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Abstract  

Following the disturbance caused during the extraction of coal, landforms 

created with the overburden material and stockpiled topsoil must be rehabilitated and 

stabilized. Minesoils are not well studied but are generally of poor quality due to the 

loss of nutrients and overall structure caused by weathering and disturbance. Soil 

organic matter (SOM) improves soil quality in multiple ways and can be used as an 

indicator of soil quality. Improvement of minesoils is essential for rehabilitation 

success. By using soil organic carbon as a proxy for SOM, SOM levels can be 

monitored. However, common measurement methods do not distinguish coal and 

charcoal (a.k.a. black carbon (BC)) from more recent plant inputs. In order to assess 

the effect of rehabilitation management strategies on the quality of minesoils, a 

method to measure the SOM that distinguishes between newer plant inputs from 

coal and charcoal must be developed.   

The objective of this research was to develop a method to measure the 

amount of carbon attributable to rehabilitation, test the applicability of DRIFT to 

predict this carbon pool, and make observations on any trends in carbon levels. 

Sampling campaigns at coal minesites in the Bowen Basin, Queensland 

collected samples from four different mines with a range of rehabilitation ages and 

covering vegetation. Sampling focused on collecting small with increasingly larger 

increments with depth to allow detection of the movement of organic matter from the 

soil surface down into the soil.  

Thermal analysis was selected from multiple methods that quantify coal 

and/or BC derived carbon based on their resistance to oxidation. By quantifying coal 

and BC, green soil organic carbon or “green carbon”, the carbon attributable to 

rehabilitation, can be calculated as the difference between the total organic carbon 

and the sum of coal and BC derived carbon.  

Thermal analysis with evolved gas analysis (TA-EGA) using multivariate curve 

resolution (MCR) chemometric analysis was used to demonstrate the ability to 

distinguish between coal and BC in laboratory prepared mixed soil/coal/BC systems. 

MCR was able to separate components in the CO2 thermograms without prior 

identification of the components.  

TA-EGA with MCR was applied to minesoils to quantify green carbon, BC and 

coal and build a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) 

prediction model. The DRIFT model did not yield good results as  green carbon, BC, 
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coal, as well as other carbon measurements were poorly resolved in minesoils, 

indicating further work on the model and/or spectral library is required. The relatively 

high root mean square errors of prediction would mask small changes in green 

carbon; however, results suggest minesite specific calibrated models may improve 

predictions. As the three carbon pools are composed of a variety of materials, each 

with differing thermal oxidative patterns, the components identified by MCR varied 

somewhat from those identified in the laboratory prepared mixtures; however, the 

components were attributable to the pools due to their peak combustion 

temperatures. The BC and coal quantities attained through MCR did not concur with 

the recalcitrant organic carbon predictions from the Australia-wide Soil Carbon 

Research Programme (SCaRP) DRIFT model. This difference may be due to the use 

of a thermal definition as identified by MCR versus a molecular/spectroscopic 

definition as used by SCaRP. The use of different operational definitions of BC is 

reflective of the various methods used to measure BC by different laboratories and is 

the crux of why there is no consensus on a standard method. These methods are 

often biased towards measuring a particular window of the BC continuum suited for 

the purposes of that research field through the exploitation of a characteristic of the 

molecules that emerges in that window. However, as the BC continuum 

encompasses a wide range of thermally altered molecules, these windows often do 

not match each other, and as such, methods and operational definitions of BC 

proliferate.   

The results of TA-EGA with MCR as applied to minesoils from two different 

mines and ages of rehabilitation ranging from non-surface mined to 20 years post 

rehabilitation showed a general trend of decreasing amounts of green carbon from 

the surface downwards into the soil profile. Amounts of coal within a sampling pit 

was relatively stable while varying greatly between pits. This may be attributed to the 

high level of local heterogeneity due to the use of heavy machinery to dump loads of 

spoil and topsoil during the formation of the landforms. While older (>10 years) 

rehabilitated soils could reach carbon levels similar to and greater than nearby non-

surface mined soils, the contribution by green carbon was diminished, with 

significantly larger amounts of coal and BC compared to non-surface mined soils. 

Therefore, if rehabilitation goals include returning soil carbon levels to those pre-

disturbance, carbon levels must surpass pre-disturbance levels to compensate for 

the increase in BC and coal. Thermally defined pools for green carbon, BC, and coal 
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produced by TA-EGA with MCR provides a new, promising method to monitor 

carbon changes in minesoils demonstrating the ability to differentiate the three pools 

concurrently and would prove useful in the monitoring of rehabilitation progress. 
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1 Literature	Review	

Introduction	
Soil is recognized as a large reservoir of carbon in the global carbon cycle 

(Lal, 2004, Batjes, 1999, Lal and Follett, 2009). Globally, the upper meter of soils 

contains over 2000 Pg (petagram = gigatonne = 1015 grams) of carbon, excluding the 

litter layer and charcoal, as these sources of carbon could not be factored into the 

meta-analysis of global carbon stocks of Batjes (1996) due to differences in methods 

used by the source studies. The terrestrial carbon pool is estimated to be 3060 Pg 

with soil organic carbon (SOC) making up more than half at 1550 Pg, soil inorganic 

carbon (SIC) and the biotic pool containing 950 Pg and 560 Pg, respectively (Lal, 

2008, Batjes, 1996). The soil pool ( > 2000 Pg) contains more carbon than the 

vegetative biomass pool (830 Pg) and the atmosphere (760 Pg) combined (Post et 

al., 1990, Lal, 2008, Falkowski et al., 2000).  Soils have a large capacity to sequester 

carbon, and it is estimated that agricultural soils in Australia have the ability to 

sequester 50 Pg CO2-e over 20-50 years by altering land management practices 

(Garnaut, 2008). For context, the global CO2-e emissions for the year 2010 is 

estimated to be ~47 Pg (Garnaut, 2008). 

Like agricultural soils, the soils of rehabilitated mine sites have been altered 

by human activity. These activities disturb the soil and result in the loss of organic 

carbon through mineralization, weathering and erosion as well as through loss of 

regular organic inputs (Williamson and Johnson, 1990, Schwenke et al., 2000). The 

degree to which mine site soils (mine soils) have been altered, however, is much 

greater than agricultural soils in terms of the depth of disturbance in the soil profile 

and compaction. During the open cut coal mining process, heavy machinery is used 

to strip the topsoil and stockpile it in a series of heaps. The now exposed overburden 

spoil that lays on top of the coal seam is removed to expose the coal seam, hauled 

by mining dump trucks to a cleared dumping area and reshaped into large hills. 

These mesa-like dumping grounds are designed to allow maximum storage of 

overburden and landform stability and are large enough to support roads upon which 

mining dump trucks drive to higher areas to dump their loads. These newly formed 

hills are generally covered with a layer of the earlier stockpiled topsoil to promote 

plant establishment. Different management practices however, do not always include 

direct topsoil placement (Akala and Lal, 2001). Mine soils are therefore drastically 
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different to naturally occurring soil as they have not been weathered and formed over 

geological timescales, but rather have been formed using heavy machinery from 

materials collected from potentially different locations and, due to mixing during 

stripping, generally lack the horizons that define natural soil types. Mine soils fall 

under the Anthroposol soil type, as they have been altered by human activity, with 

characteristics that are primarily determined by the parent material, a mix of 

materials formed at different times and conditions (CSIRO, 2011). The methods used 

to construct the landform and mine soils causes high local-scale (0-10 m) 

heterogeneity, often displaying a distinct change in characteristics at the topsoil-spoil 

interface (see Appendix C) and is influenced by micro-topography while also less 

influenced by landscape placement than natural soils (Akala and Lal, 2000, Banning 

et al., 2008, Schafer, 1979). Mine soils generally have low productivity due to 

characteristics such as higher levels of compaction from the use of heavy machinery, 

low pH, low nutrient levels, low SOM levels and high salinity, all from the mixing of 

topsoil with the spoil material as well as leaching and mineralization that occurs 

during the stockpiling of the bare topsoil heaps (Shrestha and Lal, 2006, Sencindiver 

and Ammons, 2000, Ussiri and Lal, 2005, Schwenke et al., 2000b). The amount of 

soil organic matter (SOM) and atmospheric carbon sequestered in SOM on 

rehabilitated open coal mine soils in Queensland is unknown.  As SOM (and the 

amount of C contained therein) is an essential indicator for soil quality and is 

required to increase land productivity, it can be used to gauge coal mine site 

rehabilitation success and may be an important carbon emission offset (Lal, 2004, 

Sikora et al., 1996).  

Since industrialisation, it is estimated that global soils have emitted 26 Pg and 

52 Pg of carbon from erosion and mineralization, respectively (Lal, 2008). Changing 

the land use (e.g. forest to pasture) also causes SOM levels, and thus soil carbon 

levels, to change (Guo and Gifford, 2002).  Disturbed soils tend to have low SOM 

levels (Ussiri and Lal, 2005).  Losses in SOM are primarily attributed to weathering, 

mineralization, decomposition and erosion (Williamson and Johnson, 1990).   

A soil with less SOM produces less biomass than it would with higher levels of 

SOM (Lal, 2006).  In agricultural studies it has been found that the addition of SOM 

drastically improves productivity of degraded soil irrespective of nutrients (Kimetu et 

al., 2008).  Addition of SOM improves the edaphic characteristics of soils such as 

cation exchange capacity, gas exchange and water retention properties (Stevenson, 
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1994). SOM is known to bind pesticides and slow their transport through waterways 

(Ahmad et al., 2001). It can also act as a source of nutrients, buffer soil pH and 

temperature fluctuations which can assist seed germination and plant development 

(Stevenson, 1994). 

Mine soils have the potential to reach the same levels or surpass SOM levels 

at undisturbed sites based on land use and management practices (see Figure 1, 

Akala and Lal, 2001); therefore there is potential for comparing mine site 

management regimes for effectiveness at increasing mine soil SOM as a criterion of 

rehabilitation success (Anderson et al., 2008, Ussiri and Lal, 2005, Fettweis et al., 

2005). For example, in Figure 1 the land management practices of the treatment 

“Reclaimed-III” would be considered the best at improving the soil carbon in 

rehabilitated soils. 

 
Figure 1 Conceptual model of carbon dynamics in reclaimed mine soil taken from Shrestha et al. (2009). 
The separately labelled “Reclaimed I-III” represent three different reclamation and land management 
scenarios. Landuse I and II represent two different soil/crop management scenarios to improve carbon 
levels in agricultural soil. 

 

Mined land rehabilitation has two main goals, to revegetate and to manage 

erosion (Osterkamp and Joseph, 2000). Revegetation serves to stabilize slopes 

through reducing erosion, reducing soil compaction, and provides a source of SOM 

(Akala and Lal, 2000, Carroll et al., 2000).  The accumulation of SOM in mine soils 

serves three purposes: it improves the soil structure, thereby improving further 
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rehabilitation, increases productivity and it sequesters carbon. It has been 

hypothesized that aside from the beneficial influence due to the addition of nutrients, 

the addition of organic carbon to poor soils improves soil productivity due to surface 

features of SOC onto which bacteria cling and nutrients adsorb and become 

available to plants (Kimetu et al., 2008). The improved soil structure from the 

addition of SOM increases water retention and infiltration and reduces the risk of 

crust formation (Osterkamp and Joseph, 2000, Six et al., 1998). This can also lead to 

reduced runoff from rainfall events and in turn reduce erosion risk and ameliorate 

runoff water quality by conserving topsoil and reducing sediment load. Hence, SOM 

accretion is desirable and is critical for ecosystem stabilization on rehabilitated sites. 

Mine soils are effectively young soils made of a mix of spoil rock and topsoil 

with little to no SOM (Sencindiver and Ammons, 2000, Ussiri and Lal, 2008b). The 

properties of mine soils are mainly determined by the parent material, mining 

technique and rehabilitation management practices (Schafer, 1979, Schwenke et al., 

2000a). Rehabilitation management practices may include soil conservation and 

enhancement, liming, fertilizer application and use of mulches (Osterkamp and 

Joseph, 2000, Lee et al., 2009). Ripping of the soil surface is also sometimes done 

to relieve compaction caused by the heavy machinery. It has been thought that 

rehabilitated soils will not be as productive as natural soils because of compaction 

from machinery and low SOM levels. The loss of SOM from the mine soils is due to 

lack of plant litter, accelerated erosion and decomposition due to the aeration during 

the stockpiling of topsoil (Ussiri and Lal, 2008a). Furthermore, there is an early 

decrease in the levels of SOM following rehabilitation due to the disturbance caused 

by rehabilitation (Akala and Lal, 2000, Williamson and Johnson, 1990). However, 

newly rehabilitated mine soils can be expected to accumulate SOM rapidly until SOM 

input and decomposition rates reach equilibrium (Vindušková and Frouz, 2013, 

Roberts et al., 1988, Chaudhuri et al., 2012). Carbon sequestration rates in minesoils 

have been reported as ranging from 0.2-1.85 MgC ha-1 yr-1 dependant on land use 

and age (Ussiri and Lal, 2005, Acton et al., 2011). 

The level of SOM in soils is dependent on organic matter input, climate and 

water availability and other ecosystem properties (Batjes, 1996, Krull et al., 2001).  

Soils have the capacity to store large amounts of carbon via accretion of SOM, such 

as microbial biomass, root exudates, and biodegraded organic matter. The carbon 

contained in SOM is known as soil organic carbon (SOC). SOC is thought to 
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contribute 58% of SOM with the remainder composed of other elements, such as 

oxygen, hydrogen, etc. The actual amount that C accounts for has been observed 

empirically to vary from 40-58% depending on the soils (Tabatabai, 1996). The 

potential for soils to accumulate SOM is a function of the production of biomass by 

vegetation which enters the soil as root exudates and litter. Weathered soils 

disturbed during the process of open cut coal mining have been dug up, mixed with 

subsoil, stockpiled, and exposed to the elements also have low amounts of soil 

organic carbon and thus have the potential to accumulate and sequester carbon 

(Akala and Lal, 2001, Sperow, 2006).  Published attempts to measure the rate of 

SOC sequestration in surface mined lands under rehabilitation has occurred 

overseas but not in Australia (Fettweis et al., 2005, Ussiri et al., 2006, Chatterjee et 

al., 2009a, Rumpel et al., 2001, Roberts et al., 1988). Carbon sequestration rates in 

minesoils have been reported as ranging from 0.2-1.85 MgC ha-1 yr-1 dependant on 

land use and age (Ussiri and Lal, 2005, Acton et al., 2011). These attempts however, 

often ignore the high local variability (0-10m laterally) in minesoils (Schafer, 1979, 

Nyamadzawo et al., 2008, Shukla et al., 2007). It is important to measure the amount 

of SOC accumulating in the soil to calculate carbon offsets, to compare the 

differences between different rehabilitation management strategies and inform 

management decisions. In 2016 ~1.9 x 109 bank cubic meters of overburden was 

moved at coal mines in Queensland that will require stabilization through 

rehabilitation (Natural Resources and Mines, 2016). SOC can be divided into two 

groups: recently sequestered carbon (as in SOM or “green” carbon) and old 

sequestered carbon (coal, and black carbon) (Maharaj et al., 2007b, Mackey et al., 

2008). 

Carbon	Fractions:	A	problem	of	nomenclature	
As carbon has been studied in atmospheric sciences, biological sciences, and 

soil and sediment sciences, terminology has been developed within each of these 

fields to describe different classifications of carbon in its many forms. However, 

these terminologies lead to confusion as they are not always consistent between 

fields or within fields. The following classifications and terminology will be used in 

this document. 

Soil organic carbon (SOC) is a large class of carbon compounds found in the 

soil which excludes soil inorganic carbon forms (SIC), such as carbonates. Carbon is 
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added to the terrestrial pool by fixation from the atmospheric pool. Carbon fixation, or 

sequestration, into the soil naturally occurs in two ways, photosynthesis and 

formation of secondary carbonates (Lal and Follett, 2009). The photosynthetic path, 

which continues with the senescence of plant tissues and microbial breakdown into 

soil organic matter, results in SOC (Figure 2). All SOC has at one time been part of 

plant matter and has since cycled through the food web.  

 
Figure 2 Conceptual model of soil organic matter/carbon pool 

 

Coal is fossilised organic material that has withstood geophysical forces 

(Krevelen, 1993) and will herein be classified as geogenic carbon.  It is still organic 

carbon since it was plant matter before the coalification process took place. Some 

studies have called coal “elemental carbon” (Han et al., 2007, Rumpel et al., 1998, 

Khan et al., 2009). Alternatively, some studies have included coal in the class called 

black carbon (BC) (Manning and Lopez-Capel, 2009, Brodowski et al., 2005). 

Black carbon (BC) is the residue from incomplete combustion of organic 

matter and is known by different terms. It has been described as a continuum from 

slightly charred material to soot and in this study BC will be considered to include the 

whole continuum while excluding geogenic carbon (Schmidt et al., 2003) (Figure 3). 

Charcoal is a form of black carbon situated in the middle of the continuum. In 

atmospheric science BC forms have been called “elemental carbon” (Hammes et al., 

2007, Han et al., 2007). BC and coal, when found in the soil, are both part of SOC 

(See Figure 2). 
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Figure 3 The pyrogenic carbon continuum modified from Bird and Ascough, 2012. 

 
BC occurs in natural soils and is involved in many biogeochemical processes 

affecting the entire planet (Manning and Lopez-Capel, 2009, Schmidt et al., 2003). It 

has been found to contribute a significant amount of C in SOC and can account for 

0.8-2.8% of the annual input of organic matter into the soil (Fang et al., 2010, 

Reeves III et al., 2008). BC is heterogeneous, chemically complex with chemical and 

physical properties that vary along the “combustion continuum” with structures which 

are not completely known (Han et al., 2007, Schmidt et al., 2003, Manning and 

Lopez-Capel, 2009, Simpson and Hatcher, 2004). 

Previous studies to measure the amount of carbon plants sequester into the 

soil have noted the differences in the SOC fractions mentioned above, particularly 

the need to separate geogenic carbon (Sperow, 2006, Chatterjee et al., 2009a). 

Terminology for what they sought to study was named “recent” carbon (Ussiri and 

Lal, 2008a). This, however, does not make a distinction between BC from charred 

biomass and freshly biosequestrated carbon. Siavalas et al. (2013) has considered 

the need to include BC and geogenic carbon in carbon analysis. “Green” carbon, a 

term coined by Mackey et al. (2008) includes the living biomass in the soil, which is 

not what is being studied here. Thus a new classification, “green soil organic carbon” 

(herein redefining the term green carbon, for short), will refer to all SOC that passes 

through a 2 mm sieve, excluding geogenic carbon and BC. Green soil organic 

Black Carbon 
      Charring increasing → 
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carbon includes the carbon contained in SOM that has been sequestered by 

organisms living in the immediate area and should exclude charcoal from bushfires. 

The effect of vegetation type on carbon accumulation in minesoils is uncertain 

due to the low amount of data available (Vindušková and Frouz, 2013). However, it 

is uneconomical to collect and analyse sufficient samples to make statistically valid 

conclusions of the effect of vegetation type. Nyamadzawo et al. (2008) found carbon 

concentrations to vary greatly, with the coefficient of variation >35%. The influence of 

vegetation may also be obscured due to other factors, including the effects of 

microclimate and microtopography produced from the high heterogeneity existing at 

mine sites. 

1.1 SOM	Protection	and	Humus	
SOM is a mixture of polysaccharides, proteins, resins, fats, waxes and humic 

substances, the products of chemical and microbiological degradation of organic 

inputs (Steelink, 2002). SOM accretes when the input exceeds the amount lost. The 

rates at which SOM is lost or biodegraded is dependent on environmental factors, 

such as moisture and temperature, and the material’s ability to resist decomposition 

through biochemical recalcitrance, chemical interaction protection (often with 

minerals) and physical protection (Lorenz et al., 2009, Lützow et al., 2006). When 

the environment permits, the more labile fraction of SOM is quickly oxidized or 

incorporated into microbial biomass. The labile SOC fraction is removed from the soil 

in less than 10 years, if the residence time is 10-100 years or longer than 100 years, 

it is termed intermediate and stable, respectively (Lützow et al., 2006). Adequate 

oxygen, moisture and temperature range required for microbial biodegradation are 

the main factors governing decomposition. 

SOM science has produced a method of considering SOM on a functional 

basis creating divisions based on the size or density of SOM particles. Studies have 

shown that similarly sized particles have shared characteristics. For example, it has 

been shown that the majority of charcoal in a soil sample may occur in the <53µm 

fraction (Skjemstad et al., 1996). 

Some SOM molecules are considered naturally recalcitrant, able to withstand 

degradation due to properties of its chemical structure. These “biochemically 

recalcitrant biomacromolecules” are considered to contribute to long term C 

sequestration and are sometimes known as humic substances (Lorenz et al., 2009). 
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Physical protection of SOM is facilitated by minerals that limit the access of 

bacteria to the organic matter thereby slowing or preventing biodegradation. Clay 

has been hypothesized as protective of SOM (Jobbágy and Jackson, 2000, Verchot 

et al., 2011, Lützow et al., 2006, Kögel-Knabner et al., 2008). Wei et al. (2014) study 

using artificial soils with clay have found the opposite, that clay increased the 

degradation of fresh OM. It is possible that their artificial soil would not adequately 

reflect the activities of natural soils, however, it may be that the creation of mine soils 

would follow their findings.  

Humus is believed to be a form of SOM that is resistant to biodegradation and 

is composed of “humic substances” including humic acids. Humic substances are 

associated with improvements of soil characteristics, including but not limited to 

water infiltration, increased cation exchange capacity and pH buffering (Stevenson, 

1994). Humic acids are thought to be complex molecules including aromatic and 

aliphatic moieties (Steelink, 2002). 13C NMR has indicated that the majority of 

aromatic C in soils can be attributed to lignin (Ahmad et al., 2001). 

A	note	on	SOM	and	particulate	organic	matter	
The concept of the components of soil, organic matter and minerals, is simple 

to comprehend. However, in practice, the determination of whether organic matter is 

part of the soil or not is complicated as not everything found under the surface of the 

ground is part of the soil (Tabatabai, 1996). Living roots of plants are not soil as they 

are part of below ground primary productivity. 

Sohi et al. (2001) include organic matter identifiable as plant matter in their 

free soil organic matter fraction. This free soil organic matter measured <10 mm in 

length. SOM does not have to be decomposed (Johnston et al., 2009, Yadav and 

Malanson, 2007). Thus, as a functional definition, SOM will consist of organic matter 

<2 mm in diameter and <10 mm in length that is not living or is unpractical to 

manually exclude from samples i.e. microbes.   

Particulate organic matter is a classification of SOM based on particle size. It 

is believed that biological activity can be inferred through particle size (Sohi et al., 

2001, Skjemstad et al., 2004b). Similarly, the carbon contained in the organic matter 

fraction >53 µm and <2 mm is considered biologically active or labile and is used as 

a measure of soil health, called particulate organic carbon (Rayment and Lyons, 

2011). 
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1.2 Green	Carbon	Quantification		
Green carbon, a term used herein to denote the soil organic carbon 

attributable to rehabilitation of minesoils through sequestration by plants and 

reestablishment of the soil ecosystem,  is difficult to measure directly. SOM and SOC 

occur in a variety of different forms and molecules, some yet to be characterized, 

with varying chemical properties (Hedges et al., 2000, Ahmad et al., 2001, Grandy 

and Neff, 2008, González-Pérez et al., 2004). With respect to a sample, one 

approach to determining green carbon is by measuring the total carbon (TC), total 

inorganic carbon (TIC), geogenic carbon and BC. The difference between the total 

carbon and the total inorganic carbon is the total organic carbon (TOC) which is 

analogous to SOC (Eqn 1). TOC analysis is commonly done with an elemental 

analyzer, e.g.  LECO CR-412 Carbon Analyzer. Green carbon is the difference 

between TOC and the sum of geogenic carbon and BC (Equation 2).  

࡯ࡻࢀ ൌ ሻࢋ࢒࢖࢓ࢇࡿሺ࡯ࢀ െ  Equation 1                              ࡯ࡵࢀ
Green carbon = TOC - (geogenic C + BC)                                           Equation 2 

 
Thus, green carbon would be quantified indirectly through the measurement 

of BC and coal in soils. Research to quantify the amount of green carbon on 

rehabilitated coal mine soils has been done before at US coal mines (Akala and Lal, 

2002, Maharaj et al., 2007b, Ganjegunte et al., 2009) and European sites (Sever and 

Makineci, 2009).  However, these studies have either ignored geogenic carbon or 

BC or both (e.g. Ganjegunte et al., 2009); therefore, their results would have 

overestimated total green carbon. The ability to measure green carbon would allow 

land managers the ability to assess how the methods used in rehabilitation are 

improving soil health. If geogenic carbon or BC is included in green carbon 

measurements, changes in measured carbon levels may not correctly represent 

changes in soil health, but rather could be the result of contamination from geogenic 

carbon or black carbon, neither of which are attributable to rehabilitation. It is also 

desirable to be able to measure green carbon quickly and cost-effectively. 

Below a suite of tests cited in literature is presented and discussed explaining 

the possibilities for determination of various carbon fractions and their reliability. 

1.3 Direct	quantification	of	green	carbon	via	Walkley‐Black	
The need for a quick and accurate method to measure green carbon in 

rehabilitated coal mine soils has been recognized; however, there is no known 
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method to quantify green carbon directly (Maharaj et al., 2007b). The complication 

from the presence of coal and BC led to the suggestion that green carbon might be 

best quantified directly by using Walkley-Black (1934) organic carbon measurement 

results as a proxy (Dalal, 2010, pers. comm., September 9). Walkley-Black (1934) is 

a form of wet oxidation using dichromate without external heating. Walkley-Black 

(1934) has historically been used to determine the amount of soil organic 

matter/organic carbon. Determination of organic carbon is by colourimetry or titration 

of the reduced dichromate and the application of a correction factor to account for 

the incomplete oxidation (Rayment and Lyons, 2011). It is well established that 

Walkley-Black (1934) results in the incomplete oxidization of the organic carbon in a 

sample and it has been recommended that correction factors be recalculated for 

different soils (Lettens et al., 2007). Due to the inability to detect 100% of SOC, 

Walkley-Black (1934) has been considered unreliable and subsequently fallen out of 

favour as a SOC quantification method (Victoria Department of Primary Industries, 

2009). 

 

It is unclear what fractions of SOC that Walkley-Black (1934) measures. While 

Heanes (1984) heated dichromate oxidation completely oxidizes SOC, even in the 

presence of carbonates, there is variability in the oxidation of BC by Walkley-Black 

(1934) method (Schmidt et al., 2012). Oxidation of BC by Walkley-Black (1934) is 

dependent on the particle size of the black carbon and source material (Skjemstad 

and Taylor, 1999, Conyers et al., 2011). Recovery of up to 50% of BC was reported 

for particles 5-10 µm in size and up to 55% for acid washed charcoal < 250 µm but 

as low as 11% for biochar derived from plant waste materials (Skjemstad and Taylor, 

1999, Conyers et al., 2011). Bird and Gröcke (1997) demonstrated that the heated 

dichromate oxidation of BC materials is a complex function of length of digestion 

time, degree of charring, and source material, among other factors. Furthermore, 

Knicker et al. (2007) determined that for the purpose of quantification of BC, 

dichromate oxidation would overestimate BC as hydrophobic SOM is not oxidized by 

being protected from the aqueous acid. Despite the variable oxidation of BC and the 

potential preservation of hydrophobic SOM, it has been suggested that what 

remains, COREC (chemical oxidation resistant elemental carbon), might serve as an 

estimate of BC (Siavalas et al., 2013). What has not yet been proven is whether 

results from Walkley-Black (1934) would agree and correlate with the difference 
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between measurements of TOC and the sum of coal and BC (Eqn 2) (Dalal, 2010, 

pers. comm., September 9). In Chapter 6, where a novel method for differentiating 

and semi-quantifying carbon fractions using thermal analysis with subsequent 

chemometric analysis is presented, Walkley-Black carbon (1934) is reported to have 

a weak correlation with green carbon predictions. 

1.4 Indirect	quantification	via	quantification	of	BC	
There is no gold standard method to quantify BC. An inter-laboratory 

experiment to compare BC quantification methods using common reference 

materials found a large range in the measurements with some as much as three 

times the average result (Figure 4) (Hammes et al., 2007). There are large variations 

in results between methods and materials. A key finding was that no correction factor 

could be applied to compare different studies, nor could any one method be 

considered correct as each method was biased toward a particular portion of the BC 

continuum that was appropriate for the operational definition of BC for each study.  

Separating or removing coal and BC from samples is another general process 

to attempt to quantify green carbon. Flotation of coal is a common suggestion to 

remove it from a sample.  However, it is unclear whether green carbon would be lost 

along with the coal as its properties are as yet undefined and may be similar to coal 

or whether all ranks and grades of coal would float (Shukla, 2010, pers. comm., 

August 6). In their recent review, Sohi et al. (2010) suggest that the successfulness 

of an attempt to physically separate BC from soils would be highly dependent on site 

characteristics. Alternatively, mine soils from open cut coal mines have been defined 

as soils containing coal particles which cannot be physically separated (Ussiri and 

Lal, 2008a).   
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Figure 4 Range of BC quantification data reported by Hammes et al., 2007 (adapted from Meredith et al., 
2012) 

 

Some methods attempt to isolate BC by using its resistance to biodegradation 

or oxidation. Methods to quantify the amount of BC in soil have been categorized as 

thermal, chemical, molecular marker or optical (spectroscopic) (Poot et al., 2009, 

Simpson and Hatcher, 2004). 

Thermal	oxidation	methods	
Thermal methods rely on the ability of BC to withstand thermal oxidation. The 

simplest thermal method involves heating samples to a temperature where green 

carbon fully combusts but not BC. The green carbon will have been completely 

gassed off as CO2. Thus green carbon can be measured as the difference in TOC 

before and after heating or “ashing” (Sarkhot et al., 2007). This method requires 

maintaining the sample at a temperature where BC remains stable, usually 
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considered to be somewhere between 300-600˚C, but most commonly 340-375˚C 

(Poot et al., 2009).  

Thermo-gravimetry (TG) is another thermal method where samples are 

heated at a constant rate and the weight loss of the sample and temperature is 

recorded. Using these two variables, the type of carbon containing substance can be 

determined. 

All thermal methods result in the destruction of the sample. Thermo-

gravimetric methods may overestimate the amount of BC in a sample because clay 

minerals release water from its crystalline matrix at temperatures characteristic for 

BC species (Manning and Lopez-Capel, 2009). Overestimation may also be the 

result of the creation of new BC from charring of organic matter during the heating 

process. Issues of charring can be overcome by promoting complete oxidation of 

organic carbon by finely milling samples to increase surface area and removing 

protection within aggregates and having a high oxygen environment. 

Thermo-gravimetry can be combined with differential scanning calorimetry 

(TG-DSC) where the energy flux of the sample is measured during the heating 

process.  It is possible to infer the chemical changes underway in the sample using 

this data. It has been shown that it is able to quantify BC in soil (Leifeld, 2007) and 

can distinguish new organic carbon additions in mine soils (Maharaj et al., 2007a). 

This method of carbon identification works of the basis that different carbon pools, 

such as fresh organic carbon, black carbon and coal, combust at different 

temperatures, using the peak combustion temperature to distinguish between pools.  

TG-DSC has been used to quantify BC in soils and sediments (De la Rosa et al., 

2008, Manning and Lopez-Capel, 2009). De la Rosa et al.  (2008) used a functional 

definition for determining BC as the carbon oxidized between 475 and 650°C.  

However, they recognize that this temperature range is deficient because it excludes 

char formed by grasses (De la Rosa et al., 2008). This would suggest that a different 

definition for BC to include grass char and other less refractory portions of the BC 

continuum should be used. 

An alternative to TG-DSC is the use of evolved gas analysis (EGA), where, 

instead of measuring weight loss and energy flux, this measures the oxidation of 

carbonaceous materials.  This measurement has the benefit of directly measuring 

CO2 evolved during the burning of soils and avoids the potential for water to inflate 

and interfere with mass loss attribution. EGA can be carried out by using a flame 
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ionization detector to analyse flue gases from the TG unit. As neither gravimetry nor 

calorimetry is used with EGA, this alternative mode is more correctly named thermal 

analysis with EGA (TA-EGA).  

Rock‐Eval	6	
Rock-Eval 6 (Vinci Technologies) analysis is similar to thermo-gravimetry 

where heating rate is constant but samples are first heated in an oxygen-free, then 

oxygen atmosphere from 250-850C. The gases released during heating and 

formation of pyrolysis products are analyzed using a flame ionization detector and 

infrared detector (Copard et al., 2006). Rock-Eval technology has been in use since 

the 1980s for the analysis of hydrocarbon bearing rock (Krevelen, 1993, Verheyen et 

al., 1984) and was first used to analyze soils by Disnar et al. (2003).  

There is increasing interest in using Rock-Eval for SOM characterisation 

(Hetényi et al., 2005, Saenger et al., 2013, Sebag et al., 2006, Nyilas and Imre, 

2009). The benefits of using Rock-Eval includes low sample preparation 

requirements and ability to analyse multiple samples (Saenger et al., 2013). Samples 

do not need to be treated with acid to remove carbonates but requires the Rock-Eval 

machine and software. Poot et al. (2009) found that the results from Rock-Eval agree 

with the benzene polycarboxylic acid molecular marker and thermal optical 

reflectance/transmission measurements on BC standard materials (Hammes et al., 

2007). These two methods, however, vary between overestimation and 

underestimation of BC content. 

Saenger (2013) disagrees with Katz (1983) regarding the usefulness of a 

modified Van Krevelen diagram producible from the hydrogen and oxygen indices 

produced by Rock-Eval analysis. Traditionally the Van Krevelen diagram shows the 

richness of hydrogen and oxygen relative to the carbon richness in H/C and O/C 

atomic ratios whereas the modified diagram uses mg hydrocarbon/g TOC and mg 

CO2/g TOC. It may be possible to use the placement of a sample on the modified 

Van Krevelen diagram to estimate the relative amount of BC/coal in a sample due to 

the carbon condensed nature of these similar materials if interpreted as a “qualitative 

fingerprint” (Copard et al., 2006). 

This proposed use of the Rock-Eval data, by modified Van Krevelen diagram 

is not the normally studied method of estimating BC/coal concentrations in soils. 

What is seen in the literature involves the deconvolution of the Rock-Eval S2 
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thermogram, as detected by FID during the first pyrolysis heating step, and assigning 

the more thermally resistant curves as coal (Siavalas et al., 2013, Saenger et al., 

2015, Copard et al., 2006). Whereas Poot et al. (2009) used the residual carbon 

fraction as a direct measurement of BC. Vindušková (2015) reports results agreeing 

with 13C NMR by analysing the Oxygen Index measurement and also interpretation 

of the S2 curve, a function of the thermal stability of the material being analyzed.  

It may be possible to assign individual Gaussian curves to BC and coal on the 

basis of their peak temperatures, but this has not been tested. Copard et al. (2006) 

describes using Rock-Eval to fingerprint geogenic carbon. 

The best method in which to interpret Rock-Eval results is not settled. As 

such, in cases where the thermogram is not available, the modified Van Krevelen 

estimation would need to be verified against other methods. 

Hydrogen	pyrolysis	
A new tool in development which can quantify BC as well as the more labile 

fraction of SOC is hydrogen pyrolysis, where samples are heated in a high pressure 

hydrogen atmosphere (150 bar) to 550°C (Ascough et al., 2009, Meredith et al., 

2012). The material that remains following the pyrolysis is believed to be BC fraction. 

This method is similar to Rock-Eval 6 in that samples are heated over a range of 

temperatures and it can be paired with radiocarbon analysis. Labile carbon fractions 

are turned into oil. Difficulties have been reported with distinguishing BC from high 

ranked coals and with underestimation of the less condensed part of the BC 

continuum (molecules with less than 7 carbon rings) (Meredith et al., 2012). 

Chemical	recalcitrance	
A common method used to quantify the amount of BC operates on the basis 

of the recalcitrance of BC to chemical oxidation. Walkley-Black (1934) wet oxidation 

is the oldest method still in use. Labile carbon is oxidized with potassium dichromate 

and the remaining solution is titrated to determine the amount of carbon that was 

oxidized. The reaction is known to not be 100% effective and a correction factor 

must be applied to adjust for this. Alternatively, the method has been improved over 

time with the application of heat and other acids to remove silicates that may be 

physically protecting the organic carbon. 

While relatively cheap, chemical methods result in the destruction of the 

sample and the creation of hazardous wastes (Walkley and Black, 1934). 
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Furthermore, there is criticism that chemical methods overestimate BC because 

some protected or stable green soil carbon is not oxidized and are included in the 

BC fraction (Ussiri and Lal, 2008a). Conversely, it has also been shown that a 

portion of sea-weathered coal is oxidized in sediments, thus potentially 

underestimating BC and coal contents (Siavalas et al., 2013) (Grossman and Ghosh, 

2009) 

Molecular	Marker	
Benzene polycarboxylic acids (BPCAs) are a family of compounds found in all 

BC and thus is not biased toward any one type of BC (Bornemann et al., 2008). The 

aromatic rings in BC are converted to BPCAs, which are then used to quantify the 

amount of BC. Carbon which does not form part of a ring structure is not converted 

into BPCAs and is subsequently not quantified. The method to isolate the BPCA in 

BC is a wet chemistry technique involving pretreatment digestions, multiple chemical 

conversions and is subject to significant inter-laboratory variation making the results 

difficult to compare with other studies using the same method (Hammes et al., 2007, 

Brodowski et al., 2005).  This method also requires the use of gas chromatography 

and a correction factor to account for BC that is not converted into BPCA. 

Optical	
Thermal optical reflectance (TOR) is a method used in atmospheric sciences, 

where samples are collected on filter paper as airborne particulate. Samples 

undergo several 24h chemical digestion pre-treatments. In this analysis, samples are 

heated stepwise in a He atmosphere, then again in a He/O2 atmosphere while 

reflectance/transmission is monitored with a laser. This method is susceptible to high 

levels of variation in results due to uneven application of samples to filter paper. 

Spectroscopic	
Spectroscopic techniques include a variety of analytical techniques including 

nuclear magnetic resonance and infrared spectroscopy. Spectroscopic methods 

using the infrared spectrum can be divided into three groups, transmittance, 

reflectance and photoacoustic techniques. The former two work on the basis of the 

vibration of molecular bonds which can be used to estimate the types of molecules in 

a given sample. The latter relies on the absorbance of a volatilized sample, the 
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heating of which causes the sample to expand which can be detected by very 

sensitive microphones (Du et al., 2009).  

Mid-infrared spectroscopy, using the infrared spectrum from 4000-400 cm-1, is 

used in the Australian national Soil Carbon Research Programme (SCaRP), an 

Australia-wide soil carbon measurement standardization protocol as a means to 

quickly estimate several carbon measurements (Sanderman et al., 2011). 

Nuclear	magnetic	resonance	
Both liquid and solid-state 13C Nuclear magnetic resonance (NMR) have been 

used to quantify resistant organic carbon (ROC or char carbon) by multiple authors 

(Rodionov et al., 2006, Baldock et al., 2013b, Krull et al., 2006, Ding and Rice, 2012, 

De la Rosa et al., 2008). ROC is defined as “organic carbon ≤ 2000 µm found in the 

coarse and fine fractions (≤ 2000 µm particles) having a chemical structure 

consistent with charcoal” as determined by the peak centred upon 130 ppm in the 

solid-state 13C NMR spectra (Baldock et al., 2013b). This technique uses the 

“magnetic environment of each carbon atom in organic materials” (Ahmad et al., 

2001).  It is the method of choice for the SCaRP for identifying ROC (Sanderman et 

al., 2011, Baldock et al., 2013b). Poly-aryl carbon is used as a marker for ROC and it 

has been seen that charring increases aromaticity of organic matter (Czimczik et al., 

2002, McBeath and Smernik, 2009). NMR infers the presence of BC in a sample by 

the distance of hydrogen from carbon atoms. NMR spectra are well enough 

understood for peaks to be ascribed to different chemical moieties. Furthermore, the 

chemical composition of thermally altered organic matter has been studied using 

NMR (Czimczik et al., 2002, Alexis et al., 2010, Filimonova et al., 2014). 

The SCaRP method explicitly states that ROC is a measurable fraction that is 

similar to the inert organic carbon pool in the Rothamsted carbon turnover model 

(Sanderman et al., 2011, Skjemstad et al., 2004a). ROC may contain lignin but is 

considered to consist mainly of char (Page et al., 2013, Baldock et al., 2013b) as a 

lignin correction factor was applied to the SCaRP ROC calibration. The lignin 

calibration removes the average NMR signal of three lignin spectra from the ROC 

spectra.  

Infrared	spectroscopy	
The use of infrared spectroscopy for analysis of soils has consistently been 

considered promising (Janik et al., 2007, Reeves III, 2010, Viscarra Rossel et al., 
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2006, Rumpel et al., 2001). There has been an exponential growth in the number of 

papers published using visual, near-infrared, and mid-infrared spectroscopy on soils 

successfully predicting TOC, TIC and soil texture (Guerrero et al., 2010, Grinand et 

al., 2012, Ge et al., 2014). The main draws of these methods include rapid analysis 

and minimal sample preparation in comparison to traditional analytical methods (Du 

et al., 2007a).  Because of the potential for rapid analysis a spectroscopic technique 

is most likely to be useful in analyzing the large sample numbers required for 

statistically significant mine soil studies. 

Diffuse reflection infrared Fourier transform spectroscopy (DRIFTs) in the mid-

infrared range of the electromagnetic spectrum has shown great promise in the area 

of soil analysis including in predicting the coal content of mine soil (Reeves III, 2009, 

Rumpel et al., 2001). Spectral distortion caused by specular reflection off of minerals 

has resulted in the use of a non-reflecting medium, KBr, to be added during the 

preparation of soil samples in a ratio of 9:1 KBr to sample when used for 

quantification (Nguyen et al., 1991, Reeves III, 2010). Less than 1 cm3 of material is 

scanned in DRIFTs. With soil contributing 10% of this small amount, the importance 

of representativeness and homogeneity of samples in DRIFTs is heightened. 

However, there is a movement towards the abandonment of KBr dilution (Viscarra 

Rossel, 2010, pers. comm., 18 June, Rumpel et al., 2001). This would increase the 

amount of sample which is scanned and has been shown to be more useful than 

diluted samples for calibration purposes (Reeves III, 2010).   

Spectroscopic analyses of soils including chemometric techniques have 

successfully predicted SOC content, levels of SOM of different sizes, lignite coal 

content, distinguish between nitrogen from charred materials and forest litter, and 

distinguish between different types of coal (Michel et al., 2009, Rumpel et al., 2001, 

Bornemann et al., 2010). Using spectroscopic analyses to predict some other 

parameters of soil samples have varying levels of success. It is theoretically feasible 

to use spectroscopy to predict the ratio of 13C/12C isotopes (expressed as 13C), 

however, it is impossible to state with confidence that spectral differences are due to 

the C isotopes and not other factors of the samples (Reeves III et al., 2006). 

However, studies have shown that spectroscopic estimation methods of soil 

properties cannot be applied universally as the calibration set would need to 

encompass the many different types of soils that would be assayed and be in the 
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order of many hundreds of soils large; thus local calibrations or the intentional 

inclusion of representative soils through spiking would produce more accurate 

predictions (Minasny et al., 2009, Guerrero et al., 2014, McCarty et al., 2002). 

Furthermore, spectroscopic methods to estimate different fractions of organic carbon 

require the use of chemometric analyses that require datasets to build a functional 

model as direct interpretation of spectra is not possible. The more diverse the set of 

soil types and parameters to be predicted, the larger the set of calibrating soils 

required to build the chemometric model  (Reeves III et al., 2006). By using one soil 

type, it may be possible to create a functioning calibration set with as little as 25 

samples, although with increasing sample size the prediction error would be 

reduced, with a recommendation of 50 samples to balance sampling effort to 

increased accuracy payoff (McBratney and Minasny, 2010, pers. comm. 3 Aug., 

Rumpel et al., 2001, Kuang and Mouazen, 2012). However, for large-scale estimates 

it was determined that no more than 20% of total samples should be used for the 

calibration set without losing efficiency (Grinand et al., 2012). 

UV	Photo‐oxidation	
This method developed by CSIRO involves the oxidation of C using high 

energy ultra violet light (UV) and quantification and characterization of the remaining 

C (assumed to be BC) by solid-state 13C NMR and elemental analysis (Skjemstad et 

al., 1996, Skjemstad et al., 1993). Geogenic carbon can withstand the photo-

oxidation treatment, making this a potential method to separate both BC and coal 

(Hammes et al., 2007). However, it has been noted that this method is time 

consuming, laborious, prohibitively expensive and may require the use of a unique 

and purpose built set up that cannot be easily replicated in other laboratories 

(Hammes et al., 2007, Baldock, 2010, pers. comm., 16 June).  

Hybrid	and	other	methods	
Hybridization of methods is a trend in SOC analysis where methods from two 

types of analysis are combined, most notably chemi-thermal oxidation. There are 

other techniques which have been proposed for the purpose of SOC analysis which 

have not been developed to the extent where they are commercially available and 

can readily be applied in this study (Chatterjee et al., 2009b).    
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Chemi‐thermal	oxidation	
When chemical pretreatments are used to improve the effectiveness of 

thermal oxidation it is called chemi-thermal oxidation (Poot et al., 2009). To 

overcome the positive bias of the basic thermal method due to the creation of new 

charred organic matter during the heating of samples, samples are pre-treated with 

chemicals to remove SIC and as much organic C as possible. The pre-treatment, 

however, is often too effective, leaving only the most refractory part of the BC 

continuum. This causes an underestimation of the amount of BC in samples. 

Quantification of carbon in the remaining sample is completed by C13 NMR or 

elemental analysis. 

13C	Stable	Isotope	Analysis	
The natural abundance of 13C in soil can be used to determine the relative 

contributions of SOC from geogenic sources or more recent SOM (Ussiri and Lal, 

2008b, Maharaj et al., 2007b). This method relies on the uptake of the 13C isotope by 

vegetation from the air into plant tissues and the later inclusion of that carbon into 

the SOC pool. The 13C:12C ratio is compared against the ratio of a standard material, 

usually Pee Dee Belemnite (Eqn 3). 13C has been used to measure the ratio of C3, 

and C4 plants (Boutton et al., 1998), as a marker for geogenic C (lignite) in soils 

(Chabbi et al., 2007), has been found to be influenced by BC (Rumpel et al., 2006) 

and would be able to differentiate SOC sequestered by C4 plants based on their 13C 

isotope fixation rates (Ussiri and Lal, 2008a). 

ሺ‰ሻ	࡯૚૜ࢾ ൌ 	 ൤
૚૜࡯ ࢋ࢒࢖࢓ࢇ࢙࡯

૚૛ൗ

૚૜࡯ ࢋࢉ࢔ࢋ࢘ࢋࢌࢋ࢘࡯
૚૛ൗ

	െ ૚൨ 	ൈ ૚૙૙૙                   Equation 3 

 

This method may be promising as rehabilitated coal mine lands in the Bowen 

Basin tend to be dominated by buffel grass (Cenchrus ciliaris) which is a C4 plant 

and the pre-disturbance forest trees, Brigalow (Acacia harpophylla) and Eucalyptus 

spp. are C3 plants (Krull et al., 2003). The δ13C measurement of C3 plants range 

from -35 to - 22‰, C4 plants range from-19 to -9‰ and bituminous coal from Ohio 

range from -23 to -25‰ (Ussiri and Lal, 2008a, Ussiri and Lal, 2008b). Geogenic C 

can be distinguished from green carbon from C4 plants. 

 

As the BC continuum is composed of a large variety of molecules with 

different characteristics and the objective in quantifying BC in this research was to 
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capture as much BC as possible, a thermal definition of BC was seen to be 

promising. This avoided the focus on the array of different chemical moieties that 

contribute to BC and the need for NMR analysis that the use of a molecular definition 

for BC would require. 

1.5 Considerations	
Of the standard methods listed above, there is no one method which 

measures the entire continuum of BC quickly and accurately (Bornemann et al., 

2008, Hammes et al., 2007). Furthermore, various methods produce results that 

differ greatly (De la Rosa et al., 2011). 

Another consideration is the bias some methods have toward the more highly 

charred end of the BC continuum (Figure 5). Table 1 summarizes the principles upon 

which methods work and their outcomes on the quantification of BC is adapted from 

Hammes (2008). 

 
Figure 5  Black Carbon continuum and estimation of BC quantification method regions of effectiveness. 
Taken from Poot et al.  (2009) and adapted from Hammes et al. and Masiello (2004, 2007). 
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Table 1 Summary of most common BC quantification methods and potential interferences affecting these 
methods (adapted from Hammes et al., 2008) 

Method	 Principle	
Possible	effects	on	the	
quantification	of	BC	

Chemo-thermal oxidation 
at 375 C 

Sample oxidized at 375 C 
for 18 h after acid 
pretreatment. 
Quantification of residual 
C as BC using elemental 
analysis 

Overestimation: Mineral-
associated and labile OM 
could be charred during 
oxidation 
Underestimation: Harsh 
oxidation; low temperature 
chars (<500 C) oxidized 
almost completely 

Adapted chemo-thermal 
oxidation method 

Stepwise demineralization 
followed by hydrolysis of 
reactive OM prior to 
thermal oxidation at 375 
C 

Underestimation: 
Hydrophobic particles 
could be lost during wash 
Harsh oxidation; low 
temperature chars (<500 
C) oxidized almost 
completely 

Benzene polycarboxylic 
acid (BPCA)formation 

Sample oxidized in HNO3 
for 8 h after removal of 
polyvalent cations with 
acid, to form BPCAs from 
aromatic C 
Quantification of BPCAs 
using GC/FID 

Overestimation: Aromatic 
non-BC compounds are 
falsely detected as BC 
Underestimation: Large 
and highly condensed 
particles are not detected 
quantitatively 

Acid dichromate oxidation 
(Cr2O7) 

Sample oxidized in 
K2Cr2O7/H2SO4 (Varying 
timing) after acid pre-
treatment. Quantification 
of residual C as BC using 
elemental analysis 

Overestimation: Aromatic 
non-BC compounds are 
detected as BC 

Thermal optical 
transmittance and 
reflectance (TOT/R) 

Sample heated stepwise 
to 900C under 
oxygen/helium air mixture. 
Quantification of residual 
C using laser 
transmittance or 
reflectance, followed by 
FID 

Overestimation: Dark 
coloured non-BC materials 
are falsely detected as BC 
during premature oxidation
Over/Underestimation: 
Dark coloured materials 
can cause problems with 
split between OC and BC 

UV photooxidation Sample photo-oxidized at 
2.5 kW for 2 h in O2-
saturated water. 
Quantification of residual 
C as BC using 13C NMR 
and elemental analysis 

Overestimation: Aromatic 
non-BC compounds (coal) 
are detected as BC 

Thermogravimetry coupled 
with differential scanning 
calorimetry (TG-DSG) 

Sample heated to 990C. 
Measures carbonaceous 
species being thermally 
oxidized while recording 

Overestimation: all 
chemical resistant carbon 
quantified as BC 
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the mass difference 
recorded before and after 
heating 

Sodium chlorite oxidation Sample oxidized three 
times with NAClO2 for 4 
hours after acid 
pretreatment. 
Quantification of residual 
C as BC using 13C NMR 
and elemental analysis 

Underestimation: Harsh 
oxidation; low temperature 
chars (<500 C) oxidized 
almost completely 

Rock-Eval 6 Sample heated Gas 
chromatography 

Results agree with BPCA 
and TOT/R methods 

 

Part of the difficulty of measuring the amount of SOC derived from plant 

growth and senescence at sites rehabilitated after coal mining is the presence of BC 

and geogenic C (Jacinthe et al., 2009, Shukla, 2010, pers. comm., 6 August).  This 

problem is very vexing, leading some to try to exclude coal from their sample sites 

by choosing sites as far away from the mine as possible (Maharaj et al., 2007a). 

However, it has been shown that black carbon is ubiquitous in Australian soils and it 

seems implausible to choose sample sites free from coal particles since the area of 

study are rehabilitated coal mine lands (Skjemstad et al., 1996). Jacinthe et al. 

(2009) noted that due to the high C content of coal, even small amounts of 

contamination would have an overly large effect on SOC measurements. As coal can 

range from 50-98% in C content, 1 gram of coal in a 100 gram soil sample with 1 

gram of SOM would have green carbon measurements without correction for 

geogenic C inflated by ~100-200%. BC has also been shown to make up a 

significant fraction of organic matter in soils in Iowa as well (Fang et al., 2010). If 

these two carbon bearing materials are not excluded from green carbon 

measurements, the effects of land management on the amount of SOM in minesoils 

could be overestimated. 

Another difficulty in studying minesoils is the high level of spatial 

heterogeneity. The reported coefficient of variation for some minesoils have ranged 

from 0.5 - 22.4% for bulk density, 6.1- 112.2% for coal content, >35% for TC, and 0.7 

– 82.3% for SOC (Nyamadzawo et al., 2008, Ussiri and Lal, 2008a). Due to the 

minesoils having been constructed using heavy machinery, mixing materials 

naturally deposited from different depths, times and locations resulting in high 

variability in SOC values across depths, has lead Ussiri and Lal (2008a) to suggest 
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that sampling protocols normally used on undisturbed lands may not produce a 

representative sample set. Moreover, Myers (1997) calls for either larger samples or 

the local compositing of samples in minesoils to counter the high local heterogeneity. 

Assuming similar coefficients of variation in minesoils as those found above of 41% 

for SOC and an average TOC value of 2%, confidence and power of 80% (meaning 

the likelihood of rejecting a true null hypothesis and the likelihood of not rejecting a 

false null hypothesis being both 20%) in a two-sided, two-sample t-test (comparing 

means and not paired), in order to be able to distinguish a change of 0.2%C,  ~380 

000 samples would be required, to distinguish a 0.3%C change ~168 000 samples 

are required (Napier-Munn, 2015). 

1.6 Chemometrics	
The use of indirect quantification methods involves the interpretation of 

analytically complex chemical data. Chemometrics is the use of statistical methods 

on analytical results in the field of chemistry. Allowing computer algorithms to run the 

numerous calculations involved in multivariate statistics is the most efficient method 

to analyze large quantities of data. 

There are numerous commercial and free chemometric software packages 

available and some are best used with certain types of data, e.g. spectroscopic or 

thermograms. The use of chemometrics to enhance the analysis of soil spectra from 

DRIFTs is necessary due to the large number of data points, as the mid-infrared 

range is 4000-400 cm-1, and also the spectral interference from the mineral fraction 

of soil that prevents accurate direct interpretation of spectra (Reeves, 2012, Janik 

and Skjemstad, 1995). While the direct interpretation of DRIFT spectra to assess 

which chemical bonds are present is still possible, chemometric techniques was 

selected as there would not be enough time to develop the skills of spectral analysis 

and interpretation within the timeframe given. Chemometrics is capable of 

interpreting covariate data and provides a statistically based interpretation of data in 

comparison to rigidly set temperature ranges for operatively defining different soil 

carbon fractions. 

Multivariate	Curve	Resolution‐Alternating	Least	Squares	
Multivariate Curve Resolution –Alternating Least Squares (MCR-ALS) is one 

chemometric technique used to estimate the relative contribution of components in 
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mixed systems with no preparatory modeling (de Juan and Tauler, 2006). However, 

if available, including data on the pure components can improve the estimates of 

their relative contributions (Ruckebusch and Blanchet, 2013). Using MCR-ALS is 

appealing as the technique does not require any foreknowledge about the analytes 

or their concentrations. The technique relies on the iterative solving of the equation: 

 

ࡰ ൌ ࢀࡿ࡯ ൅  Equation 4      ࡱ
 

Where, D is the dataset 

 C and ST are matrices of pure spectra and concentration profile, and 

 E is error 

  

This relies on the signal data obeying Beer’s Law or in other words, that the signal 

response for the pure signal contributions can be described using a bilinear model 

(Ruckebusch and Blanchet, 2013, de Juan and Tauler, 2016).  

 
Figure 6 Taken from de Juan & Tauler (2006), this figure demonstrates the deconstruction of high-
performance liquid chromatography with diode array detection data “D” into a) an additive model of pure 
signal contributions, b) a model of additive dyads of pure concentration profile and spectrum, and c) a 
bilinear model of concentration profiles and spectra. Note how in the bilinear model the data is now in 
the matrix form of Equation 4  
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Analysing continuous data, such as from spectral analysis, thermal analysis or 

evolved gas data with MCR-ALS allows the deconvolution of signal into constituents. 

In the application of this technique where the dataset is evolved gas thermograms, it 

can be considered a form of peak-fitting. MCR-ALS has been used in multiple 

applications, including biomedical, food science and applied chemistry (Le Dréau et 

al., 2009, Jaumot et al., 2002, Azzouz and Tauler, 2008, Garrido et al., 2008, Bosco 

and Larrechi, 2007) 

However, there is difficulty in ascertaining the error in the solutions to the 

MCR-ALS equation. There is no formula to calculate the errors propagated when 

using MCR-ALS. Jaumot et al. (2004) attempts to visualize the error through 

resampling and notes that when the level of uncertainty is above 5%, a common 

analytical reporting error level, other sources of ambiguity must be considered in the 

interpretation of the results. There are two main forms of ambiguity: rotational and 

intensity. Rotational ambiguity exists where there are more than one solution that fits 

the data (i.e. the number of pure components) and intensity ambiguity is where the 

intensity of the components is uncertain. Intensity ambiguity of the components can 

be controlled through normalization of the data. Ruckebusch and Blanchet (2013) 

and de Juan and Tauler (2006) are two good review articles with more in depth 

information on MCR-ALS. Due to the difficulty in determining error in MCR-ALS, 

error will not be reported where it is used.   
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2 Research	Questions	
When quantifying soil organic carbon accretion from rehabilitation of coal 

mine lands, do indirect methods of distinguishing black carbon and coal carbon 

agree with direct measurement? Can the accretion of soil organic carbon over time 

from bioremediation be quickly and accurately distinguished from coal carbon and 

black carbon (BC) and be measured in rehabilitated coal mine soils from the Bowen 

Basin?  

 
Hypothesis 1: Thermal analysis with evolved gas analysis in conjunction with 

multivariate curve resolution can distinguish and quantify Green Soil Organic Carbon 

(green carbon), black carbon and coal carbon.  

 

Previous studies of similar lands (rehabilitated coal mine soils) attempting to 

quantify green carbon have ignored at least one of three different fractions of soil 

organic carbon (SOC). Whether it is possible to distinguish BC and coal carbon from 

green carbon is uncertain. 

 

Hypothesis 2: Diffuse Reflectance Infrared Fourier Transform spectroscopy 

(DRIFTs) can be used to quickly and accurately predict the amount of Green Soil 

Carbon in rehabilitated mine soils. 

 
While DRIFTs has been shown to accurately and quickly estimate total 

organic carbon in soils, it has not been used to distinguish between green carbon, 

coal C and BC. 

 
Hypothesis 3: There is a measurable difference in recently sequestered SOC 

in rehabilitated coal mine soils over time and depth. 

 
Successful methods to distinguish the different SOC fractions aside, there 

may not be a large enough change in green carbon levels in rehabilitated coal mine 

soils that can be detected over time or across soil depths.   
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3 Research	Plan	
The objective of the research is to quantify the organic carbon attributable to 

remediation, herein called Green Soil Organic Carbon (green carbon or GC), in 

rehabilitated coal mine soils. These soils usually have low levels of soil organic 

matter, a suite of substances which improve soils properties for sustaining plant life, 

such as water retention, nutrient availability and bulk density (Ussiri and Lal, 2008b). 

These soils also may have low productivity due to characteristics such as high levels 

of compaction, low pH, low nutrient levels, or high salinity (Shrestha and Lal, 2006). 

The amelioration of the quality of minesoils would assist in promoting the growth and 

retention of plants that in turn should facilitate the establishment of a stable landform 

and ecosystem. These are essential requirements to relinquish mine leased lands 

back to the landholder. Thus, the ability to measure the accretion of GC is desirable 

for the purpose of monitoring rehabilitated soils and to determine the effects of land 

management and the trajectory of longer-term changes as an indicator for soil 

quality. However, rehabilitated coal mine soils can contain carbon from several 

sources, including carbonates from the parent material, coal, charcoal and other 

black carbon from bush fires.  This complicates the determination of green carbon 

since common, standard methods to measure soil organic carbon do not distinguish 

between these groups (Wu et al., 1999). The project will also attempt to examine 

whether there is a difference in green carbon concentrations through time, soil depth, 

and types of vegetation. 

Soil	characterisation	
As minesoils are highly disturbed and can be highly variable, it is important to 

begin with characterisation of the soil, including total carbon, total nitrogen, total 

organic carbon, soil texture, electrical conductivity, pH, and bulk density. The 

methods used to determine these are presented in Chapter 5. Testing of these 

methods is presented in Appendix G. 

Carbon	measurement	
 Walkley-Black method (1934) has been in use for decades and theoretically 

might be an adequate substitute for green carbon despite it potentially oxidizing 

some BC (Conyers et al., 2011). Theoretical benefits to measuring oxidisable carbon 

via Walkley-Black method (1934) include the avoidance of cumulative measurement 

error from multiple measurements required when using deductive quantification. 
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However, if the Walkley-Black method also oxidizes coal, due to the high C 

content of coal, even small amounts of contamination might have an overly large 

effect on SOC measurements. 

There are other methods in literature, which may allow the quantification of 

some of the fractions of SOC and these are briefly described below: 

 

 Thermogravimetry and differential scanning calorimetry has been shown to 

effectively quantify the carbon in soils from bituminous coal and black carbon, 

pyrogenic carbon ubiquitous in Australian soils (Skjemstad et al., 1996). Its 

sister technique, TA-EGA could potentially provide similar results without the 

confounding influence of water. 

 

 Rock-Eval 6 pyrolysis analysis shows potential to be able to differentiate 

between different sources of carbon in soil samples (Behar et al., 2001, Poot 

et al., 2009). This technique involves using the difference in temperature of 

oxidation of different carbon containing molecules. It is commonly used in the 

hydrocarbon industry and is suitable for use in the analysis of carbon-rich 

substances, such as coal (Krevelen, 1993, Verheyen et al., 1984)   

 

 

 Diffuse Reflectance Infrared Fourier Transform spectroscopy (DRIFTs) has 

been shown to be able to predict the amount of lignite in rehabilitated coal 

mine soils in Germany with the use of chemometric analysis as well as 

physically separable resistant carbon fractions and changes in organic 

compounds from charring (Rumpel et al., 2001, Reeves III et al., 2008, 

Baldock et al., 2013b). To use this technique, the data from the other 

analyses (elemental analysis, etc.) must be input along with the spectra to 

form a calibration set. The calibration set is used to predict the levels of the 

different carbon groups in new samples by multivariate statistics (e.g. partial 

least squares regression) (Janik et al., 2007). It may be possible to use this 

technique to build a prediction model to quickly quantify different carbon 

pools. 
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Of the shortlisted techniques to measure the different SOC pools, TA-EGA 

was selected due to the low sample preparation requirements, the low cost 

associated with analysis, the potential to measure both BC and bituminous coal 

(Hammes et al., 2007) and the availability of the instrument to run the analyses. 

While this research does not attempt to extrapolate findings to a larger scale, 

due to the high levels of heterogeneity in minesoils from their methods of genesis, 

numerous samples would need analysis to be able to draw field-scale conclusions. 

Thus, it was decided to investigate whether TA-EGA determined carbon pools could 

be predicted using DRIFTs to answer research question #2. This is presented in 

Chapter 7.4. 

Figure 7 is a flowchart of the work presented in this dissertation including a 

few guiding questions. 

 
Figure 7 Research plan flowchart. Following sample collection and characterisation, thermal analysis 
with evolved gas analysis (TA-EGA) is tested for suitability to discriminate the different carbon pools in a 
pilot study (Hypothesis 1). Hypothesis 2 is investigated through the building and testing of MIR models 
using the carbon content determined by TA-EGA and other carbon measurements to test if a fast 
prediction for green carbon is possible. Using the best partial least squares regression (PLSR) MIR 
model determined in testing Hypothesis 2, minesoil samples across varying depths and lengths of 

Sample Characterisation 
-What properties do 

minesoils have?  
 

-Do minesoils behave like 
natural soils spectrally? 
Can DRIFTs be used to 
predict minesoil carbon 

levels? 

Pilot study 
Discrimination of BC, 
GC, and Coal using 
TA-EGA and MCR of 

known mixtures 
(Chapter 6.1) 

Carbon 
measurement 

MIR DRIFTs 

Sample 
collection 

 PLSR 

‐Can PLSR with MIR spectra produce 
carbon pool predictions?  

-How does this compare to other 
spectral models?  

TA-EGA with MCR-
ALS  

Hypothesis 1 

Hypotheses 2 & 3 
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rehabilitation are analysed to inspect for trends (Hypothesis 3) Methods abbreviations: diffuse 
reflectance infrared Fourier transform spectroscopy (DRIFTs); multivariate curve resolution (MCR); 
alternating least squares (ALS). Note: MCR-ALS and PLSR are chemometric techniques. 

 
If successful, the research will enable the creation of a new rehabilitation 

success criterion and allow a baseline to be produced upon which rehabilitation can 

be measured and compared.  Furthermore, different rehabilitation strategies can be 

compared in regards to the increase of green carbon and thus be used for 

remediation decision making.  

Green soil carbon has not been researched before as soil organic carbon in 

coal mine rehabilitation context is usually considered “new carbon” and “old carbon”. 

What differentiates the proposed research is the exclusion of black carbon from the 

“new” carbon pool. This will reflect the carbon sequestered by remediation more 

accurately. 

Alternatively, if approaching from the standpoint of being interested in BC or 

coal levels in soils, the research will provide a new method for quantifying BC and/or 

coal in soils. This would allow the monitoring of BC levels in soils to determine how 

management impacts those carbon pools. 
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4 Materials		
Well characterized reference materials, minesoils, un-mined, or ‘natural’ soil 

and coal samples were used in this study. These materials were used to test the 

techniques in use in increasing complexity. Mixtures were created using different 

matrices, carbon-free sand and the reference Vertosol, with the addition of the 

reference charcoal and Bowen Basin collected coals. Soils and coal samples were 

collected at several different sites for the purpose of method testing and data 

collection. The majority of the sampling sites were on rehabilitated mine land, some 

were from land within the mine lease with soil profiles as yet undisturbed by mining 

(but probably containing coal dust from aeolian deposition) and one at some 

distance from any mining sites at the Brigalow Research Station in Theodore, 

Queensland. There were different sampling strategies employed that can be grouped 

as follows: precision stratified sampling, regular stratified sampling and bulk 

sampling.  

Well characterized reference materials were also used for method 

development and concept testing. Chestnut char and Vertosol (Vertisols in USDA 

classification) used in an international BC ring trial were obtained as was laboratory 

grade sand (Natural Resources Conservation Service, 2013, McKenzie et al., 2004, 

Hammes et al., 2007). 

4.1 Reference	Materials	
Materials with known carbon content were selected to create mixtures to test 

the sensitivity of TA-EGA with MCR to changing concentrations of BC and coal.  

Charcoal	
Chestnut (Castanea sativa) charcoal from southern Switzerland, used in the 

ring trial was chosen as the closest black carbon reference material to the historical 

black carbon from bush fires expected to be found in the Bowen Basin soils. Due to 

fire suppression within rehabilitated areas, it is believed that wood char would be the 

predominant source of black carbon over grass char. The study mine sites lie within 

the Brigalow Belt North interim biogeographic region, which prior to European 

settlement would have been densely covered with woody growth and litter from 

Brigalow (Acacia harpophylla) (Department of the Environment Water Heritage and 

the Arts, 2010, Dwyer et al., 2009). Despite a predominance of grass cover, usually 

buffel grass (Cenchrus ciliaris),  in the region at present, due to the longevity of BC in 
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environmental matrices the BC in the soil should reflect the BC derived from the 

historic Brigalow tree cover (Burrows et al., 1998). 

This charcoal was added to different matrices (see below) to create mixtures 

with known concentrations of added BC. 

Vertosol	
The reference Vertosol, used in the Hammes (2007) international BC ring trial, 

was supplied by by CSIRO Land & Water, Adelaide where it was also assayed 

(Schmidt et al., 2001, Skjemstad et al., 1999). The top 10 cm of soil was sampled 

from Toowoomba, Queensland. A copy of the data sheet accompanying the sample 

detailing chemical properties, exchangeable cations, particle size analysis and NMR 

data is included as Appendix A. 

This well-studied matrix represents a natural soil with known BC content that 

would be relatively similar to the soils of the Brigalow Belt. This soil would be mixed 

with coal and BC to create mixtures with known concentrations of added BC and/or 

coal C. 

Carbon‐free	sand	
Laboratory grade acid washed sand with reported impurities of 0.1% HCl 

soluble matter and 0.005% HCl soluble iron was washed with 4M HCl solution and 

monitored for effervescence that would indicate the presence of inorganic carbon. 

HCl solution was added drop wise until effervescence was not observed with 

agitation (Rayment and Lyons, 2011). 

Following the acid wash the sand was rinsed 10 times with deionized water, 

dried and placed in a muffle furnace set at 600°C for 48 hours to oxidize any black 

carbon present in the sample. 

This matrix represents a simple analogue of soil with no SOM or soil carbon 

content. Charcoal was added to create mixtures with known concentrations of BC.  

4.2 Collected	Material	and	Location	(Methods)	

Location	
The Bowen Basin in Queensland is part of the interim biogeographic region, 

Brigalow Belt North (Department of the Environment Water Heritage and the Arts, 

2010, Appendix B). The natural soils are usually clay Vertosols (Vertisols in USDA 

classification) McKenzie et al., 2004) and the climate is characterized as sub-humid 
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(Dwyer et al., 2009). Mature Brigalow contained high levels of aboveground biomass 

with a significant portion of that as dead matter (Dwyer et al., 2009).  

Buffel grass is an invasive, weedy grass species that is prolific in rehabilitated 

mine lands. Other ground covers found in rehabilitated areas include grasses from 

the seed mixtures planted by the mine, shrubs and tree species.  

The coal types in the Bowen Basin range from sub-bituminous to meta-

anthracitic and can rank from graphite to sub-bituminous (Beeston, 1985, Dunstone, 

1985). The area contains mudstone, siltstone and sandstone (Utah Development Co. 

Ltd., 1985).  

Prior to mining, the land is stripped and the topsoil stockpiled. Upon 

rehabilitation, overburden spoil is generally covered with topsoil, deeply ripped and 

seeded with a variety of plant species. Previous studies have found the total amount 

of carbon in the soil of rehabilitated areas of Curragh Coal Mine to range from 1-4% 

(McKenna 2010, pers. comm., 12 May).  This measurement would include inorganic, 

coal, charcoal and SOM carbon. 

Minesoil	sampling	sites	
Minesoil sampling sites were located in rehabilitated areas while non-mined 

“unmined” reference sites were within or near coal mine leases (Appendix C, specific 

Cartesian coordinates given in Appendix B). The sites are part of a monitoring 

program and were chosen on the basis of accessibility and proximity to certain types 

of vegetation (e.g. buffel grass, forest or brush). While grass classified sites (n = 24 

pits) were predominantly Cenchrus ciliaris, brush and forested sites included a 

variety of plants including but not limited to Senna artemisioides for brush classified 

sites (n = 7 pits) and genus Eucalyptus, Acacia flavescens and Acacia macradenia 

for tree classified sites (n = 8 pits). A more extensive listing of the species present at 

each site is included in Appendix C. Distribution of sampling sites between cover 

types, age and mine sites can be found in Table 2.  

One bulk sample of minesoil was collected by another party from Goonyella 

mine with little accompanying documentation. This soil was used in ancillary 

analyses and to initially test methods being developed. 

“Natural” soil samples were also taken from the Brigalow Research Station 

located in Theodore, Queensland in a buffel grass-dominated paddock and a 

remnant Brigalow stand. At these two sites the surface vegetation and litter were 
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removed and the top 10 cm of the dug pit were collected as a bulk sample. The 

samples were stored in paper bags for transport to the lab. 

The natural soil samples were used in ancillary analyses to test the effect of 

time in storage on carbon content (see Appendix G). 

 

Table 2 Pit distribution by age group, cover type and mine site. Mine site codes: CU-Curragh, NP-Norwich 
Park, BW-Black Water, GC-German Creek 

Age of 

Rehabilitation 

(years) 

Unmined 1-3 4-8 9-14 15-20 21+ 

C
ov

er
 ty

pe
 / 

M
in

e 
si

te
 

Grass 1 NP 3 NP; 

1 CU 

2 CU 3 CU;  

3 NP 

1 CU; 3 

NP; 2 BW 

1 NP; 1 

BW; 3 GC 

Bush 2 CU  3 CU 2 CU   

Tree   1 CU; 2 

NP; 

1 GC 

2 CU 1 CU; 1 

BW 

 

Total number of pits 3 4 9 10 8 5 

 

Coal sampling sites 

Coal was collected by grab sampling from stockpiles at three coal mines: 

Goonyella, Blackwater and Curragh. Approximately 1 litre of coal was collected from 

each mine. 

Soil	sampling	method	
 
Precision stratified sampling 

At each site, vegetation and litter were cleared and a pit was dug down to 30 

cm or the spoil layer, whichever was reached first. A measuring tape was laid to 

gauge depth. Soil samples were collected using a trowel and placed in plastic bags 

before cold storage. The sites sampled in 2010 gathered seven increments per pit: 

0-0.5, 0.5-1.0, 1-2, 2-5, 5-10, 10-20, and below 20 cm.  
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Regular stratified sampling 

The series of depth increments collected changed between sampling years, 

resulting in two series of increments. The mined sites sampled in April and May of 

2013 collected five increments: 0-2, 2-5, 5-10, 10-20 and below 20 cm.  

 

Following collection, soil samples were processed to separate the soil from 

non-soil inclusions within the sample.  Examples of non-soil organic matter organic 

matter include living roots, pieces of leaf litter >2 mm and bits of coal. Samples were 

dried in an oven at 40°C then sieved to 2 mm. Root fragments, grass and twigs were 

manually removed. Samples were stored in a cold room set at 4°C prior to and 

following processing to slow microbial degradation.  
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5 Materials	Characterisation	
To gain a sense of the properties of the minesoils collected and how they 

were similar as group, standard soils testing protocols were performed. Soils and 

reference materials were analysed for total carbon, total nitrogen, total organic 

carbon, soil texture (particle size), electrical conductivity, pH, Walkley-Black (1934) 

organic carbon, and bulk density. The carbon measurements are required for the 

calculations of green carbon. The other measurements will help in interpreting the 

overall qualities of the samples and in answering hypothesis 3 (see Chapter 2). 

Further methods, such as alternative TOC measurement techniques, were used to 

evaluate the sample handling and the methods used to characterise the samples. 

These are presented in Appendix G. 

5.1 Total	Carbon,	Nitrogen	and	Total	Organic	Carbon	
Carbon content is an important indicator of the health of soils and total organic 

carbon is an integral measurement for the indirect quantification of green carbon 

(see Equation 2). 

Method	
Processed soil samples were ground and sieved to pass a 0.5 mm screen. 

TC, TN and TOC were analysed using a high temperature combustion elemental 

analyser according to 6B2b, 7A5 and 6B3 methods from Rayment and Lyons (2011), 

respectively. To remove carbonates for TOC analysis either H2SO3 or H2SO4 acids 

were used depending on which of two laboratories analysed the samples. Some 

samples collected in 2010 were also analysed according to Heanes (1984) (6B1 in 

Rayment and Lyons, 2011), a heated dichromate oxidation similar to Walkley-Black 

(1934). A statistical comparison of the TOC results concluded they were similar once 

error was included (see Appendix G).  

Results	and	discussion	
Histograms of the TC and TOC values are presented in Figure 8 and Figure 9, 

while the individual results are in Appendix D. The carbon values for the minesoils 

are skewed towards lower values with a few samples with high carbon levels (>4 

%C) as is seen in Figure 8 and Figure 9. 
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Figure 8 Histogram of the distribution of TC values in 0.5 %C increments. The largest grouping of 
samples fall in 2.0-2.5%C. A few samples have <4.0%C. 

 
Figure 9 Histogram of the distribution of TOC values in 0.5%C increments. The majority of the samples 
have TOC values between 1-2.5 %C. 
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The larger number of samples with total organic carbon levels below 2%C 

would indicate that throughout the profiles of the various pits, there are not abundant 

amounts of carbon rich coal. In other words, there is not a high level of coal mixed in 

with the soil at the sites that were sampled, since coal may have as high as 50% C, if 

minesoils contained as much as 10% coal by weight, TOC levels could be higher 

than 5%C (Ussiri et al., 2014). 

5.2 Particle	Size	Analysis	
With many factors contributing to the weathering of soils and the oxidation of 

organic matter, soil texture could potentially assist with interpretation of carbon 

analysis results. Stumpe et al. (2011) found that sand and clay content were strongly 

predictive of SOC levels as predicted by partial least squares regression (PLSR) of 

MIR spectra. Clay is known to play a role in the stabilization of organic matter 

(Lützow et al., 2006, Verchot et al., 2011, Six et al., 2002)  Also, as there is BC 

enrichment in the <53 µm size fraction, there may be a correlation in BC content and 

soil texture (Skjemstad et al., 1999). 

	

Method	
The hydrometer method was used on >2 mm, air dried soils (Bouyoucos, 

1962). Two depth fractions per pit, one near the surface and one at 10-20 cm, were 

analysed to observe the difference in texture with increasing spoil contribution at 

depth. Sodium hexametaphosphate and sonification for 10 minutes was used to 

disperse the sample. Hydrometer readings were taken 8.5 hours apart to determine 

the clay content of the sample. The soil fractions are defined as below in Table 3. 

 
Table 3 Soil Fraction Particle Size Definitions 

Coarse Sand Fine sand Silt Clay 

2.00 – 0.20 mm 0.20 – 0.02 mm 0.02 – 0.002 mm <0.002 mm 

 

Results	and	discussion	
Table 4 shows there is variability in the particle size distribution seen within 

pits and even within the few duplicates that were run (CU03_1a, CU08_3d, 

CU10_3a, CU17_2d, NP02_1a, NP06_1a, NP06_2d). These results should be 
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considered indications of the particle size distribution instead of precise 

measurements as the replicates that were tested produced different results. The 

cause of the negative measurements could not be determined, but is probably a 

combination of operator error and fluctuating laboratory conditions. Despite the 

differences in measurements, the soil texture classification was not greatly changed 

where duplicates were run, and as such, the texture classifications are considered 

true (see Figure 10). 

The soil texture is likely to reflect where the topsoil material had been 

harvested from prior to the construction of the landform. This is supported by the fact 

that the unmined sites consisted of the same soil types as is seen in the rehabilitated 

sites, assuming that the topsoil would have been collected and stockpiled from the 

mine lease area prior to mining. 
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Table 4 Soil texture of minesoils 

Sample 
ID 

%Coarse 
sand 

%Fine 
sand 

%Silt  %Clay 

BW19_2c  35%  41%  4% 20%

BW31_1c  9%  31%  4% 56%

CU00_2a  12%  20%  44% 24%

CU00_2d  4%  24%  16% 56%

CU00_3a  26%  38%  12% 24%

CU00_3d  23%  41%  16% 20%

CU03_1a  5%  27%  24% 44%

CU03_1a  5%  19%  60% 16%

CU03_1b  6%  34%  ‐2% 62%

CU03_1c  5%  19%  30% 46%

CU03_1d  6%  22%  20% 52%

CU05_1a  7%  33%  20% 40%

CU05_1d  8%  22%  26% 44%

CU07_1a  4%  20%  24% 52%

CU07_1d  4%  16%  28% 52%

CU08_2c  13%  31%  4% 52%

CU08_3a  5%  31%  20% 44%

CU08_3d  6%  18%  32% 44%

CU08_3d  7%  33%  24% 36%

CU08_4a  5%  23%  20% 52%

CU08_4a  5%  35%  4% 56%

CU08_4d  4%  28%  12% 56%

CU08_4d  6%  14%  24% 56%

CU10_2c  3%  21%  0% 76%

CU10_3a  5%  19%  16% 60%

CU10_3a  8%  27%  16% 48%

CU10_3d  5%  35%  12% 48%

CU10_4a  6%  30%  24% 40%

CU10_4b  5%  51%  ‐14% 58%

CU10_4c  4%  36%  15% 45%

CU10_4d  4%  16%  30% 50%

CU11_1a  6%  30%  16% 48%

CU11_1d  4%  20%  20% 56%

CU11_2a  11%  25%  28% 36%

CU11_2d  3%  25%  16% 56%

CU17_1a 4% 20%  16% 60%

CU17_1d 4% 24%  24% 48%

CU17_2a 4% 28%  24% 44%

CU17_2d 5% 15%  0% 80%

CU17_2d 4% 24%  ‐12% 84%

GC26_1c 9% 55%  12% 24%

GC26_2c 13% 59%  4% 24%

NP00_1a 13% 35%  30% 22%

NP00_1d 9% 31%  16% 44%

NP01_1a 16% 20%  36% 28%

NP01_1d 13% 19%  28% 40%

NP01_2a 5% 15%  12% 68%

NP01_2d 6% 18%  16% 60%

NP02_1a 26% 42%  4% 28%

NP02_1a 24% 51%  6% 18%

NP02_1d 20% 40%  14% 26%

NP06_1a 19% 21%  16% 44%

NP06_1a 15% 38%  12% 34%

NP06_1d 19% 29%  12% 40%

NP06_2a 14% 2%  36% 48%

NP06_2d 13% 19%  16% 52%

NP06_2d 13% 33%  6% 48%

NP10_1a 9% 23%  12% 56%

NP10_1d 8% 24%  16% 52%

NP10_2a 5% 19%  20% 56%

NP10_2d 5% 15%  8% 72%

NP10_3a 9% 31%  16% 44%

NP10_3d 7% 13%  14% 66%

NP20_1a 14% 38%  24% 24%

NP20_1d 11% 29%  32% 28%

NP20_2a 18% 48%  10% 24%

NP20_2d 22% 54%  3% 21%

NP20_3a 20% 56%  4% 20%

NP20_3d 20% 30%  22% 28%

NP27_1a 18% 30%  28% 24%

NP27_1d 17% 31%  16% 36%

 
The 10-20 cm depth (sample identifications ending with d) often had a higher 

clay content than the surface 0-2 cm depth (samples ending with a). This may 

indicate high clay levels in the overburden, as mixing between the spoil layer and the 

applied topsoil would be more likely to occur in the 10-20cm depth increment as the 

topsoil settles following application and if sites underwent ripping. 
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Figure 10 Minesoil samples plotted on an Australian texture triangle. The majority of samples were 
classified as clay soils. Classification abbreviations: C-Clay, ZC-Silty clay, ZCL-Silty clay loam, ZL-Silty 
loam, LS-Loamy sand, S-Sand, SL-Sandy loam, L-Loam, SCL-Sandy clay loam, CL-Clay loam, SC-Sandy 
clay 

 
 

Table 5 Soil texture classification of collected samples 

Clay/clay 
loam 

Clay Loam/Clay 
loam 

Sandy 
clay 
loam 

Sandy 
loam/sandy 
clay loam 

Sandy 
clay/clay

Loam Clay/silty 
clay 

5 32 2 10 4 3 2 2 
 

The mine soils tested had significant levels of clay and the majority of which 

were found to be clays according to the Australian soil texture triangle (Figure 10) 

shows the texture class distribution of the mine soils. Unmined sites were evenly split 

between clay, loam and sandy clay loam/sandy loam. At most pits, two depths were 

tested, 0-2 and 10-20 cm, dependant on there being sufficient sample (e.g. Figure 

11). 
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Figure 11 Particle size distribution for three unmined sites at 0-2 cm and 10-20 cm depths 

 
 There was no discernable pattern in soil class according to mine site or 

depth. Samples aged over 21 years post rehabilitation often contained more sand, 

with 4 out of 5 of the samples being sandy clay loam and the one clay sitting nearer 

the sandy loam placement. Of the total 60 samples, 32 samples were clays, 5 

verging on clay loam, 3 verging on sandy clay. 

 

5.3 Electrical	conductivity	and	pH	
The electrical conductivity (EC) and pH were determined according to 

methods 3A1 and 4A1 (Rayment and Lyons, 2011), respectively. Briefly, aliquots of 

soil were mixed end-over-end with deionized water in a ratio of 1:5 soil/water for one 

hour. After allowing 30 minutes for solids to settle, EC and pH probe was immersed 

in the supernatant and allowed to come to equilibrium. The salinity and pH of the 

soils are important contributing characteristics that determine its suitability for 

sustaining plant growth. EC was converted to total dissolved solids using Equation 5. 

 

Total dissolved solids (mg/L) = 0.64 x Electrical conductivity (µS/cm)      Equation 5 
 

It is worthwhile to note that clay has a positive relationship with EC as the 

particles increase surface conduction (Choo et al., 2016).  
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Results	and	discussion	
 

 
Figure 12 Changes in electrical conductivity of Norwich Park samples along depth. The establishing sites 
(1-3 years since rehabilitation) exhibit a zig-zaggy pattern reflective of the newly created profile. Older 
rehabilitation and non-mined sites have a curving trend with higher conductivity near the surface, 
perhaps from inputs. The rise in conductivity further down the profile may be due to leaching and the 
effect of the increasing proportion of spoil. 

 
Figure 12 shows there was a general trend of EC initially dropping from the 

surface to the 2-5 cm depth, then increasing with depth or not changing greatly down 

the profile (70% of the sample have a standard deviation less than 20 mg/L). 

The pH of the samples ranged from 4.5 to 9.7 pH. Higher pH levels were 

expected at some Curragh sites as white rocks, suspected to be secondary 

carbonates, were observed in some samples. 

5.4 Walkley	Black	
Walkley-Black (1934) is a dichromate oxidation that uses the heat generated 

from the dilution of concentrated H2SO4 to drive the oxidation reaction and has 

historically been used to measure organic carbon. It has been suggested that this 

technique may be used to estimate BC (see Chapter 1.3 Direct quantification of 

green carbon via Walkley-Black). 
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Method	
Processed mine soils were sent to Queensland State Government’s 

Department of Science, Information Technology and Innovation Ecosciences 

Prescinct Boggo Road soil laboratory to undergo Walkley-Black (1934) organic 

carbon analysis according to method 6A1 in Rayment and Lyons (2011). Briefly, 

weighed samples were wetted with a Cr2O7
2- solution to which concentrated H2SO4 is 

added.  A colorimeter is used to determine the absorbance at 600 nm and thereby 

the concentration of Cr3+ and of the amount of carbon oxidized during the reaction 

according to the Beer-Lambert Law and Equation 6. The results are found in 

Appendix D. 

2Cr2O7
2- + 16H+ + 3C → 4Cr3+ + 8H2O +3CO2   Equation 6 

5.5 Bulk	density	
In 2010, one bulk density sample per pit was collected using a 55 mm 

diameter x 40 mm height soil core at 20 cm depth at mined sites. This depth was in 

the applied soil layer, above the spoil level. If the spoil layer was encountered, 

another sample without spoil was collected as the rocky nature of spoil made it too 

difficult to cut an even face to the core. If a piece of rock was discovered partially 

within the core, an equivalent volume of soil taken from the same depth was added 

to replace the volume of rock removed and the sample re-leveled. It is assumed that 

bulk density sample collection is sufficiently imprecise, such that the replacement of 

<20% of the volume of the core with soil from the same depth without excessive 

compaction would not significantly change the bulk density measurement (Hartge 

and Horn, 2009, Baumgartl 2010, pers. comm., 23 August). Nyamadzawo et al 

(2008) found the coefficient of variation for bulk density in minesoils in Ohio to be 

<15%. 

In 2013 two bulk density samples were collected using a soil core with the 

same dimensions as in 2010, one at the soil surface after removing the litter layer 

and one at 20 cm depth. The soil bulk density of points between the two sampling 

depths was interpolated assuming the change was linear (see Appendix D). The 

core samples were bagged in oven proof bags and dried in an oven at 105°C 

overnight and weighed. Bulk density was not sampled at natural sites. 
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Results	
Values ranged from 0.51 – 1.58 g/cm3 at the surface and 1.00 – 1.58 g/cm3 at 

20 cm depth. The greatest change in bulk density between the surface sample and 

20 cm depth was 0.96 g/cm3. Unmined soils ranged from 1.13-1.29 g/cm3 at the 

surface and 1.24-1.50 g/cm3 at 20 cm depth (n=3). 

Conclusion	
The rehabilitated mine soils had similar bulk densities to the unmined soil. 

Unlike Shrestha and Lal (2011), whose sites containing larger amounts of sand 

displayed significantly higher bulk density in rehabilitated soils over undisturbed 

sites, the Bowen Basin mine soils displayed higher average bulk densities at the two 

different depths than the average of unmined sites while ranging from clay to sandy 

clay loam (see Chapter 5.2). 
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6 Discrimination	of	carbon	fractions	
Soil organic carbon can be divided into three different fractions: coal, black 

carbon and green carbon. Coal is organic matter that has undergone coalification. 

Black carbon (BC) is organic matter that has not combusted completely, e.g. charred 

wood, charcoal and soot. Green carbon is any organic matter that is not coal or black 

carbon. It should be noted that black carbon and green carbon both exist in the black 

carbon combustion continuum with green carbon being at one extreme as it has not 

been charred (Hedges et al., 2000).   

An international ring study comparing different BC quantification methods 

found there was little consensus between methods in terms of the range of the BC 

continuum measured and ability to exclude non-BC carbon (Hammes et al., 2007). 

The study showed thermogravimetry with differential scanning calorimetry (TG-DSC) 

and UV photo-oxidation to be the most promising methods to use for the purpose of 

quantifying BC and coal as they both measured C3 plant char and bituminous coal 

carbon more effectively than other methods studied. C3 plants include woody plants, 

such as Brigalow; thus, BC from before the groundcover change to C4 plants, i.e. 

grassy pastures, could be measured. This would facilitate the calculation of green 

carbon as the difference between total carbon and the combination of char and coal 

using one measurement method. 

Enquiries determined that UV photo-oxidation would be prohibitively costly 

and not replicable as there is only one laboratory in the world that carries out the 

procedure.  However, collaborators for TG-DSC were found, Dr. Alain Plante and Dr. 

Clément Peltre, and analyses were carried out at The University of Pennsylvania on 

a set of reference charcoal spiked samples of Vertosol, both materials used in the 

Hammes et al. (2007) ring trial. 

A modified TG-DSC analysis was tried by the addition of an infrared gas 

monitor. Thermal analysis with evolved gas analysis (TA-EGA) uses the same 

machine as in TG-DSC without the use of neither gravimetric nor calorimetric data, 

but rather, measuring the evolved CO2 to assess carbon loss. Differential scanning 

calorimetry did not contribute much additional information to the analysis of the soils 

as the DSC profiles were seen to closely follow the evolved gas profile, so DSC data 

was not used. Testing of whether TA-EGA could distinguish BC and coal in a soil-like 

matrices is described in the manuscript titled: Quantitative differentiation of coal, char 
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and soil organic matter in an Australian coal minesoil that has been submitted for 

publication to Thermochimica Acta, and is presented in Chapter 6.1. Additional 

information that was not included in the manuscript and pertaining to the application 

of DRIFT spectroscopy is presented in Chapter 7. Further information on the 

chemometric technique used, multivariate curve resolution, a form of signal 

deconvolution or peak fitting can be found in Chapter 1.6. 

6.1 Thermal	analysis	with	multivariate	curve	resolution	carbon	
partitioning	in	mine	soils	

Introduction	
Minesoils are the soils created during the rehabilitation of mined lands, 

typically covering the newly constructed landforms (Sencindiver and Ammons, 2000, 

Ussiri et al., 2014). The landforms created with the overburden must be stabilized 

and rehabilitated before relinquishment.  

Increased organic inputs from plant establishment are part of the rehabilitation 

process in restoring soil quality and function (Kimetu et al., 2008). Improved soil 

quality can reduce erodibility and stabilize these landforms, thus fulfilling 

rehabilitation objectives. Soil organic matter (SOM) derived from the accumulation of 

recent plant and microbial inputs could therefore potentially be used as an indicator 

of rehabilitation success. In addition, disturbed minesoils also represent an 

opportunity to act as an important sink for atmospheric CO2 as SOM levels increase  

(Akala and Lal, 2000, Lal, 2004). 

Minesoils at coal mines have variable amounts of coal fines from spoil 

containing coal reject and dust from aeolian deposition. This complicates the 

assignment of measured soil carbon to recent SOM inputs attributable to 

rehabilitation. The quantification of SOM accumulation in Australian coal minesoils is 

further complicated by the potential presence of pyrogenic C derived from the 

incomplete combustion of biomass from wildfires. This black carbon (BC) has been 

investigated for its potential to remain in the soil for centuries (Schmidt et al., 2002). 

Black carbon is found commonly in soils globally (Krull et al., 2008, Schmidt et al., 

2001, Skjemstad et al., 2002) (Krull et al., 2008, Schmidt et al., 2001) and is nearly 

ubiquitous in Australian soils and especially in Vertosols (Krull et al., 2008, 

Skjemstad et al., 1996). Vertosols and Sodosols are the predominant soil type in the 

coal mining region of interest to this study – the Bowen Basin, Queensland, Australia 
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(CSIRO, 2011). Quantifying SOM carbon accumulated in mined lands during 

rehabilitation therefore requires distinguishing this carbon from that which is inherited 

from the starting materials used for reclamation. 

In studying coal-minesoil rehabilitation, several methods have been used to 

differentiate coal carbon from more recent carbon inputs, including C/N ratios  

(Ganjegunte et al., 2009), high energy UV photo-oxidation, 13C-NMR spectroscopy 

and radiocarbon measurements (Rumpel et al., 2000), and combined chemical and 

thermal oxidation (Ussiri and Lal, 2008b). Similarly, methods to quantify BC generally 

involve elemental analysis after removal of more labile organic matter either by 

chemical or thermal oxidation (Hammes et al., 2007, Schmidt et al., 2001) or direct 

detection by pyrolysis-GC/MS, 13C-NMR or thermogravimetry (De la Rosa et al., 

2008). More recently, Rock-Eval analysis uses ramped pyrolysis and combustion to 

discern different types of organic materials in soil and sediment samples (Carrie et 

al., 2012, Disnar et al., 2003, Sebag et al., 2006), and has been compared to 

conventional methods for distinguishing BC from SOM (Poot et al., 2009, Saenger et 

al., 2015, Siavalas et al., 2013). 

As geogenic C, pyrogenic C and soil organic matter C combust at different 

temperatures, the application of ramped combustion to distinguish among them is an 

attractive approach. However, each of these components is actually composed of a 

spectrum of materials that combust over a range of temperatures, making the 

distinction with a single temperature cut-off challenging. The interpretation of 

thermograms, as the primary result from ramped combustion of carbon-containing 

substrates, may be carried out qualitatively or (semi-)quantitatively. Multivariate 

curve resolution - alternate least squares (MCR-ALS) is defined as a group of 

statistical techniques that help resolve mixtures by determining the number of 

constituents, their response profiles (e.g., spectra) and their estimated 

concentrations, using a minimal number of assumptions about the nature and 

composition of these mixtures (de Juan and Tauler, 2003, de Juan and Tauler, 2006, 

Jaumot et al., 2005). MCR-ALS has been successfully applied to a variety of 

biological and chemical processes with near infrared (NIR) spectroscopy (Blanco et 

al., 2006, González-Sáiz et al., 2008), FTIR spectroscopy (Le Dréau et al., 2009, 

Spegazzini et al., 2009) and discrete data such as concentrations of different 

pollutants (Terrado et al., 2010). However, this technique has not been applied to 
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resolve thermal analysis curves or to the characterization of organic matter in 

surface soils. 

The objectives of this study were to first provide a proof-of-principle test of 

whether thermal analyses combined with the MCR-ALS chemometric technique are 

able to distinguish between and quantify proportions of geogenic C, pyrogenic C and 

soil organic matter C in model mixtures of increasing complexity. A series of 

experimental mixtures combining various mineral matrix and organic C end-

members were subjected to CO2 evolved gas analysis (CO2-EGA) during ramped 

combustion (i.e., thermal analysis). MCR-ALS analyses were applied to the resulting 

thermograms to generate modeled estimates of the different forms of organic C. A 

second objective was to test the approach against a set of minesoils of unknown 

composition to generate estimates of the proportional contributions of geogenic C 

(coal), pyrogenic (or black) C (BC) and soil organic matter C (SOC) to the total 

organic C content. The ultimate goal is to provide a robust method for quantifying soil 

organic matter C accumulations during the rehabilitation of minesoils, and in other 

similar applications. 

Materials	and	Methods	

6.1.1	Reference	materials	and	mixture	end‐members	

	Geogenic	carbon	
Bituminous coal from the BHP Billiton Mitsubishi Alliance Goonyella coal mine 

and from the Anglo American German Creek coal mine were selected as the 

reference materials for geogenic C. As these coal samples originated from mines 

within the Bowen Basin, they were assumed to be similar to coal particles found in 

rehabilitated minesoils in the vicinity of the mined resource. The samples were oven 

dried at 40 °C, and homogenized by ball milling.  

Reference	materials	
The reference chestnut charcoal, Vertosol and carbon-free sand described in 

Chapter 4 were selected to represent pyrogenic carbon, a carbon-free mineral matrix 

and a coal-free, BC-containing soil matrix. The sand was ball milled to improve 

homogeneity of mixtures and is used as a simplified model mineral matrix. Vertosol 

was selected as a soil matrix because Vertosols and other high clay containing soils 

are common to the Bowen Basin. 
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Minesoil	matrix	
Rehabilitated minesoil collected from BMA Blackwater coal mine (BW19_2d) 

was selected as a reference minesoil matrix for experimental mixtures because of its 

low organic and inorganic carbon concentrations. Minesoil samples were collected 

from 0.1-0.2 m depth. The soils were oven dried at 40°C, sieved to pass a 2.0-mm 

mesh, ground to pass a 0.5-mm mesh for Walkley-Black (1934) organic C and 

elemental analyses, and ball milled for improved homogeneity prior to thermal 

analysis. 

6.1.2	Experimental	mixtures	
A total of 31 experimental mixtures containing Goonyella coal and BC, 

individually and combined, were created with three different mineral matrices: sand, 

Vertosol and Blackwater minesoil (Table 6). All mixtures, with the exception of the 

sand+BC, were made with ball milled materials and homogenized in a vial by end-

over-end shaking for 30 minutes. The sand+BC mixtures underwent elemental 

analysis shaken, but unground, and were manually ground with mortar and pestle 

just prior to thermal analysis. 

 

 

 

 

Table 6 Experimental mixtures generated of pyrogenic C (chestnut char, BC) and geogenic C (Goonyella 
coal) mixed with three mineral matrices used in proof-of-principle thermal analyses 

Matrix BC Goonyella Coal BC+Coal 

Sand 
1%, 2%, 3% by 

mass 
 

0.5%C 1:1, 1:2, 
2:1 

1%C 1:1, 1:2, 
2:1 

2%C 1:1, 1:2, 
2:1 

Vertosol 

0.5%, 1%, 
1.5%, 2%, 

2.5%, 3% by 
mass 

1%, 5%, 11% 
by mass 

0.5% + 0.5% by 
mass 

Blackwater 
minesoil 

  

2%C 1:1, 1:2, 
2:1 

3%C 1:1, 1:2, 
2:1 

4%C 1:1, 1:2, 
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2:1 

 
Three sand+BC mixtures were made to target 1%, 2% and 3% weight 

proportions of BC. The true weight proportions of the mixtures were 1.007%, 

2.451%, 3.205% of BC by weight. Using a reported C concentration of 682.0 g C kg-1 

for the BC (Hammes et al., 2006), the resulting estimated C concentrations of the 

mixtures were 6.87 g C kg-1, 16.7 g C kg-1 and 21.9 g C kg-1. These simple mixtures 

were not subsequently used in the MCR analyses, but used along with the mixtures 

of Vertosol+BC (see below) to test the efficacy of combustion-based elemental 

analyses in quantifying pyrogenic C. 

Nine different sand+BC+coal mixtures were made to generate target C 

concentrations of 0.5%, 1% and 2%, using the reported C concentrations of 682.0 g 

C kg-1 for BC (Hammes et al., 2006) and a measured C concentration 655.6 g C kg-1 

for the Goonyella coal (see below). For each target C concentration, the 

concentration was achieved by adding BC and Goonyella coal in 1:1, 1:2 and 2:1 

mass ratios. The mixtures were made by weighing out the sand, adding the coal, 

reweighing the partial mixture, then calculating how much BC to add to generate the 

desired target C concentrations.  

Six different Vertosol+BC mixtures were designed to target 0.5%, 1%, 1.5%, 

2% 2.5% and 3% weight proportions of BC. Actual weight proportions were 0.510%, 

0.995%, 1.466%, 2.086%, 2.556% and 3.097%. Using the reported C concentrations 

of 26.7 g C kg-1 for the Vertosol (Schmidt et al., 2001) and 682.0 g C kg-1 for the BC 

(Hammes et al., 2006), the estimated total C concentrations of the mixtures were 

thus 30.04 g C kg-1, 33.22 g C kg-1, 36.31 g C kg-1, 40.37 g C kg-1, 43.45 g C kg-1 

and 46.99 g C kg-1, where the proportions of mixture C attributable to the added BC 

ranged from 11.6% to 44.9%. It is important to remember that the C contained in the 

Vertosol itself was a combination of BC and soil organic matter. 

Three Vertosol+coal mixtures were designed for target coal proportions of 1%, 

5% and 11% by weight of Goonyella coal. Actual weight proportions were 0.996%, 

5.323% and 11.189%. Using the reported C concentrations of 26.7 g C kg-1 for the 

Vertosol (Schmidt et al., 2001) and a measured C concentration of 655.6 g C kg-1 for 

the Goonyella coal, the resulting estimated C concentrations of the mixtures were 

6.53 g C kg-1, 34.9 g C kg-1 and 73.4 g C kg-1. The added coal represented 19.8% to 

75.6% of the mixture C. 
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One Vertosol+BC+coal mixture was made using an aliquot of the 

Vertosol+0.5%BC mixture described above and adding Goonyella coal to achieve a 

target proportion of 0.5% coal by weight. The actual mixture was 0.510% BC by 

weight and 0.549% coal by weight. The resulting estimated C concentration of the 

mixture was 25.27 g C kg-1, of which 21.1% of the mixture total C was attributable to 

the added BC and coal. 

Nine different minesoil+BC+coal mixtures were made to generate target C 

concentrations of 2%, 3% and 4%, using the reported C concentrations of 682.0 g C 

kg-1 for BC (Hammes et al., 2006), and measured C concentrations of 655.6 g C kg-1 

for the Goonyella coal and a measured C concentration of 11.9 g C kg-1 for the 

Blackwater minesoil (see below). For each target C concentration, the concentration 

was achieved by adding BC and coal in 1:1, 1:2 and 2:1 mass ratios. The mixtures 

were made by weighing out the minesoil, adding the coal, reweighing the partial 

mixture, then calculating how much BC to add to generate the desired target C 

concentrations. The proportions of total mixture C attributable to the added BC 

ranged from 13.2% to 49.7%, and the added coal represented 13.5% to 48.3% of the 

mixture C. 

 

 

 

6.1.3	Reclaimed	minesoils	of	unknown	composition	
The efficacy of the analytical and statistical approaches developed using the 

experimental mixtures of known compositions was tested on a series of minesoil 

samples of unknown composition. A soil from a 26-year-old rehabilitation site at the 

Capcoal AngloAmerican German Creek coal mine was chosen and samples 

collected with precision stratified sampling (see Soil sampling method subheading 

under section 4.2).  

	Analytical	techniques	

6.1.4	Elemental	analyses	
Literature values were used for the carbon concentrations of the BC and 

Vertosol, while C concentrations of the Goonyella and German Creek coals, sand 

and minesoils were measured. Multiple techniques for the quantification of C in these 
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samples were used because of the highly recalcitrant nature of the pyrogenic and 

geogenic C expected to be in the samples. Total and organic C in the coal samples 

were determined by Rock-Eval 6 (Lafargue et al., 1998). Since Rock-Eval is used 

routinely in the petroleum industry, it was decided that this analysis would provide 

better accuracy than regular elemental analysis (Lafargue et al., 1998, Verheyen et 

al., 1984), which may combust samples at too low a temperature for complete C 

recovery. Total C concentrations of the sand and minesoils were determined by dry 

combustion using a LECO TruSpec CHN autoanalyser. For comparison, organic C 

concentrations of the minesoil samples were also determined using the Walkley-

Black (1934) method, which was expected to generate substantially smaller C 

concentrations than the combustion-based methods, but were more closely 

representative of soil organic matter exclusive of pyrogenic and geogenic C 

(Siavalas et al., 2013). 

6.1.5	Analytical	thermal	analysis	
Thermal analyses (i.e., simultaneous thermogravimetry, differential scanning 

calorimetry, evolved-gas analysis) were performed to characterize the thermal 

stability of the different end-member reference materials and experimental mixtures, 

with the expectation that thermal stability of the various forms of C could be used to 

distinguish among them. German Creek minesoil samples were subsequently 

subjected to thermal analysis as the true unknown samples to test the method. 

Analyses were performed according to Fernández et al. (2012) using a Netzsch STA 

409PC Luxx equipped with a type-S (Pt/PtRh) TG-DSC sample carrier supporting a 

PtRh10-Pt thermocouple (Netzsch-Gerätebau GmbH, Selb, Germany). Evolved gas 

analysis (EGA) during ramped combustion was performed using a LI-840 CO2/H2O 

infrared gas analyzer (IRGA, LI-COR Biosciences, Lincoln NE, USA) coupled to the 

outlet of the STA instrument. Samples were weighed into 85-µL Pt crucibles with 

pierced lids to a mass of approximately 30 mg for soils and mixtures, and 2-4 mg for 

BC and coal. Samples were heated from 30 to 800 °C at 10 °C min-1, with an 

isothermal pause at 105 °C to eliminate sample moisture, under a flowing 

atmosphere of CO2-free Ultra-Zero air. Resulting CO2-EGA thermograms are 

expressed in units of ppmv of CO2 per mg of sample. Prior to MCR analysis (see 

below), the thermograms were normalized by the area under the CO2-EGA curves 

(i.e., by the total CO2 detected by the IRGA). 
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6.1.6	Statistical	analyses	
Multivariate curve resolution - alternate least squares (MCR-ALS) techniques 

were applied to the CO2-EGA thermograms as an empirical, quasi-quantitative 

means of determining the concentrations of SOM, BC and coal in the experimental 

mixtures as proof-of-principal, then applied the technique to a set of minesoils of 

unknown composition. MCR-ALS is a multivariate deconvolution technique allowing 

the separation of one or several end-members (also called pure components), which 

in this case corresponded to CO2-EGA thermograms of coal, BC and SOM, from 

unresolved mixtures when no prior information is available about the nature and 

composition of these mixtures (de Juan and Tauler, 2003). When available, providing 

initial guesses for the pure components helps the algorithm converge to finding pure 

components as close as possible to the prescribed ones. MCR-ALS analyses were 

run with and without initial guesses to determine the robustness of the resulting 

models. When initial guesses were used, the CO2-EGA thermograms of BC, coal, or 

Vertosol and Blackwater minesoil without additional BC or coal were provided as the 

pure components to be separated by the MCR-ALS. In the case of the unknown 

minesoils, initial guesses of the SOC pure components were not possible because 

they were the desired results, but pure German Creek coal and BC were included in 

the analytical set. 

MCR-ALS analyses were run using The Unscrambler® software v10.1 (Camo 

Software AS, Oslo, Norway). Four MCR analyses were performed during the proof of 

principle phase, each with and without initial guesses of pure components provided. 

The first MCR was performed to separate BC and coal from a simple matrix not 

containing organic C using the sand+BC+coal mixtures (n = 9), with BC and 

Goonyella coal provided as pure components when initial guesses were used. When 

initial guesses were not provided, the BC and coal thermograms were included as 

samples in the analytical set. The second MCR was performed to separate SOC and 

BC using the Vertosol+BC mixtures (n = 6), with Vertosol and BC provided as pure 

components when initial guesses were used, or included in the analytical set when 

initial guesses were not used. The third MCR was performed to separate SOC, BC 

and coal using the Vertosol+coal mixtures (n=3), Vertosol+BC mixtures (n = 6) and 

the Vertosol+BC+coal mixture (n = 1) for a total of 10 samples, with Vertosol, BC and 

coal provided as pure components when initial guesses were used, or included in the 
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analytical set when initial guesses were not used. The fourth MCR was performed to 

evaluate the separation of SOC, BC and coal in a minesoil with a different SOC 

composition than the Vertosol, using the Blackwater minesoil+BC+coal mixtures (n = 

9), with Blackwater minesoil, BC and coal provided as pure components when initial 

guesses were used, or included in the analytical set when initial guesses were not 

used. The outputs of the MCR-ALS analyses are modeled thermograms of the 

constituent components resolved from the experimental mixture thermograms (i.e., 

SOC, BC and coal) and the areas under these curves, which are then expressed as 

relative concentrations in the initial unresolved mixture (Gargallo et al., 1996). 

MCR-predicted C proportions of total organic C were calculated as the 

modeled area assigned to a specific component (e.g., BC) divided by the total area 

modeled for all components combined, and expressed as a percentage. The 

relationships between the MCR-predicted C proportions and the calculated C 

concentrations of the various mixtures, based on the proportions of added BC and 

coal, were evaluated using least-squares linear regression. The ability of the 

regression models to explain the variance in the data was assessed using the 

coefficient of determination (R2). Ideal MCR-predicted versus calculated C values 

would follow the 1:1 line with no significant deviations (i.e., non-zero intercept and/or 

slope different from 1). Deviation of the MCR-predicted values from the 1:1 line was 

assessed using root mean square error (RMSE), which is expressed in % of total 

organic C. 

 

Results		

6.1.7	Organic	C	concentrations	of	reference	materials,	experimental	
mixtures	and	unknown	minesoils	

Elemental analysis of the sand confirmed minimal contamination (0.006% C), 

and thermal analysis did not detect any evidence of thermally stable C indicative of 

pyrogenic or geogenic C (data not shown). Organic C concentrations in the 

Blackwater minesoil used in the experimental mixtures was relatively low (1.2%, 

Table 8). Its composition was dominated by SOM as indicated by the fact that 

Walkley-Black organic C represented 94% of the total. The high C concentrations in 

coal samples exceeded the reliably determinable levels of the LECO analyzer, which 

produced unusually low results (data not shown). Rock-Eval analysis found that the 
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Goonyella and German Creek coals differed in C concentration (Table 8), but 

ramped combustion by thermal analysis data showed that the CO2-EGA 

thermograms of the two coals were similar, thereby justifying the use of the 

Goonyella coal in the experimental mixtures as a substitute for the German Creek 

coal (see Appendix F). Similar to coal, the BC material was known to have high 

concentrations of recalcitrant C that may result in low yields from the LECO analyzer. 

Evidence for this was provided by correlation analysis of estimated versus LECO-

measured C concentrations in the Sand+BC and Vertosol+BC mixtures (data not 

shown). Values were highly correlated (R2 = 0.988), but biased (slope = 0.845) and 

thus indicated that measured values underestimated the true values. The proportions 

of Walkley-Black organic C to total C in the German Creek minesoil samples ranged 

from 67% to 84% (Table 8), indicating substantial contributions from recalcitrant 

components. As a result, the measured total C concentrations of these samples 

should be considered underestimates. It is therefore difficult to attribute confidence 

to absolute concentrations of the various components determine by the MCR-ALS 

method, and therefore only relative proportions are reported. 

 

 

 

 

Table 7 Measured carbon concentrations of end-member materials used in mixtures and minesoils. Total 
C concentration of the coals were determined using Rock-Eval, while dry combustion elemental analysis 
was used for the sand and minesoils. Values of "nd" indicate that sample was not analysed using the 
particular method. 

Sample 
Total C 

(g C kg-1 soil) 

Walkley-Black 
organic C 

(g C kg-1 soil) 

Sand 0.06 ±0.04 (n=2) nd 

Goonyella coal 656 nd 

German Creek coal 604 nd 

Blackwater minesoil 
(10-20cm) 

11.9 11.2 

German Creek 
minesoil (0-0.5 cm) 

18.0 11.9 

German Creek 16.4 11.0 
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minesoil (0.5-1 cm) 

German Creek 
minesoil (1-2 cm) 

19.8 13.3 

German Creek 
minesoil (2-5 cm) 

20.4 13.9 

German Creek 
minesoil (5-10 cm) 

10.0 8.4 

German Creek 
minesoil (10-20 cm) 

19.0 12.0 

German Creek 
minesoil (20-30 cm) 

12.0 8.6 

 

6.1.8	MCR	analysis	for	the	separation	of	BC	from	coal	in	unresolved	sand	
mixtures	

Thermograms of BC and coal reference materials were relatively simple, with 

a single dominant peak at 531 °C for BC (Figure 13a) and at 545 °C for coal (Figure 

13b). The major distinctions between the two thermograms were a more pronounced 

shoulder at around 400 °C for the coal, and greater thermal stability for coal than for 

BC, as indicated by a higher peak temperature and higher end temperature of the 

exotherm, which exceeded 600 °C for the coal. These small differences are exploited 

in the MCR analysis to partition the carbon sources despite the relative similarity of 

the CO2-EGA thermograms. 
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Figure 13 CO2 evolved gas analysis (CO2-EGA) thermograms of reference end-members used in 
experimental mixtures: (a) pyrogenic carbon in the form of chestnut wood char black carbon (BC), (b) 
geogenic Goonyella coal C, (c) Vertosol and (d) Blackwater minesoil. 

 
When no pure component initial guesses were provided, the MCR-ALS 

analysis was able to distinguish the BC and coal in sand+BC+coal mixtures (Figure 

14a). However, while the MCR-generated thermogram of BC was similar to the 

actual, this was less so for the coal thermograms (Fig. 17a). As might be expected, 

when initial guesses were provided the MCR-generated thermograms were much 

more similar to actual thermograms (Figure 14b), with maximum peak temperatures 

of 529 °C for component 1 (corresponding to BC) and a maximum peak temperature 

of 545 °C for component 2 (corresponding to coal). 
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Figure 14 MCR analysis for the separation of black carbon (BC) and coal from sand+BC+coal 
experimental mixtures. Thermograms of the pure components separated by MCR without (a) and with (b) 
initial guesses provided, and MCR predicted BC and coal contents without (c) and with (d) initial guesses 
provided. Clusters of three data points having similar proportions of calculated C are not replicates, but 
mixtures made with differing ratios of BC and coal (i.e., 1:1, 1:2, 2:1). 

 
The regression between calculated and MCR-predicted proportions of total 

carbon corresponding to BC and coal showed a good performance of the MCR 

model, with an R2 of 0.97 and RMSE of 22.9 % of total C, though the slopes were 

substantially different from the 1:1 line (Figure 14c). When the thermograms of BC 

and coal were used as initial guesses of the pure components, RMSE decreased to 

18.4% of total C (Figure 14d) and slopes were closer to the 1:1 line. Deviations of 

the regression lines from the 1:1 line (deviation of the slope from 1 and deviation of 

the intercept from 0) indicated the necessity to correct the MCR-predicted values 
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using the linear regression equation before the MCR model could be used in 

practice. 

6.1.9	MCR	analysis	for	the	separation	of	BC	from	SOC	in	unresolved	Vertosol	
mixtures	

The Vertosol SOM had a more complex thermogram compared to BC and 

coal, with a major peak at 450 °C and smaller peaks and shoulders at 350 °C, 380 

°C and 525 °C (Figure 13c). Additions of BC to Vertosol resulted in the largest 

increases in the thermogram peak near 525 °C, but also smaller increases in other 

smaller peaks (Figure 15). Increases in smaller, low temperature peaks were 

generated by the low temperature tail of the BC thermogram (Figure 13a). 

 
Figure 15 CO2 evolved gas analysis (CO2-EGA) thermograms of experimental mixtures composed of a 
Vertosol with different amounts of chestnut wood char black carbon (BC) added. 

 
MCR was able to clearly distinguish between SOC and BC in the Vertosol 

mixtures, whether or not initial guesses for pure components were provided (Figure 

16). MCR-generated thermograms were similar to actual thermograms, as would be 

expected when pure components are identified (Fig. 19b). When pure components 

were not provided, the MCR-generated thermograms remained similar, but a larger 
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portion of the CO2 emissions from 500-600 °C were attributed to the BC than the 

SOM components (Fig. 19a). 

 
Figure 16 MCR analysis for the separation of soil organic carbon (SOC) and black carbon (BC) from 
Vertosol+BC experimental mixtures. Thermograms of the pure components separated by MCR without 
(a) and with (b) initial guesses provided, and MCR predicted BC content without (c) and with (d) initial 
guesses provided. 

 
Slopes of the regressions between calculated and MCR-predicted proportions 

of total carbon corresponding to BC were similar both with and without provided pure 

components, but the intercepts changed substantially. When the pure component 

initial guesses were provided, MCR under-predicted the amount of added BC, and 

RMSE increased slightly (Figure 16d). This is likely attributable to the fact that the 

Vertosol also contains some BC carbon, which is not accounted for in the analysis.  
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6.1.10	MCR	analysis	for	the	separation	of	BC	and	coal	from	SOC	in	
unresolved	Vertosol	mixtures	

With increased complexity of adding coal to the Vertosol+BC mixture, MCR 

was still able to generate distinct end-members whether or not pure component initial 

guesses were provided (Figure 17a and b). However, the provision of initial guesses 

substantially improved the similarity between MCR-generated and actual 

thermograms, particularly for the coal component (Fig. 20a and b). 

 
Figure 17 MCR analysis for the separation of soil organic carbon (SOC), black carbon (BC) and coal from 
Vertosol+BC+coal experimental mixtures. Thermograms of the pure components separated by MCR 
without (a) and with (b) initial guesses provided, and MCR predicte predicted BC, coal and SOC contents 
without (c) and with (d) initial guesses provided. 

 
Provision of the initial guesses also substantially improved MCR-generated 

estimates of the proportions of coal, BC and SOC (Figure 17c and d). Without the 
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initial guesses, no relationship was found between calculated and MCR-generated 

proportions of BC, while the correlation was much stronger (R2=0.97) when initial 

guesses were provided. The initial guesses also reduced RMSE values for BC, coal 

and SOC. Slopes of the regressions were also substantially closer to 1 and 

intercepts were substantially closer to 0 when initial guesses were provided. 

6.1.11	MCR	analysis	for	the	separation	of	BC	and	coal	from	SOC	in	
unresolved	minesoil	mixtures	

The thermogram of the Blackwater minesoil consisted of a single broad peak 

near 370 °C (Figure 13d). Consistent with the Walkley-Black organic C results (Table 

8), the thermogram showed little contribution of thermally recalcitrant C. The 

Blackwater minesoil thermogram contrasts substantially with the more complex 

Vertosol thermogram, which may reflect the relatively short developmental age and 

lack of organic inputs in the minesoil. 

MCR was able to distinguish between coal, BC and SOC in the minesoil 

mixtures with or without the provisions of initial guesses despite coal and BC having 

similar peak combustion temperatures and a large overlap (Figure 18a and b). The 

provision of initial guesses substantially improved the similarity of MCR-predicted 

and actual thermograms, particularly for the coal end-member (Figure 18a and b). 

MCR estimates for SOC were improved by the provision of initial guesses, 

decreasing RMSE from 18.2% to 4.4% of TOC (Figure 18c and d), though the 

parameters of the regressions were not substantially changed. Estimates for BC and 

coal were, in a sense, reversed when initial guesses were provided. Without initial 

guesses, BC was overestimated but was underestimated when initial guesses were 

provided, and the phenomenon was reversed for coal. Under optimal conditions 

(when guesses were provided), the correlation of BC was the weakest (R2 = 0.43) 

among the components, likely due to its intermediary nature and similarity to coal. 
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Figure 18 MCR analysis for the separation of soil organic carbon (SOC), black carbon (BC) and coal from 
Blackwater minesoil+BC+coal experimental mixtures. Thermograms of the pure components separated 
by MCR without (a) and with (b) initial guesses provided, and MCR predicted BC, coal and SOC contents 
without (c) and with (d) initial guesses provided. 

6.1.12	MCR	analysis	for	the	quantitative	distinction	of	coal,	BC	and	SOC	in	
minesoil	unknowns	

MCR analysis of the thermograms of the German Creek minesoil samples did 

not include initial guesses, but thermograms of German Creek coal and the chestnut 

wood char BC were included in the analysis dataset. MCR-generated BC and coal 

thermograms were similar to those generated in previous MCR analyses without 

initial guesses provided (Figure 19a compared to Figure 17a and Figure 18a). The 

MCR-generated thermogram for BC was reasonably similar to its actual thermogram, 

while the thermograms for German Creek coal differed substantially (Fig. A1). The 
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MCR-generated thermogram for SOC (Figure 19a, solid), which has no known/actual 

analog was more similar to that of the Vertosol than the Blackwater minesoil in that it 

had two main peaks. The second, smaller peak could be thermally stable (i.e., 

strongly mineral-adsorbed) soil organic matter, a form of BC or coal that is dissimilar 

to the identified pure components, or inorganic (carbonate) C.  The SOC 

thermogram also has a prominent shoulder near 350 °C, which might indicate the 

presence of a distinct pool of easily oxidized/combusted SOM. MCR-estimated 

partitioning of the total C of the German Creek minesoils resulted in the largest 

proportion contributed by SOC, followed by BC, and the smallest contribution by coal 

(Figure 19b). C contributions from BC and coal also appeared to decrease with soil 

depth, though this trend was not statistically significant.  
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Figure 19 MCR analysis for the separation of black carbon (BC), coal and soil organic carbon (SOC) from 
a depth profile of a minesoil of unknown composition. Thermograms of the pure components separated 
by MCR (a) and MCR predicted BC, coal and SOC contents (b). 

6.1.13	TA‐EGA	predicted	BC	compared	with	theoretical	BC	additions	
A comparison of the estimated total carbon (TC) content of samples analyzed 

by TA-EGA and Dumas TC found TA-EGA underestimated the carbon content of 

soils tested.  The estimation of the added BC content of the reference mixtures was 

also below calculated BC content (Figure 20)  
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Figure 20 Predicted added char content versus Dumas calculated char content 

 

Calculation of the background level of BC in the Vertosol was possible from 

the standard addition series as the y-axis intercept of the line of regression of the 

measured BC vs. predicted BC values (Elmquist et al., 2004, Roth et al., 2012). The 

Vertosol was determined to have 30% BC which corresponded with the reference 

material information from a UV-photo oxidation measurement (see Appendix A).  

Discussion	
Direct and indirect measures of SOM content are frequently used in 

assessments of agricultural soil quality and health (Gregorich et al., 1994, Karlen et 

al., 2001). Similarly, SOM accumulation can be used as an indicator of rehabilitation 

success during minesoil reclamation (Kimetu et al., 2008), as it is often the result of 

increased vegetation cover. However, the quantification of SOM accumulation in 

reclaimed coalmine soils is hampered by the presence of various forms of organic C. 

Ussiri et al. (2014) provide a comprehensive overview of the methods for quantifying 

geogenic C (i.e., coal) in rehabilitated minesoils, which they classify as: 

optical/microscopic, thermal, chemical, spectroscopic, molecular markers, isotopic, 

or some combination of these. The most reliable method to quantify geogenic C is 



 
 

70 
 

radiocarbon analysis, owing to old age and lack of radiocarbon activity, but the 

analysis is prohibitively expensive for routine use, particularly in cases requiring 

large sample numbers such as carbon stock assessment in rehabilitated land. 13C-

NMR spectroscopy has also been used (Rumpel et al., 2000), but frequently requires 

sample pre-treatments and long run times thus also making it time-consuming, 

expensive, and impractical for high sample numbers. In response, infrared 

spectroscopy (FTIR, DRIFT) combined with multivariate data analysis (partial least 

squares (PLS)) was proposed as a more rapid and practical approach (Rumpel et 

al., 2001), but this approach requires substantial calibration data that might be soil-

specific or only locally applicable. 

The most common methods for differentiating recent (i.e., SOM) and geogenic 

C pools involve chemical, thermal or combined methods to remove SOM followed by 

subsequent analysis of the residue. Chemical methods for SOM removal include 

hydrogen peroxide (H2O2), sodium hypochlorite (NaOCl), disodium persulfate 

(Na2S2O8), among others (Ussiri et al., 2014), and rely on the fact the geogenic C is 

resistant to chemical oxidation due to its highly condensed aromatic chemical 

structure. Thermal oxidation methods rely on the fact that geogenic C is more 

thermally resistant than SOM owing to diagenetic processes, and temperatures 

between 300 and 400 °C are typically used as a cut-off (Gélinas et al., 2001, 

Schmidt et al., 2001, Ussiri and Lal, 2008b, Gustafsson et al., 1996). The challenge 

with these methods is that a single chemical or temperature cut-off between recent 

and geogenic C does not account for the wide spectrum of properties of each of 

these components. That is, in some cases highly recalcitrant SOM is not adequately 

oxidized or conversely some portion of coal is oxidized, leading to over- or 

underestimation of one pool or the other. Adding to the complications is the frequent 

presence of pyrogenic C (i.e., recent, fire-derived BC). The quantification of BC in 

soils and sediments varies greatly between methods (Hammes et al., 2007), largely 

due to a wide continuum of BC properties attributable largely to the properties of the 

fire that produced it. While BC frequently represents an intermediary form of organic 

matter between SOM and coal, many of the methods outlined above are unable to 

distinguish between BC and coal (Ussiri and Lal, 2008b). For the purposes of 

minesoil reclamation, the differentiation of BC is important as it would be considered 

more recent C than coal and might be included as arising from rehabilitation if fires 

are known to have occurred post-reclamation. 
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Deconvolution of EGA-CO2 thermograms using MCR-ALS can directly 

apportion different components of the soil C pool (See Hypothesis 1 in Chapter 2), 

and avoids the interference of water mass loss experienced using thermogravimetry 

as well as the problems associated with empirical cut-off temperatures. The MCR 

results show a distinct separation of the coal and char but overestimated the coal 

contribution (Figure 14b and Figure 18b) in some cases. This bias towards the 

material with a higher temperature of combustion may be due to some interference 

by the mineral matrix if it protects BC materials, thus increasing the combustion 

temperature (Flessa et al., 2008, Lützow et al., 2006, Plante et al., 2009). The 

provision of initial estimate thermograms for end-member components improved the 

MCR model fits as expressed by smaller RMSE, calculated MCR-estimated 

regression slopes closer to 1, and regression intercepts closer to zero. The one 

exception to this was that RMSE for the regression for coal content increased from 

12.0 to 20.3 when initial guesses were provided for the Blackwater 

minesoil+BC+coal experimental mixtures (Figure 18c versus d). It is unclear what 

produced this anomaly because the MCR-predicted thermograms for coal were 

substantially more similar to the measured thermogram when initial guesses were 

used (Fig. S1b versus S2b). 

Thermal analysis results indicated that geogenic C represented a small 

proportion of the total organic C in the unknown minesoils (e.g., up to 21%, with 

mean = 9.2%), and a larger contribution from pyrogenic C (e.g., up to 41%, with 

mean = 32.4%). This is consistent with the findings of Skjemstad et al. (1996) of the 

presence of high levels of BC in Australian soils. However, this technique is 

vulnerable to the issue of under-estimating total organic C concentrations.. Even 

Rock-Eval analysis, which has been well correlated to elemental analysis, have been 

shown to under-estimate total organic C in soils (Saenger et al., 2015). 

Trends in the estimated proportions of SOM based on thermal analysis and 

MCR-ALS were consistent with proportions of Walkley-Black (1934) measurements 

of organic C (Table 8), though the correlation was not especially strong (p = 0.17, 

R2=0.35; data not shown). Walkley-Black values were greater than the thermal 

analysis-derived values for SOM, which is not surprising as the Walkley-Black 

procedure is known to oxidize a varying portion of BC, depending on particle size, C 

concentration and source material, making it possible to overestimate SOM in 

recently rehabilitated minesoils with low total organic C (Conyers et al., 2011, 
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Siavalas et al., 2013, Skjemstad and Taylor, 1999). Walkley-Black also significantly 

underestimates C in many organic substrates and is influenced by soil texture and 

soil depth (Conyers et al., 2011, Lettens et al., 2007). As such, while Walkley-Black 

might serve to give an indication of plant-derived, new organic carbon accumulation 

and has been used for this purpose in coal-containing sediments (Siavalas et al., 

2013), there is a long history of recommending against the method for the purposes 

of distinguishing between SOM carbon stocks and pyrogenic and geogenic forms of 

C (Bremner and Jenkinson, 1960). 

Conclusion	
Thermal analysis using ramped combustion has been used for the 

quantification of BC in sediments and soils (De la Rosa et al., 2011, De la Rosa et 

al., 2008) and in quantification of coal in mine soils (Maharaj et al., 2007a). However, 

as noted above, a single cut-off temperature to distinguish between two components 

during ramped combustion can be problematic, and thermogravimetry can be 

problematic because some mass loss during ramped combustion is not associated 

with organic matter oxidation. Through a series of experiments, it was demonstrated 

that materials with similar thermal properties (i.e., BC and coal) can be distinguished 

and proportionally quantified in natural soils as well as in minesoils using ramped 

combustion measuring CO2-EGA paired with chemometric analysis using MCR-ALS. 

While the inclusion of known end-members in the MCR-ALS analysis improved the 

estimates, results suggest that the approach may be appropriate when no such initial 

guesses are available. However, there are limitations to the use of this method, such 

as the presence of carbonate and other inorganic carbon sources. Carbonates 

frequently decompose at temperatures similar to the combustion temperatures of 

pyrogenic and geogenic organic C. This poses a potential problem in distinguishing 

these pools. Greater total carbon concentrations attributable to carbonates could 

inflate the MCR estimates for pyrogenic and geogenic C, and therefore be less 

reliable. However, sample pre-treatment with acid to remove carbonates (which was 

not performed in the current study) may alleviate this problem. In addition, the 

unknown soils tested appeared to have relatively low geogenic C concentrations. It is 

unclear whether MCR estimates would be more or less robust if there were greater 

proportions of geogenic and pyrogenic C, and further testing with other soil types, 
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including carbonate-containing soils, is needed to extend the applicability of this 

technique to other soils.   
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7 Diffuse	Reflectance	Infrared	Fourier‐Transform	
Spectrometry	

There has been growing interest in using infrared spectral analysis to predict 

the properties of soils in order to replace wet chemical analysis (Du et al., 2007b, Ge 

et al., 2014, Reeves III, 2010). While spectroscopic analysis has not yet advanced to 

the point where soil property predictions are accepted without further wet chemical 

analysis, spectral libraries are continuing to be developed (Baldock et al., 2013a). 

With the possibility of developing a spectral library for the prediction of different 

carbon pools in minesoils in mind, a subset of the minesoils were scanned in the 

mid-infrared spectrum. Sample similarity, handling methods, including additional 

sieving and spectral pre-processing were investigated.  

For small datasets (n<40), it is beneficial for the samples to be similar, to 

improve the accuracy of predictions (McBratney and Minasny 2010, pers. comm., 3 

August). While there are high levels of variability in minesoils due to the methods of 

their creation, a PCA run on the MIR spectral dataset can determine which samples 

are more similar to each other to assist in selecting which samples to include in a 

PLSR model (Baldock and Hawke, 2010, Baldock et al., 2013a). Models built with 

large datasets of more dissimilar soils (e.g. country scale MIR models) do not 

perform as well as smaller sized, local models at predicting soil properties at a field 

scale as the prediction accuracy decreases unless actions such as sample spiking or 

extra-weighing is used (Sankey et al 2008, Guerrero et al. 2014, Grinand et al., 

2012).  

Methods	
Aliquots of dried and sieved soils were ground in a Retsch 2000 planetary ball 

mill for 180 seconds using zirconium oxide cup and 10mm diameter zirconium oxide 

balls. Samples were analysed in DRIFTs at two facilities, Queensland University of 

Technology (QUT) to build a mine soil spectral database and the Queensland State 

Government’s Department of Science, Information Technology and Innovation 

Ecosciences Prescinct Boggo Road soil laboratory to predict soil properties using the 

SCaRP model.  

At QUT, powdered samples were loaded into the spectrometer sample cup 

and leveled. A KBr blank was subtracted from the measured spectra to remove 

atmospheric and instrument artefacts. The blank was refreshed at least once every 
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two hours of scanning to compensate for changing humidity within the local 

environment. 

 Samples were scanned on a Thermo Nicolet Nexus 870 FT-IR with the DRIFT 

attachment from 4000-400 cm-1 at 8 cm-1 resolution in transmission and taking the 

average of 128 scans.  

Spectral	preprocessing	
Spectra were loaded onto The Unscrambler (CAMO Software AS, 2011), 

visually inspected for abnormal spectra clipped from 4000-1072 cm-1. To further 

remove atmospheric effects, particularly the effects of the ambient CO2 levels, 2441-

2380 cm-1 were down weighted to zero in further analyses. Following this, the 

spectra were analyzed and compared in their raw format, baseline corrected and 

transformed with the standard normal variate function.     

Results	and	discussion	
A PCA on the raw spectra showed the Blackwater and German Creek 

samples, both collected in 2010, separating from the bulk of the Curragh and 

Norwich Park samples (Figure 10). If this trend continues following spectral pre-

processing, this suggests that the German Creek and Blackwater samples should 

not be used in building a model for predicting the soil properties of the other mines 

as they would be too dissimilar to the other soils and skew the model. The building of 

a spectral model with this data is presented in Chapter 6.3. 
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Figure 21 PCA scores plot of DRIFT spectral data of minesoils 

 

7.1 The	effects	of	removal	of	coarse	particles	from	milled	soils	
The benefits of standardized soil preparation protocols on the quality of 

spectra and spectral analysis is known to reduce spectral variance, variance in 

predictions and error of prediction  (Stumpe et al., 2011, Baldock and Hawke, 2010, 

Baldock et al., 2013a, Bellon-Maurel et al., 2010). Also, particle size is known to 

have an inverse relationship with quality of spectra (Fuller and Griffiths, 1978). Fine 

milling improves homogeneity within a sample, making it more representative of the 

bulk sample by preventing one large particle from being over-represented within the 

small DRIFT sample holder.  

However, some materials, such as rocks or plant matter, can survive the 

milling process and remain as distinct particles. It is believed that the larger surviving 

grains, some as large as 1-2 mm, are derived from hard rocks within the soil sample. 
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These rocks are assumed to not contain notable concentrations of organic carbon or 

BC. Therefore, the removal of these grains in effect concentrates the organic carbon 

within the fines that pass sieving.  

Method	
Ball milled samples were sent to Queensland State Government’s Department 

of Science, Information Technology and Innovation Ecosciences Prescinct Boggo 

Road soil laboratory for DRIFTs analysis using the SCaRP calibration (see NMR 

section of Chapter 1.4), including aliquots of five samples that were re-sieved to 

remove larger particles ( <0.2 mm) that had survived milling. Particle size is known to 

reduce spectral quality as large particles reduce homogeneity of samples and can 

occupy a significant portion of the sample in the sample holder.  

 SCaRP calibration predictions for all carbon fractions of both neat and sieved 

(corrected and uncorrected) samples were compared by paired t-test. The DRIFT 

PLSR predictions for of the sieved compared to neat samples (n-12) to see if there 

was a difference in the prediction that they produced. (see Chapter 7 for DRIFT 

methods). 

Results	and	discussion	
The neat and re-sieved samples were analysed by paired t-test of all four 

predicted carbon fractions (humic organic carbon (HOC), particulate organic carbon 

(POC), ROC, TOC) the one-tailed p-values were 0.46, 0.47, 0.37, 0.49 and for all 

measurements combined in one paired t-test, p = 0.50 (n=20). For all 

measurements, neat against corrected values, one paired t-test p = 0.005; and 

uncorrected against corrected values, one paired t-test p = 0.001.  

These results indicate that sieving and removal of harder particles <0.2 mm 

does not change the results significantly, meaning that the mass removed was 

relatively small. Furthermore, the hard, sand-sized, assumed pieces of rock are not 

enriched in organic carbon. When the carbon fraction concentrations of the samples 

are corrected for mass loss from the removal of the larger particles, the average 

change in the values predicted using the SCaRP calibration for all values was -1.071 

mg/g the median change -0.678 mg/g and ranged from -5.254 (for an unusually hight 

TOC of 26 mg/g NP41) to -0.028 mg/g. The average correction factor used was 

0.820 and the median was 0.813. 
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Conclusion	
It was deemed that leaving non-soil organic matter in samples did not 

substantially change the organic carbon content of those soils as the mass of the 

organic matter did not account for much of the total mass of the soil in which it was 

found. 

7.2 Partial	Least	Squares	Regression	
Partial least squares regression (PLSR) is a common model building method 

used with soil spectral data for the prediction of soil carbon although other methods, 

such as neural networks have been found to produce more robust models (Knox et 

al., 2015, Mouazen et al., 2010, Kuang and Mouazen, 2012). PLSR has been used 

in conjunction with mid and near-infrared spectroscopy to predict particulate organic 

matter (Bornemann et al., 2010), nitrogen content (Yang et al., 2012) as well as 

different carbon fractions in soils (Baldock et al., 2013a). Total carbon has been 

predicted using infrared spectra by many researchers and is generally well modelled. 

As such, TC was chosen as a test property to assess the predictive power of PLSR 

on DRIFT spectra of minesoils. 

Method	
The samples (n=70) consisting of samples from Norwich Park and Curragh 

mines were divided roughly into 2/3 calibration and 1/3 validation (49:21) set by 

running a PCA to determine groupings of similar samples. The calibration set was 

selected from all of the groups to ensure it would better represent the whole 

collection samples. This was achieved by using the Kennard-Stone function in The 

Unscrambler X (CAMO Software AS, 2011) on the baseline corrected MIR spectra 

and TC measurements using the first three PCA components. The weighting of the 

data was normalized using the inbuilt mean-centering and division by the standard 

deviation function. The Kennard-Stone algorithm (1969) selects an even subset of 

samples that reflects the overall frequency and distribution. 

The PLS function in The Unscrambler X (CAMO Software AS, 2011) was 

employed using the calibration samples to build a model to predict TC from the 

DRIFT spectra. The validation samples were used to test the model.  
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Results	and	discussion	
An R2 = 0.82 was achieved using three factors, and explained 81% of the 

variance (Figure 22). The root mean square error of prediction (RMSEP) is 0.5%C. 

The mean TC is 2.3%C and the standard deviation is 1.2%C. 

 

 
Figure 22 Predicted TC vs Reference TC for baseline corrected DRIFT spectra. The calibration set is in 
blue and the validation set in red. 

  

Conclusion	
As the RMSEP is greater than 20% of the mean TC value and 42% of the standard 

deviation the RMSEP is unacceptably high for predicting TC from this model built on 

minesoils. However, it should be noted that the spectral library is quite small and the 

minesoils are not homogenous as can be seen in the PCA scores plot of the DRIFT 

spectra. It is possible that better results could be achieved with a larger spectral 

library, or if the library consisted of sample that are more similar. 

Comparing	MIR	results/Anecdote	
It is known that individual spectrometers can have idiosyncratic responses 

and spectra from one instrument should not be directly compared to spectra from 

another instrument (Ge et al., 2011). Similarly, when using chemometrics with 
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spectra from multiple instruments does not provide best results as the differences in 

the spectra due to the different machines would be included in the analysis, 

introducing a source of noise.  

As such, when comparing results from different instruments, it should be 

noted what chemometrical analytical method was used when comparing the 

separate predictions. Furthermore, the pre-processing required for different 

analyses, including the increased handling may change samples. 

Aliquots of three samples were analysed on DRIFTS at the Queensland State 

Government’s Department of Science, Information Technology and Innovation 

Ecosciences Prescinct Boggo Road soil laboratory. There were two treatments – 

milling to 0.5 mm as per Dumas TC methods and standard soil pre-processing. After 

ball milling the samples were analysed using the SCaRP database for particulate 

organic carbon (POC), humic organic carbon (HOC), ROC and TOC. Of the three 

samples, one sample showed significant differences beyond the accepted variation 

(± 10%) in all of the predictions. Also, the predicted HOC for all three soils were 

significantly different.   

While such a small sample set cannot definitively support the hypothesis that 

milling to 0.5 mm prior to ball milling alters the carbon make up of a soil sample, it 

highlights the sensitivity of spectral analyses and the fragility of soil carbon forms.  

7.3 Effects	of	Spectral	Pre‐processing	
There are multiple spectral pre-processing methods for the purpose of 

improving accuracy of predictions. These include, but are not limited to clipping, 

using a derivative, mean-centering, smoothing, and various scatter and baseline 

corrections. The purpose of these manipulations is to improve the data to noise ratio. 

The choice of which pre-processing methods to use is a somewhat individual 

decision arrived at through trial-and-error or “empirically” (Sanderman et al., 2011, 

Bloesch, 2015, pers. comm. 14 April). The raw spectra can serve to indicate which 

pre-processing techniques are most beneficial when common artefacts are 

observed, such as multiplicative scatter effect or specular reflection. 

In this subchapter, the pre-processing used in the SCaRP calibration (spectral 

clipping, baseline offset, and mean centring) are applied to a set of minesoils from 

Curragh and Norwich Park mines (Baldock et al., 2013a). The PLSR predictions 

resulting from that are compared to other preprocessing methods.  
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Methods	
Samples were ball milled in a Retsch 2000 planetary ball mill using zirconium 

oxide cup and 10mm diameter zirconium oxide balls. 

Powdered samples were loaded into the spectrometer sample cup and 

leveled. A KBr blank was subtracted from the measured spectra. The blank was 

refreshed at least once every two hours of scanning to compensate for changing 

humidity within the local environment. 

 Samples were scanned on a Nexus 870 FT-IR spectrometer with the KBr 

beam splitter attachment from 4000-400 cm-1 at 8 cm-1 resolution in transmission and 

taking the average of 128 scans.  

Spectral	pre‐processing	
Sample spectra were recorded and transformed to absorbance by OMNIC™ 

software (Thermo Fisher Scientific) from 4000-400 cm-1. Spectra were uploaded into 

The Unscrambler (CAMO Software AS, 2011) and analytical data was appended. 

The raw spectra were plotted to see if there were obvious differences between the 

samples and to examine methods of preprocessing that would improve the data 

(Figure 23). 

From Figure 23 it could be seen that there is a baseline shift, indicating that 

baseline offsetting could improve analyses. Further interrogation of the spectra 

showed some multiplicative scatter as seen by the larger differences in spectra at 

either extreme of the wavelength window than the middle. Multiplicative scatter could 

be corrected for using standard normal variate correction, the formula for which is: 

 

࢑෡ࢄ ൌ 	
ഥ࢞ି࢑࢞

࣌
     Equation 7 

 

Where, k	is the wavelength 

 ෠ܺ௞ is the corrected absorbance value at wavelength k	; 

 ; is the raw absorbance value	௞ݔ	

σ		is the raw absorbance; and 
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 is the mean absorbance value of that spectra ݔ̅

	

 
Figure 23 Raw MIR DRIFT minesoil spectra 

 
The SCaRP preprocessing used was as follows: spectral clipping to 4000-

1030 cm-1 followed by baseline correction through the in-built baseline offset and 

mean centring functions in The Unscrambler (Baldock et al., 2013a, CAMO Software 

AS, 2011). The SCaRP preprocessing is compared to using spectral clipping with 

baseline offset and linear baseline correction, standard normal variate (SNV), 

spectral clipping with standard normal variate, and standard normal variate with 

linear baseline correction. 

PLSR was performed on a sample set n = 121 with cross validation of 20 

random segments using the standard settings in The Unscrambler (CAMO Software 

AS, 2011) to predict TC. Total carbon was chosen as the measurement to test since 

the method is well established and has shown to be well predicted using MIR (Knox 
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et al., 2015, Minasny et al., 2009). The spectral preprocessing used and the results 

on the PLSR models produced are presented in Table 8. As cross validation, instead 

of a separate validation set was used, the models can be compared using root mean 

square error of cross validation (RMSECV), which is similar to RMSEP. The optimal 

factor number is the number of factors used in the PLSR model and was chosen 

based on the amount of variance explained in that model. The greater the amount of 

variance explained by the model, the better 

Results	
Table 8 shows that the PLSR models produced a linear fit but could be 

improved. It is desirable to minimize the number of factors used in the model to avoid 

over fitting while also maximizing the amount of variance explained. Thus the 

majority of the “optimal factor number” selected were well below the maximum 

number of seven created by The Unscrambler (CAMO Software AS, 2011).  

    

Table 8 MIR spectral preprocessing and PLSR response for predicting TC 

Preprocessing R2 RMSECV 

(%C) 

Optimal factor 

number 

Variance 

explained 

Spectral clipping, 

baseline offset, 

linear baseline 

correction 

0.754 0.76 3 75% 

SNV 0.817 0.74 5 81% 

Spectral clipping, 

SNV 
0.810 0.74 4 75% 

SNV, linear 

baseline correction 
0.825 0.74 4 73% 

SCaRP 0.81 0.75 4 70% 

 

Conclusion	
The limiting of the sample set to only minesoils from Curragh and Norwich Park 

mines was to avoid the skewing of the transformed spectra by the coal and BC 

samples whose spectra greatly differ to minesoils as well as the spectrally different 

minesoils from Blackwater and German Creek mines. While already reduced, it is 



 
 

84 
 

possible that the pool of samples used were not sufficiently similar, in soil texture 

(Table 4) or in mineral composition, resulting in a poorer fit (Knox et al., 2015). 

Norwich Park samples had on average a lower clay content, with nearly 50% of the 

samples tested having clay values ranging from 18-30%, whereas the Curragh 

samples had slightly more than 10% of the samples testing falling in that clay range. 

The majority of the Curragh samples had clay levels <40%. While the precise clay 

levels may be questionable, it can be concluded that the Curragh samples had 

higher clay levels than Norwich Park. 

While all of the preprocessing treatments produced similar RMSECV, SNV as 

a preprocessing step can be seen to improve the R2 values. The SCaRP treatment 

does not produce significantly improved values to the other preprocessing 

treatments. While SNV may be a beneficial spectral preprocessing technique for 

minesoil MIR spectra for further PLSR, the importance of soil similarity should be 

considered. Due to the high heterogeneity of mine soils, as can be seen in the 

carbon and electrical conductivity measurements, this may support the limiting of 

spectral models to mine specific if the soils are highly similar or the need for a 

significantly larger sample set to broaden the applicability to multiple mine sites. 

 

7.4 Prediction	of	Green	Carbon	by	Diffuse	Reflectance	Infrared	Fourier‐
Transform	spectrometry	(DRIFTs)	

Diffuse reflectance infrared Fourier-transform spectrometry is a technique 

where samples are scanned with infrared energy in a spectrometer that detects the 

vibration of chemical bonds. It is fast, non-destructive and has been shown, when 

coupled with multivariate analysis (chemometrics), to be able to predict total organic 

carbon and charcoal content of soil samples (Janik et al., 2007, Hobley et al., 2014), 

and characterize coal (Bona and Andrés, 2008a). Samples of charcoal, coal, spoil, 

mine soil and agricultural soil were scanned at Queensland University of 

Technology. 

The resulting spectra showed visible peaks in areas correlating to carbon ring 

structures in the mine soil. Since carbon rings are found in black carbon and coal it 

was believed that these peaks could be used as proxies for BC and coal.  

This was encouraging as DRIFTs could potentially be used semi-

quantitatively through the comparison of the areas underneath peaks as done by 
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Hobley et al. (2014).  However, it is much more common to use multivariate analysis 

(partial least squares regression) to predict quantities of any compound under study.  

Historically, solid samples would be diluted with a non-absorbing material (i.e. 

KBr) to allow the energy to diffuse into the sample and refract. There is now a 

movement towards less sample preparation, including scanning samples neat, or 

undiluted (Reeves III et al., 2005, Sanderman et al., 2011, Hobley et al., 2014).  

During milling of the soils, it was noted that many samples adhered and caked 

onto the walls of the milling jar, resulting in grit remaining. Some samples would still 

contain grit even after being milled twice. Due to the ineffectiveness of re-milling at 

reducing grit and little change in carbon values (see subchapter 7.1) it was decided 

to standardize sample handling by milling all samples once. Likewise, coarse 

particles were not removed by wet-sieving or wet-milling for fear of altering the 

sample by introducing water or other chemicals.  

The inclusion of larger particles in the DRIFT assay is known to cause 

baseline sloping and introduce noise (Chalmers, 2006, Faix and Böttcher, 1992) as 

well as reduce the homogeneity of the sample resulting in higher variability in the 

spectra (Baldock and Hawke, 2010). However, as the spectra are not being directly 

interpreted as done by Hobley et al. (2014) but rather by chemometrics, it is believed 

that spectral pre-processing and the statistical analysis should compensate for this 

and other artefacts (Bona and Andrés, 2008a). 

It is known that water masks DRIFT spectra at certain bands. Despite this, no 

extra drying step after initial soil processing was done. It was deemed too difficult to 

maintain artificially low moisture levels due to the high amounts of clay in the 

samples (see Figure 10),as its hygroscopic nature combined with the time required 

to transport samples to the spectroscopy laboratory would mean samples would 

begin absorbing atmospheric water upon removal from the drying oven. As earlier 

studies have not reported an additional drying step, it is assumed that the effect of 

water will be overcome by the use of chemometrics in analysing the spectra (Hobley 

et al., 2014, Sanderman et al., 2011). 

A treatment of the spectra similar to what was done in Sanderman et al. 

(2011) was selected to best approximate results. Subchapter 7.3 investigating other 

spectral preprocessing techniques indicated that SNV may improve results. 
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Method	
Processed soils were finely milled using grinding jars and 10 mm diameter 

milling balls of zirconium oxide in a Retsch PM 200 planetary ball mill. The ball 

number, duration and RPM settings for grinding (10, 3 minutes, 550 RPM) were 

developed from suggestions by the manufacturer after their analysis of a few 

exploratory samples sent to their laboratory.  

At the Queensland University of Technology spectroscopy laboratory, the 

samples were analyzed on a Thermo Nicolet NEXUS 870 FT-IR averaging 128 

scans from 400-4000 cm-1, 8 cm-1 resolution and a KBr beam splitter. The DRIFT 

sample cup was loosely filled with soil and the surface smoothed. The soils were 

tested milled, neat and not pelleted. Samples of coal and charcoal were diluted with 

KBr at roughly 1:9 by volume to reduce absorbance. A pure KBr background was 

subtracted from the resulting spectra. 

Analysis	

Data	pre‐processing	
Spectra were visually inspected using The Unscrambler X (CAMO Software 

AS, 2011) and underwent PCA to identify similar soils. The PCA loadings were also 

noted and inspected for their resemblance to noise. The spectra were observed to 

display scatter and variable baselines (see Chapter 7.3). 

Baselines were corrected using The Unscrambler X (CAMO Software AS, 

2011) baseline offset function. It was visually obvious that correcting the baseline 

shift improved the alignment of the spectra. In Figure 21a, a selection of soils were 

repeatedly scanned with their raw spectra plotted all together. The replicate spectra 

would ideally be identical to each other. However, due to baseline shift and scatter 

effects, the raw spectra of replicates differ from each other. In Figure 24b where the 

baseline has been corrected, scatter is more evident as seen by the spread at the 

extremities of the spectral window. 
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Figure 24 A set of soils repeatedly scanned a) before and b) after baseline correction 

 

As a preliminary analysis, samples that had undergone TA-EGA were used as 

a calibration set for partial least-squares regression (PLSR) on the rest of the 

samples. Wavelengths known to correlate with carbon bonds, 1580-1610 cm-1, were 

up-weighted by 20 percent while wavelengths associated with CO2, 2441-2380 cm-1 

were down-weighted in an attempt to mitigate the effects of operator error due to 

breathing during sample loading (Chalmers, 2006). 

Soils were grouped by similarity of their spectra as determined by PCA to 

maximize the MCR analysis accuracy. The results were converted to weight percent 
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of the different carbon compounds, green carbon, coal, BC, and IC. Using these 

amounts, this was added to the DRIFT spectra data matrix and was used as the 

response variable in the PLSR. 

Other analytical results, such as TC and TOC were added to the matrix and 

where the measured amounts were below the detection limits an amount was input 

to avoid blank spaces and zero-values (e.g. total nitrogen was input as 0.04%). The 

HOC, POC, ROC and TOC predictions from the SCaRP calibration were also input 

and where those values were below their threshold for certainty the limit was used 

(i.e. <0.10 mg/g HOC was 0.10 mg/g). Where twice-sieved samples were analysed, 

correction factors were used to compensate for the removal of hard materials (see 

subchapter 7.1). Where replicate scans existed (separate DRIFT spectra of the 

same soil), the calibration set were checked to make sure that both spectra were not 

in it thereby spiking the calibration.  

The wavenumbers corresponding to the presence of H2O were not 

downweighted and no attempt to minimize the amount of water in the soils after 

initial drying during processing of the soils was done. Therefore, soils with high levels 

of clay would likely have higher levels of H2O. It is known that the presence of H2O 

masks certain wavenumbers that correspond to the presence of organic carbon 

bonds. It was anticipated that the number of samples included in the analysis would 

compensate for the masking caused by higher moisture content. Furthermore, it was 

decided that efforts to maintain the samples as dry as possible prior to DRIFT 

analysis was unreasonable due to time and distance to travel between laboratories 

and the number of samples to be analyzed. It is known that the levels of clay within 

the different samples was highly variable (see Table 4 in Chapter 5.2).  

	

Results	and	discussion	
When the PCAs of the minesoil spectra were completed, there was no 

clustering seen of the samples high in clay. The samples were best separated by 

minesite as there were insufficient numbers of independent samples if separated by  

depth, age of rehabilitation or covertype. It cannot be ruled out however, that clay 

content plays a role in sample similarity although not a major component. Clay 

content has been speculated to covariate with carbon content and may protect the 
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organic matter. This was not seen to hold true with the minesoils under study with 

clay content having Pearson correlation coefficients of -0.24 and -0.23 for TC and 

TOC. 

The soils were analysed in groups according to minesite to improve sample 

similarity. Furthermore, the whole library was used together to predict carbon fraction 

levels. Validation sets of ~70% of the samples were selected by Kennard-Stone 

algorithm (1969) of the transformed spectral data. The different groupings produced 

the following results at predicting BC+Coal, TOC, GC, and SCaRP ROC (Table 9). 

 

Table 9 Partial least squares regression model metrics for different spectral pretreatments and sample 
groupings 

Treatment 

/Grouping 

PLSR metrics: Number of factors, RMSEP, R2 

BC+Coal  TOC  GC ROC 

SCaRP/Whole 2 factors, 

0.40%C, 

R2=0.536 

4 factors, 

0.54%C, 

R2=0.805 

3 factors 

0.37%C, 

R2=0.850 

3 factors, 

0.08%C, 

R2=0.941 

SCaRP 

/Norwich Park 

2 factors, 

0.39%C, 

R2=0.75 

3 factors, 

0.30%C, 

R2=0.89 

3 factors 

0.20%C, 

R2=0.957 

2 factors, 

0.05%C, 

R2=0.897 

SCaRP 

/Curragh 

5 factors, 

0.13%C, 

R2=0.849 

5 factors, 

0.45%C, 

R2=0.912 

3 factors 

0.43%C, 

R2=0.903 

4 factors, 

0.06%C, 

R2=0.895 

SNV /Whole 6 factors, 

0.17%C 

R2=0.766 

4 factors 

0.31%C 

R2=0.786 

3 factors 

0.36%C, 

R2=0.829 

2 factors 

0.09%C 

R2=0.936 

SNV /Norwich 

Park 

5 factors, 

0.45%C 

R2=0.855 

3 factors 

0.33%C 

R2=0.875 

2 factors 

0.12%C, 

R2=0.931 

2 factors 

0.03%C 

R2=0.945 

SNV /Curragh 5 factors, 

0.14%C 

R2=0.858 

4 factors, 

0.54%C 

R2=0.899 

3 factors 

0.42%C, 

R2=0.905 

3 factors, 

0.06%C 

R2=0.917 

 

Table 9 shows the number of factors chosen in the model, the resulting root 

mean square error of prediction (a goodness of fit parameter) and the linearity of the 
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regression by the R-squared value. Increasing the number of factors would reduce 

the RMSEP and increase the R-squared value, however it also risks overfitting the 

data. Often, the improvement in the R-squared would be minimal above the value 

0.8 thus lower factor numbers were usually selected after this value had been 

reached. Factor numbers were also selected to be similar to each other to facilitate 

comparison between treatments/carbon pool models. 

When a larger dataset was used for predicting carbon pools greater errors 

were produced and lower R2 values. This indicates that it is better to limit the 

calibrations to within a minesite as the minesoils from different mines are too 

different from each other. Similarly, it would not be advisable to use calibrations from 

any individual minesite to predict carbon levels of minesoils outside of that minesite.  

Of GC, TOC, and combined BC and coal, GC was the best modelled, 

requiring fewer factors to produce greater R2 and smaller RMSEP values. The 

RMSEP values however, are unacceptably high at four to five times the RMSEP of 

the ROC predictions, indicating high levels of uncertainty around the carbon levels 

predicted by the models. The high TOC RMSEP supports the questioning of the 

accuracy of MIR-TOC predictions (Page et al., 2013).   

ROC was well modelled as can be seen by the low RMSEP values and high 

R2. That this carbon pool was well modelled from the minesoil spectra indicates how 

strongly the ROC pool is tied to the molecular vibrations. It should be remembered 

that ROC was originally quantified using 13C NMR, which, along with MIR both 

function based on detecting chemical bonds (Forouzangohar et al., 2015).   

Replicability	of	DRIFT	(Measurement	and	operator	error)	
There are multiple sources of variation during the DRIFT analysis. From the 

amount of moisture in a sample, as affected by the relative humidity in the 

laboratory, the concentration of CO2 in the atmosphere as affected by the breathing 

of the operator to the variability within an aliquot of sample depending on the 

homogeneity of the sample. 

The error can be divided into operator error and experimental error. The 

operator error includes, CO2 levels obscuring sections of the spectra, irregularity of 

the scanned sample surface within the sample cup effecting the ability of the 

collector from detecting radiation and sample heterogeneity due to ineffective milling 

or mixing of the soil sample.  
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Experimental error may originate from the changing characteristics of the 

laboratory like CO2 levels and humidity. There can also be instability of the laser 

beam from power fluctuation. 

In order to give a measure of the error in the spectra, several randomly 

selected soils were scanned multiple times. The variation in the spectra of the 

different aliquots of the same soil were quantified by calculating the standard 

deviation across each measured wavelength (Bona and Andrés, 2008b). Soils 

scanned on different days with different laboratory conditions were also included in 

this analysis. 

 
Figure 25 Average spectra of NP06 2e (n=3) with standard deviation shown in grey. The replicate spectra 
were consistent, with the greatest variance appearing in the 3500-3200 cm-1 area, known for water 
absorbance and 2360-2330 cm-1 wavenumbers, known for CO2 absorbance. The variation present may be 
attributable to differences in the laboratory environment and operator error, particularly the relative 
humidity in the laboratory and the CO2 present in the sample chamber; either from the operator exhaling 
when placing the sample in the sample chamber or a change in the length of time a sample was left in the 
chamber before the spectra was recorded. As these sources of error could not be easily excluded, it was 
concluded that they were acceptable. 

 
There is also a question of the effect of the KBr background milling state on 

the spectra. Some soils were scanned with a milled KBr background and some were 

scanned with an unmilled KBr background. The differences in these samples could 

also be attributed to the difference in time between scannings (years). However, 
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common practices around soil samples hold that following drying and processing, 

soils would change minimally, despite the directions in Schumacher (2002) and the 

finding of the change in TOC over time in Appendix G. 

 It is concluded that the error in the DRIFT analysis is acceptable and that the 

imperfect milling noted of some soil samples would be of little consequence, or does 

not significantly change the spectra of mine soils. It is noted that the larger particle 

sizes in a sample would change the path length of the beam reflecting within the 

sample and it could be argued that the background should be milled and that the 

soils are different for this reason. 
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8 MCR	on	unknown	minesoils	
 

Chapter 6 demonstrated that TA-EGA with MCR can produce good 

predictions of BC and coal using CO2-EGA data of soils with known BC and coal 

composition. In this chapter, MCR is applied to a larger set of minesoils with 

unknown BC and coal composition. The carbon fractions are then compared to 

SCaRP resistant organic carbon (ROC) for validation (Sanderman et al., 2011). 

 

8.1 Application	of	TA‐EGA	with	MCR	to	minesoils	
TA-EGA with MCR is applied to minesoils from different coal mines along a 

depth profile to determine if any patterns can be observed with depth, in soils with 

varying age of rehabilitation and cover type. An illustrative example of the variability 

in the carbon pools quantities is also presented. 

Methods	
The TA-EGA thermograms were visually inspected to gain a sense of what 

the data was like. Both mass and area under the curve normalizations were 

inspected (see Figure 26 and Figure 27).  

For further analyses, the TA-EGA CO2 thermograms of 2013 collected 

minesoils were baseline corrected, area-normalised (CO2 detected), and truncated 

using the PeakFit (Systat), Proteus (Netzsch), and R software packages (R 

Development Core Team, 2008) to the range between 120-800°C. This temperature 

range was chosen as most H2O has been removed and significant amounts of CO2 

are released between ~200-800°C. These were loaded into The Unscrambler X 

(CAMO Software AS, 2011) for principal component analysis (PCA) and MCR 

analysis. The PCA was run on the thermograms to identify similar sample groupings 

in an attempt to optimize MCR analysis by reducing the noise in the data. As there is 

variability in the rate and temperature of combustion for different coals, their CO2-

EGA thermograms also differ. Since MCR produces curves of the pure components, 

the more similar the shape of the thermograms of the different carbon fractions 

within their grouping, the better the MCR prediction will be. Additionally, PCA gives 

an indication of the optimal number of components for the following MCR-ALS 

analysis. The standard settings for PCA were mean centering, NIPALS algorithm, 

cross validation with randomly selected sets (n=82) with 20 segments.  
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Multiple MCR-ALS analyses were performed, varying the number of samples 

included, EGA curve normalization by sample mass or CO2 detected (area 

normalization), the way in which the samples were grouped (by minesite, by cover 

type, etc), the inclusion of the coals and BC samples, and whether to identify initial 

guesses for pure components or not.  

The MCR analyses were performed on the EGA thermograms from soil 

samples collected from two mines, Curragh and Norwich Park in 2013 and the coals 

and BC described in Chapter 4. MCR components were assessed on the shape of 

the curves and peak temperatures. MCR solutions were judged on the basis of 

solution convergence and total residuals.   

Results	and	discussion	
The choice of normalization for the EGA can have a strong influence on the 

MCR solution. Although the peak combustion temperatures of the pure components 

should not change, the relative contribution of each component would change in 

order to fill the differently shaped EGA curves best. Also, the use of mass 

normalization would introduce intensity ambiguity in the MCR resolved pure 

component magnitude (Abdollahi and Tauler, 2011) (CAMO Software AS, 2006). 

The difference between these two normalizations is that the relative contributions of 

carbon materials with different thermal resistance is more evident in the area 

normalized samples, whereas the sample mass normalization reflects the true 

carbon richness of the samples.  

Despite the ease of interpretability of the PCs for mass normalized data, area 

normalization was selected for the subsequent MCR-ALS as area normalization 

showed better separation of the samples in the PCA. The use of area normalized 

data simplified the interpretation of the MCR-ALS component contributions; since 

component contribution as given by the program are relative (i.e. intensity ambiguity 

is removed) quantitative contributions can be calculated by multiplying the relative 

contribution of the component by the total carbon for each sample. 

The mass-normalized thermograms made the difference between the 

samples from different mines more evident (see Figure 26). The EGA curves showed 

four main peaks in the samples at ~350°C, 450°C, 560°C and above 700°C with 

some smaller features within the first three peaks (see Figure 27). The third peak 

above 700°C indicated that these samples contained inorganic carbon.   
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Figure 26 Minesoil CO2 EGA curves normalized by sample mass and grouped by minesite. German Creek 
samples were included to demonstrate the difference between mines. Most Curragh samples have a peak 
>700 °C indicating the presence of inorganic carbon. The German Creek samples contained significantly 
less carbon than the samples from the other mines as the green coloured curves are engulfed by the 
yellow and blue curves. The Norwich Park samples generally appear to have more carbon in the >500°C 
peak than most Curragh samples. 
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Figure 27 Minesoil CO2 EGA curves normalized by carbon detected (area normalization) and grouped by 
age of rehabilitation. The unmined samples included show a greater proportion of carbon in the <400°C 
range than the mined samples. Some baseline years show a strong peak at 560°C indicating a high 
proportion of more thermally stable organic matter, such as BC and coal. This is to be expected as the 
baseline sites have had little organic inputs due to its low developmental age. However, the depicted 
curves show multiple samples from the same pits, explaining the high similarity between those samples 
and why broader conclusions cannot be drawn from this figure.  

PCA	for	the	determination	of	sample	groupings	in	MCR	
To optimize MCR-ALS resolved pure components, soils were grouped by 

similarity prior to MCR-ALS analysis. Highly similar soil CO2 EGA curves would 

increase the weight of the differences between curves, thereby reducing noise and 

allowing the pure components solution to reach convergence with lower residuals. 

To identify similar samples, PCA was run on the CO2 EGA data. 

The PCA scores plots showed the samples were largely separated by the 

principal component (PC) that explains the second most amount of variance (24%), 

PC2. Between the two normalizations, the scores plots showed a clearer separation 

between the two minesites with area normalization (Figure 28). A few samples from 

Norwich Park were amongst the Curragh samples, mostly from one reference 

(unmined) pit. The other Norwich Park samples that were not separating from the 

Baseline <2years Unmined 15+ years
2-3 years (early) 4-6 years (established) 7-10 years (established)
11-14 years

Temperature (Degrees C)
120 163 207 251 294 338 382 425 469 513 556 600 644 687 731 775

 C
O

2 
(p

pm
/m

g 
ca

rb
on

)

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007



 
 

97 
 

Curragh samples were one 20-year old spoil layer sample (NP20_3e) that the 

influence plot showed was an outlier, and a younger, 0-2cm sample (NP01_2a). The 

Curragh samples highest along PC-2 are from the spoil layer, while the lowest were 

from the 0-2 cm depths. The scores plot, along with the loadings plot of PC-2 (Figure 

29b), that shows how that principal component was weighted, indicate that the 

Curragh samples tended to proportionally have more inorganic carbon since the 

peak of PC-2 is above 700°C and everything below that had negative loadings. 

Therefore, it appears that the area normalized samples PCA is more sensitive to the 

underlying mineral matrix than the mass normalized EGA data when samples with 

carbonates are present (Figure 30).  More plainly, PC2 from area normalized data 

(Figure 29b) is mainly representing carbonates. 

 
Figure 28 PCA of 2013 collected samples scores plot of CO2-EGA data area normalized. Unmined sites 
are comprised of samples from both mines and have minimal surface disturbance. Thus, they are 
somewhat similar to natural soils in that the profile has not been removed and replaced for the purpose 
of mining.  
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Figure 29 a) PC-1 and b) PC-2 loadings for CO2-EGA area normalized samples, the x-variables units is 
temperature in °C 

 
The loadings of the principle components showed that for area normalization, 

PC-1 (Figure 29a) that explains 62% of variance is of thermally stable carbon 

materials, as the peak is at ~570°C. 

 

a) 

b) 
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Outliers	
If the samples used in the MCR are dissimilar, the MCR pure components 

may be calculated to fit the variance in the data set caused by the dissimilar samples 

or the analysis will produce larger residuals. As the CO2 thermograms are dependent 

on the content of the mixture of carbon containing matter and its interaction with the 

mineral matrix, if thermograms differ from the majority of samples, it is indicative that 

a variation exists in the carbon containing matter or possibly, in the matrix (Peltre et 

al., 2013; Ascough et al., 2011).  

To detect whether the MCR pure components are overly influenced by 

potential outliers, thereby producing poorer carbon pool apportioning, outlier samples 

were removed from the MCR analysis to examine the impact on the pure 

components and carbon apportioning.      

The influence plot provided in the PCA overview graphs (Appendix H) showed 

that three spoil layer samples, NP01_1e, NP20_3e, and CU17_1e were outliers as 

they appeared in the upper right of the graph. When outliers were removed from the 

MCR-ALS analysis, five samples had changes in the carbon pools of <1%C. The 

most notable change was in German Creek coal, where all carbon was attributed to 

either BC or GC instead of as coal carbon. The component peaks remained at the 

same temperature with minor changes in the tails of Component -1, which accounted 

for inorganic carbon. As the difference was minor, it was decided to keep the outliers 

in the dataset, but it was noted that the prediction for these samples would be 

relatively poor since they did not fit the model well. 
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Figure 30 PCA of 2013 collected samples scores plot of CO2-EGA mass normalized 

 
For comparison to area normalizion, a PCA was performed on the mass 

normalized EGA data (Figure 30). PC-1 explained 70% of variance and was 

representing more labile carbon materials, as can be seen by the loadings plots. PC-

3 was the inorganic carbon, and this PC explained 6% of variance (Figure 31). 

The mass normalized PCA was optimized at 3 components with 94% of the 

variance explained while the area normalized PCA was optimized at 4 components. 

 
Table 10 PCA explained variance by number of principal components for mass and area normalizations 

Normalization PC-1 PC-2 PC-3 PC-4 PC-5 

M
as

s 

Calibration 
set 

70.12 88.13 94.50 96.44 97.60 

Validation 
set 

68.14 86.97 93.39 95.36 96.33 

A
re

a 

Calibration 
set 

62.27 85.89 90.14 93.85 95.75 

Validation 
set 

62.23 84.81 87.06 92.24 94.02 
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Figure 31 PC-1,2,3 for mass normalized CO2-EGA PCA, the x-variables units is temperature in °C 
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 The difference in the pure components identified from the two normalizations 

can be seen when running MCR-ALS (See Figure 32). In both cases the coals and 

char were included in the sample set, but not identified as pure components and 

component number set to six. 

 
Figure 32 6-Component solutions for MCR-ALS of mass and area normalized CO2-EGA data with coals 
and char included but not identified 
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Along with the change in the shape of the components, the sample residuals 

change. This means that the models fit their respective datasets quite differently as 

the residuals change for each sample. Samples that are not well described by the 

MCR-ALS solution will also have high residual values.    

MCR	Optimization	and	Interpretation	
In this application of MCR-ALS, when optimizing the solution, it is important to 

visually inspect the components to determine if they can be interpreted. Another 

source of information on the optimal number of components in the solution, when 

rotational ambiguity exists, is to look at the total residuals. Area normalization was 

chosen to control intensity ambiguity, as area normalization effectively makes all 

samples equal in carbon richness. When MCR-ALS is run with coals included in the 

analysis, but not identified as pure component estimates, the analysis finds 

convergence at 5 and 6 components when sensitivity to pure components is lowered 

and the number of iterations is increased (Figure 33 and Figure 34). The y-axis is 

arbitrary as the component curves are unit-vector normalized (Tauler, 2016).  
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Figure 33 MCR-ALS component spectra for all soils from area normalized, coals and char included but 
not identified 
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Figure 34 MCR ALS component spectra for all soils area normalized, coals and char included but not 
identified 

 
A comparison of the component spectra of area normalized MCR-ALS with 

coals and char included in the sample set versus excluding them (soils only) is 

below. The number of components was decided based on the total residuals (Figure 

35). As the CO2-EGA data had been area normalized, there are no units for the y-

axis of the residuals plots, but rather the intensities of total residuals should be 

considered. 
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Figure 35 Total residual graphs of area normalized CO2-EGA data with and without coals and char 
included. Area normalization of the data renders the y-axis unitless and should be considered only as 
intensity. 

 
The decreases in total residuals with increasing number of components drops 

off at around 5-6 components indicating that using more components would 

effectively be modelling noise in the data. 

Based on the peak temperatures and the shapes of the curves, the 

components were classed as green carbon, coal, char and inorganic carbon.  
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Discussion	
The 5-component solution MCR-ALS component concentrations of a selection 

of soil samples using area normalization was selected for discussion below. Coals 

and char were included in the sample set, but not identified as pure components 

(see Figure 33). 

There were several problems that arose with the use of MCR. These included 

the fact that the classes of materials (black carbon, coal and green carbon) 

encompass a range of materials with differing combustion profiles. There was also 

the issue of rotational ambiguity, where MCR determines there are multiple solutions 

(Abdollahi and Tauler, 2011). However, when different samples were included in 

MCR-ALS analyses (i.e. including coals and char in the data set with or without 

identifying them as pure components) the components had largely similar trends and 

the total residuals also remained similar.  

To create the BC, Coal and Green Carbon values to input to a PLSR-DRIFT 

model, area normalized data MCR results were chosen as it was seen that 

proportional contributions were well correlated (See Chapter 6). As different coals 

have differing carbon levels and peak combustion temperature and are different 

again to the char (which itself is part of a continuum), to optimize the MCR solution, it 

would be beneficial to include samples of coal or BC that could reasonably be 

expected to be present in the samples. In the case of coal mine soils, locally mined 

coal could easily be included in the sample set. 

Number	of	components	
The rotational ambiguity, where there are multiple solutions to the MCR 

equation (Equation 4), present in this application of MCR-ALS may be promoted by 

the ambiguity in each of the carbon pools being modelled. Green carbon, BC and 

coal each contain a spectrum of different molecules. 

To compare between six and seven components, the BC and coal curves 

were combined to create one class, as the additional curve in the seven component 

system is in the BC and coal temperature region. Seven-component systems tended 

to attribute more carbon to BC/coal than the six-component systems with only three 

samples decreasing in value, all of them from one pit (NP20_2). The average 

change in BC/coal values was a 32% increase from the mean value between the two 

cases. The increase in the BC/coal contributions resulted in a trade-off from the 
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lower temperature green carbon component and both inorganic carbon components, 

since these have tails running through the same temperature ranges as BC and coal. 

The component concentrations are found in Appendix F and Figure 32. 

 

 
Figure 36 Carbon pools apportioned to soils from Curragh and Norwich Park mines 
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Sensitivity	testing	
To test the sensitivity of MCR-ALS, four samples of known mixtures of a 

minesoil (BW19_2d) with char and coal were added to the data set while the pure 

char and coal samples were removed. These mixtures are described in Chapter 6 

and were the 2% carbon added 1:1, 3% carbon added 1:2, 1:1, 2:1 charcoal to coal. 

These four mixtures were chosen as to not outweigh the number of pure char and 

coal samples being removed. The new components concentrations were compared 

to the concentrations from the solution that included the pure char and coal samples. 

Calculated concentrations of coal and char for the mixtures were compared to the 

predicted amounts. 

Based on the total residuals graph and selecting to separate coal and BC, a 

six-component solution was selected. The components were divided into two green 

carbons, and one of each BC and coal, and two inorganic carbons with peaks at ~ 

350°C, 440°C, 550°C, 590°C, 710°C and 750°C respectively (Figure 37).  

 

 
Figure 37 MCR-ALS components derived when pure coals and BC are replaced with minesoil mixtures 
with coal and BC 

 
The changes in the values were generally an increase in green carbon and a 

decrease in coal and inorganic carbon values. The greatest absolute change was 

0

0.05

0.1

0.15

0.2

0.25

125 225 325 425 525 625 725
Temperature (°C)

Component Spectra

IC2

Coal

IC1

BC

GC1

GC2



 
 

110 
 

0.6%C increase of green carbon in a surface sample (Figure 38). This amounts for a 

22% increase from the model including pure coals and char. 

The MCR-ALS component concentrations for the mixtures of minesoil with BC 

and coal were highly skewed to BC and green carbon, with the 2:1 BC to coal 

mixture reporting 0% coal while green carbon levels were also inflated (Table 11). 

Table 11 MCR-ALS modeled carbon pools of mixtures of minesoil with BC and coal 

Minesoil ID, 

target C level 

(BC:Coal) 

Coal (%C) BC (%C) Green carbon 

(%C) 

Sum total 

carbon (%C) 

BW19_2d 3%C 

1:1 
0.039 1.360 1.653 3.052 

BW19_2d 3%C 

1:2 
0.125 1.440 1.560 3.125 

BW19_2d 3%C 

2:1 
0 1.285 1.775 3.06 

BW19_2d 2%C 

1:1 
0.004 0.559 1.393 1.956 

 

There was bias in this MCR-ALS model towards the less thermally stable 

pools. This change could be in response to the different source materials of the 

known mixtures that were used to replace the pure coals and BC. The mixtures were 

made from a soil from Blackwater mine combined with chestnut char and Goonyella 

coal. The PCA scores plot of DRIFT spectra in Chapter 7 indicated that samples 

from these minesoils were quite different from Curragh and Norwich Park samples. 

Regardless, this highlights the importance of having similar soil samples and pure 

coals/BC in the MCR-ALS analysis.  
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Figure 38 Changes in carbon levels of MCR-ALS models when pure coal and char samples are replaced with minesoil/coal/char mixtures
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Recommended	MCR‐ALS	Settings	
In the tutorials accompanying the Unscrambler X software (2011), it 

recommended that initial guesses should only be used when all pure components 

are able to be identified. Furthermore, it warned that the results will be erroneous if 

only some of the pure components are identified as initial guesses.  

Since it is impossible to have a pure component for soils containing SOM yet 

free of coal and BC, as BC is ubiquitous (Krull et al., 2008, Skjemstad et al., 1996), it 

is recommended that samples of BC and coal are included in the MCR-ALS analysis, 

but not identified as pure components. An alternative to this would be to create an 

artificial soil by adding pure organic matter to a mineral matrix. However, this may 

not produce CO2-EGA curves that approximate naturally weathered and biologically 

transformed SOM as found in actual soils. Reducing the sensitivity to pure 

components does not compensate for the poorer fit of the produced components. 

However, if coals from the same locality as the soils used in the analysis or 

alternatively, a coal that is likely to be present in the soils is available, it should be 

included in the data set but not identified as a component. 

Since the area normalized data shows the relative contributions of the 

different carbon fractions in a sample better than the mass normalized data it is the 

preferred normalization. It is because MCR-ALS is sensitive to the high carbon levels 

of the coal and black carbon relative to soils in mass normalized CO2-EGA data that 

makes mass normalization inappropriate when carbon-rich pure samples are 

included (Tauler, 2016). Furthermore, using area normalization solves the problem of 

intensity ambiguity of the component solutions (Abdollahi and Tauler, 2011). 

The chosen MCR-ALS Unscrambler settings for determining the different 

carbon fractions were as follows: 

Samples of coals and BC were included in the data set but not identified as 

pure components. All soil samples were included, even outliers, as these did not 

change the components, since their numbers were few, but rather, had high 

residuals. CO2-EGA data were area normalized. Sensitivity to pure components was 

reduced to 25 while iterations were increased to 150. 
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Figure 39 Residuals from 6-component solution, area normalized, reduced sensitivity to pure 
components 

 

The selection of the number of components depends on the operator’s 

assessment of the residuals and individual component peak temperatures (Figure 40 

and Figure 41). Figure 39 shows the temperature at which the residuals are 

accruing. In the system with pure coals and BC included, the residuals appeared to 

peak in the inorganic carbon temperature range (<700°C). There were also residuals 

in the green carbon temperature range. This may be reflective of the variety of 

different thermal stabilities of SOM.   

The component spectra (Figure 40) is interpreted as having two green carbon 

components, a BC component as well as a coal and inorganic component. These 

can then be applied to the samples to assess carbon pool levels in those soils as 

seen in Figure 42. 
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Figure 40 Pure components identified by MCR analysis of all Norwich Park TA-EGA thermograms without 
pure coal or BC thermograms included nor identified as component estimates. The general shape and 
peak temperatures of the components give the impression of inorganic carbonates, coal and charcoal 
curves. 

 

 
Figure 41 Total residuals from MCR analysis of Norwich Park soils with no pure coal or BC thermograms 
included nor identified. 

 

Application	of	MCR‐ALS	to	minesoils:	an	illustrative	example	
The high heterogeneity of minesoils makes it difficult to draw broad 

conclusions about the impact of land management decisions. However, it is possible 

to illustrate what MCR-ALS does reveal in a few pits for example. 
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Figure 42 Three examples of the application of the MCR predictions of BC, coal, IC and green carbon 
contributions down a soil profile. All three sites are 20 years old rehabilitation at Norwich Park coal mine 
with buffel grass cover. a) southerly aspect, clay soil, topsoil not applied b) southerly aspect, topsoiled c) 
westerly aspect, topsoiled 
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Three pits from Norwich Park were chosen as having the same age of 

rehabilitation and same buffel grass cover (Figure 42, Appendix C). All three are 

expected to have undergone similar rehabilitation treatment. This does not mean that 

the sites are equivalent, since the topsoil cover layer used could have been from 

disparate collection sites and there is no documentation to trace the source nor 

application methods. However, along with other stochastic variables, such as slope 

position and aspect, this was the closest approximation to similar sites there was 

available. Collection notes stated site a) was a clay soil while site b) was expected to 

have high electrical conductivity due to observed piping. However, site b) had 

significantly lower electrical conductivity (23-51 µs/cm) than sites a) and c) which 

ranged from 66-393 µs/cm and 46-596 µs/cm, respectively. Sites a) and c) also had 

a more alkaline pH, all measuring above pH 7, with the highest being pH 9.57 in the 

spoil layer, while site b) ranged from pH 6.18-7.45. The colour of the topsoil in site c) 

was notably lighter in colour to a) and b) with spoil visibly mixed into the topsoil. 

Despite the three example sites in Figure 42 having the same buffel grass 

cover and age, site b) is very different from the other two in having proportionally 

higher levels of coal and BC, lower pH and electrical conductivity. All three pits 

showed that coal and BC tend to be at higher levels near the surface. It would be 

expected at sites of greater rehabilitation age to have accumulated coal dust from 

aeolian deposition. The inconsistency between site observations and measured 

characteristics as well as the variability in carbon source compositions highlights the 

high heterogeneity in minesoils which complicate field-scale calculations requiring 

high numbers of samples. 

Conclusion		
Without any further information, MCR is able to produce pure component 

spectra. The number of components was reduced from the initial eight components 

produced by the software to five by toggling the component number setting. This 

increased the total residuals (unexplained signal) from 957 ppm CO2 to 4252 ppm 

CO2. 

Applying the MCR predictions to the mine soils involves the multiplication of 

the acidified Dumas TOC results by the percentage contributions of each 

component. By doing this, an estimate of the BC, coal, and green carbon levels in 
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each individual soil sample included in the MCR analysis is produced (see Figure 36 

and Figure 42). 

The presence of inorganic carbon complicates the analysis by introducing an 

additional carbon source with its resulting MCR components potentially contributing 

to uncertainty in the results; particularly if the shape of the tail for the IC 

component(s) includes peaks at temperatures associated with other carbon pools. 

MCR-ALS provides a purely mathematically driven solution and could conceivably 

include less thermally stable carbon in the IC component if it fits the data. The use of 

MCR-ALS on CO2 EGA data requires further investigation and validation for use in 

calcareous soils.  

The sensitivity test indicated that it was very beneficial to spike the sample set 

by including pure samples of BC and coal to give more weight to these carbon 

sources and avoid skewing the results towards the less thermally stable pools. An 

alternative way that may improve results is to restrict the samples in the MCR 

analysis to soils that are very similar. Further investigation into the effects of sample 

size and similarity is recommended. 

8.2 Comparison	of	TA‐EGA	mine	soil	BC	predictions	with	SCaRP	MIR	BC	
prediction	(Validation)	

 Concurrent with the research for this PhD, the Commonwealth Scientific and 

Industrial Research Organisation (CSIRO) was developing an infrared spectroscopic 

model for predicting, amongst other things, several SOC fractions, including a 

measure named “resistant organic carbon” (ROC) (Sanderman et al., 2011). This 

fraction was intended to be used in Roth-C models for carbon cycling and represents 

the inert carbon pool. ROC was empirically determined using solid state 13C NMR 

(Baldock et al., 2013b). ROC is considered to largely contain BC and potentially 

lignin as it contains aryl-carbon; the lignin contribution is corrected for by subtracting 

an averaged lignin signal from the NMR spectra (Baldock et al., 2013b, Skjemstad et 

al., 1999, Skjemstad et al., 1996). It was noted that cross-polarisation (CP) 13C NMR 

had a weaker signal for the aryl-carbon than direct-polarisation (DP), which is a 

significantly more time intensive analysis. A correction factor was developed from 38 

split size fractions, or 19 different samples, roughly 6% of the total number of NMR 

analysed soil fractions. 
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There are a few key points to consider when comparing a BC measurement 

with ROC. First, an ROC measurement might be greater than BC since it could 

include some portion of lignin-carbon. Second, the use of the CP/DP correction 

factor adds a source of error. Third, any infrared prediction model can only produce 

good results for new soils that fit the model set. 312 soils were used to build and test 

the ROC prediction model to be used for all Australian soils. These soils are natural 

soils, not the highly disturbed Anthroposol of mine soils. 

Despite the large number of samples in the TOC calibration and the generally 

good levels of prediction, the Queensland calibration of SCaRP data has been seen 

to over-estimate TOC (Page et al., 2013). 

Method	
A set of ball milled mine soils were analysed at the Queensland State 

Government’s Department of Science, Information Technology and Innovation 

Ecosciences Prescinct Boggo Road soil laboratory by MIR and predictions from the 

SCaRP calibrations were made. See Chapter 7 for a full description. The same set of 

soils were analysed at QUT with the BC prediction following the procedures set out 

in Chapter 7 and Chapter 1.6, respectively. 

 

Soil mass correction factor 

As SCaRP predictions are given in mg ROC/kg soil, and a number of samples 

sent for analysis were sieved to pass 0.2 mm prior to analysis, correction factors 

were calculated for the sieved samples. Individual correction factors were calculated 

using the equation below: 

࢞  ൌ ࢙ࢋ࢔࢏ࢌ

ࢋ࢙࢘ࢇ࢕ࢉା࢙ࢋ࢔࢏ࢌ
                                               Equation 8 

 
Where, fines is the mass of the sieved soil, and coarse is the mass of the 

removed particles. 

Results from the SCaRP calibration were multiplied by their individual 

correction factors. Where correction factors could not be derived due to lack of 

sample, a general correction factor was applied as the average of the correction 

factors calculated (average correction  = 0.813, n = 13). 
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Results	and	Discussion	
The paired t-test between the ROC values and the BC values from MCR 

could not reject that the two were from the same population (n = 73, two-tailed p = 

0.91). Figure 43a) shows that there was not a strong correlation between BC and 

ROC. When coal was included with BC in Figure 43b), it is seen that in this suite of 

samples, those with low ROC values were more highly impacted than those with 

high ROC values, where some samples exhibited BC and coal values 10 times 

greater than the ROC value. 

The samples that had the greatest deviation from the target 1:1 line all 

originated from one 20 year old rehabilitated pit. Similarly, all but one sample from 

the tree covertype with greater BC than ROC came from one 17 year old 

rehabilitated pit.  
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Figure 43 ROC from SCaRP MIR calibration compared with a)black carbon and b)sum of black carbon 
and coal as determined by TA-EGA with MCR-ALS with samples grouped by age of rehabilitation 

 
When the area normalized thermograms were inspected, it was evident that 

the 20 year old site thermogram included a large peak above 500 °C, indicating a 

significant amount of thermally stable BC (Figure 44). The differences ranged from 

0.5-0.8 %C accounting to 300-700% greater BC than ROC values. The 17 year old 

rehabilitated samples had a strong IC peak that may have contributed to the 

differences in the BC and ROC values. 

a) 

b) 
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Figure 44 Area normalized CO2-EGA thermograms of pit NP20_1 samples 

 

While the dataset was too small to determine any significance, it was noted 

that unmined, tree and bush covertype samples tended to have higher ROC values 

than BC.  

Conclusion	
As there was not a strong correlation between BC and ROC it may be 

concluded that the two measurements are not similar enough to consider the two to 

be the same for this set of samples. There does remain the question of whether 

ROC, while well predicted by MIR (see Chapter 6.3) is a good predictor of BC and/or 

coal in minesoils. The thermograms of several high BC value/low ROC value 

samples (Figure 44) would indicate by the peak at ~570 °C, that there is significant 

levels of BC however their ROC values are low.  

These results also raise the question of the molecular composition of the 

materials that are oxidizing at the BC peak temperature and how well these are 

modelled by MIR spectroscopy. It is possible that these more thermally stable 

materials are highly condensed carbon forms as these would not be detected using 

the NMR method that underpins the SCaRP ROC determination (Simpson and 
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Hatcher, 2004). Furthermore, this would agree with the theory of increasing thermal 

stability with increasing aromatic condensation (McBeath and Smernik, 2009). 

It is possible that some minesoils may not be well modelled by the SCaRP 

calibration. Further examination of high BC value/low ROC value minesoils with 

NMR spectroscopy would clarify the disparity between the two values. 
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9 Conclusions	and	Further	work	
The aim of this research was to develop a method to determine the quantity of 

green carbon, the soil carbon attributable to rehabilitation in minesoils, indirectly from 

the difference between TOC and the sum of BC and coal (see Equation 2) as a 

means to assess the effect of land management on SOM levels. Additional 

hypotheses of whether green carbon could be predicted using DRIFTs and if there is 

a difference in GC levels between different ages of rehabilitation and depth were 

also investigated. Towards these ends, a novel thermal definition of BC was created 

through the integration of CO2 evolution data and the chemometric technique 

multivariate curve resolution. It was shown that this method, thermal analysis with 

MCR-ALS, could differentiate between coal and BC, two materials with significant 

overlap in their combustion signatures (see Figure 13). This development is an 

improvement over other BC measurement techniques that cannot separate these 

two carbon-rich materials (e.g. UV photo-oxidation, TG-DSC) and is able to separate 

“recent” inputs into GC and BC, unlike radiocarbon analysis (Rumpel et al., 2000, 

Ussiri and Lal, 2008b). Attempts to predict GC as defined by the thermal 

analysis/chemometric method using mid-infrared DRIFT spectroscopy produced 

models with relatively high prediction error, ranging from 0.12-0.43 %C. 

Characterization of the collected minesoils showed that minesoils from Bowen 

Basin coal mines can vary in carbon content, texture and bulk density on small 

scales. This is most likely due to the method of the creation of the landforms from 

which the samples were collected and agrees with the findings of high variability of 

Shukla et al. (2007) and Sencindiver and Ammons (2000).  Most minesoils included 

in this study were classed as clay or contained >25% clay (Figure 10). The high 

levels of clay would suggest the potential to store high levels of organic matter in 

these minesoils. However, there was not a strong correlation between carbon 

content and clay content (Chapter 5). It was also demonstrated that there is 

variability in the carbon pool contributions within pits and between pits from the same 

mine and of the same rehabilitation age in by comparing three 20-year old 

rehabilitated pits (Figure 42). Despite the known high levels of variability samples 

could be differentiated by minesite by PCA of DRIFT spectra (Figure 21). This would 

indicate that while minesoils have high local heterogeneity, they are not so 

heterogeneous as to be indistinguishable from each other. However, the source of 
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this differentiation was not investigated and there were an insufficient number of 

independent samples from different covertypes and/or age groupings to examine 

trends; furthermore, it could arise from the different topsoils applied during 

rehabilitation.  

Also demonstrated was the use of different thermal combustion signatures of 

separate carbon fractions can be used to differentiate them in minesoils. MCR can 

separate fractions with greatly overlapping combustion signatures. However, this 

technique requires interpretation of the solutions resolved by the algorithm, and thus, 

some prior knowledge of what might be expected is required and may be open to 

operator error.  

Ussiri and Lal (2008b) reported a trend of increasing coal and older carbon 

with depth. This trend, however, was not evident in the soils tested from Curragh and 

Norwich Park (see Figure 32, Figure 42). Older rehabilitated samples did, however, 

have higher levels of green carbon nearer the surface, and decreasing with depth. 

This is consistent with the view of carbon inputs entering mainly from the surface and 

was also exhibited in unmined sites (Figure 36). If using 1.6%C as an average GC 

concentration for Curragh mine soils at the 5-10cm depth, and 1.04 g/cm3 as the 

average bulk density for that depth, there would be 35.4 tonnes/ha to a depth of 

20cm of GC.  

In Chapter 7 the best MCR analysis included all coal samples (multiple mines) 

and charcoal along with all of the soils without identifying any initial guesses. This 

allowed more components to be identified as the Unscrambler sets the number of 

components based on the number of initial guesses if used.  Constraints applied 

included non-negativity in component concentrations and spectra. The maximum 

number of alternating least squares iterations was 150 and sensitivity was reduced 

to 25. Thermograms were normalised by area (CO2 detected). Amounts of BC and 

coal were calculated by multiplying their component percentage contribution by TC. 

Further testing of MCR-ALS with soils containing inorganic carbon, varying 

sample set size and similarity, spiking with different carbonaceous materials and the 

effect of acid treatments to remove inorganic carbon is recommended. 

DRIFT	
The potential for quick analyses with relatively low sample preparation 

requirements have prompted the investigation into whether GC can be determined 
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using MIR DRIFTs. The contributions for the three carbon fractions, (coal, BC and 

GC) were used in building a PLSR model with minesoils. The model was cross 

validated using a set of samples that were excluded from the prediction set as well 

as compared to the prediction of ROC from SCaRP as a form of validation. That the 

fractions modelled by MCR-ALS were not well predicted by infrared spectroscopy, 

when using SCaRP ROC values as comparison, may indicate that the spectral 

library upon which the PLSR model is built is not sufficiently large enough to 

overcome the large variability in minesoils. Better results might yet be achieved with 

different spectral pre-processing. Additionally, it may be that the relative immaturity 

of the soils have not allowed the physicochemical interactions of SOM with the 

mineral matrix to come to equilibrium, further differentiating minesoils from natural 

soils and decoupling the linkage and correlation between the stability of SOM 

fractions and other characteristics of the soil, i.e. clay content. This would call into 

question whether ROC gives a satisfactory prediction for coal and BC in minesoils if 

they do not follow trends seen in natural soils. This is further strengthened by the 

sometimes large differences in BC/ROC quantities where the thermograms show 

highly thermally resistant materials are present in the minesoils.  

The poor prediction of the MCR-ALS identified pools by DRIFTs modelling 

indicates that the pools are not tightly linked to the molecular structure of different 

SOM as can be detected by DRIFTs. This is supported by the various curves, 

shoulders, and tails of the different MCR components indicating that those pools are 

comprised of a variety of molecules with different temperatures of combustion. 

Further examination of the molecular moieties comprising the different pools may be 

beneficial in further defining the carbon pools. 

 A cost benefit analysis is recommended to determine the importance of fast 

analytical method (DRIFT) over the uncertainty in accuracy of using a spectral 

definition of BC for the intention of quantifying green carbon in mine soils. While 

large numbers of samples (~20 000) would be required to detect changes of 0.2-

0.3%C, if the accuracy of the prediction is questionable it may be more advisable to 

increase the minimum detection limit and reduce the sample numbers. However, 

with the large volumes of mine soils under rehabilitation and the lack of research into 

methods to increase GC by large amounts, coarse minimum detection limits would 

be undesirable. 
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Taken from Chan, J., Baumgartl, T., Erskine, P., Glenn, V., 2015. ACARP Report C19029 
Soil Organic Matter and Green Carbon in Rehabilitation: Their Role in the Carbon Balance 

Sampling	location	coordinates	
Blackwater Mine sampling locations, 23 -24 August, 2010. 

Site ID 

AGD_1984_AMG_Zone_55

Easting  Northing 

BW00_1  690835  7360750 

BW12_1  683873  7381255 

BW14_1  686195  7349927 

BW14_2  686174  7349911 

BW18_1  686074  7356692 

BW18_2  686073  7356691 

BW18_3  686072  7356691 

BW19_1  685670  7355848 

BW19_2  685669  7355847 

BW19_3  685667  7355846 

BW31_1  684584  7371342 
 

Curragh Mine sampling locations, 24 - 25 August, 2010 and 13 to 15 May, 2013.  

Site ID 

AGD_1984_AMG_Zone_55

Easting  Northing 

CU00_1  688351  7403331 

CU00_2  693154  7410450 

CU00_3  693935  7405604 

CU02_1  690533  7404375 

CU02_2  690712  7403952 

CU03_1  690192  7396786 

CU05_1  690510  7404359 

CU07_1  691746  7407167 

CU08_1  690553  7398560 

CU08_2  690552  7398558 

CU08_3  690386  7400454 

CU08_4  690325  7400558 

CU10_1  689909  7398096 

CU10_2  689910  7398103 

CU10_3  692736  7408917 

CU10_4  692696  7408860 

CU11_1  690607  7398699 

CU11_2  690605  7398660 

CU13_1  690917  7398950 

CU17_1  691533  7406280 

CU17_2  691527  7406212 

CU21_1  689314  7402745 
 

German Creek mine sampling locations, 26 - 27 August, 2010. 
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Site ID 

AGD_1984_AMG_Zone_55

Easting  Northing 

GC00_1  661860  7463010 

GC08_1  660359  7466681 

GC08_2  657522  7455898 

GC24_1  656916  7456494 

GC26_1  660076  7463846 

GC26_2  660076  7463841 
 

Norwich Park Mine sampling locations, 16 and 17 April, 2013.  

Site ID 

AGD_1984_AMG_Zone_55

Easting  Northing 

NP00_1  644690  7497378 

NP01_1  654128  7478638 

NP01_2  644540  7499344 

NP02_1  654017  7478542 

NP06_1  651110  7489599 

NP06_2  651128  7489628 

NP10_1  643580  7498738 

NP10_2  646822  7496567 

NP10_3  644267  7498170 

NP20_1  652582  7477964 

NP20_2  652941  7478239 

NP20_3  650562  7480094 

NP27_1  651466  7482364 



Appendix C  - From  Chan, J., Baumgartl, T., Erskine, P., Glenn, V., 2016. ACARP report C19029: Soil organic matter and green carbon 
in rehabilitation: their role in the carbon balance 

 

Sample location maps 
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Soil	profile	descriptions	

Blackwater	Mine	

Profile BW00_1 

Age (Rehab year) Unmined site 

Date sampled 23 August 2010 

Slope  

Aspect  

Vegetation cover Dense Cenchrus ciliaris 

Vegetation composition 
Canopy: Acacia harpophylla 
Midstorey: Carissa sp. 
Groundstorey: Cenchrus ciliaris 

Soil surface description  

Topsoil applied? N/A 

Topsoil depth / 
stratification 

 

Other features 

Acacia harpophylla pulled (cleared) sometime since 
2000; Light grazing land use; Roots (1 – 3 mm 
diameter) most abundant at a depth of 0 – 15 cm; Soil 
dark and not easily friable 
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Profile BW12_1 

Age (Rehab year) 12 years (1998) 

Date sampled 23 August 2010 

Slope 4 - 5% 

Aspect W 

Vegetation cover Dense Cenchrus ciliaris 

Vegetation composition 

Canopy: Sparse Acacia salicina, moderate cover of 
Leucaena sp. 
Groundstorey: dense Cenchrus ciliaris with Senecio 
sp. 

Soil surface description  

Topsoil applied? Topsoiled (Brigalow clay topsoil) 

Topsoil depth / 
stratification 

 

Other features Dense root mat present 

 

Profile BW14_1 

Age (Rehab 14 years (1996) 
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year) 

Date sampled 23 August 2010 

Slope 8% 

Aspect NNE 

Vegetation cover Dense Cenchrus ciliaris 

Vegetation 
composition 

Canopy: Corymbia citriodora, Eucalyptus populnea 
Midstorey: Enchylaena tomentosa 
Groundstorey: Cenchrus ciliaris 

Soil surface 
description 

Deep litter layer present 

Topsoil applied? Yes 

Topsoil depth / 
stratification 

Topsoil to a depth of 28 cm; Spoil below; Sharp delineation 
between accumulated soil and spoil horizon 

Other features Few roots present; Many dead acacias 

 

Profile BW14_2 

Age (Rehab year) 14 years (1996) 

Date sampled 23 August 2010 

Slope 8% 

Aspect  

Vegetation cover Dense Cenchrus ciliaris 

Vegetation 
composition 

Midstorey: Dodonaea sp. 
Groundstorey: Cenchrus ciliaris, Bryophyta 

Soil surface 
description 

Deep litter layer present 

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

Deep topsoil (spoil not observed) 

Other features  
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Profile BW18_1 

Age (Rehab 
year) 

18 years (1992) 

Date sampled 23 August 2010 

Slope 17% 

Aspect  

Vegetation 
cover 

 

Vegetation 
composition 

Saltbush 

Soil surface 
description 

 

Topsoil 
applied? 

Unknown 

Topsoil depth 
/ stratification 

Accumulated topsoil to a depth of 20 cm; Spoil below; Sharp 
delineation between accumulated soil and spoil horizon 

Other 
features 

Area of soil accumulation; Roots present throughout profile 
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Profile BW18_2 

Age (Rehab year) 18 years (1992) 

Date sampled 23 August 2010 

Slope Low slope on ridge 

Aspect NW 

Vegetation cover  

Vegetation composition Acacia shirleyi  

Soil surface description Litter present 

Topsoil applied? Unknown 

Topsoil depth / 
stratification 

 

Other features Roots present throughout profile 
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Profile BW18_3 

Age (Rehab year) 18 years(1992) 

Date sampled 23 August 2010 

Slope  

Aspect  

Vegetation cover Cenchrus ciliaris 

Vegetation 
composition 

 

Soil surface 
description 

Rocky surface 

Topsoil applied? Unknown 

Topsoil depth / 
stratification 

Topsoil to a depth of 25 cm; Spoil below 

Other features 
Very dense Cenchrus ciliaris roots present to a depth of 25 cm; 
Some roots extend into spoil; Beside an ant nest 
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Profile BW19_1 

Age (Rehab year) 19 years (1991) 

Date sampled 23 August 2010 

Slope 17% 

Aspect  

Vegetation cover Dense Cenchrus ciliaris 

Vegetation 
composition 

Canopy: Corymbia citridora, Acacia spp. 
Groundstorey: Cenchrus ciliaris 

Soil surface 
description 

High litter cover 

Topsoil applied? Topsoiled (hardsetting sandy topsoil) 

Topsoil depth / 
stratification 

 

Other features 
Roots (1 - 3 mm diameter) present to a depth of 20 cm; 
Many dead acacias 
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Profile BW19_2 

Age (Rehab year) 19 years (1991) 

Date sampled 23 August 2010 

Slope 17% 

Aspect W 

Vegetation cover Poaceae sp. 

Vegetation composition  

Soil surface description  

Topsoil applied? Topsoiled (hardsetting sandy topsoil) 

Topsoil depth / 
stratification 

Topsoil to a depth of 16 cm; Stratification indicates 
downward movement of water 

Other features 
Roots present throughout profile (including spoil); High 
litter content to a depth of 0.5 cm 

 

Profile BW19_3 

Age (Rehab year) 19 years (1991) 

Date sampled 23 August 2010 
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Slope 17% 

Aspect SW 

Vegetation cover Dense Cenchrus ciliaris 

Vegetation 
composition 

 

Soil surface 
description 

 

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

Topsoil to a depth of 26 cm; Spoil below 

Other features 

Dark, moist, clay soil; Roots present throughout profile 
(particularly near surface and at a depth of 14 – 24 cm; 
Roots present in spoil); Soil at a depth of 20 – 26 cm is 
influenced by char or coal 

 

Profile BW31_1 

Age (Rehab year) 31 years (1979) 

Date sampled 23 August 2010 

Slope 20% 

Aspect ENE 

Vegetation cover Cenchrus ciliaris 

Vegetation 
composition 

Cenchrus ciliaris, forbs 

Soil surface 
description 

 

Topsoil applied? Topsoiled (1981) 

Topsoil depth / 
stratification 

 

Other features 
Grazing land use; Roots up to 10 mm diameter present; 
Roots (1 – 3 mm diameter) abundant at a depth of 0 – 20 
cm; Erosion observed 
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Curragh	Mine	

Profile CU00_1 

Age (Rehab year) Unmined site 

Date sampled 25 August 2010 

Slope Flat 

Aspect Flat 

Vegetation cover  

Vegetation composition 

Brigalow regrowth vegetation community: Canopy: 
Acacia harpophylla 
Midstorey: Enchylaena tomentosa 
Groundstorey: Cenchrus ciliaris, Poaceae spp., 
Harrisia spp. 

Soil surface description  

Topsoil applied? N/A 

Topsoil depth / 
stratification 

 

Other features 
Cracking clay; Roots (1 – 3 mm diameter) present 
throughout profile; Increasing aggregate size with 
depth 
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Profile CU00_2 

 

Age (Rehab year) Unmined site 

Date sampled 14 May 2013 

Slope 7% 

Aspect SW (242o) 

Vegetation cover Eucalyptus thozetiana 

Vegetation composition 

Canopy: Moderate cover of Eucalyptus thozetiana, 
Acacia harpophylla 
Midstorey: Sparse to moderate cover of Croton 
phebalioides, Carissa ovata with mixed shrub species 
Groundstorey: Moderate to dense Paspalidium spp., 
Aristida spp., mixed Poaceae spp. and forb species 

Soil surface description  

Topsoil applied? N/A 

Topsoil depth / 
stratification 

 

Other features 
Fallen branch and grasses adjacent to pit; Light grazing 
land use with previous logging 
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Profile CU00_3 

 

Age (Rehab year) Unmined site 

Date sampled 15 May 2013 

Slope 1% 

Aspect E (78o) 

Vegetation cover Eucalyptus cambageana and Acacia harpophylla 

Vegetation composition 

Canopy: Moderate cover of Eucalyptus cambageana, 
Acacia harpophylla with mixed tree species 
Midstorey: Sparse to moderate cover of Alectryon 
diversifolius, Carissa ovata, with mixed shrub species 
Groundstorey: Moderate to dense Cenchrus ciliaris, 
Enteropogon unispiceus, mixed Poaceae spp. and vine 
species 

Soil surface description  

Topsoil applied? N/A 

Topsoil depth / 
stratification 

 

Other features Red-brown soil; Dry, hard soil; Heavy grazing land use 
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Profile CU02_1 

Age (Rehab year) 2 years (2008) 

Date sampled 24 August 2010 

Slope  

Aspect N 

Vegetation cover Grass 

Vegetation 
composition 

Cenchrus ciliaris, Poaceae sp. 

Soil surface 
description 

Loose, crumbly surface soil 

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

 

Other features  

 

Profile CU02_2 

Age (Rehab year) 2 years (2008) 
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Date sampled 24 August 2010 

Slope Near-flat 

Aspect NE 

Vegetation cover Fabaceae sp. 

Vegetation 
composition 

 

Soil surface 
description 

Old leaf litter present 

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

 

Other features 
Topsoil to a depth > 25 cm; Spoil not observed; High clay 
content below 5 cm depth; Soil macrofauna (insects) 
observed; Fungal hyphae associated with plant roots 

 

Profile CU03_1 

 

Age (Rehab year) 3 years (2010) 

Date sampled 13 May 2013 

Slope 7% 

Aspect NE (38o) 

Vegetation cover Cenchrus ciliaris 

Vegetation composition 

Canopy: Very sparse Acacia spp., Parkinsonia 
aculeata 
Midstorey: Sparse Enchylaena tomentosa 
Groundstorey: Dense Cenchrus ciliaris 

Soil surface description Ripped surface 
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Topsoil applied? Yes 

Topsoil depth / 
stratification 

Topsoil to a depth of 40 cm; Spoil below 

Other features 
Brown clay soil with high clay content at depth; Soil 
crumbly to a depth of 20 cm; White hyphae observed 
at a depth of 10 to 20 cm 

 

Profile CU05_1 

Age (Rehab year) 5 years (2008) 

Date sampled 13 May 2013 

Slope 17% 

Aspect NE (32o) 

Vegetation cover Cenchrus ciliaris 

Vegetation composition 

Canopy: Very sparse Acacia salicina, Senna 
artemisioides ssp. artemisioides 
Groundstorey: Dense Cenchrus ciliaris with 
Panicum coloratum, Melinis repens, Sesbania 
cannabina, Macroptilium lathyroides, Clitoria 
ternatea, Ipomoea sp. 

Soil surface description  

Topsoil applied? Yes 

Topsoil depth / stratification  

Other features 
Midslope; Cracking clay soil; Roots present 
throughout profile (including spoil) 
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Profile CU07_1 

Age (Rehab year) 7 years (2006) 

Date sampled 13 May 2013 

Slope 12% 

Aspect W (264o) 

Vegetation cover Senna artemisioides ssp. oligophylla 

Vegetation 
composition 

Canopy: Sparse Eucalyptus spp., Acacia spp. 
Midstorey: Sparse Senna artemisioides ssp. oligophylla 
Groundstorey: Dense Cenchrus ciliaris with Clitoria 
ternatea

Soil surface 
description 

Litter present 

Topsoil applied? Yes 

Topsoil depth / 
stratification 

Topsoil to a depth of 30 cm; Spoil below 

Other features 
Dark clay soil; C. ternatea roots near pit; Larger roots (10 
mm diameter) in pit; White hyphae observed in litter to a 
depth of 10 cm 
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Profile CU08_1 

Age (Rehab year) 8 years (2002) 

Date sampled 25 August 2010 

Slope 5% 

Aspect  

Vegetation cover Dense Cenchrus ciliaris (98% cover) 

Vegetation 
composition 

Canopy: Eucalyptus spp., Acacia salicina 
Midstorey: Senna artemisioides 
Groundstorey: Cenchrus ciliaris, Chenopodiaceae sp. 

Soil surface 
description 

 

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

 

Other features Lower slope; Between two contour banks 
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Profile CU08_2 

Age (Rehab year) 8 years (2002) 

Date sampled 25 August 2010 

Slope  

Aspect  

Vegetation cover Senna artemisioides 

Vegetation composition 
Midstorey: Senna artemisioides 
Groundstorey: Cenchrus ciliaris 

Soil surface description  

Topsoil applied? Topsoiled 

Topsoil depth / stratification  

Other features 
Fine roots present to a depth of 18 cm; Thick roots 
present at a depth of 5 – 10 cm; Dense clay 
material below 18 cm 
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Profile CU08_3 

Age (Rehab year) 8 years (2005) 

Date sampled 14 May 2013 

Slope 9% 

Aspect WSW (242o) 

Vegetation cover Senna artemisioides ssp. oligophylla 

Vegetation 
composition 

Canopy: Sparse to moderate cover of Acacia spp. 
Midstorey: Sparse Senna spp., Acacia macradenia 
Groundstorey: Moderate to dense Cenchrus ciliaris and 
Chloris gayana with Stylosanthes sp., Macroptilium 
lathyroides, Megathyrsus maximus, Urochloa sp., Cullen 
tenax 

Soil surface 
description 

 

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

Mixed soil and spoil without clear stratification. 

Other features Brown and tan substrate; Many rocks 
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Profile CU08_4 

 

Age (Rehab year) 8 years (2005) 

Date sampled 14 May 2013 

Slope 9% 

Aspect W (262o) 

Vegetation cover Eucalyptus camaldulensis 

Vegetation composition 

Canopy: Moderate cover of Eucalyptus camaldulensis, 
Acacia macradenia, A. stenophylla, A. salicina, 
Corymbia citriodora. 
Midstorey: Moderate cover of Senna spp., Acacia 
podalyriifolia 
Groundstorey: Moderate to dense Cenchrus ciliaris 
with Stylosanthes scabra, Megathyrsus maximus, 
Macroptilium lathyroides, Sesbania cannabina, Chloris 
gayana

Soil surface description Loose, crumbly surface soil 

Topsoil applied?  

Topsoil depth / 
stratification 

 

Other features Fungal hyphae observed near soil surface 
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Profile CU10_1 

Age (Rehab year) 10 years (2000) 

Date sampled 25 August 2010 

Slope  

Aspect NW 

Vegetation cover Dense Cenchrus ciliaris 

Vegetation composition  

Soil surface description  

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

 

Other features 
High clay content; Roots present in profile below a 
depth of 20 cm 

 

Profile CU10_2 

Age (Rehab year) 10 years (2000) 

Date sampled 25 August 2010 
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Slope  

Aspect  

Vegetation cover Dense Cenchrus ciliaris 

Vegetation 
composition 

Canopy: Acacia salicina, Acacia spp. 
Groundstorey: Cenchrus ciliaris, Chenopodiaceae sp. 

Soil surface 
description 

 

Topsoil applied? Not topsoiled 

Topsoil depth / 
stratification 

 

Other features 

Uppermost 2 – 3 cm of soil profile comprises topsoil 
alluvium from upper slopes; Coal present (particularly 
abundant below a depth of 10 cm); Soil macrofauna 
(Myriapoda) observed 

 

Profile CU10_3 

 

Age (Rehab year) 10 years (2003) 

Date sampled 15 May 2013 

Slope 5% 

Aspect N (12o) 

Vegetation cover Senna artemisioides ssp. oligophylla 

Vegetation composition 

Canopy: Sparse to moderate cover of Acacia salicina, 
A. stenophylla, Eucalyptus cambageana 
Midstorey: Sparse Senna artemisioides spp. 
oligophylla, S. artemisioides ssp. coriacea, Acacia 
holosericea, Enchylaena tomentosa 
Groundstorey: Dense Cenchrus ciliaris 
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Soil surface description  

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

Spoil present 

Other features 
Acacia sp. near pit; Dense clay material towards 
bottom of pit 

 

Profile CU10_4 

 

Age (Rehab year) 10 years (2003) 

Date sampled 15 May 2013 

Slope 9% 

Aspect NE (50o) 

Vegetation cover Acacia stenophylla 

Vegetation composition 

Canopy: Sparse Acacia stenophylla, A. salicina 
Midstorey: Sparse Enchylaena tomentosa, Senna 
artemisioides spp. coriacea 
Groundstorey: Dense Cenchrus ciliaris with 
Rhynchosia minima, Phyllanthus maderaspatensis, 
Abutilon oxycarpum, Ipomoea plebeia, Corchorus 
trilocularis, Megathyrsus maximus

Soil surface description  

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

Topsoil to a depth of 25 cm; Spoil below 

Other features 
Dense clay material towards bottom of pit; Pit within 
dripline of Acacia stenophylla with Cenchrus ciliaris 
groundcover 
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Profile CU11_1 

 

Age (Rehab year) 11 years (2002) 

Date sampled 14 May 2013 

Slope 9% 

Aspect N (8o) 

Vegetation cover Senna artemisioides ssp. oligophylla 

Vegetation composition 

Canopy: Moderate cover of Acacia salicina, A. 
holosericea, Corymbia citriodora 
Midstorey: Moderate cover of Senna artemisioides ssp. 
oligophylla 
Groundstorey: Dense Cenchrus ciliaris with Chloris 
gayana

Soil surface description  

Topsoil applied?  

Topsoil depth / 
stratification 

 

Other features 
Dark brown, rocky soil; Pit within dripline of Senna 
artemisioides spp. oligophylla  

 
  



APPENDIX C 

 

Profile CU11_2 

 

Age (Rehab year) 11 years (2002) 

Date sampled 14 May 2013 

Slope 4% 

Aspect NE (44o) 

Vegetation cover Cenchrus ciliaris 

Vegetation composition 

Canopy: Sparse to moderate cover of Acacia salicina 
Midstorey: Sparse Senna artemisioides ssp. oligophylla
Groundstorey: Dense Cenchrus ciliaris with 
Macroptilium lathyroides, Rhynchosia minima, 
Sesbania cannabina

Soil surface description  

Topsoil applied?  

Topsoil depth / 
stratification 

 

Other features  
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Profile CU13_1 

 
Age (Rehab 
year) 

13 years (1997) 

Date sampled 25 August 2010 

Slope  

Aspect NNE 

Vegetation 
cover 

Cenchrus ciliaris 

Vegetation 
composition 

 

Soil surface 
description 

Loose topsoil 

Topsoil 
applied? 

Topsoiled 

Topsoil depth 
/ stratification 

 

Other 
features 

Roots and termites present below a depth of 25 cm 
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Profile CU17_1 

Age (Rehab year) 17 years (1996) 

Date sampled 14 May 2013 

Slope 13% 

Aspect WNW (280o) 

Vegetation cover Eucalyptus populnea and Corymbia citriodora 

Vegetation 
composition 

Canopy: Sparse to moderate cover of Eucalyptus populnea, 
Corymbia citriodora, Acacia salicina, A. harpophylla, A. 
stenophylla, E. crebra, E. camaldulensis 
Midstorey: Very sparse Acacia salicina, Leucaena sp., 
Enchylaena tomentosa 
Groundstorey: Dense Cenchrus ciliaris with Stylosanthes 
scabra, S. hamata, Bothriochloa decipiens 

Soil surface 
description 

Loose, crumbly surface soil 

Topsoil applied?  

Topsoil depth / 
stratification 

Topsoil to a depth of 16 cm; Spoil below 

Other features Root (2 cm diameter) near surface 
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Profile CU17_2 

 

Age (Rehab year) 17 years (1996) 

Date sampled 14 May 2013 

Slope 15% 

Aspect WNW (288o) 

Vegetation cover Cenchrus ciliaris 

Vegetation composition 

Canopy: Sparse Acacia salicina, Eucalyptus populnea, 
E. crebra, A. stenophylla, Corymbia citriodora 
Groundstorey: Dense Cenchrus ciliaris with 
Macroptilium lathyroides, Rhynchosia minima, 
Sesbania cannabina, Stylosanthes scabra, Indigofera 
brevidens

Soil surface description  

Topsoil applied?  

Topsoil depth / 
stratification 

 

Other features 
Dense Cenchrus ciliaris roots in the top 30 cm; Woody 
material present at a depth of 2 to 5 cm. 
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Profile CU21_1 

Age (Rehab year) 21 years (1989) 

Date sampled 25 August 2010 

Slope  

Aspect WSW 

Vegetation cover Cenchrus ciliaris 

Vegetation composition 

Canopy: Eucalyptus populnea, Acacia salicina, 
Acacia spp. 
Groundstorey: Cenchrus ciliaris, Indeterminable 
shrub, Heteropogon contortus, Poaceae spp. 

Soil surface description  

Topsoil applied?  

Topsoil depth / stratification Topsoil to a depth of 30 cm; Spoil below 

Other features 
Cracking clay; Roots (1 – 3 mm diameter) present 
throughout profile; Increasing aggregate size with 
depth; Soil macrofauna (termites) observed 
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German	Creek	Mine	

Profile GC00_1 

Age (Rehab year) Undermined site 

Date sampled 26 August 2010 

Slope Flat 

Aspect Flat 

Vegetation cover Dense Cenchrus ciliaris; Adjacent to Eucalyptus sp. 

Vegetation composition Eucalyptus spp., Acacia spp., Cenchrus ciliaris. 

Soil surface description  

Topsoil applied? N/A 

Topsoil depth / 
stratification 

 

Other features 
Duplex soil profile; Sandy A horizon to a depth of 15 
cm; Mottled cracking clay B horizon below 15 cm; 
Roots (1 – 3 cm diameter) present at low abundance 

 

Profile GC08_1 
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Age (Rehab year) 8 years (2002) 

Date sampled 26 August 2010 

Slope Flat ridge top 

Aspect  

Vegetation cover  

Vegetation composition 
Canopy: Eucalyptus spp., Acacia flavescens 
Groundstory: Poaceae spp., Asteraceae spp. 

Soil surface description Deeply ripped; Woody debris present. 

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

 

Other features 
Horizon boundary at 15 cm depth; Sandy clay soil; 
Fine roots present below a depth of 5 cm. 

 

Profile GC08_2 

Age (Rehab year) 8 years (2002) 

Date sampled 27 August 2010 

Slope Steep slope 

Aspect W 

Vegetation cover Cenchrus ciliaris (15% cover) 

Vegetation composition 
Canopy: Eucalyptus spp. 
Groundstorey: Cenchrus ciliaris 

Soil surface description 
Alluvium from upper slopes present; Organic matter 
is incorporated in upper soil horizon 

Topsoil applied?  

Topsoil depth / stratification  

Other features 
Dispersive soils in vicinity (piping erosion present); 
Soil crumbly; Aggregates to 3 cm diameter present; 
Sandy and clayey components present 
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Profile GC24_1 

Age (Rehab year) 24 years (1986) 

Date sampled 27 August 2010 

Slope Steep slope 

Aspect  

Vegetation cover Chloris gayana (99% cover) 

Vegetation composition 
Canopy: Eucalyptus spp. 
Groundstorey: Chloris gayana 

Soil surface description  

Topsoil applied?  

Topsoil depth / stratification  

Other features  

 

 Profile GC26_1 

Age (Rehab year) 26 years (1984) 
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Date sampled 26 August 2010 

Slope 16% 

Aspect WNW 

Vegetation cover Bare soil 

Vegetation composition  

Soil surface description Alluvium from upper slopes present 

Topsoil applied? Topsoiled (Sandy topsoil) 

Topsoil depth / 
stratification 

 

Other features 
Horizon boundary at 16 cm depth; Roots (3 – 5 mm 
diameter) present in topsoil 

 

Profile GC26_2 

Age (Rehab year) 26 years (1984) 

Date sampled 26 August 2010 

Slope 16% 

Aspect WNW 

Vegetation cover Cenchrus ciliaris 

Vegetation composition 
Canopy: Acacia spp. Standing dead stems (Acacia 
spp.) present. 
Groundstorey: Cenchrus ciliaris 

Soil surface description  

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

 

Other features 
Distinct uppermost horizon (0 – 2 cm) with a high 
level of organic matter 
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Norwich	Park	Mine	
 

Profile NP00_1 

 

Age (Rehab year) Unmined site 

Date sampled 16 April 2013 

Slope Near-flat 

Aspect S 

Vegetation cover Dense Cenchrus ciliaris (85% cover) 

Vegetation composition 

Canopy: Atalaya hemiglauca, Acacia spp., Eucalyptus 
spp., Corymbia tessellaris 
Midstorey: Grewia ?latifolia 
Groundstorey: Cenchrus ciliaris with Sida cordifolia, 
Ipomoea sp. 

Soil surface description  

Topsoil applied? N/A 

Topsoil depth / 
stratification 

 

Other features 

Very dark brown soil; Near creek; Pit located between 
Cenchrus ciliaris tussocks; Soil may have been 
previously disturbed (broken root present); 
Invertebrates present (including Araneae (spider), 
Annelid (worm)) 
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Profile NP01_1 

 

Age (Rehab year) 1 year (reworked in 2012; established in 2009) 

Date sampled 16 April 2013 

Slope 4% 

Aspect NE (45o) 

Vegetation cover Melinis repens with mixed forbs and Poaceae spp. 

Vegetation composition 

Canopy: very sparse Eucalyptus spp., Corymbia 
citriodora, Acacia salicina 
Groundstorey: Melinis repens, Emilia sonchifolia, 
Crotalaria spp., Sesbania spp., Solanum nigrum, 
Cenchrus ciliaris, Chloris gayana 

Soil surface description  

Topsoil applied? Very little topsoil present; Dragline spoil present 

Topsoil depth / 
stratification 

 

Other features 
Dark brown and mottled substrate; Many rocks present; 
Site recontoured due to erosion but trees retained 
during reworking 
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Profile NP01_2 

 

Age (Rehab year) 1 year (2012) (site contouring completed by 2011) 

Date sampled 17 April 2013 

Slope 11% 

Aspect SW (216o) 

Vegetation cover Mixed grass and graminoids 

Vegetation composition 

Canopy: Acacia sp. seedlings 
Groundcover: Panicum effusum, Panicum 
decompositum, Iseilema vaginiflorum, Eriochloa sp., 
Cyperus sp., Dichanthium sp. with Macroptilium sp., 
Alysicarpus muelleri, Rhynchosia minima, Clitoria 
ternatea

Soil surface description Deeply ripped surface 

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

Deep topsoil (spoil not observed) 

Other features Dark brown to black clay soil 
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Profile NP02_1 

 

Age (Rehab year) 2 years (reworked in 2011; established c.2005) 

Date sampled 16 April 2013 

Slope 5% 

Aspect NNW (346o) 

Vegetation cover Dense Cenchrus ciliaris (98% cover) 

Vegetation composition  

Soil surface description Soil surface crusted 

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

Topsoil to a depth > 1 m 

Other features 
Clayey; Roots present throughout profile; Soil 
macrofauna observed; Coal reject observed at 2-5 cm 
increment. 
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Profile NP06_1 

 

Age (Rehab year) 5 years (2007) 

Date sampled 16 April 2013 

Slope 16% 

Aspect NW (310o) 

Vegetation cover Eucalyptus tereticornis with Cenchrus ciliaris  

Vegetation composition 

Canopy: Eucalyptus tereticornis, Eucalyptus spp., 
Acacia macradenia, Acacia spp. (2% cover) 
Groundstorey: Cenchrus ciliaris, Chloris gayana with 
Melinis repens, Heteropogon contortus, Sesbania sp., 
Parthenium hysterophorus (95% plant cover) 

Soil surface description  

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

 

Other features Dark brown soil 
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Profile NP06_2 

Age (Rehab year) 5 years (2007) 

Date sampled 16 April 2013 

Slope 16% 

Aspect NW (310o) 

Vegetation cover Acacia macradenia 

Vegetation 
composition 

Canopy: Acacia macradenia with mixed tree species (40% 
cover) 
Groundstorey: Cenchrus ciliaris (60% cover) with Chloris 
gayana, Sesbania sp., Glycine sp., Heteropogon contortus, 
Parthenium hysterophorus

Soil surface 
description 

Litter present (20% cover) 

Topsoil applied?  

Topsoil depth / 
stratification 

 

Other features Dark brown soil 
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Profile NP10_1 

Age (Rehab year) 10 years (2003) 

Date sampled 16 April 2013 

Slope 7% 

Aspect W (260o) 

Vegetation cover Dense Cenchrus ciliaris (80% cover) 

Vegetation composition 

Midstorey: Very sparse Leucaena sp., Acacia sp. 
Groundstorey: Dense Cenchrus ciliaris with 
Neptunia sp., Sorghum sp., Macroptilium sp., 
Crotalaria sp., Desmodium sp., Oxalis sp.  

Soil surface description Litter present 

Topsoil applied? Topsoiled 

Topsoil depth / stratification Topsoil to a depth of 30 cm; Spoil below 

Other features 
Dark brown, moist, soft surface soil; Slight mottling; 
Annelid (worm) present at a depth of 0 – 2 cm 

 

Profile NP10_2 
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Age (Rehab year) 10 years (2003) 

Date sampled 16 April 2013 

Slope 11% 

Aspect SSW (230o) 

Vegetation cover Dense Cenchrus ciliaris (98% cover) 

Vegetation 
composition 

Cenchrus ciliaris with Crotalaria sp., Alysicarpus muelleri, 
Hibiscus sp., Sorghum sp. 

Soil surface 
description 

Litter present 

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

Deep topsoil (spoil not observed) 

Other features 
Dark brown, moist upper horizon; May be a self-mulching 
clay 

 

Profile NP10_3 

 

Age (Rehab year) 10 years (2003) 

Date sampled 17 April 2013 

Slope 6% 

Aspect SSE (156o) 

Vegetation cover Dense Cenchrus ciliaris (90% cover) 

Vegetation composition 

Canopy: Acacia sp. 
Groundcover: Cenchrus ciliaris with Urochloa 
?mosambicensis, Clitoria ternatea, Sorghum sp., 
Parthenium hysterophorus
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Soil surface description Thick litter layer present 

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

Deep topsoil (spoil not observed); Site recorded to 
have dragline spoil at depth 

Other features Dark brown soil 

 

Profile NP20_1 

Age (Rehab year) 20 years (1993) 

Date sampled 16 April 2013 

Slope 6% 

Aspect S (196o) 

Vegetation cover Cenchrus ciliaris 

Vegetation composition 

Canopy: Very sparse Acacia salicina 
Midstorey: Sparse Leucaena sp. 
Groundstorey: Dense Cenchrus ciliaris (>80% 
cover), Chloris gayana (2% cover), Macroptilium 
sp. (80% cover) 

Soil surface description Uneven surface 

Topsoil applied? Not topsoiled 

Topsoil depth / stratification  

Other features 
Dark brown, clayey substrate; Mottling present at a 
depth of 10 to 20 cm 

 

Profile NP20_2 



APPENDIX C 

 

Age (Rehab year) 20 years (1993) 

Date sampled 16 April 2013 

Slope 12% 

Aspect S (190o) 

Vegetation cover Cenchrus ciliaris 

Vegetation 
composition 

Dense Cenchrus ciliaris and Macroptilium sp. with Chloris 
gayana, Leucaena sp. seedlings  (100% plant cover) 

Soil surface 
description 

Pipe erosion 

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

 

Other features Brown, moist soil 

 

Profile NP20_3 

Age (Rehab year) 20 years (1993) 

Date sampled 16 April 2013 
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Slope 15% 

Aspect W (272o) 

Vegetation cover Cenchrus ciliaris 

Vegetation composition 
Dense Cenchrus ciliaris with Macroptilium sp., Chloris 
gayana 

Soil surface description  

Topsoil applied? Topsoiled 

Topsoil depth / 
stratification 

Soil-spoil mixture throughout profile 

Other features Pale brown 
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Profile NP27_1 

Age (Rehab year) 27 years (1986) 

Date sampled 17 April 2013 

Slope 14% 

Aspect SE (124o) 

Vegetation cover Dense Cenchrus ciliaris (98% cover) 

Vegetation composition 
Cenchrus ciliaris with Macroptilium sp., Panicum 
decompositum, Stylosanthes sp., Pterocaulon 
serrulatum

Soil surface description Rocks present 

Topsoil applied? Not topsoiled 

Topsoil depth / 
stratification 

 

Other features 
Rocks present; Most roots present in profile at a depth 
of 0 – 15 cm, with a smaller density of roots at a depth 
of 20+ cm.  
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Sample ID  Mine name  Ye
ar
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o
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d
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 B
la
ck
 

C
  EC 

(µs/cm)  pH 

Bulk 
Density 
(g/cm3) 

NP02_1a  Norwich Park  2013 

2 

Grass

2.21  1.99  0.15  NA  68.3  7.77  1.16

NP02_1b  Norwich Park  2013  1.23  1.28  0.07  NA  53.2  6.49  1.16

NP02_1c  Norwich Park  2013  1.26  1.19  0.07  NA  53.2  7.1  1.26

NP02_1d  Norwich Park  2013  1.16  1.1  0.06  NA  76.9  8.25  1.37

NP02_1e  Norwich Park  2013  0.9  0.811 0.05  NA  48.6  7.36  1.58

NP01_1a  Norwich Park  2013 

1  Grass

2.36  2.25  0.15  NA  47.4  7.96  1.15

NP01_1b  Norwich Park  2013  2.12  2.1  0.11  NA  54.5  8.84  1.15

NP01_1c  Norwich Park  2013  1.76  1.37  0.09  NA  88.3  9.44  1.20

NP01_1d  Norwich Park  2013  1.51  1.22  0.08  NA  97  9.67  1.25

NP01_1e  Norwich Park  2013  2.69  1.96  0.11  NA  99.5  9.2  1.35

NP20_1a  Norwich Park  2013 

20  Grass

5.31  5.18  0.33  NA  76.4  7.12  0.51

NP20_1b  Norwich Park  2013  3.14  3.11  0.2  NA  66.2  7.41  0.51

NP20_1c  Norwich Park  2013  2.63  2.66  0.15  NA  73.5  8.4  0.76

NP20_1d  Norwich Park  2013  2.24  2.18  0.11  NA  162.7  9.12  1.00

NP20_1e  Norwich Park  2013  2.15  2.15  0.09  NA  393  9.57  1.48

NP20_2a  Norwich Park  2013 

20  Grass

2.24  1.96  0.16  NA  46.1  6.67  1.41

NP20_2b  Norwich Park  2013  0.86  0.905 0.07  NA  23.8  6.18  1.41

NP20_2c  Norwich Park  2013  0.79  0.881 0.06  NA  23.3  6.3  1.41

NP20_2e  Norwich Park  2013  1  0.951 0.07  NA  25.6  6.67  1.42

NP20_2d  Norwich Park  2013  0.7  0.794 <0.05 NA  51  7.45  1.42

NP20_3a  Norwich Park  2013 

20  Grass

2.5  2.58  0.17  NA  84.5  8.1  1.17

NP20_3b  Norwich Park  2013  1.02  1.05  0.07  NA  46  8.25  1.17

NP20_3c  Norwich Park  2013  0.58  0.556 <0.05 NA  53.7  8.41  1.22

NP20_3d  Norwich Park  2013  0.83  0.411 <0.05 NA  149.6  9.03  1.28

NP20_3e  Norwich Park  2013  0.81  0.361 <0.05 NA  596  9.31  1.38

NP10_1a  Norwich Park  2013 

10  Grass

1.8  1.66  0.11  NA  62.6  7.75  1.00

NP10_1b  Norwich Park  2013  1.5  1.47  0.08  NA  68  8.66  1.00

NP10_1c  Norwich Park  2013  1.45  1.31  0.08  NA  67.8  8.14  1.07

NP10_1d  Norwich Park  2013  1.34  1.26  0.08  NA  85.8  8.81  1.13

NP10_1e  Norwich Park  2013  1.44  1.23  0.07  NA  127  8.98  1.26

NP00_1a  Norwich Park  2013 

Not 
mined

Grass

5.12  5.18  0.28  NA  66.5  6.84  1.13

NP00_1b  Norwich Park  2013  3.72  3.8  0.22  NA  46.3  6.46  1.13

NP00_1c  Norwich Park  2013  2.83  2.71  0.17  NA  39.5  6.88  1.15

NP00_1d  Norwich Park  2013  1.96  1.91  0.12  NA  39.5  6.79  1.18

NP00_1e  Norwich Park  2013  1.56  1.56  0.1  NA  59  7.39  1.24

NP10_2a  Norwich Park  2013 

10  Grass

1.67  1.51  0.1  NA  68.8  7.54  0.94

NP10_2b  Norwich Park  2013  1.66  1.3  0.08  NA  77.9  7.54  0.94

NP10_2c  Norwich Park  2013  1.23  1.17  0.07  NA  82.8  7.7  0.97

NP10_2d  Norwich Park  2013  1.3  1.19  0.07  NA  91  7.77  1.01

NP10_2e  Norwich Park  2013  1.22  1.1  0.07  NA  102.3  8.69  1.07

NP06_1a  Norwich Park  2013  6  Tree 1.7  1.7  0.11  NA  45.4  7.95  1.02
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NP06_1b  Norwich Park  2013  1.41  1.37  0.09  NA  56.1  7.91  1.02

NP06_1c  Norwich Park  2013  1.32  1.25  0.08  NA  52.6  8.28  1.09

NP06_1d  Norwich Park  2013  1.31  1.3  0.08  NA  60.3  8.3  1.15

NP06_1e  Norwich Park  2013  1.26  1.23  0.08  NA  54.5  8.35  1.27

NP06_2a  Norwich Park  2013 

6  Tree

2.6  2.54  0.18  NA  74.5  6.19  1.08

NP06_2b  Norwich Park  2013  1.67  1.62  0.11  NA  53.4  7.56  1.08

NP06_2c  Norwich Park  2013  1.58  1.47  0.1  NA  61.3  8.05  1.08

NP06_2d  Norwich Park  2013  1.2  1.23  0.08  NA  52  7.97  1.08

NP06_2e  Norwich Park  2013  1.26  1.16  0.08  NA  64.6  8.05  1.08

NP27_1a  Norwich Park  2013 

27  Grass

4.33  1.29  0.28  NA  70.1  7.22  1.58

NP27_1b  Norwich Park  2013  4.57  4.42  0.29  NA  57.9  6.48  1.58

NP27_1c  Norwich Park  2013  0.93  0.942 0.08  NA  61.5  6.4  1.57

NP27_1d  Norwich Park  2013  0.76  0.743 0.06  NA  86.6  6  1.56

NP27_1e  Norwich Park  2013  0.22  0.234 <0.05 NA  124.1  5.97  1.54

NP10_3a  Norwich Park  2013 

10  Grass

5.26  5.19  0.36  NA  136.2  7.56  0.73

NP10_3b  Norwich Park  2013  2.04  2.03  0.14  NA  72.9  7.75  0.73

NP10_3c  Norwich Park  2013  1.37  1.38  0.09  NA  53.3  7.77  0.88

NP10_3d  Norwich Park  2013  1.19  1.16  0.08  NA  58.8  8.13  1.03

NP10_3e  Norwich Park  2013  1.1  1.04  0.07  NA  67  8.31  1.32

NP01_2a  Norwich Park  2013 

1  Grass

1.5  1.45  0.09  NA  36.9  8.14  0.84

NP01_2b  Norwich Park  2013  1.43  1.38  0.09  NA  46.1  8.26  0.84

NP01_2c  Norwich Park  2013  1.41  1.36  0.08  NA  44  8.02  0.88

NP01_2d  Norwich Park  2013  1.43  1.41  0.08  NA  57.1  8.28  0.92

NP01_2e  Norwich Park  2013  1.36  1.29  0.08  NA  58.5  8.46  1.00

CU05_1a  Curragh  2013 

5  Grass

3.75  3.26  0.26  NA  117.7  8.04  1.10

CU05_1b  Curragh  2013  3.81  1.8  0.26  NA  95.5  8.11  1.10

CU05_1c  Curragh  2013  1.46  1.15  0.09  NA  91.9  8.32  1.16

CU05_1d  Curragh  2013  2.07  1.13  0.11  NA  117.3  8.35  1.23

CU05_1e  Curragh  2013  1.8  1.24  0.11  NA  155.9  8.64  1.36

CU07_1a  Curragh  2013 

7  Bush

3.78  3.76  0.26  NA  139.5  7.52  1.07

CU07_1b  Curragh  2013  2.35  2.32  0.17  NA  108  7.02  1.07

CU07_1c  Curragh  2013  1.81  1.71  0.13  NA  101.7  7.67  1.11

CU07_1d  Curragh  2013  1.75  1.65  0.12  NA  112.5  7.89  1.15

CU07_1e  Curragh  2013  1.71  1.55  0.12  NA  155.1  8.2  1.23

CU03_1a  Curragh  2013 

3  Grass

1.9  1.54  0.12  NA  85.3  7.82  1.02

CU03_1b  Curragh  2013  1.68  1.41  0.11  NA  88.3  8.23  1.02

CU03_1c  Curragh  2013  2.02  1.36  0.11  NA  97.8  8.34  1.06

CU03_1d  Curragh  2013  1.71  1.31  0.1  NA  121.2  7.45  1.10

CU03_1e  Curragh  2013  2.21  1.53  0.12  NA  211.7  8.89  1.17

CU11_1a  Curragh  2013 

11  Bush

4.39  3.74  0.25  NA  116.3  7.79  1.11

CU11_1b  Curragh  2013  2.77  2.22  0.18  NA  97.4  7.79  1.11

CU11_1c  Curragh  2013  2.52  1.82  0.16  NA  93.4  8.14  1.12

CU11_1d  Curragh  2013  2.5  1.82  0.15  NA  111.3  7.99  1.14

CU11_1e  Curragh  2013  2.72  2.19  0.15  NA  120.7  8.11  1.18

CU11_2a  Curragh  2013 
11  Grass

6.65  6.29  0.37  NA  333  7.85  1.10

CU11_2b  Curragh  2013  3.27  2.85  0.18  NA  186.7  7.84  1.10
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CU11_2c  Curragh  2013  2.36  1.88  0.14  NA  187.6  7.21  1.12

CU11_2d  Curragh  2013  2.41  1.72  0.15  NA  150.4  7.51  1.13

CU11_2e  Curragh  2013  2.66  2.04  0.17  NA  147.5  7.81  1.17

CU08_3a  Curragh  2013 

8  Senna

3.2  3  0.17  NA  94.4  7.65  1.19

CU08_3b  Curragh  2013  3.03  2.76  0.15  NA  100.9  8.14  1.19

CU08_3c  Curragh  2013  3.64  3.28  0.16  NA  128.5  8.25  1.22

CU08_3d  Curragh  2013  5.41  5.04  0.2  NA  367  8.75  1.24

CU08_3e  Curragh  2013  7.13  6.74  0.24  NA  436  8.99  1.29

CU08_4a  Curragh  2013 

8  Tree

2.38  2.22  0.16  NA  88.5  8.1  0.95

CU08_4b  Curragh  2013  1.96  1.86  0.13  NA  92.8  7.42  0.95

CU08_4c  Curragh  2013  1.94  1.85  0.13  NA  95.5  8.02  1.00

CU08_4d  Curragh  2013  1.91  1.83  0.13  NA  114.7  8.47  1.06

CU08_4e  Curragh  2013  2.05  1.66  0.12  NA  151.6  8.7  1.17

CU17_1a  Curragh  2013 

17  Tree

5.42  5.22  0.31  NA  112.8  8.1  0.95

CU17_1b  Curragh  2013  2.91  2.77  0.18  NA  93.6  8.1  0.95

CU17_1c  Curragh  2013  2.03  1.85  0.13  NA  102.5  7.4  1.07

CU17_1d  Curragh  2013  2.11  1.74  0.12  NA  104.1  7.2  1.18

CU17_1e  Curragh  2013  1.88  1.24  0.11  NA  123.2  8.73  1.41

CU17_2a  Curragh  2013 

17  Grass

5.66  5.35  0.31  NA  113.6  7.5  0.83

CU17_2b  Curragh  2013  3  2.84  0.19  NA  93.8  8.12  0.83

CU17_2c  Curragh  2013  2.19  2.09  0.14  NA  98.8  8.14  0.94

CU17_2d  Curragh  2013  2.14  1.81  0.14  NA  109  8.19  1.04

CU17_2e  Curragh  2013  2.63  2.29  0.15  NA  105.1  8.38  1.25

CU00_2a  Curragh  2013 

Not 
mined

Tree

7.93  7.8  0.43  NA  79  5.45  1.14

CU00_2b  Curragh  2013  5.77  5.68  0.32  NA  73.4  5.55  1.14

CU00_2c  Curragh  2013  2.81  2.79  0.18  NA  75.6  6.94  1.23

CU00_2d  Curragh  2013  2.06  2.09  0.15  NA  183.5  6.34  1.32

CU00_2e  Curragh  2013  0.9  0.892 0.09  NA  736  4.54  1.50

CU00_3a  Curragh  2013 

Not 
mined

Tree

4.71  4.68  0.28  NA  91.5  7.05  1.29

CU00_3b  Curragh  2013  3.25  3.32  0.21  NA  63.8  6.26  1.29

CU00_3c  Curragh  2013  1.8  1.78  0.11  NA  47.7  6.6  1.31

CU00_3d  Curragh  2013  0.94  1.02  0.07  NA  52.4  7.67  1.33

CU00_3e  Curragh  2013  0.65  0.642 0.06  NA  68.8  7.35  1.37

CU10_3a  Curragh  2013 

10  Bush

3.12  3.05  0.21  NA  98.2  8.19  1.18

CU10_3b  Curragh  2013  2.3  2.17  0.17  NA  98.6  7.12  1.18

CU10_3c  Curragh  2013  2.03  1.82  0.14  NA  92.2  7.59  1.19

CU10_3d  Curragh  2013  2.24  2.09  0.16  NA  132.4  7.32  1.20

CU10_3e  Curragh  2013  2.2  2.04  0.16  NA  163.2  7.8  1.23

CU10_4a  Curragh  2013 

10  Tree

3.5  3.46  0.25  NA  373  7.3  1.10

CU10_4b  Curragh  2013  1.96  1.96  0.15  NA  190.6  7.54  1.10

CU10_4c  Curragh  2013  1.82  1.78  0.14  NA  178.7  7.85  1.16

CU10_4d  Curragh  2013  2.3  2.18  0.15  NA  176.7  8.03  1.22

CU10_4e  Curragh  2013  1.86  1.65  0.13  NA  210.5  8.7  1.33

BW18_3a1 Blackwater  2010  18 

Grass

2.24  2.49  0.08 1.8  NA  NA 

1.26 BW18_3a2 Blackwater  2010  18  1.94  1.93  0.105 1.51 NA  NA 

BW18_3b  Blackwater  2010  18  1.32  1.46  0.07 1  NA  NA 
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BW18_3c  Blackwater  2010  18  1.46  1.34  0.11 1.09 NA  NA 

BW18_3e  Blackwater  2010  18  1.18  1.21  0.08 0.73 NA  NA 

BW19_1a1 Blackwater  2010  19 

Tree

4.03  3.63  0.22  3.03 NA  NA 

1.32 

BW19_1a3 Blackwater  2010  19  2.59  2.42  0.14  1.76 NA  NA 

BW19_1b  Blackwater  2010  19  0.78  0.84  0.08  0.58 NA  NA 

BW19_1c  Blackwater  2010  19  0.56  0.65  0.08  0.65 NA  NA 

BW19_1e  Blackwater  2010  19  0.18  0.25  0.05  0.44 NA  NA 

BW19_2a1 Blackwater  2010  19 

Grass

2.39  2.35  0.17  1.95 NA  NA 

1.44 

BW19_2a2 Blackwater  2010  19  2.2  2.04  0.16  1.71 NA  NA 

BW19_2a3 Blackwater  2010  19  1.58  1.59  0.1  1.11 NA  NA 

BW19_2b  Blackwater  2010  19  0.91  0.98  0.09  0.96 NA  NA 

BW19_2c  Blackwater  2010  19  0.66  0.83  0.08  0.7  NA  NA 

BW19_2d  Blackwater  2010  19  1.19  1.35  0.11  1.12 NA  NA 

BW00_1a3 Blackwater  2010  Not 
mined

Grass
2.12  1.95 0.2  1.68 NA  NA 

1.43 
BW00_1b  Blackwater  2010  2.13  2.18 0.17  1.8  NA  NA 

BW31_1a1 Blackwater  2010  31 

Grass

3.35  3.13 0.2 2.22 NA  NA 

1.06 

BW31_1a2 Blackwater  2010  31  3.14  2.77 0.19 2.13 NA  NA 

BW31_1a3 Blackwater  2010  31  2.65  2.52 0.14 1.93 NA  NA 

BW31_1b  Blackwater  2010  31  3.43  3.02 0.19 2.51 NA  NA 

BW31_1c  Blackwater  2010  31  3.05  2.45 0.17 1.99 NA  NA 

BW31_1d  Blackwater  2010  31  2.47  2.2 0.11 1.61 NA  NA 

BW31_1e  Blackwater  2010  31  2.75  2.03 0.13 1.78 NA  NA 

CU02_2a2  Curragh  2010  2 
Grass

1.29  1.08  0.09  0.87 NA  NA 
1.08 

CU02_2d  Curragh  2010  2  1.32  1.19  0.12  0.95 NA  NA 

CU10_1a1  Curragh  2010  10 

Grass

3.03  2.45  0.23  1.85 NA  NA 

0.93 

CU10_1a2  Curragh  2010  10  2.49  2.22  0.14  1.6  NA  NA 

CU10_1a3  Curragh  2010  10  2.15  1.81  0.12  1.42 NA  NA 

CU10_1b  Curragh  2010  10  1.86  1.56  0.11  1.28 NA  NA 

CU10_1c  Curragh  2010  10  1.86  1.45  0.09  1.27 NA  NA 

CU10_1d  Curragh  2010  10  1.775 1.4  0.135 1.22 NA  NA 

CU10_1e  Curragh  2010  10  1.82  1.62  0.12  1.16 NA  NA 

CU10_2a2  Curragh  2010  10 

Grass

2.81  2.56 0.16  1.79 NA  NA 

1.22 
CU10_2a3  Curragh  2010  10  2.9  2.46 0.15  1.88 NA  NA 

CU10_2b  Curragh  2010  10  3.17  2.75 0.14  2.02 NA  NA 

CU10_2d  Curragh  2010  10  4.8  4.31 0.19  3.48 NA  NA 

CU08_1a1  Curragh  2010  8 

Grass

2.82  2.43 0.17 1.9  NA  NA 

0.93 

CU08_1a2  Curragh  2010  8  2.86  2.37 0.16 1.9  NA  NA 

CU08_1a3  Curragh  2010  8  2.6  2.03 0.13 1.72 NA  NA 

CU08_1c  Curragh  2010  8  2.39  1.69 0.12 1.58 NA  NA 

CU08_1d  Curragh  2010  8  2.21  1.81 0.11 1.63 NA  NA 

CU08_1e  Curragh  2010  8  2.09  1.54 0.11 1.47 NA  NA 

CU08_2a1  Curragh  2010  8 

Bush

5.71  5.56 0.34 4.44 NA  NA 

1.06 

CU08_2a2  Curragh  2010  8  4.67  3.59 0.26 3.04 NA  NA 

CU08_2a3  Curragh  2010  8  2.98  2.39 0.17 1.88 NA  NA 

CU08_2b  Curragh  2010  8  2.07  1.58 0.11 1.4  NA  NA 

CU08_2c  Curragh  2010  8  2.08  1.59 0.11 1.5  NA  NA 
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CU08_2d  Curragh  2010  8  2.18  1.77 0.12 1.55 NA  NA 

CU08_2e  Curragh  2010  8  1.07  1.1 0.03 0.97 NA  NA 

CU13_1b  Curragh  2010  13 

Grass

1.38  1.34 0.07 1.01 NA  NA 

0.97 
CU13_1c  Curragh  2010  13  1.36  1.26 0.08 1.02 NA  NA 

CU13_1d  Curragh  2010  13  1.25  1.08 0.07 0.92 NA  NA 

CU13_1e  Curragh  2010  13  1.68  1.33 0.08 1.16 NA  NA 

GC08_1a1  German Creek  2010  8 

Tree

3  2.93 0.23 2.45 NA  NA 

1.49 

GC08_1a3  German Creek  2010  8  0.71  0.78 0.04 0.73 NA  NA 

GC08_1b  German Creek  2010  8  0.65  0.69 0.04 0.62 NA  NA 

GC08_1c  German Creek  2010  8  0.6  0.68 0.05 0.61 NA  NA 

GC08_1d  German Creek  2010  8  0.77  0.92 0.04 0.69 NA  NA 

GC08_1e  German Creek  2010  8  0.29  0.42 0.07 0.5  NA  NA 

GC26_1a1  German Creek  2010  26 

Tree

1.8  2.02 0.09 1.19 NA  NA 

1.48 

GC26_1a2  German Creek  2010  26  1.64  1.64 0.08 1.1  NA  NA 

GC26_1a3  German Creek  2010  26  1.98  2.07 0.08 1.33 NA  NA 

GC26_1b  German Creek  2010  26  2.04  2.11 0.1 1.39 NA  NA 

GC26_1c  German Creek  2010  26  1  1.08 0.05 0.84 NA  NA 

GC26_1d  German Creek  2010  26  1.9  1.89 0.12 1.2  NA  NA 

GC26_1e  German Creek  2010  26  1.2  1.16 0.09 0.86 NA  NA 

GC26_2a1  German Creek  2010  26 

Tree

3.93  4.45 0.18 2.22 NA  NA 

1.32 

GC26_2a2  German Creek  2010  26  3.36  3.26 0.14 2.07 NA  NA 

GC26_2a3  German Creek  2010  26  2.12  2.24 0.09 1.49 NA  NA 

GC26_2b  German Creek  2010  26  1.42  1.68 0.06 1.1  NA  NA 

GC26_2c  German Creek  2010  26  0.88  0.99 0.05 0.78 NA  NA 

GC26_2d  German Creek  2010  26  0.77  0.93 0.07 0.74 NA  NA 

GC26_2e  German Creek  2010  26  1.1  1.26 0.11 0.92 NA  NA 

GC24_1a1  German Creek  2010  24 

Grass

1.66  1.61 0.16 1.24 NA  NA 

1.30 
GC24_1a3  German Creek  2010  24  1.06  1.01 0.11 0.89 NA  NA 

GC24_1b  German Creek  2010  24  0.98  1.04 0.11 0.97 NA  NA 

GC24_1c  German Creek  2010  24  1  1.02 0.15 0.93 NA  NA 

G38  German Creek  2010  NA  NA  0.995 1.2  0.11  0.98 NA  NA  NA 
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Analytical Services 
27 July 2006 
File: ProceduresoilOCcalcareous1.doc 

 
Procedures for the Preparation of Calcareous Soils for Organic Carbon Analysis  

 
 The analysis of calcareous soils for Organic Carbon on a Combustion Analyser 
requires the removal of the inorganic carbonates prior to analysis as some of this will be 
measured by the combustion process.  The addition of acid destroys the carbonates but excess 
acid must be removed prior to analysis to prevent corrosion problems in the system. 
 
Soil treatment 
 
Reagents 

1 4 N H2SO4  Add 11 mL of concentrated sulphuric acid to 90 mL of deionised 
water. 

2 Saturated Ba(OH)2  Sparge 100 mL of deionised water in a 250 mL Buchner flask 
with nitrogen for 15 min.  Add 6.5 g of Ba(OH)2.8H2O (AR) to the flask and stir 
on a magnetic stirrer for 30 min.  Leave to stand for 24 h and then filter through a 
GF/A filter paper.  Return the solution to the flask and fit a CO2 trap to prevent 
atmospheric CO2 from dissolving and reacting. 

 
 
Procedure 

1 Weigh 500 – 600 mg of oven dried soil sample into a watchglass or heat-resistant 
weighing boat. 

2 Add 0.5 mL of acid evenly to the sample to react with the carbonates.  If the 
sample is not completely wet then add a few drops of deionised water with a 
Pastuer pipette.  Note any effervescence of carbon dioxide. 

3 Add 0.5 mL of saturated barium hydroxide solution to neutralise the excess acid. 
4 Place in order on a Hotplate set at 110 °C and take the samples to dryness. 
5 Combust the dried samples at 950 °C along with EDTA calibrations, blanks and 

ASPAC QC check samples. 
 
 
Safety Precautions: 

1 Wear plastic gloves and safety glasses. 
2 Perform all operations in the Fume Cupboard. 
3 Wash your hands after working with the samples. 
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MCR-ALS Component Concentrations 

 
  IC (%C) Coal (%C) BC (%C) Green (%C) 
CU03_1b 0.42 0.02 0.18 1.07 
CU03_1d 0.45 0.01 0.21 1.03 
CU11_2a 0.50 0.62 0.66 4.87 
CU11_2b 0.49 0.24 0.63 1.91 
CU11_2c 0.60 0.05 0.31 1.41 
CU03_1a 0.52 0.01 0.23 1.14 
CU03_1c 0.65 0.02 0.21 1.15 
CU03_1e 0.90 0.07 0.14 1.10 
CU00_3a 0.00 0.17 0.20 4.34 
CU00_3b 0.00 0.14 0.16 2.95 
CU00_3c 0.00 0.04 0.00 1.76 
CU00_3e 0.01 0.03 0.01 0.60 
CU05_1a 0.51 0.01 0.58 2.65 
CU05_1b 0.88 0.00 0.51 2.42 
CU05_1c 0.46 0.02 0.13 0.85 
CU05_1e 0.73 0.03 0.10 0.94 
CU08_4a 0.10 0.11 0.42 1.76 
CU08_4b 0.12 0.06 0.24 1.54 
CU08_4c 0.17 0.03 0.21 1.54 
CU08_4e 0.65 0.02 0.11 1.26 
CU11_1a 0.95 0.23 0.17 3.04 
CU11_1b 0.86 0.04 0.07 1.80 
CU11_1c 0.95 0.04 0.05 1.48 
CU11_1e 0.71 0.11 0.29 1.61 
CU11_2d 0.93 0.04 0.09 1.35 
CU11_2e 0.87 0.04 0.26 1.49 
CU17_1a 0.07 0.68 1.18 3.49 
CU17_1b 0.29 0.28 0.65 1.68 
CU17_1c 0.29 0.05 0.33 1.36 
CU17_1d 0.54 0.23 0.36 0.98 
CU17_1e 0.84 0.30 0.28 0.46 
CU17_2a 0.10 0.64 2.05 2.87 
CU17_2b 0.13 0.09 0.62 2.17 
CU17_2c 0.20 0.00 0.31 1.68 
CU17_2e 0.43 0.27 0.71 1.22 
NP00_1a 0.00 0.33 0.50 4.29 
NP00_1b 0.00 0.14 0.24 3.34 
NP00_1c 0.00 0.07 0.12 2.64 
NP00_1e 0.00 0.02 0.11 1.42 
NP01_1a 0.21 0.92 0.57 0.66 
NP01_1b 0.35 0.97 0.51 0.29 
NP01_1c 0.43 0.82 0.36 0.15 
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NP01_1e 0.43 1.52 0.37 0.36 
NP01_2a 0.34 0.03 0.11 1.01 
NP01_2b 0.05 0.01 0.20 1.17 
NP01_2c 0.01 0.01 0.25 1.14 
NP01_2d 0.02 0.01 0.24 1.15 
NP01_2e 0.04 0.00 0.18 1.14 
NP02_1a 0.01 0.55 0.37 1.28 
NP02_1b 0.01 0.35 0.21 0.67 
NP02_1c 0.03 0.36 0.24 0.63 
NP02_1e 0.02 0.35 0.22 0.32 
NP06_1a 0.00 0.05 0.21 1.43 
NP06_1b 0.00 0.03 0.10 1.28 
NP06_1c 0.00 0.03 0.08 1.21 
NP06_1e 0.01 0.02 0.08 1.16 
NP06_2a 0.00 0.12 0.40 2.09 
NP06_2b 0.02 0.03 0.19 1.42 
NP06_2c 0.03 0.03 0.09 1.43 
NP06_2e 0.02 0.02 0.07 1.15 
NP20_1a 0.00 1.24 1.47 2.60 
NP20_1b 0.01 0.95 1.04 1.15 
NP20_1c 0.01 0.85 0.74 1.02 
NP20_1d 0.04 0.91 0.72 0.57 
NP20_1e 0.06 0.88 0.80 0.42 
NP20_2a 0.00 0.23 0.61 1.39 
NP20_2b 0.00 0.00 0.18 0.68 
NP20_2c 0.00 0.00 0.11 0.67 
NP20_2e 0.02 0.01 0.12 0.55 
NP20_3a 0.02 0.40 0.70 1.38 
NP20_3b 0.00 0.11 0.35 0.56 
NP20_3c 0.01 0.02 0.13 0.42 
NP20_3e 0.43 0.10 0.14 0.14 
German 
Creek Coal 0.19 32.12 19.25 8.80 
Goonyella 
Coal 0.00 14.31 37.38 13.87 
Curragh Coal 0.08 22.55 17.55 8.96 
Chestnut 
Char 0.00 0.00 42.92 25.28 
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Figure F 1 CO2-EGA thermograms for coals from Curragh, German Creek and Goonyella coal mines. The 
peak combustion temperatures for the coals centre around 430 °C. The carbon richness of the Goonyella 
and German Creek coals are greater than that of the Curragh coal and they both exhibit greater 
volatilization at their peak combustion temperatures than the Curragh coal. 
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Evaluation	of	Sample	Analysis	Methodologies	
Standard methods of soil preparation involve the drying and sieving of the 

samples prior to cold storage. The purpose of this processing is to separate the fine 

soil from coarser material and slow down changes due to microbial degradation. It is 

recommended by the US EPA to analyse samples within 28 days of sampling or risk 

the sample having changed significantly from the time of sampling (Schumacher, 

2002).  

Within the collected soil there can exist non-soil components, such as rocks, 

living roots, and litter. While sieving removes the majority of these non-soil 

components, thin roots and pieces of litter often still remain in the sample. As organic 

matter is the source of organic carbon, the presence of organic, non-soil components 

may artificially inflate the measured organic carbon content. Few papers in the 

literature mentioned removing non-soil organic matter from samples (Czimczik et al., 

2005). 

The	effect	of	the	removal	of	organic	matter	
The presence of contaminants in a soil sample has the potential to alter the 

analytical results. Contaminants include anything which is not soil, including organic 

matter. In coal mine soils there is a greater likelihood of coal fines and dusts 

contaminating soil samples. To remove organic matter and coarse coal contaminants 

in a soil sample involves the intense visual inspection and manual extraction. This 

process is time consuming and has the potential to greatly inflate the time required 

for analysis. It was decided to test whether meticulous removal of contaminating 

organic matter and coal was required to ensure reliable results. 

Methods	
Following sieving, samples of mine soils BW18_3a1, BW18_3a2, BW19_2a1, 

BW19_2a3, BW19_2b, BW19_2d, CU10_2d, the two natural soils and BW38 were 

divided in two using a riffle splitter. Both treatments had all litter and non-soil organic 

matter observable by the naked eye removed within 30 minutes, while one treatment 

had the removed organic matter returned and mixed back in. Both treatments were 

ground with a mortar and pestle to pass through a 0.5 mm sieve and tested for total 

organic carbon by Heanes chemical oxidation (BW18_3, BW19_2, CU10_2) (28.3, 

29.2, 2000 T1.2) or Dumas elemental analysis (Brigalow, buffel grass, G38) 
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(Rayment and Lyons, 2011). Acidification of samples was not required as the 

presence of inorganic carbon was not detected, evidenced by the lack of 

effervescence upon the addition of 4M HCl (Rayment and Lyons, 2011). 

Results	and	Discussion	
The results for the Heanes TOC mine soils was inconsistent between samples 

and confounding, as some samples showed significant increase in TOC levels where 

the litter and roots were removed. This runs contrary to the belief that the presence 

of litter and roots would result in a higher TOC content. The analyses were run 

singularly for each soil sample, however, each was tested using three separate 

methods of carbon analysis at the Department of Environment and Resource 

Management laboratory, Heanes (1984) TOC, Dumas TC and Walkley-Black (1934) 

OC and each method showed higher mean values after organic matter removal 

(Rayment and Lyons, 2011). 

The Dumas TC tested set using one rehabilitated mine soil from Blackwater 

coal mine and two natural soils from the Brigalow belt, one remnant Brigalow site 

and one buffel grass dominated site were tested in triplicate. When outliers were 

removed, these showed that the removal of organic matter decreased the TC 

readings significantly for both buffel grass dominated soil and Brigalow groundcover 

soil (p = 0.047 and p = 0.043, respectively) (Figure G 45). 

 
Figure G 45 Effect of removal of organic matter 

 

Brigalow Buffel grass Mine soil
0

0.5

1

1.5

2

2.5

3

C
ar
b
o
n
 c
o
n
te
n
t 
(%

C
)

Cover type

Brigalow removed

Brigalow left in

SD

Litter removed

Litter left in



APPENDIX G 

 

The reason behind the initial confounding results from the first run of mine 

soils tested with Heanes (1984) that differ from the second run including natural soils 

is not understood.  

It was also found that although removing organic matter increases carbon 

content, it was not significant (one-tailed paired t-test for TC p=0.14, n=7 mean 

TCpicked = 2.15%C, mean TCunpicked = 1.66%C), probably due to the small sample 

size. Furthermore, when one outlier was removed, the difference in the mean carbon 

values was >0.03%C and deemed not a large enough difference to merit continuing 

with organic matter removal. 

By not having to remove all traces of non-soil organic matter, soil processing 

will be quicker, larger sample numbers can be processed and analysed in a more 

timely manner. 

Time	to	analysis	(Loss	of	carbon	during	storage)	
Soil carbon resides in different fractions with different residence times, from 

labile to recalcitrant or inert. Carbon loss is due to microbial respiration and 

degradation of organic matter. Due to the length of time between sampling trips, 

there was some interest in whether soils from the first trip would retain their original 

carbon contents after more than 12 months in cold storage. If they did, they could be 

further used for analysis. 

Other questions arise as the US EPA recommends analyzing samples within 

28 days of sampling (Schumacher, 2002). This leads to questions such as, how 

much time can pass between measuring TOC and scanning on a DRIFT 

spectrometer before the sample is changed due to carbon loss? If samples cannot 

be analyzed within the EPA recommended 28 days, do the samples degrade 

further? 

Methods	

Study site 
The two natural soils from the Brigalow Research Station were used: one 

remnant Brigalow stand and one buffel grass dominated paddock. One sample of 

rehabilitated mine soil from Goonyella coal mine in Queensland’s Bowen Basin was 

also included in this study. 
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Sample collection and processing 
Following processing, aliquots of all of the soils underwent Dumas TOC 

analysis on a LECO TruSpec CHN analyser in triplicate (Rayment and Lyons, 2011). 

Samples were repeatedly analyzed over five months at roughly once-weekly 

intervals. Acidification of samples was not required as the presence of inorganic 

carbon was not detected by HCl drop test (Rayment and Lyons, 2011). Samples 

were stored in a cold room at 4°C between analyses. 

Results	and	Discussion	
Little change was observed in the carbon content of the soils over the five 

months of testing (Figure G 46). However, the baseline started beyond the 

recommended 28 days following sampling. The mine soil tested did not exhibit a 

trend of carbon loss.  

 
Figure G 46 Carbon content in natural soils during five months in cold storage 

 

This experiment was repeated to establish a baseline within 28 days from 

sampling on natural soils. Samples of soil under Brigalow and buffel grass cover 
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carbon determination (Figure G 47).  
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Figure G 47 Carbon content in natural soils during 2 months in cold storage 

 
ANOVA analysis showed there was no significant difference between the 

means of the TOC values within 29 days from sampling for the Brigalow soil 

(p=0.217) and a significant difference when 54 days from sampling was added to the 

data set (p=0.026). Soil under buffel grass had a significant difference when 29 days 

from sampling was added (p=0.003) to the data set of 22 days from sampling 

(p=0.256). 

 To attain a true TOC result, samples of soil must be processed and analyzed 

within 28 days from sampling. After 28 days the OC levels have changed 

significantly from what they were and TOC readings will not be representative of the 

samples taken from the field.  

 Schumacher (2002) attributed this carbon loss to microbial degradation and/or 

volatilization of organic compounds. The carbon loss was described as “generally 

small” (i.e. <1.0%C) and its importance was minimized in the US government 

document. Furthermore, most published research does not specify whether TOC 

measurements were taken within 28 days of sampling, meaning either this is a given 

or not considered a very important factor in the analysis. Also, since the loss seems 

to taper off over time, it would appear that the most readily lost carbon is not being 

replenished over time in storage. As such, the time sensitivity of TOC measurement 

was not made into a defining feature of this research, however, all samples collected 

in 2013 were analysed for TOC within 28 days from sampling. 

This leads to questions on whether it is feasible to analyse all samples within 

28 days or whether it is simpler to base measurements on shelf stable carbon levels. 
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Also, it should be noted that adhering to the 28 day time limit for reliable TOC 

measurements can increase the cost of sample collection if sample processing and 

laboratory running time are limiting factors, resulting in greater numbers of trips for 

fewer samples.   

Whether the change in TOC over time is appreciable in DRIFTs should be 

further investigated. Other questions that can be tested are whether the length of 

time post sampling can be determined with DRIFTs. 

Total	Organic	Carbon	Methods	Comparison	
 

There are multiple soil carbon measurement methods. The leading Australian 

soil methods manual lists 14 different methods of measuring different fractions of soil 

carbon (Rayment and Lyons, 2011). Total organic carbon (TOC) is an essential 

measurement for determining the green carbon fraction by deduction of the black 

carbon and coal carbon fractions. Since TOC analysis was carried out by different 

laboratories a comparison of their measurement methods was run to determine 

whether they produced similar results. 

One laboratory used Heanes (1984) chemical oxidation (method 6B1 in 

Rayment and Lyons, 2011), while the other relied on acidified Dumas thermal 

oxidation (method 6B3)(Rayment and Lyons, 2011). Heanes method (1984) is not 

used frequently outside of Australia and acidified Dumas method is usually cited in 

the literature, making acidified Dumas more attractive as TOC measurement 

method.  

When using acidified Dumas there is a choice of what acid to use to oxidize 

the inorganic carbon into CO2 while preserving the organic carbon species. HCl is 

often the acid of choice; however, H2SO3 is also recommended (Caria et al., 2011, 

Fernandes and Krull, 2008, Rayment and Lyons, 2011). The choice of acidification 

method may ultimately be decided by the analytical laboratory as there are risks of 

damaging the elemental analyzer (Appleton, 2011, pers. comm., Appendix E).  

Methods	
Following processing, 15 samples of mine soils from Blackwater and Curragh 

coal mine rehabilitation were sent for Heanes (1984) TOC analysis at the 

Department of Environment and Resource Management laboratories. Another set of 

the same samples were ground and sieved to 1 mm fineness. Small aliquots were 
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placed on watchglasses and treated with 2M H2SO4 added drop-wise until 

effervescence was not observed. Concentrated Ba(OH)2 solution was added drop-

wise, to a maximum two drops to neutralize any excess acid and the samples were 

dried on a hotplate. There is a risk of adding carbonates to the sample if Ba(OH)2 is 

in excess as it will react with atmospheric CO2 to form BaCO3 precipitate. These 

acid-treated samples were sent for Dumas TOC analysis at the Analytical Services 

unit of the School of Agriculture and Food Sciences at the University of Queensland 

St Lucia campus (Rayment and Lyons, 2011).    

Results	and	discussion	
Results from both labs were analyzed using a paired t-test. The statistical 

analysis revealed that the results from the different labs were significantly different (p 

= 0.03, two-tailed, n=15). The cause for the difference, however, was not identified 

but is most likely due to laboratory differences or differences in their methods (see 

Table G 12 in the appendices for values). However, when the uncertainty in the 

measurements was set at 10% for Heanes, as stated in the reported results, and 

assumed 5% for Dumas, only two of the samples were significantly different. As the 

majority of the samples were not significantly different between the two methods 

when uncertainty is included, the results may be considered sufficiently similar. 

The use of one method/lab is the ideal protocol for the determination of TOC. 

However, this may not be possible due to machinery breaking down, laboratory 

upgrades, or large sample backlogs when time dependence is considered (see Time 

to analysis (Loss of carbon during storage)). 

The method to determine TOC for the samples collected in 2010 have been a 

mixture of Heanes (1984) and H2SO4 acidified Dumas. Following the results from this 

and the loss of carbon during storage experiments, all samples collected in 2013 

were analyzed within 28 days from sampling at the same laboratory using H2SO3 

acidified Dumas. 

 
Table G 12 Heanes and Dumas TOC results 

Sample ID	 Heanes TOC	
(%C)	

Dumas TOC
(%C)

28.3 0-0.5	 2.49 2.37 
28.3 0.5-1	 1.93 2.19 
29.2 0-0.5	 2.35 2.13 
29.2 1-2	 1.59 1.74 
29.2 2-5	 0.98 1.42 
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29.2 10-20	 1.20 1.35 
7.1 0-0.5	 3.13 3.11 
7.1 0.5-1	 2.77 2.87 
7.1 1-2	 2.52 2.83 
7.1 2-5	 3.02 3.31 
7.1 5-10	 2.45 2.76 
7.1 10-20	 2.20 1.93 
7.1 20+	 2.03 2.25 
2000 T1.1 10-20	 1.41 1.72 
G38	 1.13 1.20 

 

 
Figure G 48  A comparison of Heanes and Acidified Dumas TOC results on a suite of minesoils. When 
measurement error is included, TOC results from samples 29.2 2-5cm and 2000 T1.1 10-20 cm remain 
significantly different. 

 

Verification	of	black	carbon	detection	by	elemental	analysis	
Black carbon is thermally stable and combusts at temperatures higher than 

green carbon. To verify that elemental analysis measures relevant sections of the 

BC continuum mixtures of clean sand and wood char of known proportion were 

analyzed. 
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Materials	
Reference materials from the international black carbon ring trial, Vertosol and 

chestnut charcoal, were used as they are well characterized by multiple black carbon 

measurement methods (Hammes et al., 2007). Laboratory grade, acid washed sand 

was thermally treated to remove carbon impurities. 

Method	
Using the reference soil and the carbon-free sand as the matrices, charcoal 

was added by weight to create three mixtures of known BC percentages from ~0.5% 

- 3%. The vials of matrix and charcoal were placed in an end-over-end shaker for 30 

minutes to homogenize the mixtures. 

Subsamples of the mixtures and a blank matrix were analyzed by Dumas 

elemental analysis in duplicate and compared to the known BC content by paired t-

test. Aliquots were also analysed by Rock-Eval pyrolysis on a Rock-Eval 6 (Vinci 

Technologies, Nanterre, France). 

Results	and	discussion	
The paired t-test of all eight sand mixture subsamples (0, 1, 2, and 3% 

charcoal) indicated the Dumas method gives results similar to the calculated carbon 

content (p = 0.5). There was no obvious bias in measured carbon content compared 

to calculated carbon content (Figure G 49).  
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Figure G 49  Black carbon detection by Dumas method of mixed sand and charcoal 

   

The reason for the discrepancy between measured and calculated BC may be due to 

human error. The fine charcoal powder has the propensity to cling to the sides of 

vials, is light weight and is easily influenced by static electricity. As such, it was 

difficult to avoid loss of material and maintain homogeneity during transference 

between containers and weigh boat.  Variance within duplicates was highest for the 

2% added charcoal mixture with a variance of 0.172% from an expected 1.67% C 

value and lowest for 1% added charcoal, 0.003% from an expected 0.04% C value.  

The values for the blank sand were 0.01 %C, as expected. 

Spatial	distribution	of	organic	carbon	in	the	soil	profile	
Mine soils are, essentially, new soils and are highly heterogeneous across 

distance and depth. They are poor in organic carbon due to the weathering during 

stockpiling and it may be possible to discern the accumulation of soil organic matter, 

as soil organic carbon along its depth (Ussiri and Lal, 2008a, Ghose and Kundu, 

2003).  It is assumed that the main source of organic matter in mine soils is from the 

litter layer on the surface of the soil. This may be supported by the fact that forested 

soils contain higher proportions of total SOC in one meter depth in the top 20 cm 

than grassland in similar climatic range (Jobbágy and Jackson, 2000). The 

integration of this organic matter into the soil would be in a downward migration 
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pattern. In order to detect this pattern a specialized sampling protocol was used, with 

small depth increments being sampled near the surface and increasing with depth. 

The understanding that pollutants may migrate in soil has led to the sampling along 

depth as well as across lateral distance; however, these studies used coarser 

increments of 5cm and horizons (>>1cm) (Sielaff and Einax, 2007, Ping et al., 2007) 

The separate increments were tested for total organic carbon by Heanes wet 

chemical oxidation (Rayment and Lyons, 2011). 

Methods	

Study	sites	
Areas of rehabilitation at three Bowen Basin coal mines, Blackwater, Curragh 

and German Creek, were visited and sampled in August 2010. The ages of 

rehabilitation ranged from 8-19 years of rehabilitation. Sites were selected based on 

site characteristics, such as slope placement and groundcover type (cover type). 

Areas where vegetation had not been established were excluded from the study as 

they are not considered successful rehabilitation and would not have organic matter 

accretion and subsequently, no green carbon (Ussiri and Lal, 2008a).  

Sample	collection	and	processing	
Surface vegetation and litter were removed before holes were dug until 30 cm 

depth or the spoil layer was reached. Using a paint scrapper and trowel, seven depth 

increments were sampled according to distance from the surface: 0-0.5cm; 0.5-1 cm; 

1-2 cm; 2-5 cm; 5-10 cm; 10-20 cm; below 20 cm. If the applied topsoil layer was 

less than 20 cm deep, the 10-20 cm increment was where in most cases the spoil 

layer was reached and below this depth was only spoil. The spoil layer was not 

sampled as the presence of green carbon was not expected since roots often could 

not penetrate the material, which was hard, rocky, and difficult to dig in.  

Samples were labeled, placed in plastic bags and stored in plastic tubs until 

they could be transferred to a refrigerator at the end of a day. Samples were 

transported to Brisbane by courier in a non-refrigerated vehicle.  

Upon receipt at the laboratory, samples were placed into a cold room set at 

4°C. Samples were later dried in an oven set at 40°C for 7 days. Dry samples were 

gently crushed with a mortar and pestle to break up clods and sieved on a 2mm 
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sized screen. During crushing and sieving, large rocks and pieces of organic matter 

were manually removed. 

Results	and	Discussion	
There was little change in organic carbon levels seen in the few whole depth 

profiles tested. One site that had been rehabilitated for a longer period than the rest 

at 19 years, roughly 10 years more than the rest, exhibited less difference between 

depth increments nearest the surface than some newly rehabilitated sites (Figure G 

50). 

 
Figure G 50 Total organic carbon content along depth 

 

The reason why the concentration gradient is less steep with depth for the 

longer rehabilitated site than two of the newer rehabilitated sites cannot be drawn 

from such a small dataset. These measurements are somewhat unexpected since 

the longer a rehabilitated site has vegetation i.e. the older the rehabilitation, the more 

opportunity there is for fresh organic matter to enter and accumulate in the soil. 

Since the litter layer was assumed to be the predominant way for organic matter to 

enter the soil the highest concentration of carbon would be nearest the surface and 

litter layer.      

It can be noted that the site with the greatest TOC difference along depth was 

inside the drip zone of a senna bush where the soil was noticeably richer brown-

looking. The difference between the two sites within one field (sites CU08_1 and 
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CU08_2) may indicate that kind of carbon content difference groundcover type may 

have as site CU08_1 was adjacent to a buffel grass tussock.  

Conclusion	
As no significant difference in carbon content between the top two 0.5 cm 

depth increments was found in the majority of samples tested, sampling to monitor 

carbon accretion should have depth increments no finer than 1cm. Sampling small 

increments finer than 1 cm in partly very hardened top soil is difficult and is reliant on 

the skill of the sampler. The high likelihood of sampling error when increments are 

very fine further decreases its usefulness. As there is doubt on the truthfulness of 

results when reporting on such difficult to sample increments, it lends weight to 

increasing increment size.  

Accordingly, the second sampling campaign collected fewer depth increments 

and focussed on targeting different cover types (buffel grass, senna bush, trees) to 

investigate the effect of cover type. The following depth increments were collected: 

0-2 cm, 2-5 cm, 5-10 cm, 10-20 cm, and below 20 cm. Such sampling will abate 

issues regarding sampler precision and increase collection and analysis economy. 

Sampling also targeted areas with the different types of cover over a range of ages 

to investigate the effect of time. 
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PCA Overview Graphs 
 
The Unscrambler (CAMO Software AS, 2011) automatically produces graphs when a 
PCA is run. 

 

 
Figure H 1 PCA influence plot showing potential outliers in upper right quadrant. This PCA model is 
using three principal components. NP20_3e shows high influence with high residuals whereas CU17_1e 
is showing higher residuals but falling somewhat closer outside of the Hotelling T2 ellipse than NP20_3e. 
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Figure H 2 PCA explained variance plot shows the amount of variance in the data that is explained based 
on the number of principal components used. This graph is used to determine the number of principal 
components to use. 

 

 
Figure H 3 Pure components of the six component MCR solution when outliers have been removed. 
While the peak temperatures have remained the same, the tails of the components have changed and the 
shape of the BC component (in light blue) has a broader shoulder. 
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Table I - 1 Sample types and the analyses they underwent. Sand refers to the carbon-free sand, Brigalow 
refers to the samples from the Brigalow Research Station, Vertosol refers to the reference Vertosol. 

Sample ID  Sample name 
TC, 
TOC 

WB 
OC 

TA‐
EGA  DRIFT  PSA 

Sand     Y  N  Y  N  N 

Brigalow     Y  N  N  N  N 

Vertosol     Y  N  Y  Y  N 

NP02_1a   R2.1 2011  Y  N  Y  Y  Y 

NP01_1a  R2.1 2012  Y  N  Y  Y  Y 

NP20_1a  NP2.1  Y  N  Y  Y  Y 

NP20_2a  NP2.2  Y  N  Y  Y  Y 

NP20_3a  NP4.1  Y  N  Y  Y  Y 

NP10_1a  NP13.1  Y  N  N  Y  Y 

NP00_1a  NP15.1  Y  N  Y  Y  Y 

NP10_2a  NP 14.1  Y  N  N  Y  Y 

NP06_1a  NP17.1   Y  N  Y  Y  Y 

GC08_1a3  43.1 1‐2  Y  Y Y  Y N 

CU10_1a1  2000 T1.1  Y  Y Y  Y  Y 

BW31_1a2  7.1 0.5‐1  Y  Y  Y  Y  Y 

NP06_2a  NP17.2  Y  N  Y  Y  Y 
NP27_1a  NP9.1  Y  N  N  Y Y 
NP10_3a  R10.1   Y  N  N  Y  Y 

NP01_2a  NPR12.1 2012  Y  N  Y  Y  Y 

CU05_1a  R9.1 2008  Y  N  Y  Y  Y 

CU07_1a  R12.1 2006 T1  Y  N  N  Y  Y 

CU03_1a  R2.1 2010  Y  N  Y  Y  Y 

CU11_1a  R2.1 2002 (2013)  Y  N  Y  Y  Y 

CU11_2a  R2.2 2002 (2013)  Y  N  Y  Y  y 

CU08_2a1  2002 T1.2   Y  Y  Y  Y  Y 

BW19_2a2  29.2 0.5‐1  Y  Y  Y  Y  Y 

CU08_3a  R4N.1 2005 Y  N  N  Y  Y 

CU08_4a  R4N.2 2005 Y  N  Y  Y  Y 

CU17_1a  R11S.1 1996 Y  N  Y  Y  Y 

CU17_2a  R11S.2 1996 Y  N  Y  Y  Y 

CU00_2a  Ref GPT  Y  N  N  Y  Y 

CU00_3a  Ref EC  Y  N  Y  Y  Y 

CU10_3a  R12N T1.1 2003  Y  N  N  Y  Y 

CU10_4a  R12N T1.2 2003  Y  N  N  Y  Y 

GC26_1a1  2.1 0‐0.5  Y  Y  Y  Y  Y 

GC26_2a1  2.2 0‐0.5  Y  Y  Y  Y  Y 

CU10_2b  2000 T1.2 2‐5  Y  Y  Y  Y  Y 

 


