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Abstract 

This study proposes a tower inlet cover to improve the performance of the small 

natural draft dry cooling tower (NDDCT) under crosswind conditions. CFD analyses are 

performed on a small NDDCT with tower inlet covers of different lengths, and the CFD 

model is validated against experimental results. The air temperature, air pressure, air flow 

and heat flux fields are presented, and the thermal performance for each heat exchanger 

and the NDDCT are obtained using CFD simulations. The CFD simulation results show 

that the high-pressure zone around the tower side wall, formed by the crosswind, causes 

the decrease in air flow through the tower and the deterioration in tower performance 

with a crosswind. The tower inlet cover can improve the tower performance in 

crosswinds by increasing the air flow of the heat exchangers. Tower inlet covers with 

lengths of 1.5 m, 3 m and 4.5 m improve the tower heat load by 40% to 65%, 70% to 130% 

and 85% to 230%, respectively, when the crosswind increases from 4 m/s to 12 m/s.  

Keywords: natural draft dry cooling tower; numerical simulation; crosswind;  

1. Introduction 

Cooling towers are commonly used in large thermal systems, such as industrial 

power generation units, refrigeration and air conditioning plants, chemical and 

petrochemical industries to dissipate process heat. Different types of cooling towers are 



  

distinguished from each other by different criteria. Cooling tower is either mechanical 

draft type or natural draft type based on the method used to move the air through the 

system [1]. 

For the mechanical draft cooling tower, many researchers have investigated the 

improvement method of its performance. Lemouari et al. [2] presented an experimental 

investigation of the thermal performances of a mechanical draft cooling tower filled with 

a "VGA" (Vertical Grid Apparatus) type packing. Two operating regimes were observed 

to determine the best way to promote the heat transfer. Singh and Das [3] proposed a 

feedback model in order to control the performance of a mechanical draft cooling tower 

under varying heat load conditions suiting diverse applications such as solar power 

generation, HVAC and diesel engine. By monitoring the inlet water temperature with 

time, the controlling variable governed by water to air ratio has been adjusted to optimize 

the tower operation. Singh and Das [4] also proposed a constrained multiple parameter 

inverse identification technique for a mechanical cooling tower to meet a required heat 

rejection rate from hot water and also ensuring minimum power consumption. The 

technique minimizes the relevant objective function involving the total power 

consumption satisfying the constraint of the required heat load in the inverse analysis. 

Based on the different ways of heat transfer, the natural draft cooling tower could be 

divided into the natural draft wet cooling tower (NDWCT) and the natural draft dry 

cooling tower (NDDCT).  In a NDWCT, heat is mainly transferred by latent heat transfer 

through water, which improves the performance of the cooling water system [5]. 

However, large quantities of water evaporate into the moving air stream. Williams and 

Rasul [6] reported that the water evaporation rate of a power plant with a capacity of 350  

MW in Queensland, Australia was approximately 1.8 litres of water per kWh of power 

generated. Gurgenci [7] also predicted that the total water consumption rate for a 

geothermal power plant was approximately 0.4 kg/s per MW of heat rejected. In contrast, 

heat is dissipated by only convective heat transfer in a NDDCT. This feature is 

advantageous for water conservation. Thus, the NDDCT becomes a competitive option 

for many power plants located in arid places due to water consumption restrictions. Xia et 

al. [8] compared the annual water consumption of a NDWCT and that of a NDDCT in a 

300 MW power plant and found that the power plant could reduce its water consumption 



  

by approximately 5 million tons of water per year by replacing a NDWCT with a 

NDDCT. 

Although the NDDCT is the competitive option for a power plant located in arid 

places, it still faces two considerable challenges; specifically, the hot ambient temperature 

and crosswinds both have negative effects on cooling performance [9]. The thermal 

performance of the NDDCT depends principally on the entering air-dry bulb temperature 

[8], while that of the NDWCT depends principally on the entering air-wet bulb 

temperature [10]. Thus, a power plant employed with the NDDCT would suffer higher 

condenser pressure and lower power production than the power plant employed with the 

NDWCT, for the same ambient temperature and operation conditions [8]. The impact on 

the revenue of the plant employed with the NDDCT is even higher since these high 

ambient temperature periods represent peak power demand for most locations [11]. In 

this case, several approaches have been developed to address these problems. Several 

inlet air pre-cooling methods, such as spray cooling [12-14] and wetted-media cooling 

[15-17], have been developed to improve the NDDCT’s performance during the high 

ambient temperature period. Spray cooling has become increasingly used due to its 

simplicity, low capital cost and ease of operation and maintenance [14]. Different from 

ambient temperature, crosswind causes a significant decrease in performance by 

disturbing the natural draft processes, and its effects are considerably more complex and 

difficult to predict. Du Preez and Kroger [18] used a numerical procedure to investigate 

the influence of the arrangement of heat exchangers on the performance of a tower in 

windy conditions and verified the results via full-scale and experimental measurements. 

The results indicated that the arrangement of heat exchangers and windbreak walls may 

considerably reduce the adverse effect of crosswind on the performance of dry cooling 

towers. Al-Waked and Behnia [19] conducted a three-dimensional study of the impact of 

the location and porosity of windbreak walls on a NDDCT by using the standard k-ε 

model. The results indicated that introducing windbreak walls could improve the thermal 

performance of the NDDCT. Optimizing the location of the windbreak walls was shown 

to have a more significant effect on the NDDCT thermal performance than the porosity of 

the walls. Goodarzi proposed a new tower exit configuration [20], radiator-type 

windbreakers [21] and an alternative tower shell geometry with an elliptical cross section 



  

[22] to improve the cooling efficiency of NDDCTs in crosswinds. Yang et al. [23] 

investigated the performance of an indirect dry cooling system by coupling the simulated 

thermos-hydraulic performances of the air-cooled heat exchanger and cooling tower with 

condenser performance. Each cooling delta of the air-cooled heat exchanger was 

modelled precisely according to its geometric details; thus, the dimensional 

characteristics of flow and heat transfer of cooling deltas and sectors could be obtained. 

The simulation results showed that the performance of upwind cooling deltas is superior 

to those in the rear and on the side. Chen et al. [24] investigated improving performance 

via interior and exterior windbreaker configurations to propose measures mitigating the 

adverse effects of crosswind. His study showed that the exterior windbreakers outperform 

the interior ones in terms of thermo-flow performance. Ma et al. [25] optimized setting 

angles of wind-break walls to get larger cooling performance enhancement for NDDCT 

with vertical cooling deltas under crosswind. Wang et al. [26] reconstructed the 

destructed inlet flow field with a labyrinth structure based on the influencing mechanisms 

of the crosswind. The numerical results revealed that the proposed flow field 

reconstruction approach increase the ventilation rate of a NDDCT by 62% under high 

speed crosswind conditions. Kong [27] proposed an annularly arranged air-cooled 

condenser for NDDCT to improve thermo-flow performances.  

Small NDDCTs suffer more from crosswind impact than large NDDCTs. Lu et al. 

[28] conducted CFD modelling to numerically analyse the heat transfer performance of a 

15-m-high small NDDCT with different crosswind speeds. His simulation results showed 

that a crosswind degrades cooling performance significantly at certain crosswind speeds. 

However, the negative effect of a crosswind can be made positive in small NDDCTs by 

introducing windbreak walls that guide the air mobilized by crosswinds through the heat 

exchangers. Lu et al. [29] also investigated the influence of windbreak wall orientation on 

the cooling performance of small NDDCTs. The simulation results indicated that the tri-

blade-like walls should be placed with one wall, i.e., one axis of symmetry, always 

aligned with the dominant crosswind direction. Li et al. [30] proposed a new method to 

increase the performance of a small NDDCT in crosswinds by optimizing the hot water 

mass flow rate in air-cooled heat exchangers. His results showed that this method 

increases the cooling performance of the NDDCT by 18% when the crosswind speed is 4 



  

m/s. They also [31] [32] developed the experimental studies on a 20 m high NDDCT. 

They presented the detailed experimental data of the crosswind condition, air temperature 

distribution inside and outside of the NDDCT and the cooling performance. The 

experimental data demonstrate the substantial yet complex impact of the crosswind on 

cooling performance, and significant non-uniformities in air and hot water temperature 

distributions and strong air vortices inside the tower were observed in high crosswind 

speeds. 

In this study, an inlet cover is proposed to improve the performance of small 

NDDCTs in crosswinds. CFD analyses of a small NDDCT with tower inlet covers of 

different lengths were performed. The CFD results presented in this paper provide 

guidance for small NDDCT design in the future.  

2. Numerical model  

2.1 Governing equations 

The commercial software Ansys/Fluent 15.0 [33] was used in this study. An 

incompressible air model with a constant density was assumed and Boussinesq’s 

approximation was used to reflect the buoyancy effect caused by density difference [34]. 

The airflow momentum and turbulence were modelled using the realizable k-ε model 

because it is one of the most appropriate viscous models for low Reynolds numbers [30]. 

The model was simulated by solving a series of conservation equations of physical 

quantities, whose general terms are expressed as 

         Γ
 
       (1) 

The expressions of ϕ, Гϕ and Sϕ for Equation (1) are provided in Table 1. All 

numerical calculations of the conservation equations were run by using the pressure-

based steady-state solver with SIMPLE segregated algorithms and second-order 

discretization [34].   

Table 1 Summary of governing equations  
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2.2 Computational geometry, boundary conditions and operating 

parameters 

The small NDDCT used by Li et al. [30] was considered in this paper. The NDDCT 

has a hyperbolic shape, is 20 m high, and has a radius of 6.2625 m. The tower is 

constructed with a steel truss and PVC membrane. Figure 1 shows the CFD tower model, 

which has the same geometric dimensions as the small NDDCT considered by Li et al. 

[30]. The lengths of the tower inlet cover considered in the CFD model are 0 m, 1.5 m, 3 

m and 4.5 m. The computational domain (to simulate outside ambient air) is of 

cylindrical shape, with a radius of 72 m and height of 120 m, as previous CFD studies 

have shown that the distances from the tower to the domain boundaries do not affect the 

numerical results when the domain diameter is 12 times the tower diameter and the 

domain height is 6 times the tower height [28].  



  

 

Figure 1 Computational geometry of the small NDDCT 

The ‘ground’ in the CFD domain, the ‘wall’ in the tower and the tower inlet cover 

are set as the non-slip and zero heat flux ‘wall’ boundary. The top and leeward side of the 

domain are set as the ‘pressure outlet’ boundary. The inlet air temperature is set to the 

NDDCT’s design air temperature (303.15 K) [30]. The windward side of the domain is 

set as the ‘velocity inlet’ boundary [28]. The velocity profile is defined by Eq.(2), where a 

is recommended as 0.2 [23]. 
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Several ways of modelling heat exchangers in CFD can be found in open literature. 

The radiator model in Ansys/Fluent is used to calculate the performance of the air-cooled 

heat exchanger of the cooling tower [35]. The heat transfer in the heat exchanger can be 

presented by the following equation: 

                       (3) 

Where the heat transfer coefficient, hdt, is a function of the heat exchanger characteristic 

parameters and the air inlet velocity. Tdr,r is the radiator temperature and Tdt,a2 is the air 

temperature downstream of the radiator [28]. 

For air flow pressure drop, the radiator model can simulate resistance to air flow in 



  

the direction normal to radiator face. However, it does not provide resistance in other two 

directions, i.e. velocity components parallel to radiator face. This will cause 

overestimation of the possibility of vertices occurring near the radiator, since real 

structure of fin tube heat exchanger bundles can prevent horizontal air flow, allowing air 

flow through heat exchanger only vertically. Therefore a porous media model is added to 

represent the pressure loss within the heat exchanger, leaving the radiator model to 

represent heat transfer only [28]. The pressure drop of the heat exchanger bundles is 

modelled by porous zone through adding a momentum source term into the 

corresponding equation [9]. As presented in Eq.(4), the source term is composed by two 

parts: a viscous loss term and an inertial loss term.   
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Where   and C are determined by the friction factor of heat exchangers in the NDDCT 

1D model [28]. 

 

Figure 2 Heat exchangers in the NDDCT 

All 18 heat exchanger bundles are horizontally arranged inside the NDDCT [30]. 

These heat exchanger bundles cover 70% of the cross-sectional surface area. The 18 heat 

exchanger bundles are built separately in the CFD model, and their locations are the same 

as those in the NDDCT [30], as shown in Figure 2. The number of each heat exchanger 

bundle and the direction of the crosswind are also shown in Figure 2. 



  

1000000 2000000 3000000 4000000 5000000
318

319

320

321

322

323

 air temperature

 

T
d

t,
a

2
(K

)

Total amounts of mesh cells
 

(a) Tower outlet air temperature 

1000000 2000000 3000000 4000000 5000000
70

72

74

76

78

80

82

84

 mass flow rate

 

m
d
t,

a
(k

g
/s

)

Total amounts of mesh cells
 

(b) Tower outlet air mass flow rate 

Figure 3 Grid independence test 

The cooling tower and the heat exchanger bundles are discretised by the structured 

hexahedron mesh, adopting the ANSYS meshing sweep method. The mesh of the 

computation domain area is generated using the ANSYS meshing multi-zone method [30]. 

The results of the grid independence test shown in Figure 3 show that the deviations in 



  

the tower outlet air temperature and tower outlet air mass flow rate are only 0.001 K and 

0.03 kg/s, respectively, when there are 2,647,840 and 5,186,700 mesh cells. Thus, 

2,647,840 cells are used in this paper. 

3. Model validation 

3.1 Scaled NDDCT experiment  

3.1.1 Windless condition 

 

Figure 4 Scaled NDDCT used by Lu et al. [29] 

Lu et al. [29] used a 1:12.5-scale cooling tower model equipped with an electric 

resistance heater simulating horizontally placed heat exchangers to validate the CFD 

model. The experiment was performed in an open circuit wind tunnel. The scaled 

experimental model had a height of 1.2 m and diameter of 0.96 m, as shown in Figure 4. 

The CFD model built in this paper is the same size as the tower. A grid with 2,121,255 

cells was used. The details of the CFD model are provided in Ref [29]. 

The mean tower outlet air velocity (vdt,a2) and air temperature (Tdt,a2) were measured 

in the experiment [29]. A direct comparison of the results of the measurement [29] and 

the CFD model is provided in Table 2, showing the good agreement between them. 

Table 2 Comparison of the CFD results and experiment results [29] 

Parameters Measurement [29] CFD results  Deviation 

Vdt,a2(m/s) 0.32 0.31 3.1% 

Tdt,a2(K) 316.45 315.65 1.8% 

 



  

3.1.2 Crosswind condition 

 

Figure 5 Air flow inside the scaled NDDCT under crosswind conditions [29] 
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Figure 6 Comparison of the CFD results and experimental results [29] 

Lu et al. [29] also performed an experiment to study the tower performance with a 

crosswind, as shown in Figure 5. A comparison with CFD models shows the good 

agreement of the experimental and numerical results when the conditions of the CFD 



  

model and the experimental model are similar. In this paper, a CFD simulation was 

conducted to enable a comparison with the experimental results. The results are shown in 

Figure 6. The results show that the model corresponds well with the experimental results 

of the scaled tower [29]. 

3.2 Full-scale NDDCT experiment  

The CFD method used in this paper is also validated based on the full-scale tests on 

the same cooling tower [32]. The results show that the air flow behavior inside the 

NDDCT under crosswind condition can be well presented by the CFD modeling. The 

numerical results can be well matched with the experimental measurements.  

4. Results and discussions  

4.1 Flow and temperature fields 

4.1.1 Tower inlet cover length of 0 m 

 

Figure 7 Tower performance  

(Tower inlet cover length = 0 m, crosswind speed = 0 m/s) 

(a) air temperature, (b) air pressure, (c) air flow, (d) heat flux 



  

Due to the central symmetry of configurations of heat exchangers and the NDDCT, 

the temperature, pressure, flow and heat flux fields exhibit central symmetry 

characteristics in the absence of a crosswind, as shown in Figure 7. With no crosswind, 

heat is mainly transferred from cooling water to air through natural convection heat 

transfer in the NDDCT. The air temperature above the heat exchangers is around 313.18 

K. Figure 7 (b) shows that negative pressure is formed inside the tower, which is caused 

by the balance between the buoyancy force and viscous force. The largest pressure 

difference could reach around 6.3 Pa. The pressure difference inside and outside the 

tower sucks air into the tower. Figure 7 (c) shows that the air flow near the edge of the 

heat exchangers is smaller than that at the tower centre due to the higher air resistance. As 

a result, the heat flux of the heat exchangers at the edge of the tower is smaller than that 

at the tower centre (Figure 7 (d)).  

 

Figure 8 Tower performance  

(Tower inlet cover length = 0 m, crosswind speed = 10 m/s) 

(a) air temperature, (b) air pressure, (c) air flow, (d) heat flux 

Figure 8 shows that the temperature, pressure, flow and heat flux fields inside the 

tower are no longer symmetrical when the crosswind speed is 10 m/s. In contrast to the 



  

windless condition in Figure 7, heat is transferred from cooling water to air through 

natural convection heat transfer and forced convection heat transfer under crosswind 

conditions [9]. Figure 8 (a) shows that the air temperature at the tower’s windward side is 

higher than that at the leeward side. This trend is due to the change in the flow field 

inside the tower (Figure 8(c)) resulting from the crosswind. According to Figure 8 (b), a 

negative pressure zone is formed beneath the heat exchangers on the windward side. The 

negative pressure zone decreases the pressure difference between the inside and outside 

of the tower, which causes the lower air flow through the windward side than through the 

leeward side. This lower air flow inevitably increases the air temperature on the 

windward side. A comparison of Figures 7 (d) and 8 (d) illustrates that the heat flux of the 

heat exchangers on the tower leeward side increases from around 12000 W/m
2
 to over 

20000 W/m
2
. By contrast, the heat flux on the windward side decreases significantly with 

a crosswind. Figure 8(c) shows that the upper vortex caused by a crosswind forms a high-

speed zone that acts as a lid above the tower outlet, making it more difficult for air to 

leave the tower [28]. 

Figure 9 shows the velocity vectors in the xy plane when the crosswind speed is 10 

m/s. According to Figure 8(b), the crosswind creates a high-pressure zone because it is 

blocked by the tower side wall. This high-pressure zone pushes the air at the tower side 

wall into the tower inlet, which acts as a lid, as shown by the blue arrow in Figure 9. This 

situation makes it difficult for air to enter the heat exchangers at the tower windward side 

because of the inertia effect even though the tower’s draft continues to suck air in. The 

black dashed line in Figure 9 illustrates that air would eventually enter the tower through 

this route. Thus, a negative pressure zone under the heat exchangers at the tower 

windward side and a vortex at the bottom of the tower would inevitably form, leading to 

a decrease in air flow through the heat exchangers, as shown in Figure 8(b), (c) and 

Figure 9. Therefore, the high-pressure zone around the tower side wall is the reason for 

the formation of the negative pressure zone under the heat exchangers on the tower 

windward side, the vortex at the bottom of the tower, reducing air flow through the tower. 

 



  

 

Figure 9 Velocity vectors in the xy plane 

(Tower inlet cover length = 0 m, crosswind speed = 10 m/s) 

4.1.2 Tower inlet cover length of 1.5 m 

 

Figure 10 Tower performance  

(Tower inlet cover length = 1.5 m, crosswind speed = 0 m/s) 

(a) air temperature, (b) air pressure, (c) air flow, (d) heat flux 

Figure 10 shows the temperature, pressure, flow and heat flux fields inside the tower 



  

when the length of the tower inlet cover is 1.5 m and the crosswind speed is 0 m/s. 

Compared with Figure 7, Figure 10 shows that the 1.5 m tower inlet cover has a 

negligible influence on the tower performance under windless conditions. Figures 7 (d) 

and 10(d) illustrate that the impact of the cover on the heat exchangers’ heat flux is also 

small. 

Figure 11 shows the temperature, pressure, flow and heat flux fields inside the tower 

when the length of the tower inlet cover is 1.5 m and the crosswind speed is 10 m/s. 

Figures 11(c) and 8(c) illustrate that the 1.5 m tower inlet cover reduces the impact of the 

vortex inside the tower and increases the air flow through the tower, thus improving the 

heat flux of the heat exchangers at the tower centre and leeward sides.  

  

Figure 11 Tower performance  

(Tower inlet cover length = 1.5 m, crosswind speed = 10 m/s) 

(a) air temperature, (b) air pressure, (c) air flow, (d) heat flux 

4.1.3 Tower inlet cover length of 3 m 

Figure 12 shows the temperature, pressure, flow and heat flux fields inside the tower 

when the length of the tower inlet cover is 3 m and the crosswind speed is 10 m/s. 

Figures 12(a) and 8(a) illustrate that the 3 m tower inlet cover reduces the area of high air 



  

temperature on the tower windward side. In addition, the negative pressure zone area is 

also decreased, causing a significant rise in the air flow through the tower. A comparison 

of Figures 12(d) and 8(d) illustrates that the 3 m tower inlet cover substantially improves 

the heat flux of all heat exchangers except those on the tower windward side. The tower 

thermal performance is also improved.  

 

Figure 12 Tower performance  

(Tower inlet cover length = 3 m, crosswind speed = 10 m/s) 

(a) air temperature, (b) air pressure, (c) air flow, (d) heat flux 

Figure 13 shows the air velocity vectors in the xy plane with the 3 m tower inlet 

covers when the crosswind speed is 10 m/s. Based on the discussion in Section 4.1.1, the 

high-pressure zone around the tower side wall causes the formation of the negative 

pressure zone under heat exchangers on the tower windward side, the vortex at the 

bottom of the tower, reducing air flow through the tower. As shown in Figure 9, when the 

tower inlet cover is 0 m, the high-pressure zone around the tower side wall pushes air into 

the tower through the black dashed line. Figure 13 shows that a remarkable high-pressure 

zone also forms outside the tower when the tower inlet cover is 3 m. However, the 3 m 

tower inlet cover prevents the majority of the crosswind around the tower side wall from 



  

entering the tower inlet, and only a small amount of crosswind changes flow direction, 

acting as a lid, as shown by the blue arrow in Figure 13. The slope of the blue arrow in 

Figure 13 is smaller than that in Figure 9 because of the weaker impact of crosswind 

around the tower inlet on the flow direction. The heat exchanger area that air flows 

through is enlarged by installing the 3 m tower inlet cover. Thus, the tower inlet cover 

improves the tower performance with a crosswind by reducing the impact of the high-

pressure zone around the tower side wall. 

 

Figure 13 Velocity vectors in the xy plane  

(Tower inlet cover length = 3 m, crosswind speed = 10 m/s) 

4.1.4 Tower inlet cover length of 4.5 m 

Figure 14 shows the temperature, pressure, flow and heat flux fields inside the tower 

when the length of the tower inlet cover is 4.5 m and the crosswind speed is 10 m/s. 

Figures 8, 11, 12 and 14 illustrate that the air temperature distribution inside the tower 

becomes more homogeneous as the length of the tower inlet cover increases from 0 m to 

4.5 m. In addition, the negative pressure zone area under the heat exchangers is also 

decreased continuously, causing an increase in air flow through the tower. When the 

length of the tower inlet cover increases to 4.5 m, the heat flux distribution in the heat 

exchangers becomes more homogeneous and the heat flux in most heat exchangers 

increases significantly.  



  

 

Figure 14 Tower performance  

(Tower inlet cover length = 4.5 m, crosswind speed = 10 m/s) 

(a) air temperature, (b) air pressure, (c) air flow, (d) heat flux 

4.2 Thermal Performance 

Figure 15 shows the performance of the heat exchangers with different crosswind 

conditions when the length of the tower inlet cover is 0 m. The zig zag change of the 

curves in Figure 15 reveals the variation in the performance of heat exchangers arranged 

in different locations, as shown in Figure 2. For heat exchangers #1 and 2 located at the 

two sides of the tower, the air flow rate and heat flux decrease continuously from around 

5 kg/s to around 0.5 kg/s and from around 50 kW/m
2
 to around 15 kW/m

2
 respectively, as 

the crosswind increases from 0 m/s to 6 m/s; when the crosswind increases to 6 m/s, the 

direction of air flow through these two heat exchangers reverses and the air flow becomes 

negative because of the vortex at the bottom of the tower (Figure 8(c)); the air flow and 

heat flux increase as the crosswind increases from 6 m/s to 12 m/s. For heat exchanger #3 

on the tower leeward side, the air flow and heat flux increase continuously when 

crosswind increases from 0 m/s to 6 m/s; the air flow and heat flux suddenly decrease to 

their minimum values (around 5 kg/s and 45 kW/m
2
) when the crosswind increases to 8 



  

m/s; and the air flow and heat flux again increase as the crosswind increases from 8 m/s 

to 12 m/s.  

For heat exchanger #4 on the tower windward side, the sudden decrease of the air 

flow and heat flux under 2 m/s crosswind condition is because of the sudden appearance 

of the vortex at the bottom of the tower under crosswind conditions. With the increase of 

the crosswind, the direction of air flow reverses due to the vortex at the bottom of the 

tower; the air flow and heat flux increase as the crosswind increases from 4 m/s to 12 m/s. 

This is due to the growing impact of the vortex at the bottom of the tower with the 

increasing crosswind (Figure 8(c)). 

For heat exchangers #5, 6, 9 and 10, air flow and heat flux rise to their maximum 

values as the crosswind increases from 0 m/s to 4 m/s; the air flow and heat flux decease 

to their minimum values as the crosswind increases from 4 m/s to 8 m/s; and the air flow 

and heat flux again increase when the crosswind increases from 8 m/s to 12 m/s. For heat 

exchangers #7, 8, 11 and 12 arranged at the tower centre, the air flow and heat flux 

decrease continuously as the crosswind increases from 0 m/s to 6 m/s, and the air flow 

and heat flux remain approximately stable as the crosswind increases from 6 m/s to 12 

m/s. For heat exchanges #13, 14, 15, 16, 17 and 18 arranged on the tower windward side, 

the air flow and heat flux both decrease as the crosswind increases from 0 m/s to 2 m/s; 

and the vortex at the bottom of the tower reverses air flow direction as the crosswind 

increases from 2 m/s to 12 m/s, causing the air flow and heat flux to increase.  

Figure 16 shows the performance of the heat exchangers with different crosswinds 

when the length of the tower inlet cover is 4.5 m. For heat exchangers #1 and 2 located at 

the sides of the tower, the air flow and heat flux increase with an increase in crosswind 

from around 5 kg/s to around 10.5 kg/s and from around 50 kW/m
2
 to around 95 kW/m

2
. 

For heat exchangers #3,  5, 6, 7, 8, 9, 10, 11 and 12 arranged on the tower leeward side, 

the air flow and heat flux increase with increases in the crosswind, but the increment in 

air flow and heat flux decreases with decreases in the distance between the heat 

exchanger and tower centre. For heat exchangers #4, 13, 14, 15, 16, 17 and 18 arranged 

on the tower windward side, the air flow and heat flux decrease with increases in the 

crosswind.  
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(b) Heat flux 

Figure 15 Performance of the heat exchangers with different crosswinds  

(Tower inlet cover length = 0 m) 
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(b) Heat flux 

Figure 16 Performance of the heat exchangers with different crosswinds  

(Tower inlet cover length = 4.5 m) 
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Figure 17 Performance of each heat exchanger with an 8 m/s crosswind 

(Tower inlet cover length = 0 m, 4.5 m) 

Figure 17 shows a comparison of each heat exchanger’s heat flux with two different 

tower inlet cover lengths when the crosswind is 8 m/s. The heat flux in all heat 

exchangers except #4, 13 and 16 increases tremendously when the crosswind is 8 m/s. 

The largest increase in the heat flux could be found in heat exchangers #8 and 12. The 

value rises almost 7 times from around 11 kW/m
2
 to around 74 kW/m

2
.  

0 2 4 6 8 10 12

400

600

800

1000

1200

1400

1600  Spray cover length-0 m

 Spray cover length-1.5 m

 Spray cover length-3 m

 Spray cover length-4.5 m

 

Q
d
t(
k
W

)

v
dt,cw

(m/s)

20

40

60

80

100

120

140

160

180

200
m

d
t,

a
(k

g
/s

)

 



  

Figure 18 Comparison of the tower performance with different crosswind conditions  

The tower performance with different crosswinds and different tower inlet covers is 

shown in Figure 18. When the length of the tower inlet cover is 0 m, the tower heat load 

and air flow decrease significantly as the crosswind increases from 0 m/s to 8 m/s; the 

tower heat load with a 8 m/s crosswind is approximately 40% of the value with no 

crosswind (367 kW VS. 982 kW). As the crosswind continues to increase, the air flow 

remains nearly stable but the tower heat load increases. Lu et al. [29] researched this 

phenomenon and found that it was caused by the transfer of the heat inside the dry 

cooling tower to air through natural convection heat transfer and the forced convection 

heat transfer with the crosswind. The forced convection heat transfer is calculated by the 

equation    
    

 
         

      
  

  
 

      

, where Rec depends on the crosswind. 

Although natural convection heat transfer decreases with increasing crosswind, the forced 

convection heat transfer increases with increasing crosswind. When the crosswind is 

larger than 8 m/s, the increment in forced convection heat transfer is larger than the 

decrement in the natural convection heat transfer, and the tower overall heat load 

increases. The trend of the crosswind influence on tower performance with the 1.5 m 

tower inlet cover is the same as that with the 0 m tower inlet cover. When the crosswind 

increases, the tower heat load and air flow initially decrease and then increase. However, 

the 1.5 m tower inlet cover significantly improves tower performance with a crosswind. 

When the crosswind increases from 4 m/s to 12 m/s, the tower heat load increases by 40-

65% when installing the 1.5 m tower inlet cover. When the crosswind is 8 m/s, the tower 

heat load and air flow when installing 1.5 m tower inlet cover are 603 kW and 44 kg/s. In 

contrast, the values are only 367 kW and 7 kg/s without tower inlet cover. The tower 

performance can be further improved by installing the 3 m tower inlet cover. The tower 

heat load reaches its lowest value when the crosswind increases to 8 m/s, approximately 

83% of the value with no crosswind. When the crosswind continuously increases to 12 

m/s, the tower heat load surpasses the value with no crosswind. In general, the tower heat 

load improves by 70-130% when installing the 3 m tower inlet cover when the crosswind 

increases from 4 m/s to 12 m/s. When the tower inlet cover is 4.5 m, crosswind is no 

longer a factor leading to deterioration in tower performance. In contrast, the cover 



  

improves the tower heat load and air flow considerably; when the crosswind reaches 12 

m/s, the tower heat load is 68% greater than that with no crosswind (1642 kW VS. 980 

kW). When the crosswind increases from 4 m/s to 12 m/s, the tower performance 

increases by 85-230% with the installation of the 4.5 m tower inlet cover. 

5 Conclusion 

Crosswind creates a high-pressure zone, which pushes the air at the NDDCT side 

wall into the tower inlet. This crosswind acts as a lid, making it difficult for air to enter 

the heat exchangers on the tower windward side because of the inertia effect even though 

the tower draft continues to suck air in. A negative pressure zone forms under the heat 

exchangers on the tower windward side, and a vortex forms at the bottom of the tower, 

leading to a decrease in air flow through the heat exchangers and a deterioration in tower 

performance. 

The tower inlet cover prevents the majority of the crosswind around the tower side 

wall from entering the tower inlet, reducing the negative impact of the high-pressure zone 

around the tower side wall on the tower performance. The air flow at the heat exchangers 

is increased, which significantly improves the heat flux of the heat exchangers except for 

those on the tower windward side. The thermal performance of the tower is also 

improved. 

When the crosswind increases from 4 m/s to 12 m/s, the 1.5 m tower inlet cover 

improves the tower heat load by 40-65%. The 3 m tower inlet cover improves the tower 

heat load by 70-130%, and the 4.5 m tower inlet cover improves the tower heat load by 

85-230%. When the tower inlet cover length is 4.5 m, crosswind is no longer a factor 

leading to a deterioration in tower performance; in contrast, the cover increases the tower 

heat load and air flow considerably under crosswind conditions. 
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List of symbols and acronyms 



  

Ac        surface area of numerical cell (m
2
) 

a          constant 

C         inertial resistance factor 

C1, C1ε, C2, C3ε  constants in turbulent equations 

Cp       specific heat (J.kg
-1

 K
-1

) 

Cμ       coefficient in trubulent viscosity  

F        source term for momentum equations  

Gb       turbulent kinetic energy source term due to buoyancy 

Gk       turbulent kinetic energy source term due to mean velocity gradients 

H        height (m) 

h        convective heat transfer coefficient (W.m
-2

 K
-1

) 

K, Ke, Kt  laminar, effective, turbulent thermal conductivity repectively (W.m
-1

 K
-1

) 

Kresist     pressure loss coefficient 

k        turbulent kinetic energy (m
2
.s

-2
) 

NDDCT  natural draft dry cooling tower 

NDWCT  natural draft wet cooling tower 

Nu       Nusselt number 

Pr, Prt   laminar, turbulent Prandtl number, respectively (m)   

p        pressure (Pa) 

Q        heat transfer rate (kW) 

q        heat flux( kW.m
-2

) 

S        modulus of the mean rate-of-strain tensor 

Sφ       volumetric source term for variable quantityφ   

T        temperature (K) 

U, V, W   velocity components in x-, y-, z-direction (m.s
-1

)        

Vc       numerical cell volume (m
3
) 

v        velocity scalar (m.s
-1

) 

x, y, z     Cartesian co-ordinates 

 

 

Greek letters 



  

     permeability (m
2
) 

β       bulk thermal expansion coefficient (K
-1

) 

ε        turbulent kinetic energy dissipation (m
2
.s

-3
) 

φ       scalar quantity (u,v,w,T,k,ε,….) 

Гφ       diffusion coefficient for variable quntittyφ 

ρ        density , mean density (kg.m
-3

) 

μ, μe, μt   laminar, effective, turbulent viscosity, respectively (kg.m
-1

 s
-1

) 

σk, σε  turbulent Prandtl number for k andε, respectively  

 

Subscripts 

a        air 

cw       crosswind condition 

dt        dry cooling tower 

N        pure natural convection case 

r         radiator 

ref       reference value 

1,2       inside or inlet, outside or outlet 
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Highlights 

1. A cover to improve the NDDCT performance under crosswind conditions is presented. 

2. The impact of crosswind on vortex formation inside NDDCT is explained. 

3. The working mechanism of the cover and its effects are presented. 

4. 4.5 m cover improves the tower heat load by 85-230% under crosswind conditions. 

 

 


