements an event generator is developed. This log file watcher

periodically searches for events in the web server’s access log file which indicate that the

website was accessed. The event generator sends the number of accesses as an event to

the GAMF which may or may not reside in the same address space as the log file watcher.

An effector is implemented which changes the maximum number of child processes for the

website under consideration in the web server configuration. After a successful change of

the number of child processes, the effector restarts the web server so that the configuration

change has an effect.

This shows how an autonomic manager can be implemented with GAMF in order to dy-

namically adapt a target system of which the source code is not available. It is hoped that

the GAMF can thus be used by other people in various other projects besides this thesis.

The GAMF is implemented in Java its source code and additional information, including

an API, can be obtained from http://www-systems.cs.st-andrews.ac.uk/gamf.

Bibliography

[1] M. Agarwal, V. Vhat, H. Liu, V. Matossian, V. Putty, C. Schmidt, G. Zhang, L. Zhen,

and M. Parashar. Automate: Enabling autonomic applications on the grid. CAIP

TR-269, Department of Electrical and Computer Engineering, Rutgers University,

Seattle, WA, 2003.

[2] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A five-year study of

file-system metadata. ACM Transactions on Storage (TOS), 3(3), October 2007.

[3] S. Ajmani, D. E. Clarke, C. Moh, and S. Richman. ConChord: Cooperative SDSI

Certificate Storage and Name Resolution. In First International Workshop on

Peer-to-Peer Systems, pages 141–154, 2002.

[4] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, and J. K. Ousterhout.

Measurements of a distributed file system. In Proceedings of 13th ACM Symposium

on Operating Systems Principles, pages 198–212. Association for Computing

Machinery SIGOPS, 1991.

[5] S. Balasubramaniam, D. Botvich, B. Jennings, S. Davy, W. Donnelly, and

J. Strassner. Policy-constrained bio-inspired processes for autonomic route

management. Computer Networks, 53:1666–1682, 2009.

[6] G. Bell. Bell’s law for the birth and death of computer classes. Commun. ACM,

51(1):86–94, 2008.

228

BIBLIOGRAPHY 229

[7] A. Binzenhöfer and K. Leibnitz. Estimating Churn in Structured P2P Networks.

Technical Report 404, University of Würzburg, 2007. Also appears in “Managing

Traffic Performance in Converged Networks”,

http://www.springerlink.com/content/d613316022674h0k/.

[8] A. Binzenhöfer and H. Schnabel. Improving the Performance and Robustness of

Kademlia-based Overlay Networks. Technical report, University of Würzburg, 2007.

Also appears in the book “Informatik aktuell”:

http://www.springerlink.com/content/v06258j277t27066/.

[9] A. Binzenhöfer, D. Staehle, and R. Henjes. On the Stability of Chord-based P2P

Systems. Technical report, University of Wuerzburg, 2004.

[10] W. J. Bolosky, J. R. Douceur, and J. Howell. The Farsite project: a retrospective.

SIGOPS Oper. Syst. Rev., 41(2):17–26, 2007.

[11] N. Chase. Understand the Autonomic Management Engine. IBM, June 2004.

http://ibm.com/developerworks/autonomic (login required).

[12] B. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. Kaashoek,

J. Kubiatowicz, and R. Morris. Efficient replica maintenance for distributed storage

systems, 2006.

[13] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area

cooperative storage with CFS. In SOSP ’01: Proceedings of the eighteenth ACM

Symposium on Operating Systems Principles, pages 202–215, New York, NY, USA,

2001. ACM Press.

[14] F. Dabek, B. Zhao, P. Druschel, J. Kubiatowicz, and I. Stoica. Towards a Common

API for Structured Peer-to-Peer Overlays. In IPTPS ’03, Berkeley, CA, February

2003.

BIBLIOGRAPHY 230

[15] A. Dearle, G. Kirby, and S. Norcross. Hosting Byzantine Fault Tolerant Services on

a Chord Ring. Technical Report CS/07/1, University of St Andrews, 2007.

[16] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer. Reclaiming

space from duplicate files in a serverless distributed file system. In Proceedings of

22nd International Conference on Distributed Computing Systems (ICDCS), 2002.

[17] J. R. Douceur and W. J. Bolosky. A large-scale study of file-system contents. In

Proceedings of the 1999 ACM SIGMETRICS international conference on

Measurement and modeling of computer systems, pages 59–70, Atlanta, Georgia,

USA, 1999.

[18] J.R. Douceur and R.P. Wattenhofer. Optimizing File Availability in a Secure

Serverless Distributed File System. In 20th IEEE Symposium on Reliable

Distributed Systems, 2001.

[19] J. Dowling. The Decentralised Coordination of Self-Adaptive Components for

Autonomic Distributed Systems. PhD thesis, University of Dublin, Trinity College,

2004.

[20] J. Dowling and V. Cahill. The k-component architecture meta-model for

self-adaptive software. In In Akinori Yonezawa and Satoshi Matsuoka, editors,

Proceedings of 3rd International Conference on Metalevel Architectures and

Separation of Crosscutting Concerns (Reflection2001), LNCS 2192, pages 81–88.

Springer-Verlag, 2001.

[21] P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage

utility. In Proceedings HotOS VIII, May 2001.

[22] J. Dugan and M. Kutzko. Iperf. http://sourceforge.net/projects/iperf/, 2009.

BIBLIOGRAPHY 231

[23] A. Faller. Der Körper des Menschen, chapter Vegetatives Nervensystem, pages

425–435. Georg Thieme Verlag, 1995.

[24] M.J. Farabee. The nervous system. Webpage, 2001.

http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookNERV.html.

[25] The Apache Software Foundation. Common [Maths], Statistics, 2008. Online

userguide, http://commons.apache.org/math/userguide/stat.html.

[26] G. Galen and E. Knorr. What cloud computing really means, April 2008.

http://www.infoworld.com/article/08/04/07/15FE-cloud-computing-reality 1.html.

[27] S. Ghemawat, H. Gobioff, and S. Leung. The Google File System. In SOSP ’03:

Proceedings of the nineteenth ACM symposium on operating systems principles,

pages 29–43, New York, NY, USA, October 2003. ACM Press.

[28] D. S. Gill, S. Zhou, and H. S. Sandhu. A Case Study of File System Workload in a

Large-Scale Distributed Environment. In Measurement and Modeling of Computer

Systems, pages 276–277, 1994.

[29] H. Tyan. Tutorial: Working With J-Sim. Ohio State University, Electrical

Engineering, http://www.j-sim.org/tutorial/jsim tutorial.html, 2002.

[30] W. Haager. Regelungstechnik. Hoelder-Pichler-Tempsky, 1997.

[31] A. Haberlen, A. Mislove, A. Post, and P. Druschel. Fallacies in evaluating

decentralized systems. In Proceedings of the 5th International Workshop on

Peer-to-Peer Systems (IPTPS’06), Santa Barbara, CA, February 2006.

[32] J. E. Hanson, I. Whalley, D. M. Chess, and J. O. Kephart. An Architectural Approach

to Autonomic Computing. In Proceedings of the First International Conference on

Autonomic Computing (ICAC’04), pages 2–9. IEEE Computer Society, 2004.

BIBLIOGRAPHY 232

[33] S. K. Hares and C. J. Wittbrodt. RFC 1574 - Essential Tools for the OSI Internet.

http://www.faqs.org/rfcs/rfc1574.html, February 1994.

[34] S. Hariri, B. Khargharia, H. Chen, J. Yang, Y. Zhang, M. Parashar, and H. Liu. The

Autonomic Computing Paradigm. Cluster Computing, 9(1):5–17, 2006.

[35] S. Hemminger. Net:Netem, Jannuary 2008.

http://www.linuxfoundation.org/en/Net:Netem.

[36] P. Horn. Autonomic computing: IBM’s perspective on the state of information

technology, October 2001.

[37] B. Hubert. tc(8) - Linux man page. die.net. Obtained online via.

http://linux.die.net/man/8/tc on 14/10/2009.

[38] B. Hubert. Linux Advanced Routing & Traffic Control HOWTO. Netherlabs BV, 1.43

edition, October 2003.

[39] IBM and autonomic computing (no author provided). An Architectural Blueprint For

Autonomic Computing. IBM, April 2006.

http://www-03.ibm.com/autonomic/library.html.

[40] R. Jain. The art of computer systems performance analysis, techniques for

experimental design, measurement, simulation and modeling. digital equipment

corporation, 1991.

[41] G. P. Jesi. PeerSim HOWTO: Build a new protocol for the PeerSim 1.0 simulator.

http://peersim.sourceforge.net/tutorial1/tutorial1.html, 2002.

[42] M. F. Kaashoek and D. R. Karger. Koorde: A Simple Degree-optimal Hash Table. In

Proceedings of the 2nd International Workshop on Peer-To-Peer Systems (IPTPS

’03) , pages 98–107, 2003.

BIBLIOGRAPHY 233

[43] X. Kaiping, H. Peilin, and L. Jinsheng. FS-Chord: A New P2P Model with

Fractional Steps Joining. In Proceedings: Advanced International Conference on

Telecommunications and International Conference on Internet and Web Applications

and Services (AICT-ICIW’06), page 98, 2006.

[44] J. Kangasharju, U. Schmidt, D. Bradler, and J. Schräbernhardi. Chunksim:

Simulating peer-to-peer content distribution. Bachelor Thesis, 2007.

[45] J. O. Kephart and D. M. Chess. The vision of autonomic computing. IEEE

Computer, 36(1):41–50, 2003.

[46] B. Khargharia, S. Hariri, M. Parshar, L. Ntaimo, and B. Kim. vgrid: A framework

for building autonomic applications. In Proceedings of the International Workshop

on Challenges of Large Applications in Distributed Enviroments (CLADE’03), 2003.

[47] G. Kirby, A. Dearle, R. Morrison, and S. Norcross. Secure Location-Independent

Autonomic Storage Architectures. Poster at EPSRC Computer Science for e-Science

Meeting, National e-Science Centre, March 2004. http://asa.cs.st-andrews.ac.uk/.

[48] G. Kirby, A. Dearle, R. Morrison, S. Norcross, M. Tauber, and R. MacInnis. Report

on GR/S44501/01: Secure Location-Independent Autonomic Storage Architectures.

Technical report, University of St Andrews, School of Computer Science, 2008.

[49] G. Kirby, S. Norcross, A. Dearle, R. Morrison, M. Tauber, and R. MacInnis. ASA

Infrastructure Overview. Handout at the EPSRC e-Science Projects All Hands

Meeting, March 2007. http://asa.cs.st-andrews.ac.uk/.

[50] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,

H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: An Architecture

for Global-scale Persistent Storage. In Proceedings of ACM ASPLOS. ACM,

November 2000.

BIBLIOGRAPHY 234

[51] G. Kunzmann and A. Binzenhöfer. Autonomically Improving the Security and

Robustness of Structured P2P Overlays. In International Conference on Systems and

Networks Communications. ICSNC, 2006.

[52] G. Kunzmann, A. Binzenhöfer, and R. Henjes. Analyzing and Modifying Chord’s

Stabilization Algorithm to Handle High Churn Rates. In MICC& ICON, 2005.

[53] J. Ledlie, J. M. Taylor, L. Serban, and M. Seltzer. Self-organization in peer-to-peer

systems. In EW10: Proceedings of the 10th workshop on ACM SIGOPS European

workshop, pages 125–132, New York, NY, USA, 2002. ACM.

[54] X. Li, J. Misra, and C. G. Plaxton. Concurrent Maintenance of Rings. Distributed

Computing, 2006.

[55] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the evolution of

peer-to-peer systems. In PODC ’02: Proceedings of the twenty-first annual

symposium on Principles of distributed computing, pages 233–242, New York, NY,

USA, 2002. ACM.

[56] H. Liu and M. Parashar. A component based programming framework for autonomic

applications. In the International Conference on Autonomic Computing, New York,

NY, USA, 2004.

[57] R. Mahajan, M. Castro, and A. Rowstron. Controlling the Cost of Reliability in

Peer-to-Peer Overlays. In Proceedings of the 2nd International Workshop on

Peer-To-Peer Systems (IPTPS ’03) , pages 21–32, 2003.

[58] G. Malkin. Traceroute Using an IP Option. RFC1393, Jannuary 1993.

[59] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer Information System

Based on the XOR Metric. In Proceedings of the 1st International Workshop on

Peer-To-Peer Systems (IPTPS ’02) , 2002.

BIBLIOGRAPHY 235

[60] B. Melcher and B. Mitchell. Towards an Autonomic Framework: Self-Configuring

Network Services and Developing Autonomic Applications. Intel Techology

Journal, 8(4):279–290, November 2004.

[61] P. Mell and T. Grance. The NIST Definition of Cloud Computing, July 2009.

http://csrc.nist.gov/groups/SNS/cloud-computing/index.html.

[62] S. Merugu, S. Srinivasan, and E. Zegura. p-sim: A Simulator for Peer-to-Peer

Networks. In IEEE/ACM International Symposium on Modeling, Analysis and

Simulation of Computer and Telecommunication Systems (MASCOTS), 2003.

[63] D. L. Mills. The Network Time Protocol (NTP) Distribution, March 2008.

http://www.eecis.udel.edu/ mills/ntp/html/index.html.

[64] G. E. Moore. Cramming more components onto integrated circuits. Electronics,

38(8):55–60, 1965.

[65] L. Mummert and M. Satyanarayanan. Long term distributed file reference tracing:

Implementation and experience. Technical Report CMU-CS-94-213, Carnegie

Mellon School of Computer Science, 1994.

[66] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A Read/Write

Peer-to-peer File System. In The Fifth Symposium on Operating Systems Design and

Implementation (OSDI), Boston, MA, December 2002.

[67] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and D. Chalmers.

The state of peer-to-peer simulators and simulations. SIGCOMM Comput. Commun.

Rev., 37(2):95–98, 2007.

[68] N. F. Neimark. Mind/Body Education Center - The Fight or Flight Response,

November 2007. Webpage:

http://www.thebodysoulconnection.com/EducationCenter/fight.html.

BIBLIOGRAPHY 236

[69] I. Norros, V. Pehkonen, H. Reittu, A. Binzenhöfer, and K. Tutschku. Relying on

Randomness - PlanetLab Experiments with Distributed File-sharing Protocols.

Technical Report 407, University of Würzburg, 2007. Also appears in proceedings of

the 3rd EURO-NGI Conference on Next Generation Internet Networks (NGI 2007).

[70] D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.

SIGSOFT Softw. Eng. Notes, 17(4):40–52, 1992.

[71] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir. Experiences building

planetlab. In Proceedings of the 7th USENIX Symp. on Operating Systems Design

and Implementation (OSDI), 2006.

[72] D. C. Plummer. An ethernet address resolution protocol.

http://www.faqs.org/rfcs/rfc826.html, November 1982.

[73] Y. Qiao and F. E. Bustamante. Structured and Unstructured Overlays Under the

Microscope - A Measurement-based View of Two P2P Systems That People Use. In

In Proc. of the 2006 USENIX Annual Technical Confrence, 2006.

[74] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable Content

Addressable Network. In SIGCOMM ’01: Proceedings of the 2001 conference on

Applications, technologies, architectures, and protocols for computer

communications, pages 161–172, New York, NY, USA, 2001. ACM.

[75] J. Reimer. Total share: 30 years of personal computer market share figures. ars

technica, page 10, 2005. http://arstechnica.com/articles/culture/total-share.ars.

[76] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Address

Allocation for Private Internets. ftp://ftp.ripe.net/rfc/rfc1918.txt, February 1996.

BIBLIOGRAPHY 237

[77] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubiatowicz. Pond:

The Oceanstore prototype. In Proceedings of the Conference on File and Storage

Technologies. USENIX, 2003.

[78] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and

J. Kubiatowicz. Maintenance-Free Global Data Storage. IEEE Internet Computing,

5(5):40–49, 2001.

[79] D. Roselli. Characteristics of File System Workloads. Technical Report

CSD-98-1029, University of California at Berkeley, 1998.

[80] D. Roselli, J. R. Lorch, and T. E. Anderson. A Comparison of File System

Workloads. In 2000 USENIX Annual Technical Conference, pages 41–54, 2000.

[81] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference

on Distributed Systems Platforms (Middleware), pages 329–350, Heidelberg,

Germany, November 2001.

[82] O. Saleh and M. Hefeeda. Modeling and Caching of Peer-to-Peer Traffic. In The

14th IEEE International Conference on Network Protocols, pages 249–257. IEEE,

November 2006.

[83] S. Saroiu, K. Gummadi, and S. Gribble. Measuring and analyzing the characteristics

of napster and gnutella hosts, 2003.

[84] S. Sen and J. Wang. Analyzing peer-to-peer traffic across large networks. In Second

Annual ACM Internet Measurement Workshop, November 2002.

[85] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and

H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Protocol for Internet

Applications. In The Proceedings of ACM SIGCOMM, San Diego, CA, Augsut 2001.

BIBLIOGRAPHY 238

[86] S. van der Meer. Architectural artefacts for autonomic distributed systems- contract

language. In EASE ’09: Proceedings of the 2009 Sixth IEEE Conference and

Workshops on Engineering of Autonomic and Autonomous Systems, pages 99–108,

Washington, DC, USA, 2009. IEEE Computer Society.

[87] C. Vazquez, E. Huedo, R.S. Montero, and I.M. Llorente. Dynamic provision of

computing resources from grid infrastructures and cloud providers. In Grid and

Pervasive Computing Conference, 2009. GPC ’09, 2009.

[88] W. Vogels. File system usage in Windows NT 4.0. In Symposium on Operating

Systems Principles, pages 93–109, 1999.

[89] S. Walker. A Flexible, Policy-Aware Middleware System. Phd, University of St

Andrews, 2005.

[90] S. Walker, A. Dearle, S. Norcross, G. Kirby, and A. McCarthy. RAFDA: A

Policy-Aware Middleware Supporting the Flexible Separation of Application Logic

from Distribution. Technical Report CS/06/2, University of St Andrews, 2006.

[91] C. Wells. The OceanStore Archive: Goals, Structure, and Self-Repair. Master’s

thesis, U.C. Berkeley, 2000.

[92] M. Wolsk, C. Mazurek, P. Spychaa, and A. Sumowski. Software Engineering

Techniques: Design for Quality, volume 227/2007, chapter The architecture of

distributed systems driven by autonomic patterns, pages 49–60. Springer Boston,

2007.

[93] P. N. Yianilos and S. Sobti. The evolving field of distributed storage. IEEE Internet

Computing, pages 35 – 39, September 2001.

[94] J. Yuh-Jzer and W. Jiaw-Chang. Chord2: A two-layer Chord for reducing

maintenance overhead via heterogeneity. Computer Networks, 51(3):712–731, 2007.

BIBLIOGRAPHY 239

[95] Y. Zhang, A. Liu, and W. Qu. Software Architecture Design of an Autonomic

System. In Fifth Australasian Workshop on Software and System Architectures, April

2004. In conjunction with Australian Software Engineering Conference (ASWEC

2004) Melbourne, Australia April 13 and 14, 2004.

[96] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz. Tapestry: A

resilient global-scale overlay for service deployment. IEEE Journal on Selected

Areas in Communications, Vol 22, No. 1, January 2004.

[97] N. Zhu, J. Chen, T. Chiueh, and D. Ellard. An NFS Trace Player for File System

Evaluation. Technical report, Harvard Computer Science, December 2003. Harvard

Computer Science Technical Report TR-16-03.

