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Analysis of the transcriptome of the developing wheat grain has

associated expression of genes with traits involving production

(e.g. yield) and quality (e.g. bread quality). Photosynthesis in the

grain may be important in retaining carbon that would be lost in

respiration during grain filling and may contribute to yield in the

late stages of seed formation under warm and dry

environments. A small number of genes have been identified as

having been selected by humans to optimize the performance

of wheat for foods such as bread. Genes determining flour yield

in milling have been discovered. Hardness is explained by

variations in expression of pin genes. Knowledge of these

genes should dramatically improve the efficiency of breeding

better climate adapted wheat genotypes.
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Introduction
The useful part of the wheat plant is the seed. Analysis of

the transcriptome of the developing seed allows analysis

of processes involved to seed formation. Recent RNA-

Seq experiments with diverse genotypes [1��] are an

extensive resource and when combined with phenotypic

data associated with contrasting grain traits can be used to

identify genes controlling those traits (Figure 1). Differ-

ences in gene expression contribute to grain hardness

[2��], the yield of flour obtained when the wheat is milled

[3��], and the quality of end products such as bread [4��]
(Table 1). Photosynthesis is active in the pericarp of the

seed at mid-development but declines towards seed

maturity. This photosynthesis involves the expression

of genes for a C4 pathway of photosynthesis specific to

the seed in wheat [5��,6] (Table 1). The exact role of
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these genes is not resolved but has been proposed to

involve re-fixation  of CO2 produced by respiration

associated with grain filling with this seed photosyn-

thesis possibly differing significantly from leaf photo-

synthesis [7].

Importance of wheat
Wheat is the most important food grain in temperate

regions complementing rice production in more tropi-

cal regions. Wheat is generally lower yielding than rice

and is grown over a larger area. Climate change is

threatening food security by reducing crop yields [8].

Global warming is resulting in wheat experiencing

higher temperatures during grain development with

potential consequences for both gain quality and yield.

With the availability of a whole genome sequence of

wheat [9,10], it is much easier to position the genes

underlying yield [11�] and quality [12] traits. This helps

to identify and target genes for manipulation to achieve

improved productivity and grain quality using present

day molecular tools. Genomics tools [13] have been

considered as a key approach to climate change adap-

tation [14] especially for a polyploid crop with very

large genome like wheat.

Seed biomass equals yield
The yield of wheat is a product of the number of grains

and the size of the grains. Major genes controlling

yield-related genes in wheat, identified by means other

than seeds transcriptome sequencing/profiling, have

been reported at the whole plant level as reviewed in

[11�] and in seeds (Table 1) controlling grain size [15–

18] and length [19,20] (Table 1). In addition, genes

controlling spike architecture leading to grain yield

improvement have also been reported [21,22]. Domes-

tication of wheat has involved human selection for

these traits to deliver high grain yield. While the plant

captures carbon by photosynthesis in the leaves the

amount reaching the seed is critical for grain yield. The

fate of sugars arriving in the seed may also be highly

significant with respiration and capture of additional

carbon by photosynthesis in the seed [5��] also contrib-

uting to the final seed biomass.

Seed composition equals grain quality
The nutritional and functional quality of wheat is deter-

mined by the composition of the grain. Human selection

for ease of processing and end product quality has

resulted in hexaploid wheat genotypes specifically suited

to different products such as bread, chapatti or noodles,
g key traits for human preference and crop adaptation, Curr Opin Plant Biol (2018), https://doi.
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Figure 1

More grain More flour Better bread

Increased expression
- C4 photosynthesis

genes in pericarp

Reduced expression
- fla gene in pericarp
- pina/pinb in
  Endosperm

Increased expression
- wbm gene in
  endosperm

Current Opinion in Plant Biology

Grain quality and yield-related genes recently identified by transcript profiling of developing wheat seed. Photosynthesis genes expressed in the

grain may lead to higher yields of grain. Mutant puroindoline ( pin) genes or reduced expression of pin genes or reduction in the expression of the

fasciclin-like arabinogalactan protein ( fla) genes resulting in lower cell adhesion may lead to higher flour yield. High expression of wbm a gene

encoding a small protein with four cysteine residues with potential to form cysteine linkages with glutenin and gliadin proteins may lead to better

bread quality.
while durum (tetraploid) wheat has been developed for

pasta production.

Seed transcriptome analysis
The construction of the grain is largely determined by

genes expressed in the various tissues of the grain during

seed development acting on the substrates flowing from

the vascular system into the grain. This determines grain

composition (quality) and influences biomass (yield).

Greater knowledge of the patterns of gene expression

during seed development and maturation, their variation

between genotypes and response to environment will

explain the molecular basis of much of the variation in

yield and quality in wheat [13].

Transcriptome analysis of diverse wheat genotypes by

RNA-Seq [1��] has provided a platform for research on

grain development and the determination of grain yield

and grain composition that controls functional and nutri-

tional properties [23]. The polyploidy genome of hexa-

ploid wheat results in a complex transcriptome with the

potential for highly sub-genome specific expression [24–

26]. Nearly 80% of the genes in hexaploid wheat are

preferentially expressed at the sub-genome level (A or B

or D) during various developmental stages [24,27]. Due to

the polyploid nature of wheat, many alleles with trait

favourable mutations lie redundant and as a result remain

unexploited. A transcriptomic approach [28] may uncover

such hidden variation for use in crop improvement. This

indicates, targeted (sub-) genome editing tools may

become a method of choice for increased productivity
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in wheat. The availability of long read (Iso-Seq) sequenc-

ing should enhance the value of transcriptome analysis

especially in polyploid plants [29–31] like wheat.

Grain hardness
The hardness of wheat has been considered a key attri-

bute and used to name wheat classes with hard wheats

preferred for breads and soft wheats for cakes and cookies.

This is due to the higher degree of starch damage associ-

ated with the milling of hard wheats. In hard wheats

starch granules are broken providing a greater opportunity

for water adsorption by the starch during dough making

while in soft wheats the starch granules are more easily

separated from the protein matrix allowing milling with-

out starch damage and resulting in lower levels of water

adsorption. The hardness locus in wheat includes the pin
genes encoding the puroindoline proteins (Figure 1) and

the gene encoding the grain softness protein. The grain

softness protein was named because it was found associ-

ated with the surface of the starch granules in the flour of

soft but not hard wheats. The grain softness protein

(GSP-1) was only recently identified as being encoded

by a gene that also encodes an arabinogalactan protein

[32�]. The pre-protein translated from this gene is cleaved

in the vacuole to generate an AGP and the grain softness

protein.

Analysis of pin alleles has been used to select for hardness.

Mutations in these genes are associated with hardness.

However, wheat genotypes with hard grain texture were

found without mutations in the pina or pinb genes. Tran-

scriptome analysis has shown that hardness is associated
g key traits for human preference and crop adaptation, Curr Opin Plant Biol (2018), https://doi.
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Table 1

Recently identified associations between gene expression in wheat grain and processing, yield and quality traits

Trait Gene/trait correlation Description Reference

Grain hardness

Flour yield

Pina and Pinb

negative

� Expression in endosperm

� Reduced/no expression/non-functional PinB due to mutant PinA or PinB alleles

correlates with genotypes with hard grain

� PINA and PINB known to interact with starch

[2��]

Bread quality

Loaf volume

wbm

positive

� Expressed in endosperm

� High expression due to promoter variant correlates with genotypes with good

bread quality

� WBM is a small sulphur-rich protein which potentially cross-links with glutenins

and gliadins leading to good bread quality

� Rare allele in A/D-sub-genome

[4��]

Milling quality

Flour yield

fla

negative

� Expression in pericarp

� Low expression possibly due to promoter variants correlates with genotypes

with good milling quality

� FLA8 is a cell adhesion protein likely resulting in tight-attachment of bran to

endosperm leading to poor flour quality and yield

[3��]

Grain yield ppc, aat, mdh2,

me2, gpt, ppdk

positive

� Expression in pericarp

� Enhanced expression in grains

� Grain C4 photosynthesis for higher grain yield

[5��]

Grain size and

weight (positive)

TaGS5-3A (-T)

positive

� Expression in developing grains and young spike

� High expression correlates with genotypes with larger grain size and higher

grain weight

� Encodes a type II serine carboxypeptidase possibly involved in cell division and

rapid cell proliferation

[15]

Grain size and

weight (positive

and negative)

TaGW2-6A

positive and negative

� Constitutive expression in plant

� Low expression/non-functional protein due to Promoter/coding region

variants, correlates with genotypes with larger grain size and higher grain weight

� Encodes a functional E3 RING-type ubiquitin ligase possibly upregulating the

expression of cytokinins and starch biosynthesis related genes via the ubiquitin–

proteasome system; and simultaneously downregulating the cytokinin

degradation genes

[16–18]

Grain width,

weight and

length

TaGW2-6A1

negative

� Expresses in grains and leaves

� G to A transition in the splice acceptor site of exon 5 leads to mis-splicing in

TaGW2-6A1, resulting in premature truncation with 134 AA correlates with

increase in grain width, weight and length

[19]

Grain length and

weight

TaGW7

negative

� Expression in spike and stem with low expression in grain

� TaGW7 likely plays a key role in the development of tissues in vegetative and

reproductive organs especially by regulating cell elongation

[20]

Pin: puroindoline, fla: fasciclin like arabinogalactan, wbm: wheat bread making gene, ppc: PEP carboxylase (PPC, EC 4.1.1.31), aat: aspartate

aminotransferase (AAT, EC 2.6.1.1), mdh2: malate dehydrogenase (MDH, EC 1.1.1.31), me2: NAD-dependent-malic enzyme (ME2, 1.1.1.39), gpt:

alanine aminotransferase (GPT, EC 2.6.1.2), ppdk: pyruvate orthophosphate dikinase (PPDK, EC 2.7.9.1).
with the levels of expression of the pin genes rather than

just the sequences of the proteins themselves [2��].

Flour yield in milling
The genetic control of flour yield has been considered

complex. Recently transcriptome analysis indicated that

high flour yield was associated with reduced expression of

fasciclin-like arabinogalactan proteins (FLAs) in the peri-

carp and possibly outer endosperm/aleurone [3��]. The

FLAs are cell adhesion proteins and reduced expression

apparently results in the endosperm breaking up and

separating more easily from the bran (pericarp). Major

loci controlling flour yield in different populations have

been associated with the locations of FLA encoding genes

(Figure 1) on chromosomes 2B and 4B. These are distinct

probably cell wall associated AGPs rather than from the

arabinogalactan proteins found inside the cell and

encoded by the gene encoding the grain softness proteins.
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Bread quality
A long history of research [33�] has linked bread quality

closely with the presence of HMW glutenins.

More recently, analysis of the transcriptome from diverse

wheat genotypes has identified a highly significantly

differentially expressed gene, the wheat bread making

gene, wbm [4��]. This gene encodes a small sulphur

containing protein that is expressed at very high level

in wheat genotypes with good bread quality (Figure 1). It

is possible that small proteins may interact to cross-link

the gluten and stabilize the bubbles that are the key to a

risen bread product.

Chapatti quality
The production of end-products other than bread appears

to require very different wheat. The bread and chapatti

quality of wheat genotypes was found to be negatively
g key traits for human preference and crop adaptation, Curr Opin Plant Biol (2018), https://doi.
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correlated [34]. The transcriptome of wheat has been

explored for a single genotype known for good chapatti

making [35] while studies on a larger set of good and poor

chapatti-making genotypes should reveal the identity of

the genes that need to be expressed to produce these

products with the required quality.

Photosynthesis in the seed
Analysis of changes in gene expression from mid seed

development to seed maturity in wheat has revealed that

photosynthesis genes in the pericarp are those that

change most as the high levels of photosynthesis in

mid seed development decline. The novel discovery that

has flowed from this is that photosynthesis in the seed is

apparently very different to that in the leaf [7]. While

wheat is a C3 plant the seed expresses a complete C4

pathway. This has proven to be controversial despite

experiments targeting the pericarp showing flux through

a C4 pathway experiments with intact ears have been

confounded by the respiration of the endosperm and C3

photosynthesis in the glumes [7]. Natural selection [36]

may have favoured a C4 pathway later in wheat seed

development when temperatures are usually much

higher. Photosynthesis in the pericarp may have a key

role in the re-capture of CO2 generated by respiration to

support the requirements of the large amounts of starch

and protein synthesis in the endosperm in the active

stages of grain filling.

Impact of heat stress on yield and quality
Heat has been shown to alter the composition of the

wheat grain and thereby its quality [37]. Hotter growing

conditions resulted in higher levels of secondary metab-

olites and saturated fats [38] that will alter nutritional

value and functional quality for various end-uses. The

transcriptome has been used to study the response of

wheat genotypes to heat stress during seed development

[39]. Genotypes differ widely in the extent to which gene

expression is altered and the consequent impact of heat

stress on grain yield and quality.

Prospects for increasing the rate of genetic
gain in wheat
Genomics has the potential to enhance the breeding of

high quality cereals [40]. A wider gene pool [41] may be

accessed with great knowledge of the molecular basis of

quality. Due to the requirement of large amount of grain

sample, current selection tests for wheat grain quality

(hardness, milling yield and end-product quality), can

only be applied at later stages in wheat breeding [12].

However, molecular tools for analysis of genes associated

with quality traits enable selection for quality traits at any

stage in wheat breeding and can potentially accelerate the

rate of genetic gain in wheat breeding [42�]. Elimination

of large numbers of poor quality wheat early will allow

greater selection pressure for yield to be applied to

populations that have acceptable grain quality. Selection
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for photosynthetic efficiency in the seed may also deliver

higher yielding wheat especially in hot dry environments

or when wheat is subjected to heat stress during grain

filling.

Successful gene editing in hexaploid wheat with three

sub-genomes [43�,44,45] has opened up the possibility of

using this technology for the rapid improvement of wheat

by regulating the transcription of target genes. The down-

regulation of gliadins using to generated low-gluten

wheat is an exciting application of this technology [46].

The rapid pace at which gene editing technology has

progressed needs to be matched by the pace at which

genomic technologies will identify candidate genes which

after validation can be utilized for trait improvement.

Assessment of the contribution of the wbm gene to bread

making was undertaken at CIMMYT with significant

correlation with bread making quality reported [47��].
Gene targets can be converted to markers for rapid

selection in breeding [48] and be used in conjunction

with speed breeding [49] or used for trait improvement

using gene editing technologies. Gene editing technolo-

gies could be used to accelerate the validation of candi-

date genes for manipulation [50].

Conclusions
Analysis of the transcriptome of the developing seed has

provided many insights into the biology of this critical

organ. This may be extended by more critical analysis of

the sub-genome specificity of expression in these tissues,

analysis of specific tissues, at a wider range of develop-

mental stages and of more genotypes. This should yield

more information on how the plant assembles the grain

and how genetic and environmental factors influences the

final size of the grain (yield) and the composition of

the grain (establishing the nutritional and functional

characteristics of wheat-based foods).
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