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Abstract 

Lipoprotein (a) (Lp(a)) is a cholesterol rich lipoprotein known since 1963. In spite of 

extensive research on Lp(a) there are still numerous gaps in our knowledge relating to its 

function, biosynthesis and catabolism. One reason for this might be that apo(a), the 

characteristic glycoprotein of Lp(a), is expressed only in primates. Results from experiments 
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using transgenic animals therefore may need verification in humans. Studies on Lp(a) are also 

handicapped by the great number of isoforms of apo(a) and the heterogeneity of apo(a)-

containing fractions in plasma. Quantification of Lp(a) in the clinical laboratory for a long 

time has not been standardized. Starting from its discovery, reports accumulated that Lp(a) 

contributed to the risk of cardiovascular disease (CVD), myocardial infarction (MI) and 

stroke. Early reports were based on case control studies but in the last decades a great deal of 

prospective studies have been published that highlight the increased risk for CVD and MI in 

patients with elevated Lp(a). Final answers to the question of whether Lp(a) is ready for 

wider clinical use will come from intervention studies with novel selective Lp(a) lowering 

medications that are currently underway. This article expounds arguments for and against this 

proposition from currently available data.  
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1. PRO: Karam Kostner and Gert Kostner 

1.1 History, structure and metabolism of Lp(a) 

  Lipoprotein (a) (Lp(a)) belongs to the class of cholesterol/ester  rich lipoproteins 

spanning a wide range of plasma concentration ranging from <1 mg/dl to 300 mg/dl (approx. 

2.5–750 nmol/L) and even more1. At the time of its detection by K.Berg in 1963 it was 

considered as a polymorphic form of LDL2. Yet it became apparent that Lp(a) is a complex 

of “normal” LDL with the specific glycoprotein apolipoprotein (a) (apo(a)) linked to apoB-

100 by a disulfide bridge3. Cloning of apo(a) in 1987 revealed its striking homology to 

plasminogen4. A characteristic feature of apo(a) is its kringle structure where a homologous 

kringle-4 (K-4) of plasminogen is tandemly repeated between 11 and up to some 50 times 

together with one copy of K-5 and the (inactive) protease domain. This size polymorphism 

accounts for approx. 50% of the genetic variation of plasma Lp(a) levels5. Other variations in 

the apo(a) gene or in genes modulating Lp(a) metabolism add another 40% of the variability 

in plasma L(a) levels6. Of interest is the so-called “null-allele” causing the expression of a 

truncated form of apo(a) that is rapidly catabolized6.  Thus, Lp(a) concentrations are 

approximately 90% genetically determined yet other modulators of its abundance exist in 

plasma.  

Despite of intensive research many gaps exist in our knowledge related to Lp(a) 

biosynthesis and catabolism. As mentioned, Lp(a) is assembled from LDL and apo(a), yet 

there is a continuous dispute of whether this assembly occurs in the liver cell or outside in the 

plasma compartment7. An appealing suggestion is that once apo(a) is formed and secreted it 

attaches to the surface of parenchymal liver cells and bypassing apoB containing lipoproteins 

associate with apo(a) followed by the stabilization of their structure by a disulfide bridge. 

This may account for the observation that apo(a) distributes over the whole lipoprotein 

density range and its presence is not restricted to the “pre-ß lipoprotein” or the HDL-1 band. 

Several research groups have shown that plasma Lp(a) levels stay relatively constant 

throughout life in healthy individuals and are barely influenced by diet or drugs1. An 

important question therefore was how apo(a) biosynthesis might be regulated. Patients with 

obstructive liver disease and high plasma levels of bile salts have extremely low Lp(a) 

concentrations after allowing for their genetic background, and this is reversed as soon as 

plasma bile salts normalize8. This led us to the elucidation of the transcriptional regulation of 

apo(a) expression through FXR signaling 9. FXR activation has dual effects as it leads to the 
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dissociation of the transcription factors P-ELK-1 and HNF4α from the apo(a) promoter and 

down-regulation of transcription1.  

 

1.2 Pathophysiology and proposed mechanisms related to atherosclerosis   

Apo(a) immuno-reactivity has been demonstrated in vascular atherosclerotic lesions and 

its abundance correlates with the plasma concentrations of Lp(a) 10-12. Four 

pathophysiological mechanisms contribute to the relationship of Lp(a) to atherosclerosis and 

coronary artery disease13-15. This evidence is derived from in vivo studies in man, transgenic 

animals and ex vivo cell culture experiments. 

1. Lp(a) binds with greater affinity to proteoglycans and extracellular matrix than 

LDL16. These aggregated Lp(a) complexes are avidly taken up by macrophages 

leading to foam cell formation which promote the formation of fatty streaks and 

atherosclerotic plaques.   

2. Due to the kringle structure of apo(a) and its homology to plasminogen, apo(a) binds 

with high affinity to fibrinogen17. This prevents binding of plasminogen to fibrin clots 

and interferes with fibrinolysis and inhibits activation of plasmin formation by TPA18. 

3. Plasmin is responsible for the proteolytic activation of TGF-ß. Inhibition of plasmin 

formation by Lp(a) therefore blocks TGF-ß1 which acts as an autocrine  inhibitor of 

human smooth muscle cell proliferation hence promoting vascular stenosis19. 

4. Lp(a) has a high affinity for oxidized phospholipids: Phospholipids are integral 

components of plasma lipoproteins and cell membranes. Under conditions of 

increased oxidative stress caused by inflammatory stimuli, reactive oxygen species 

are formed that lead to the oxidative modification of phospholipids (ox-Phos) and 

other unsaturated lipids. Ox-Phos have been found to bind specifically to Lp(a) and 

are immunologically highly active20. Ox-Phos activated Lp(a) interacts with 

lymphocytes and macrophages thereby aggravating further inflammatory processes. 

Of note, Lp(a) has been found to cause aortic valve calcification21. The molecular 

mechanism of this process appears to be related to ox-Phos modified Lp(a).  

Autotaxin (ATX) that is overexpressed in mineralized aortic valves is a 

lysophospholipase-C that hydrolyses ox-Phos into lysophosphatitic acid (LPA) 22.  

LPA is a very bioactive compound that triggers many inflammatory processes 

including fibrosis.   
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All these well documented processes in atherogenesis triggered by Lp(a) provide compelling 

evidence that Lp(a) is causally related to atherogenesis, calcification, coronary artery and 

cardiovascular disease. 

 1.3 Epidemiological evidence 

We believe that Lp(a) is the single most common genetically-inherited risk factor for 

early coronary heart disease and calcific aortic valve stenosis (CAVS)14, 23. There is little 

doubt in the scientific community that Lp(a) is strongly atherogenic and some experts 

consider Lp(a) to be the most important risk factor for CAD. This is substantiated by studies 

in animals and in man. First reports have been published by Berg who demonstrated that 

patients with CAD exhibited an extra pre-ß1 lipoprotein band on agarose gel 

electrophoresis24. Methods were devised to immunologically quantitate Lp(a) and these found 

that patients with MI exhibited significantly higher Lp(a) levels compared with controls25. 

Based on this relatively small case control study a cut-off concentration of 30 mg/dl as a 

“mild” risk factor and 50 mg/dl as a more significant one was suggested. Patients with 

combined high Lp(a) and high LDL-C levels were at significantly increased risk. Since that 

time, more that 2600 papers have been published and the majority have confirmed these 

results. It is impossible to review all of them here. Convincing evidence for the role of Lp(a) 

in CAD derives also from the prospective Munster Heart Study (PROCAM) study carried out 

in almost 5000 male participants aged between 40 and 65 years26. It concluded that “Lp(a) is 

a sensitive indicator of increased risk for major coronary events”. Combining this data the 

meta-analysis of the Emerging Risk Factors Collaboration comprising >126.000 individuals 

calculated incidence rates for CAD comparing top and bottom tertiles for Lp(a) of 4.4 – 5.627.  

Two important studies that support a causal role for Lp(a) as a CHD risk factor were 

published from Denmark. In the Copenhagen City Heart Study Lp(a) was shown to be a 

significant independent risk factor in both men and women over 10 years follow up of 9330 

individuals 28. Furthermore, in a prospective group of more than 40000 individuals in 

Denmark the risk of MI increased with Lp(a) concentrations29. Additional strong evidence of 

a causal relationship of Lp(a) with CVD comes from Mendelian randomization studies first 

published by Uterman et al.30. Importantly, elevated Lp(a) has been shown to be a cause for a 

special form of familial hypercholesterolemia31. Finally, evidence from several randomized, 

controlled LDL-C intervention trials with statins, niacin and proprotein convertase subtilisin 
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kexin-9 (PCSK-9) inhibitors have shown higher event rates in patients with elevated Lp(a) 

levels resulting in higher residual risk for CVD events. 

1.4 Evidence for Lp(a) lowering 

One of the difficulties with Lp(a) interventions is that most drugs that lower Lp(a) 

with the exception of selective anti-apo(a) antisense oligonucleotide (ASO) therapy, also 

affect other lipoproteins, such as LDL. This makes it very difficult to attribute clinically 

important effects to Lp(a) lowering. The strongest evidence that lowering Lp(a) reduces CVD 

risk comes from apheresis trials. A longitudinal multicenter cohort study with combined lipid 

apheresis and lipid lowering medication in patients with extremely high levels of Lp(a) 

showed a reduction in MACE of more than 80%32. A prospective observational multi-centre 

study from Germany also showed a significantly reduced incidence of CVD events in patients 

with elevated Lp(a) treated with apheresis33 which was confirmed in the 5 year prospective 

follow up of the cohort34. In addition, nicotinic acid (niacin) reduces Lp(a) by up to 30 %35 

which was shown  in the Coronary Drug Project in 1975 to reduce CVD events36. 

1.5 New therapies 

Several novel drugs such as PCSK-9 inhibitors, mipomersen and lomitapide reduce 

Lp(a) but as they also affect LDL-C the extent of effect due to Lp(a) lowering is unclear. The 

PCSK-9 outcome studies are going to report their Lp (a) sub-study results soon and the 

results will shed some light on the clinical significance of Lp(a). The most direct Lp(a) 

therapy in clinical trials are antisense oligonucleotides targeting apolipoprotein(a). This 

therapy has not only shown to reduce plasma Lp(a) levels, but also oxidized phospholipids 

associated with Lp(a)37. Large clinical endpoint studies with this therapy will certainly add to 

our knowledge in this field. 

1.6 Reliability of Lp(a) analysis in clinical laboratories.  

  Lipoprotein(a) has been quantified by all kinds of immunochemical methods. The 

most critical point with all methods without doubt is the selection of the reference material. 

Due to its size polymorphism Lp(a) exists in more than 30 isoforms with strikingly different 

particle size and molar mass38. Thus, Lp(a) is found in density gradient ultracentrifugation 

not only in the HDL1 region between LDL and HDL2 but may be found close to LDL or in 

HDL2 (Fig.1). Moreover, apo(a) sticks to triglyceride rich lipoproteins (very low and 

intermediate density lipoproteins)39 and last but not least Lp(a) forms complexes with LDL at 
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various ratios40. Finally, variable amounts of apo(a) fragments in plasma correlate with the 

Lp(a) concentration, are excreted into urine and correlate with the risk of CVD41. Irrespective 

of all these features, it is quite reassuring to note that commercial assays from different 

companies perform quite well in routine analyses.  An important issue is that Lp(a) 

concentrations are expressed in different units. Molar units would be preferable, but this 

requires assays that are independent of apo(a) isoforms. Such assays are not readily available 

for high-throughput screening, yet most companies sell immuno-turbidimetric assays that are 

adequate for practical purposes. Conventionally Lp(a) concentrations are expressed in mass 

units and almost all large epidemiological studies use mass units yet there is currently a trend 

to switch to molar units, and conversion factors need to be applied. Some companies suggest 

a factor of 2.5, i.e. 1 mg/dl of Lp(a) corresponds to 2.5 nmol/L. Considering the composition 

of an Lp(a) particle, on theoretical grounds a conversion factor of 2.5 might be valid for an 

Lp(a) with the apo(a) isoform containing 25 K-4’s. With 20 K-4’s the factor would be 2.7 and 

so one. All these questions that are essentially academic in nature have been reviewed by 

consensus groups14, 42. These problems may be solved when apo(a) measurements are 

standardized by LC-MS43. The  continuing work of the International Federation of Clinical 

Chemistry (IFCC)-Standardization Working Group of Apolipoproteins by Mass Spectrometry 

will likely solve the remaining problems44(see also http://www.ifcc.org/ifcc-scientific-

division/sd-working-groups/wg-apo-ms/ ).  

 

Our confidence in the reliability of currently existing technologies are supported by two facts: 

1. In 1981 we measured Lp(a) using an in-house assay and our own reference material in 76 

male myocardial infarction (MI) patients and 107 controls. Based on the results of this study 

we proposed a conservative cut-off at 50 mg/dl and a more stringent one at 30 mg/dl for MI 
25. In subsequent very large trials using assays from various companies, these cut-off points 

were adopted 45. Data from the EPIC-Norfolk Prospective Population Study, however, 

indicate that a cut-off of 50 mg/dl suggested by the EAS might be too high46.2. More recently 

we assayed 160 plasma samples spanning an Lp(a) concentration of 1 mg/dl - > 150 mg/dl 

using 7 different commercial assays and found not only a very good correlation but also 

comparable mean and median values (H.Scharnagl et al. in preparation). 

Considering these facts, we are convinced that for the time being the methodology available 

is sufficient for routine use. 
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1.7 Conclusions 

In our opinion Lp(a) is ready for the clinic. Strong epidemiologic evidence that Lp(a) 

is the single most common genetically-inherited risk factor for early coronary heart disease 

and calcific aortic valve stenosis support its measurement in patients with premature CVD 

and premature stroke, in particular, but not exclusively in whom other risk factors fail to 

explain the presence of vascular disease. Lp(a) meets 9  of the original 10 criteria established 

by the World Health Organisation (WHO) for a biomarker to be used in screening 

programmes47. We also recommend Lp(a) measurement in FH patients as this group of 

patients frequently have higher Lp(a) concentrations in comparison to isoform-matched 

controls48,  and intermediate risk patients as assessed by classical CVD risk algorithms 

because patients can be re-classified into a higher risk category if Lp(a) is elevated above 50 

mg/dl;  this in turn should ultimately lead to more intensive management of treatable risk 

factors, especially LDL-C. By extension, we suggest measuring plasma Lp(a) levels in a 

wider population as outlined in Table.1 Whether Lp(a) lowering therapies are ready for 

clinical use will be determined by ongoing outcome trials, especially those which selectively 

target Lp(a) such as antisense therapy.   

 

Table 1 here 

 

CON: Anthony Wierzbicki 

2.1 Function and Atherogenicity 

Lipoprotein (a) is only found in humans, old world monkeys and hedgehogs49. The 

standard animal models of atherogenicity are mice and rabbits. Thus, all animal experimental 

data are, by definition, non-physiological. Physiologically Lp(a) consists of a number of 

particle subtypes ranging from very low density lipoprotein  (VLDL) forms rich in apoE and 

triglyceride to a particle containing just apo(a) and apoB100
5 (Figure 1).   Though transgenic 

mouse models have been made they use human apo(a) and apoB100 as mouse apoB100 does 

not associate with human apo(a)50. Even monkey-based hepatocyte models are limited as they 
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lack Kringle (V) domains, lysine binding sites and may not contain oxidised phospholipid51. 

Whether these completely mimic human particle distributions and metabolism is unclear.  

 The mechanisms of assembly and especially clearance of Lp(a) are controversial.  

While some agreement exists about the post-translational and possibly intracellular assembly 

of Lp(a)7 the mechanism of clearance remains obscure with pathways involving the VLDL 

receptor52, apoE receptors, plasminogen receptor (PlgRKT)53,  and according to fashion the 

LDL (ApoE/ApoB100) receptor being implicated54.  Levels of Lp(a) expression in transgenic 

animal models are low at <20mg/dL in both mice and rabbits and limited to a single 

isoform50. Mice do not develop atherosclerosis without additional modifications such as 

knockout of apoE which impacts macrophage function, or to a lesser extent the LDL receptor. 

Few studies have been performed in LDL-receptor knockout mice and these make 

assumptions about the clearance of human-derived lipoproteins being similar to mouse 

analogues50. Thus, extrapolation from animal models makes many assumptions about Lp(a) 

particle handling that may not be true. Until recently,  turnover studies of Lp(a) in humans 

have been difficult to perform despite abundance of literature for apolipoprotein B turnover 

and the presence of substantial Lp(a) concentrations in some individuals55, 56. One recent 

study shows divergent effects on Lp(a) fractional synthesis and clearance with PCSK-9 

monotherapy compared with combination therapy with statins57. 

2.2 Methods and reliability of assessment 

For reliable conclusions to be drawn from studies and for clinicians to have 

confidence in results ideally biochemical assays are standardised to reference materials so 

that patients attending clinics supported by different laboratories will receive consistent 

advice about the risk associated with any biomarker58. This is not the case for Lp(a) assays59. 

Many commercial kits based on enzyme linked immunosorbent assays (ELISA) or their 
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derivatives rely on polyclonal antisera, which include many that recognise Kringle (IV) 

domains and thus are subject to confounding by isotype60. Other methods using gradient 

ultracentrifugation61, 62 or magnetic resonance techniques may give different results63. How 

these assays measure the different sub-fractions of Lp(a) (Figure 1) and especially the VLDL 

and apoE-rich fractions is unclear.   

Figure 1 here 

‘Reference’ values for total Lp(a) mass (mg/dL) are not based on standard reference 

materials.  The approach used is a WHO/International Federation of Clinical Chemistry and 

Laboratory Medicine secondary reference material PRM-2B (21 x Kringle (IV) repeats; 

107nM) whose characteristics can be expressed as nmol/L apo(a) and reflect particle 

numbers. A University of Washington monoclonal assay directed outside Kringle (IV) 

domains is used as a reference assay to allow inter-conversion for mass units in ELISA kit, 

but the commonly quoted factors of 2.0-2.5 are unreliable and not validated42. Consensus 

guidelines suggest the use of iso-type independent assays64, 65 but these were not available or 

not used to derive much of the primary epidemiological data for the atherogenicity of Lp(a). 

Sample preservation is also an additional confounder as Lp(a) tends to aggregate unless 

preserved with trehalose66 though samples with high Lp(a) may also show lower results after 

freeze-thaw cycles42, 67. Most error is likely to be in the direction of over-estimation of 

concentrations and hence CVD risk compared with baseline groups with negligible levels in 

Caucasian populations. 

The main problem is that many laboratories use the Friedewald equation to calculate 

LDL-C concentrations. These determinations are known to provide an inaccurate 

underestimate in the presence of minimally elevated triglycerides68, 69 but additional bias 

arises in patients treated with highly efficacious LDL-C lowering therapies – indeed clinical 
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trials often use ultracentrifugation to give valid results70, and to deal with the over-estimation 

of LDL-C if the effects of high Lp(a) concentrations are ignored71, 72. The effects of 

correction for Lp(a) on diagnostic LDL-C criteria (>190mg/dL; 4.9mmol/l) and goals 

(<70mg/dl; 1.8mmol/L) have been investigated using 2 methods in 531,140 patients from the 

Very Large Database of Lipids (VLDL) study. Correction for Lp(a) reduced the proportion of 

patients with very high LDL-C from 1.4% to 0.86% (P<0.001) and established that those at 

LDL-C goal were not 16.7% but 23% (p<0.001). This discrepancy will have profound effects 

on the prescription of second or third line expensive drugs like PCSK-9 inhibitors whose 

initiation guidelines are related to LDL-C concentrations. 

The problem with Lp(a) assays extend further. New lipid-lowering drug therapies are 

commonly tested for their effects on Lp(a) and many assume that the effects are consistent or 

unidirectional.  A method comparison study of 7 methods assessing response to growth 

hormone (GH) therapy in patients with hypopituitarism showed that different Lp(a) assays 

showed  divergent responses in patients initiated on GH treatment73. Translating the effects of 

Lp(a) from clinical trials using specialist assays to routine practice using less accurate 

methods is, therefore, difficult until standardisation is agreed. 

2.3 Epidemiological evidence 

 The epidemiological evidence for Lp(a) is primarily based on Caucasian populations27 

with a high frequency of the ‘null/minimal ‘ isotype pattern29, 48, 74. Yet Lp(a) distributions 

vary between human populations with high levels particularly found in West African-derived 

populations75 and indeed this seems to be a gene in on-going evolution in man49. The amount 

of variance attributable to genetic factors is also lower in African populations at 65% 

compared to Caucasians where it is 95%75. Unfortunately, most epidemiological data is 

derived from European populations which essentially compare presence and absence of Lp(a) 
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given the high prevalence of low concentrations to derive CVD risk relationships. Numbers 

of affected patients with high concentrations of Lp(a) are small so confidence intervals 

increase yet strong positive associations are reported 27. In European-African admixed 

populations (e.g. African-Americans) some data exist with studies such as Atherosclerosis 

Risk in Communities (ARIC) recording positive relationships in African-Americans76 while 

others such as the Dallas Heart Study find a less strong relationship and ethnicity-specific 

modification by specific Lp(a)-related single nucleotide polymorphisms (SNPs) though an 

association of Lp(a) concentrations with CVD risk persists77, 78.  

There are few studies in native West African populations and even less in other 

African groups where Lp(a) concentrations are far higher than Caucasians and more normally 

distributed79. Indian, Hispanics (including American-Indian-derived populations) and 

Chinese tend to have intermediate Lp(a) distributions80 and a more Caucasian profile of 

association with CVD risk but data is limited and variable between these groups76, 77. If a 

common risk limit cut-off for Lp(a) such as 75 nmol/L is used to define the risk for CVD, 

then 25% of Caucasian, 50% of West-African, and 10% of Japanese individuals would be 

considered at increased CVD risk42. Thus, much basic epidemiological work on Lp(a) as a 

worldwide CVD risk factor remains to be done as some associations from European 

populations do to seem to be replicated in West Africans81. 

The acid test for any biomarker is whether it reclassifies people at intermediate risk 

rather than just raising C-statistics (area under receiver operator characteristic curve). Data 

for Lp(a) is limited. In the Scottish Heart Health Extended (mostly Caucasian) cohort study 

of 15737 patients over 20 years Lp(a) did not add to the ASSIGN risk score in patients 

developing coronary heart disease (unlike high sensitivity troponin) but did in peripheral 

arterial disease82.  Few studies have ascertained whether Lp(a) is superior in reclassification 

to questioning about a direct family history of coronary heart disease or CVD. In the Dallas 
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Heart study Lp(a) concentration only added to predictive power if associated with a family 

history of early onset coronary heart disease78. This suggests that only patients with high 

combined with null concentration Lp(a) allele isotypes are at significant risk but not those 

with combined intermediate levels as Lp(a) concentration is a co-dominant trait. 

 

2.4 Evidence for intervention 

 Evidence for intervention on Lp(a) is minimal. Such evidence as exists it is derived 

from registries derived from small highly selected populations undergoing apheresis 

(n=1283)34 including one small study (n=30) using a Lp(a) specific apheresis method and 

surrogate imaging outcomes83. The problem is that standard lipid lowering drugs such as 

statin, fibrates and ezetimibe have minimal effect on Lp(a) concentrations. Only niacin has 

been shown to reduce Lp(a) by 25-30%35, 84, 85. Niacin was shown in the original Coronary 

Drug Project in 1975 to reduce CVD events36. However, that drug has multiple effects on 

different lipid fractions. This dataset has never been analysed for Lp(a) and would likely be 

underpowered anyway due to its Caucasian population. Subsequent studies with niacin on 

background statin therapy have been disappointing in showing no clinical benefits and indeed 

some degree of harm86. A recent analysis of the Heart Protection Study-Treatment of HDL to 

Reduce the Incidence of Vascular Events (HPS2-THRIVE) trial by Lp(a) subgroups found no 

benefit despite an association of baseline Lp(a) with event rate and an average 12nmol/L 

reduction with niacin-laropiprant therapy extending to 34nmol/l in the top Lp(a) quartile87. 

The baseline data also suggested that raised Lp(a) concentrations would only account for 2% 

of CVD events in the whole population and only 6% in the top quartile suggesting that Lp(a) 

was a marginal risk factor for CVD87. Similar conclusions about the small role of Lp(a) are 

found in meta-analyses of epidemiological data27. 
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 Historical studies suggested that Lp(a) was a weak CVD risk factor and that adequate 

control of LDL-C negated its significance as a risk factor88. In the Familial Atherosclerosis 

Treatment study (FATS) of 146 patients, though Lp(a) was correlated with disease burden 

and in which niacin treatment, (which incidentally did not significantly change Lp(a) levels in 

FATS), was combined with statins and bile acid sequestrants only tight control of LDL-

<2.5mmol/L (100mg/dl) was significant in determining progression of angiographic coronary 

disease88. A later analysis of LDL-C control from 2769 patients including 38% with Lp(a) 

concentrations >30mg/dL presenting for coronary angiography confirmed the relationship of 

Lp(a) with angiographic progression of disease (2.3 (1.7-3.2) fold risk ) but again found that 

tight control of LDL-C  to <1.8mmol/L (80mg/dl) negated the effects of elevated Lp(a) 89. 

Furthermore, data from the study of dalcetrapib in acute coronary syndrome studies (Dal-

Outcomes) showed that both in patients from the placebo (n=3170) and intervention groups 

(n=969) receiving aggressive anti-platelet therapy and adequately treated to control LDL-C as 

part of the initial optimisation protocol, Lp(a) was not a significant CVD risk factor in driving 

in-trial event rates90. Thus, if LDL-C is adequately controlled then Lp(a) is not a factor in 

driving progression of disease. 

2.5 New therapies 

 Some of the novel therapies in development have effects in reducing Lp(a).  Agents 

used in the treatment of homozygous familial hypercholesterolaemia such as mipomersen and 

lomitapide both reduce Lp(a) but no direct endpoint evidence is likely to be accrued with 

them simply due to small population sizes and problems with statistical power. Other more 

commonly investigated drugs such as PCSK-9 inhibitors reduce Lp(a) by 20-30% but data 

from intervention studies such as Further Cardiovascular Outcomes Research with PCSK9 

Inhibition in Subjects with Elevated Risk (FOURIER) or ODYSSEY-Outcomes studies has 

not been published yet for Lp(a) subgroups.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 15

2.6 Conclusions 

 Neophilia is a well-known disease of academe. Lipoprotein(a) is a well-characterised 

biomarker of unknown function associated with risk of CVD which has been the ‘new’ 

biomarker for CVD for the last 30 years. However, in practice, uncertainties about its 

measurement, population-specific reference values, and relationship to CVD events in well-

managed populations mean that it cannot be used for any purpose except baseline CVD risk 

assessment81, 91. Even there it remains to be incorporated into standard risk measurement 

systems as some of the risk associated with Lp(a) may be captured by ethnicity or family 

history of cardiovascular disease. Thus, it fails the revised World Health Organisation criteria 

for a genetic biomarker to be used in screening47.  It will also require studies with specific 

therapies capable of reducing Lp(a) substantially (e.g. 60-80%) in high-risk high Lp(a)-

defined populations to prove whether intervention on Lp(a) is useful in the management of 

CVD.  
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Figure 1 

Gradient ultracentrifugation profile of an intensively statin-treated patient with baseline Lp(a) 

3.56 g/L (Dako assay) showing profiles for cholesterol, apolipoprotein(a) and apolipoprotein 

E mathematically deconvoluted to identify different sub-fractions of Lp(a) with and without 

apoE. 
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Table.1 Recommendations for measurement of lp(a) under various conditions  

Group of individuals   Characteristics Comments 

Any healthy person with 
unknown Lp(a) and 
intermediate risk according 
to risk calculator 

Populations on Western Type 
life style 

In any lipid screening program  
Lp(a) should be measured once and  
incorporated into CV risk assessment 

   

Familial hyper-Lp(a) and 
early CVD 

If elevated Lp(a) is present in 
one of the parent, Lp(a) 
should be monitored in all 
family members 

If Lp(a) values are << 30g/dl no 
further monitoring might be required 

   

Patients with FH  
In FH patients elevated Lp(a) 
appears to increase the risk of 
CVD  

If Lp(a) levels are > 30 mg/dl more 
aggressive therapy may be warranted 

  

• Currently recommended cut-off levels for Lp(a) are 30 or 50 mg/dl or 2.5 - 2.7 times higher 
using units in nmol/L. Drugs, hormones, inflammation and various diseases may cause 
significant changes in plasma levels that are partly reversible.   
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Is Lp(a) ready for prime time use in the clinic? 

Highlights 

• Lipoprotein (a) has been known to be a cardiovascular risk factor for 

many years but is not routinely measured 

• Reasons to measure lipoprotein (a) based on epidemiology, assay 

methods and future interventions are presented. 

• Reasons not to measure lipoprotein (a) based on assay methods, and 

current trial data are presented. 

 


