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Abstract 

Magnetic resonance imaging (MRI) has played a key role in our understanding of the brain’s 

anatomy and physiology. In particular, gradient recalled echo magnetic resonance imaging 

(GRE-MRI) at ultra-high field holds great promise for new contrast mechanisms to examine 

brain structure non-invasively. Multi-echo GRE-MRI is affected by signal compartments 

which may inform structural characterization. A number of studies have adopted the three 

water-pool compartment model to study white matter brain regions by associating individual 

compartments with myelin, axonal and extracellular water. Many key questions, however, 

remain unanswered in the context of GRE-MRI signal compartmentalization. 

First, the number and identifiability of GRE-MRI signal compartments has not been fully 

explored. We examined these issues in the human brain using a data driven approach, as 

detailed in Ch. 1. Multiple echo time GRE-MRI data were acquired in five healthy 

participants, each brain was segmented into anatomical regions (substantia nigra, caudate, 

insula, putamen, thalamus, fornix, internal capsule, corpus callosum and cerebrospinal fluid) 

and the temporal signal fitted with models with one to six signal compartments. With the use 

of information criteria and cluster analysis methods we ascertained the number of distinct 

signal compartments within each region and established differences in their respective 

frequency shifts between the brain regions studied. We identified five dominant signal 

compartments; these contributed to the local signal frequency of each brain region 

differently. Maps of compartment volume fractions, resolved by fixing the respective 

compartment frequency shifts in each voxel, corresponded with commonly observed tissue 

properties.  

Second, the influence of the scanner field strength on the temporal evolution of the multi-

echo GRE-MRI signal is not known. Subsequently, the influence of scanner field strength on 

GRE-MRI signal compartments also remains uncharacterized. In Ch. 3, we evaluated 

variations in the signal frequency shifts due to changes in field strength within the putamen, 

CSF, and corpus callosum (representatives of gray matter, CSF, and white mater regions 

respectively). Multiple echo time GRE-MRI data at 3T and 7T were acquired in six healthy 

participants, and temporal frequency shift profiles were generated via the quantitative 

susceptibility pipeline. From a qualitative lens, we observed unique echo-time dependent 

frequency shift profiles for each brain region to broadly correspond between 3T and 7T 

measurements. Furthermore, inter-participant variability in frequency shifts were higher in 
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3T measurements than at 7T. In general, signal compartment frequency shifts correspond 

well between 3T and 7T data, and standard error estimates indicate an improved quality-of-fit 

within the putamen and CSF, when compared to the corpus callosum. Compartment 

frequency shifts mapped using multi-echo GRE-MRI signal compartment models may thus 

provide new insights into tissue composition and structure, holding particular value in 

generating biomarkers for neurodegenerative diseases and psychiatric disorders. 
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Chapter 1: Background 

1.1 Principles of signal behaviour in magnetic resonance imaging 

1.1.1 Nuclear induction/magnetization & classical theory of relaxation in 1H-nuclear 

magnetic resonance 

 

Magnetic resonance imaging (MRI) allows for non-invasive imaging of tissue 

structure and quantification of tissue functions by exploiting the 1H-proton nuclear magnetic 

resonance technique (1H-NMR)a (Damadian, 1971; Lauterbur, 1973). The 1H-NMR signal is 

generated from the nuclear motion of spinning protium (1H) hydrogen nuclei (Bloch, 1946). 

The nuclear magnetic moment for the protium nucleus, and all other atomic nuclei, is 

governed by the spin state, or quantum angular momentum, of the atom’s constitutive 

subatomic particles (e.g. protons and neutrons) (Rabi et al., 1934). In the presence of an 

external (artificially or naturally generated) magnetic field, the nanoscopic magnetic 

moments of protium nuclei experience a torque in the plane orthogonal to the external 

magnetic field direction (Bloch, 1946). In MRI, the primary external magnetic field is 

generated by a loop of current carried by superconducting metals and is commonly referred 

to as the B0 field, or simply B0. The frequency at which protium nuclei spin, or precessb, 

about the external magnetic is linearly dependent on B0 and gyromagnetic ratioc (); this 

fixed value is referred to as the Larmor frequency, denoted by the greek letter , and is 

described by the Larmor equation, 𝜔0 = 𝛾𝐵0 (Hahn, 1950; Lodge, 1897; Rabi, 1937). The 

                                                 

a The quantum principles (e.g. atomic mechanics, wave-particle properties, energy transition states, etc.) which 

underlie the nuclear magnetic resonance phenomenon reside outside the focus of the current work, thus will not 

be detailed; information regarding the quantum theory of NMR can be found within the relevant literature 

(Abragam, 1961; Hahn and Abragam, 1992; Poole, 2012; Slichter, 2013; White, 2013). Rather, a brief classical 

description of nuclear induction (generally referred to as nuclear magnetization) and the magnetic relaxation 

process will be provided to aid in contextualizing pertinent MRI signal behaviour in following sections. 

b Adapted from the description contextualized using classical mechanics; a magnetic moment spinning as a top 

about a fixed axis (Levitt, 2001). 

c A constant value, defined as the ratio of the magnetic moment magnitude to the angular momentum (Driscoll 

and Bender, 1958). 
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Larmor equation is a foundational concept in MRI and will be further discussed within 

different contexts throughout this work. 

The nanoscopic magnetic moments are prevented from aligning fully to the external 

magnetic field, and terminating quantum precession, due to the interference of thermal 

energy (Bloch, 1946). This phenomenon permits the magnetic moments to assume only two 

possible alignments (also referred to as quantum spin states) with respect to the external 

magnetic; parallel or anti-parallel. If the protium nuclei were evenly distributed between the 

parallel and anti-parallel spin states, the net magnetic moments would effectively cancel. 

However, the thermal energy experienced by spins aligned parallel are notably higher than 

those aligned anti-parallel (Abragam, 1961). Consequently, a net ‘excess’ of magnetic 

moments precess in the parallel spin state in comparison to those aligned anti-parallel (Bloch, 

1946). It is this net excess of mechanically active spins that form a detectable MRI signal. 

The net excess of protium spin populations, however, exist in extremely sparse 

quantities (add value), and in its own accord does not guarantee a detectable MRI signal 

(even in macroscopic bodies). To compensate for this, energy in the form radiofrequency (r-f) 

waves is deposited into the system (or sample of interest), consequently inducing additional 

precession of the atomic nuclei (tipping the spins into an ‘excited’ state) around B0. The r-f 

waves are merely magnetic fields which alternate in polarity; thus they are referred to 

commonly in MRI literature as the B1 field (Hill and Richards, 1968). Importantly, the 

polarity of the magnetic fields must oscillate at the Larmor frequency in order to interact with 

and excite spin populations at equilibrium. As mentioned earlier, the Larmor frequency for 

protium nuclei is solely governed by the magnetic field strength. Thus, by manipulating the 

magnetic field strength at various spatial location, specific populations of protium nuclei 

within a sample (or tissue) of interest are excited. To achieve this, additional magnetic fields, 

known as gradient magnetic fields, are applied in conjunction with the main magnetic field 
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(B0) to induce spatial variation in the magnetic field strength (Lauterbur, 1973); in this way, 

the magnetic properties of tissue are measured, encoded and used to form an image in a 

highly specific and targeted manner. 

 An over population of protium spin populations (precessing specifically at the 

Larmor frequency) in the excited state initiates a net (or bulk) magnetic signal (formally 

referred to as the net magnetization vector); this temporally oscillating bulk magnetic 

moment induces a changing voltage and induces a current within electro-sensitive receiver 

coils (Bloch, 1946). This process was coined by Bloch (1946) as nuclear induction. After 

switching off the B1 field, these excited protium spin populations equilibrate back to their 

‘normal’ energetic state and discharge energy out of the system, resulting in the net 

magnetization vector to also diminish simultaneously; in NMR and MRI literature, this 

process is referred to as ‘relaxation’(Bloch, 1957). In simpler terms, in the absence of the B1 

field, the bulk magnetization vector produced by protium spin populations relax back towards 

the direction of B0. As the name suggests, the net magnetization vector can be characterized 

and measured according to its vector components; a longitudinal and transverse component 

(Abragam, 1961). The longitudinal magnetization represents the net magnetization along the 

direction of B0 (along the z-axis in Fig. 1A and B), whereas the transverse magnetization 

represents the net magnetization orthogonal to both the longitudinal magnetization and B0 

(along the x-axis in Fig. 1A and B). 

After exciting the spin populations and transferring the net magnetization vector from 

the longitudinal to transverse position, the net magnetization relaxes back towards the 

longitudinal position over a specific time interval. This relaxation process is commonly 

modelled as a first-order exponential decay, introduced by Bloch (1946), and is referred to as 
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T1 (or spin-latticed) relaxation (Fig. 1A) (Bloch, 1946). Conversely, a time dependent 

relaxation, or loss, of the transverse magnetization is referred to as T2 (or spin-spine) 

relaxation (Fig. 1B).  

A. 

 

B. 

 
Fig. 1. Longitudinal and transverse magnetization in Cartesian coordinates. (A) T1 recovery is 

depicted as the net magnetization vector relaxing towards longitudinal magnetization (bold arrow 

along z-axis). Whereas in (B) T2 relaxation is depicted as the net magnetization vector receding away 

from transverse magnetization (dashed arrow along xy-axis). Further, the temporal relationship 

between T1 and T2 can observed; T1 is a longer process than T2. Adapted from Lipton, 2010. 

 

1.1.2 MRI signal behaviour in non-homogenous samples 

It is important to note that the electromagnetic signal measured using conventional 

MRI techniques is observed at the macroscopic spatial scale (≥ 1 mm); the net magnetization 

vector is in fact a sum of the component magnetization vectors generated by each 1H-proton’s 

magnetic moment. A consequence of acquiring the signal in this fashion results in an 

additional mechanism which contributes to transverse relaxation known as spin dephasing 

(Bloch, 1946). Initially, energy deposited in the form of radiofrequency waves establishes 

coherence between the individual magnetic moments, giving rise to the observable net, or 

bulk, magnetic signal. Over time, these individual magnetic moments lose coherence and 

accumulate phase, or angular distance, between one another. The phase is expected to 

                                                 
d This process is often referred to as T1 recovery, as the T1 signal increases throughout the time of signal 

acquisition. More specifically, T1 is defined as the amount of time it takes to recover 63% of the net 

magnetization signal (Bloch, 1946; Goldman, 2001). 

e T2 is defined as the amount of time it takes to lose 63% of the net magnetization signal (Lipton, 2010). 
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accumulate linearly (or a linear loss of spin coherence) when measuring the MRI signal 

within a magnetically homogenousf sample. However, this is not the case in samples which 

contain or experience non-homogenous magnetic fields (Yablonskiy and Haacke, 1994). 

Magnetic field inhomogeneities can be classified broadly into two categories; (1) as ‘local’ 

field effects, arising from tissue related properties of a region or structure of interest, or (2) as 

‘non-local’ field effects, such as magnetic interference from tissues of non-interest, hardware 

related deficiencies (e.g. primary magnet defects), or thermal noise. These magnetic field 

inhomogeneities, alongside spin-spin (T2) relaxation, contribute in adjunct to the overall 

transverse relaxation of the bulk MRI signal measured, and can result in non-intuitive 

(deviations from mono-exponential decay and non-linear phase evolution) signal behaviour 

(Cronin et al., 2017; Schweser et al., 2011a; van Gelderen et al., 2012). For this reason, the 

dephasing effects of magnetic field inhomogeneities are conveniently labelled as T2
’. Unless 

refocusing radiofrequency pulses are utilized to re-establish spin coherence, the measured 

transverse relaxation comprises the influence of both spin-spin relaxation and magnetic field 

inhomogeneities; the combined effect is referred to as T2
* relaxation. The analytical 

relationship between T2
*, T2, T2

’ is described below; 

1

𝑇2
∗ =  

1

𝑇2
+  

1

𝑇2
′ 

Thus, by measuring T2
*, we gain the benefit of two tissue related MRI signal parameters 

(spin-spin relaxation and magnetic field inhomogeneities), instead of merely one or the other 

(Markl and Leupold, 2012). The utility of these unique relaxation mechanisms for magnetic 

resonance imaging will be discussed in the following sections. 

 

 

                                                 
f A uniform spatial distribution of the magnetic field. 
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1.2  Establishing signal acquisition – gradient recalled echo magnetic resonance imaging 

 

1.2.2 The Gradient Echo Sequence 

Image contrast between different tissue types, also collectively referred to as tissue 

contrast, is the cornerstone of magnetic resonance imaging’s utility. By exploiting differences 

in the relaxation propertiesg (T1, T2, and T2
*) of tissues, MRI signal acquisition sequences 

modulate image contrast between different types of tissue in the brainh. Recent studies have 

demonstrated substantially improved tissue contrast gained from a particular sequence known 

as gradient recalled echo, commonly abbreviated as GRE (Duyn et al., 2007; Liu, 2010; Liu 

et al., 2015; Reichenbach et al., 1997). By using alternating magnetic field gradients (in 

contrast to a spin-refocusingi radiofrequency pulse) to temporally propagate the MRI signal, 

the GRE sequence preserves the signal’s sensitivity to inhomogeneities in the static magnetic 

field (B0) (Fig. 2) (Markl and Leupold, 2012). 

                                                 
g The longitudinal (T1) and transverse (T2) relaxation times depend upon a given sample’s composition and 

spatial distribution of hydrogen at the microscopic (< 0.1mm) and mesoscopic (0.1mm—1mm) scales. Since our 

work pertains to brain tissue, this would correspond broadly to the type, density, and size of organic (e.g. cells) 

and inorganic (e.g. minerals and metals) units, and how they are arranged within the structure of interest. But 

tissue microstructure (and subsequently composition and spatial distribution of micro-scale components) is 

relatively generalizable (consistent across multiple samples) at the macroscopic scale, thus we ascribe specific 

relaxation time constants for tissues. This property permits control over the signal measured from certain tissues 

over others, serving as the basis for image contrast in MRI. 

h A detailed explanation of MRI sequences, and their principles, implementations, and applications can be found 

in (Mangrum et al., 2012). 

i Commonly referred to as spin-echo. 
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Fig. 2. A conventional GRE-MRI sequence. The signal in GRE-MRI is initiated by a 90 (or < 90) 

radiofrequency pulse, tipping the net magnetization vector into the transverse plane. The unique facet 

of GRE-MRI lies in the formation of echoes (or recovery of spin coherence) through a reversal of the 

gradient magnetic field. As a result, the gradient echo signal intensity is determined by T2
* decay and 

field inhomogeneity effects are not refocused at the time of signal formation. DAQ reflects the period 

of data acquisition. Adapted from Markl and Leupold, 2012. 

 

1.2.2 Properties of the GRE-MRI signal 

 

The net magnetization vector generated by the precessing 1H-proton spin populations 

are observed by the signal receiver coilsj as a temporally oscillating electrical signal, 

commonly referred to as the free indication decay (FID) (Bloch, 1946). The FID signal is 

encoded as a periodic function and undergoes a Fourier transform, yielding a complex valued 

signal that bears a magnitude (real component) and phase (imaginary component); both the 

signal magnitude and signal phase can be used uniquely to reconstruct the MRI image, as will 

be discussed in later sections. A defining property of the GRE-MRI signal is the benefit of 

signal phase (Schweser et al., 2016). The signal phase is largely absent in spin-echo MRI 

(SE-MRI), which relies on a refocusing radiofrequency pulse to propagate the temporal 

signal, thus eliminating inherent phase offsets.  

The sensitivity of GRE-MRI signal phase to static field inhomogeneities is derived 

directly by measuring the local frequency offset () of 1H-proton spin populations relative 

                                                 
j Electromagnetic sensors of the MRI machine. 
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to the Larmor frequency (), or the frequency at which a 1H-proton precesses around an 

externally applied magnetic field (Duyn and Schenck, 2017; Reichenbach et al., 1997; 

Yablonskiy and Haacke, 1994). These frequency offsets reflect the mean magnetic field 

perturbation seen by spins within a voxelk. This relationship can be described in the 

laboratory framel of reference as,  

∆𝑓𝑀𝑅(𝑟) = −
𝛾

2𝜋
(𝐵𝑖𝑛ℎ𝑜𝑚 + 𝐵𝑑𝑒𝑚𝑎𝑔) 

in a right-hand coordinate system (Schweser et al., 2016), wherein  represents the 

gyromagnetic ratio (2.67 ∗ 106 𝑟𝑎𝑑

𝑠·𝑇
 𝑜𝑟 42.57 

𝑀𝐻𝑧

𝑇
) for the 1H-nucleus, Binhom representing 

field inhomogeneities arising from non-local and non-tissue related effects (e.g. shimming 

and main magnetic field variations), and Bdemag representing the tissue-related demagnetizing 

effects on the local magnetic field. These demagnetizing effects comprise of both 

diamagnetic (an induced magnetic field anti-parallel to the static magnetic field) and 

paramagnetic (an induced magnetic field parallel to the static magnetic field) constituents 

(Schweser et al., 2016). Both, diamagnetic and paramagnetic, substances would induce 

localized variations in the static magnetic field strength, and consequently result in protons to 

precess outside the Larmor frequency bandwidth and a net loss in overall signal magnitude. 

Recent studies in MR neuroimaging have elucidated the substantial utility of signal phase in 

enhancing observable contrast between different tissue types (Fig. 1) (Deistung et al., 2008; 

Duyn et al., 2007; Reichenbach, 2012; Reichenbach et al., 2015, 1997; Schenck and 

Zimmerman, 2004). 

 

 

                                                 
k A volumetric pixel. 

l Also referred to as the ‘real-life viewpoint’, wherein precession of the NMV about B0 is observed in 3-D as a 

function of time.  
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GRE magnitude                                    GRE phase                                                MPRAGE 

 

Fig. 3. Comparing image quality and tissue contrast based from in different MR sequences. Tissue 

contrast in GRE magnitude, GRE phase, and MP-RAGE images allow for discrimination between 

gray and white matter regions in the brain. Duyn et al. report nearly 10x increased contrast between 

gray and white matter using GRE phase data acquired at 7T (Courtesy of Duyn et al., 2007). 

 

1.2.3 The utility of GRE-MRI in susceptibility imaging 

Tissue related effects on the local magnetic field can provide valuable information 

about the composition and abundance of different cellular and molecular species in that 

particular region of interest (He and Yablonskiy, 2009; Marques et al., 2009; Reichenbach et 

al., 1997). These include, but are not limited to effects, such as chemical exchange (Luo et 

al., 2010; Shmueli et al., 2017, 2011; Zhong et al., 2008) and magnetic susceptibility (Duyn 

and Schenck, 2017; Haacke et al., 2015; Langkammer et al., 2012; Lee et al., 2012; Schweser 

et al., 2012, 2012; Wang and Liu, 2015). T2
*-weighted GRE-MRI has gained recent 

prominence in mapping the magnetic susceptibility of tissues in the brain (Argyridis et al., 

2014; Kim et al., 2017; Li et al., 2011; Schweser et al., 2011b, 2012). GRE-MRI based 

susceptibility-processing techniques, such as susceptibility-weighted imaging (SWI) and 
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quantitative susceptibility mapping (QSM), allow for enhanced visualization of unique neural 

tissue types (e.g. white matter, gray matter and CSF) at a high spatial resolution (Duyn, 2017; 

Liu et al., 2015, 2015; Reichenbach et al., 2015; Schweser et al., 2016). SWI enhances 

susceptibility-induced contrast by merging the T2
* weighted magnitude image with a filtered 

phase map in a multiplicative fashion (de Crispgny et al., 1993; Liu et al., 2015). However, 

SWI images can only provide qualitative information about an anatomical region because the 

individual voxels do not reflect a physical quantity. Quantitative susceptibility mapping 

(QSM) on the other hand is an emerging post-processing tool that isolates the local tissue 

magnetic susceptibility (source) from the measured magnetic field distribution (effect) (Li et 

al., 2014; Liu et al., 2009; Marques and Bowtell, 2005; Reichenbach et al., 2015; Sun and 

Wilman, 2014). SWI and QSM share similar parameters with regards to data acquisition, as 

well as certain data processing procedures, such as phase unwrapping, background field 

removal, and mask generation. QSM deviates from SWI by how it proceeds to utilize the 

unwrapped and filtered phase data; instead of multiplying the phase by the magnitude, the 

phase is numerically processed to solve for magnetic susceptibility. 

QSM has been extensively utilized to study the magnetic properties of brain and 

nervous tissue in healthy, aging, and disease conditions. Mean susceptibilities of bulk tissue 

in white matter and deep gray matter regions have also been measured using QSM 

(Langkammer et al., 2012). QSM is commonly used to quantify iron content in the brain. Iron 

deposition in the brain increases with normal aging and has been implicated in age-related 

motor and cognitive impairment (Bartzokis et al., 2010; Sullivan et al., 2009; Koopmans et 

al., 2008). QSM has been successfully utilized to quantify iron content in the basal ganglia, 

midbrain, and iron tagged stem cells (Reichenbach et al., 2015). Due to an age-dependent 

effect of iron on magnetic susceptibility, however, a normalized range and variation of 

susceptibility values must first be established prior to drawing any conclusions based on iron 
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content (Hallgren et al., 1958). QSM’s sensitivity in detecting (micro-) hemmorhages has 

increased its utility for traumatic brain injury (TBI) imaging, and extending its application so 

far as to distinguish mild and severe cases (Li et al., 2014; Liu et al., 2015b). By enabling 

quantitative detection of longitudinal lesion changes, QSM’s role as a biomarker for MS is 

being investigated (Blazejewska et al., 2014; Chen et al., 2014; Langkammer et al., 2013). 

QSM has also been validated as a highly robust means of differentiating paramagnetic and 

diamagnetic blood. This has key implications in studying tumoral calcification and 

architecture (Reichenbach et al. 2015; Sehgal et al., 2006). 

Beyond the spatial influence of magnetic susceptibility, non-linear variations in the 

temporal GRE-MRI signal have also been attributed to tissue-specific susceptibility effects 

(Cronin et al., 2017; Schweser et al., 2011; Schweser et al., 2016; Sood et al., 2017; van 

Gelderen et al., 2012). For this reason, the multi-echo GRE-MRI (mGRE-MRI) sequence has 

increasingly been used to visualize and quantify magnetic susceptibility in brain tissue from 

echo-time dependent data. The use of temporal susceptibility mapping will be further 

discussed in the following section. 

1.3  Decoding the mGRE-MRI signal through compartmentalization 

 

Early nuclear magnetic resonance (NMR) studies have already demonstrated shifts in 

the resonant frequency induced as a direct result of “bulk (magnetic) susceptibility”, or a sum 

of discrete microscopic signal influences (Chu et al., 1990; Hopkins and Wehrli, 1997; Kubo 

et al., 1998; Szczepaniak et al., 2002). An increasing number of studies have aimed to 

spatially map, characterize and quantify susceptibility effects and represent them as unique 

intra-voxel signal compartments (Chen et al., 2013; Hernando et al., 2008; Wu et al., 2017; 

Xu et al., 2015). For example, a technique known as myelin water fraction (MWF) imaging 

has greatly benefitted from the use of mGRE-MRI. The original MWF imaging technique 

developed by Mckay et al. (1994) introduced a novel method of visualizing (in-vivo) white 
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matter based on the multi-exponential decomposition of T2 relaxation. Through a least-

squares fitting approach of the T2 signal, two distinct signal components were identified; a 

fast relaxing (or short) component ascribed to water trapped between the myelin layers, and a 

slow relaxing (or long) component designated to mobile intra— and extra—axonal water 

(Mackay et al., 1994). Utilizing these differential T2 values, the fractional occupancy of 

myelin water was mapped in a pixel-wise manner. Histopathological studies have validated a 

strong correlation between myelin water fraction and myelin content (Kozlowski et al., 2008; 

Lancaster et al., 2003; Laule et al., 2008, 2008; Moore et al., 2000; Webb et al., 2003). 

The multi-parametric fitting approach aims to discretize the magnetic field changes 

contained within a millimeter-scale voxel. These micro-scale (< 1.0mm) effects are 

commonly referred to as ‘signal compartments’(Chen et al., 2013; Du et al., 2007; Duyn and 

Schenck, 2017; Sati et al., 2013). The signal compartmentalization approach was adapted and 

further optimized, using mGRE-MRI magnitude data, to characterize water micro-

environments (the myelin water pool (my), axonal water pool (ax) and extracellular water 

pool (ex)) and investigate myelin integrity in white matter structures (Du et al., 2007; Hwang 

et al., 2010). MWF mapping via T2
* compartmentalization has also been validated through 

post-mortem histopathological analysis (Du et al., 2007). MGRE-MRI based MWI presents 

numerous technical advantages over the conventional multi-echo SE-MRI; namely, larger 

volume coverage, faster scan time, lower specific absorption rate, and insensitivity to B1 

inhomogeneity. Furthermore, mGRE-MRI data provides the opportunity to gain additional 

information about myelin integrity through susceptibility related contrasts derived from T2
*,  

phase and susceptibility maps (Baxan et al., 2010; Duyn et al., 2007; Lee et al., 2012; Li et 

al., 2006; C. Liu et al., 2011; Shmueli et al., 2009; Wu et al., 2017). 
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Recent works extend the use of multi-exponential models to mGRE-MRI signal 

compartments through the incorporation of signal phase information (e.g. using complex 

terms to define signal compartments (Hernando et al., 2008; Li et al., 2015; Nam et al., 2015; 

Sati et al., 2013, 2013; van Gelderen et al., 2012). When examining the T2
* signal behaviour 

in white matter, Van Gelderen et al. (2012) report higher residual errors in areas exhibiting 

greater structural order (e.g. densely myelinated anisotropic nerve fibers) compared to areas 

with less structural coherence (e.g. interstitial space with isotropic inclusions). Further, these 

residual errors were enhanced at higher field strengths. The authors ascribe these effects to 

susceptibility induced shifts in the signal phase, and improve the quality of signal fit through 

the addition of a complex-valued frequency offset term in two signal compartments (van 

Gelderen et al., 2012). This model, however, proved less robust in explaining white matter 

signal behaviour when compared to a more advanced signal model which assigns three 

distinct frequency shift parameters to three different signal compartments (myelin water, 

axonal water, and extracellular water/cerebrospinal fluid) (Alonso-Ortiz et al., 2017; Li et al., 

2015; Nam et al., 2015; Sati et al., 2013; Wu et al., 2017). By defining a frequency shift 

parameter through the phase component of each signal compartment, the complex model 

fitting approach has benefited from a reduction in structured residual errors and the 

generation of frequency shift maps (Alonso-Ortiz et al., 2017; Nam et al., 2015). This 

advance has played an important role in improving stability of myelin water fraction 

estimation (Nam et al., 2015; Wu et al., 2017). 

The utility of GRE-MRI signal compartmentalization extends beyond the domain of 

MWF imaging. For example, a two-compartment complex-valued model was used to 

enhance contrast between water and fat in dixon-type mGRE-MRI acquisitions (Hernando et 

al., 2008). A recent simulation study utilizes the multi-compartment complex-valued plane 

wave model to investigate the susceptibility effects iron-rich oligodendrocytes in white 
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matter (Xu et al., 2015). Signal compartments have also been recently identified in gray 

matter regions by utilizing a three-compartment susceptibility model to explain temporal 

trends in magnetic susceptibility (Sood et al., 2017). At large, however, the utility of signal 

compartments to study tissue properties in non-white matter regions remains largely 

unexplored. 

1.4  Decoding the mGRE-MRI signal through compartmentalization 

 

1.4.2 The challenges of tissue phase 

 

Although the inclusion of phase information has benefitted signal 

compartmentalization, this approach presents a new set of signal processing challenges. 

These issues relate to the removal of non-local, or background phase offsets, and therein 

having to deal with phase wraps (folding of signals into the  -π to π range) (Li et al., 2014; 

Liu et al., 2015; Schweser et al., 2016). Removal of macroscopic susceptibility effects has 

been attempted through shimming (van Gelderen et al., 2012), filtering (e.g. high-pass, low-

pass, and Gaussian) (Chen et al., 2013; Li et al., 2015; Sati et al., 2013), and by incorporating 

a parameter for background phase into the model for data which has not been background 

field filtered (Li et al., 2015; Nam et al., 2015; Wu et al., 2017). In addition to the 

aforementioned techniques, more sophisticated phase unwrapping and background field 

removal techniques have emerged for voxel-wise quantification of tissue susceptibility. For 

example, the sophisticated harmonic artefact reduction for phase data (SHARP) method (Sun 

and Wilman, 2014) and its variants (Li et al., 2011; Schweser et al., 2011b; Wu et al., 2012) 

the projection onto dipole fields (PDF) method (Liu et al., 2011), and harmonic phase 

removal using the Laplacian operator (HARPERELLA) (Li et al., 2014; Sood et al., 2017).  

Phase unwrapping techniques can be classified broadly into two categories; 

algorithms that unwrap in the spatial domain and temporal domain (Haacke et al., 2015). 
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Both approaches aim to estimate the integer number of phase cycles necessary to correct 

measured phase values that extend beyond the – to  polar boundary (Schweser et al., 

2016). Phase unwrapping for individual voxels in the spatial domain uses neighboring voxels 

to estimate the true phase, while temporal unwrapping utilizes changes in the temporal signal 

phase of each voxel. For this reason, temporal unwrapping techniques can only be applied to 

multi-echo data. Recent attempts at phase unwrapping within signal compartmentalization 

works include frequency offset subtraction from a linear fitting procedure in the temporal 

domain (Li et al., 2015; Sati et al., 2013) and cost-function based integer programming 

approaches (Hammond et al., 2008; Nam et al., 2015). A comprehensive review about phase 

unwrapping, as well as other methods, underlying principles, and applications related to 

signal phase processing can be found in a recent review article authored by Schweser et al., 

(2016). 

1.4.3  The benefits of tissue susceptibility 

 

As detailed in section 1.2.3, an entire field of research, namely QSM, has emerged 

with the sole aim of isolating the local tissue magnetic susceptibility (Haacke et al., 2015; 

Kee et al., 2017; Li et al., 2011; Liu et al., 2015; Reichenbach et al., 2015; Schweser et al., 

2012). A recent study adopted this approach within the context of myelin water fraction 

imaging, and reported more robust parameter estimations and reduced signal artifacts after 

replacing unfiltered phase data with local susceptibility information (Fig. 4; Wu et al., 2017). 

Thus, incorporating susceptibility-induced frequency shifts into the signal 

compartmentalization process would serve as a rational means of investigating tissue 

properties at the voxel-level.  
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Fig. 4. Myelin water fraction imaging by incorporating tissue susceptibility (Adapted from Wu et al., 

2017). MWF maps were generated by fitting the mGRE-MRI signal via three different methods; in Row 

1 the complex data comprised of magnitude and tissue phase; in Row 2, only the magnitude data was 

used; and in Row 3, the complex data was also incorporated magnitude information, but with phase 

data after being processed using QSM. In Row 3, a clear reduction of image artefacts can be observed 

through the use of local susceptibility information in place of tissue phase. 
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Chapter 2: Frequency shifts in multi-echo GRE-MRI signal compartments reflect 

underlying tissue microstructure in the brain 

 

2.1 Introduction and Aims 

Though signal compartments have been identified in white matter regions, a recent 

study explains non-linear trends in echo-time dependent magnetic susceptibility using a 

three-compartment model (Sood et al., 2017). These findings promote further investigation 

into echo time dependent non-linear frequency shift effects due to a lack of ordered 

microstructures, namely myelin, to give rise to distinct water micro-environments, the 

traditionally proposed source of signal compartments in gray matter brain regions (Duyn et 

al., 2007; Koenig, 1991; Lee et al., 2012; O’Brien and Sampson, 1965). For example, the 

signal frequency is influenced by local susceptibility inclusions such as iron (Abduljalil et al., 

2003; Drayer et al., 1986; Fukunaga et al., 2010; Schenck and Zimmerman, 2004; Todorich 

et al., 2009), calcium (Li et al., 2011; Liu et al., 2009; Schweser et al., 2011), neurofilaments 

(He and Yablonskiy, 2009; Luo et al., 2010; Yablonskiy et al., 2012), tissue anisotropy 

(Hong et al., 1971; Lee et al., 2017; W. Li et al., 2012; X. Li et al., 2012; Yablonskiy and 

Sukstanskii, 2017), and dynamic proton interactions (e.g. dipolar coupling, chemical 

exchange, slow diffusion, etc.) (Leutritz et al., 2013; Ruh et al., 2017; Shmueli et al., 2011; 

van Zijl et al., 2017; Yablonskiy and Haacke, 1994) throughout the brain. Such effects could 

contribute to an outcome which mimic changes due to magnetic susceptibility with a 

subsequent influence on signal compartment parameters. Signal compartmentalization using 

parameters influenced by magnetic susceptibility variations would additionally allow for a 

more acute and less confounded analysis of tissue properties, herein defined as the 

composition and spatial arrangement of the primary components, at the meso-microscopic 

interface (0.1 – 0.5mm). 



Exploring the utility of GRE-MRI signal compartments for        Ch. 2 

temporal susceptibility mapping and investigation of neural microstructure 

MPhil Thesis – Shrinath Kadamangudi 

 
30 

Taken together, GRE-MRI signal compartments in non-white matter regions, and 

effectively outside the context of myelin water fraction (MWF) imaging, remain largely 

unexplored. In white matter the geometry of fibre bundles and the distinctly different 

magnetic susceptibility of myelin from its surroundings underpins the three-water pool 

model. However, the number of complex-valued signal compartments across other brain 

regions remains. To this end, we investigated the number of signal compartments in a range 

of human brain regions (including gray matter, white matter and CSF) using a data driven 

approach in selecting appropriate multi-compartment models. We maximized our sensitivity 

to local signal influences by working with magnetic susceptibility prior to complex signal 

fitting in the multi-echo GRE-MRI regime. We aimed to establish how the number of signal 

compartments vary across brain regions and whether they are shared across brain regions 

which exhibit microstructural diversity.  

2.2 Methods 

2.2.1 Data acquisition 

The experiment was conducted after having been provided ethical clearance by the 

University of Queensland human ethics committee. In vivo brain imaging (consent was 

provided by five healthy adult volunteers with a mean age of 34 ± 4 years) sessions were 

conducted on a 7T whole-body MRI research scanner (Siemens Healthcare, Erlangen, 

Germany) equipped with a 32-channel head coil (Nova Medical, Wilmington, 

Massachusetts). Thirty echo 3D gradient recalled echo scan was acquired with the following 

acquisition settings: TE1 = 2.04 ms and echo spacing of 1.53 ms, TR = 51 ms, flip angle = 

15o, voxel size = 1 × 1 × 1 mm3 and matrix size = 210 × 168 × 144.  

2.2.2 Signal processing and quantitative susceptibility mapping 

The magnitude image of each channel was used to form a channel mask using the 

BET tool provided as part of MIPAV 7.3.0 (http://mipav.cit.nih.gov/). The result was read 
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into MATLAB 2015b (The MathWorks, Natick, Massachusetts) from which a binary mask 

was created. STI Suite V2.2 (http://people.duke.edu/_cl160/) was used to process 

susceptibility maps in a channel-by-channel manner, as described previously (Bollmann et 

al., 2015). iHARPERELLA (background phase removal) and iLSQR (solving for 

susceptibility based on background field corrected tissue phase) in STI Suite were used to 

generate 3D susceptibility maps for each echo time.   

2.2.3 Region-of-interest selection 

We considered nine brain regions, namely the caudate, putamen, fornix, corpus 

callosum, internal capsule, insula, substantia nigra, thalamus, and cerebrospinal fluid (CSF). 

Three sub-cortical white matter regions, namely the corpus callosum, internal capsule, and 

fornix were chosen for comparison of signal compartment parameters to those identified 

previously in MWF imaging studies. Five sub-cortical gray matter regions, namely the 

caudate, putamen, insula, substantia nigra, and thalamus were selected as a representative 

sample of overall sub-cortical gray matter structures. Although the spatial arrangement of 

tissue microstructure would differ across these regions, the underlying composition (e.g. 

neurons, glia, biometals, etc.) of these structures can assumedly be conserved at the meso-

microscopic spatial interface. Consequently, trends in signal-specific signatures of these 

tissue components, encoded as shifts in the Larmor frequency, can be probed systematically 

across specific regions to reveal underlying similarities and differences in tissue 

microstructure. Manual segmentation guided by a human brain atlas (Leutritz et al., 2013) 

was performed in MIPAV using a number of different echo time 7T magnitude images based 

on the clarity of structural contrast (Fig. 1). Segmentation boundaries for all regions-of-

interest (ROI) were avoided by a distance of approximately two voxel lengths from adjacent 

regions in order to minimize partial volume effects. This approach allowed us to produce 

brain region masks corresponding to brain regions with a high level of confidence.  

http://people.duke.edu/_cl160/)
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Fig. 1. Illustration of the brain regions investigated. 
 

2.2.4 Complex signal generation 

Previous studies generate the temporal complex signal by combining the signal 

magnitude and tissue phase (unwrapped raw phase) data for each echo-time (Hernando et al., 

2008; Li et al., 2015; Nam et al., 2015; Sati et al., 2013). This method, however, suffers from 

signal influences arising from non-local magnetic fields. Instead, we converted tissue phase 

to quantitative susceptibility maps from which we then computed the frequency shift to 

overcome drawbacks of working with tissue phase directly (Wu et al., 2017).  

First, the raw phase data was processed using HARPARELLA, or harmonic phase 

removal using the Laplacian operator. HARPERELLA shows particular promise in providing 

simultaneous processing capability for both phase unwrapping and background removal (Liu 

et al., 2015). This method has also proved to be robust in preserving tissue phase integrity 

across gray and white matter regions, as well as cerebrospinal fluid (Li et al., 2014). Signal 

phase values were averaged across hemispheres and repeated for each echo time (Sood et al., 

2017). This formed the temporal phase, which was subsequently fed into the STI Suite 

pipeline for calculation of temporal susceptibility data for each participant. The sparse linear 
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equation and least-squares (iLSQR) method implemented within the STI Suite package has 

been shown to be a robust and unbiased method of quantifying local magnetic susceptibility, 

thus qualifying its use for our work (Liu et al., 2015; Sood et al., 2017; Sukstanskii and 

Yablonskiy, 2014). Prior to complex signal generation, the regional magnitude and 

susceptibility signal were averaged across all participants. The susceptibility values for each 

echo-time were converted to frequency shifts by a modification of the Larmor equation, 

𝜔 =  𝛾𝐵0 

∆𝜔 =  𝛾∆𝐵0 

where ∆ represents the angular shift in the Larmor frequency due to the induced 

field change, denoted as ∆B0, and  representing the gyromagnetic ratio of hydrogen. Further, 

changes in the local static field arise from magnetic susceptibility induced influences, 

denoted as , 

∆𝐵0 =  𝜒𝐵0 

This allows for a substitution of magnetic susceptibility into the Larmor equation, 

yielding, 

∆𝜔 =  𝛾𝜒𝐵0 

The angular frequency shift, ∆, can be mapped on to the Cartesian plane via the 

periodic convolution ∆𝜔 = 2𝜋∆𝑓. Finally, a solution for ∆𝑓 can be derived from a re-

arrangement of the susceptibility-substituted Larmor equation. The conversion took the form 

(in a right-handed coordinate system): 

∆𝑓 = 𝜒
𝛾𝐵0

2𝜋
, 

where 𝜒 is the magnetic susceptibility value generated using the STI Suite pipeline, 𝛾 

is the gyromagnetic ratio of hydrogen and B0 = 7T (Reichenbach et al., 1997; Schweser et al., 

2011; 2016). Prior to generating a complex signal based on signal magnitude and frequency 
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shift, voxel values within each region were averaged. The temporal measured complex signal 

(Sm) for each region was then generated as a function of the measured signal magnitude (Am) 

and measured frequency shift (∆fm) at each echo-time (t): 

𝑆𝑚(𝑡) = 𝐴𝑚(𝑡)𝑒  –𝑖2π∆𝑓𝑚𝑡. 

2.2.5 Signal compartmentalization 

GRE-MRI signal compartment models have evolved over the years. Du et al. (2007) 

introduced the “three-pool model” for temporal GRE-MRI data, with the purpose of 

characterizing water micro-environments and investigating myelin integrity in white matter at 

the 3T MRI field strength. This was a real-valued model and contributions from the myelin 

(my), axonal (ax) and extracellular (ex) water pools were estimated through model 

parameters. Thereafter, GRE-MRI signal compartments were investigated at both 3T and 7T 

field strengths (Hernando et al., 2008; Li et al., 2015; Nam et al., 2015; Sati et al., 2013, 

2013; van Gelderen et al., 2012) and, it was concluded that fitting quality improves with the 

addition of signal phase in the model. Nam et al. compared various models and showed 

spatially resolved maps of model parameters based on a model in which all three signal 

compartments were complex valued. Subsequently, Wu et al. proposed a pipeline for 

compartmentalizing temporal GRE-MRI data, which uses the QSM pipeline instead of 

directly computing frequency shifts from signal phase. This pipeline is less sensitive to noise 

in the data and has been applied to high resolution GRE-MRI data.   

In accordance with previous studies (Li et al., 2015; Nam et al., 2015; Sati et al., 

2013; Wu et al., 2017), compartments of the complex GRE-MRI signal were formulated 

using the amplitude modulated plane wave formulation:  

𝑆𝑛(𝑡) =  𝐴𝑛(𝑡)𝑒−𝑖(2π∆𝑓𝑛𝑡+𝜙𝑛) 

where n is the signal compartment number, An denotes the signal magnitude, Δfn defines the 

compartment frequency shift, and n is an induced phase shift. We omitted the phase shift in 
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our work since calculations used local magnetic susceptibility derived having performed 

background field removal (Li et al., 2014). Magnetic field changes introduced by micro-scale 

(< 100µm) effects were assumed to be confined to millimeter-scale (100µm – 1000µm) 

voxels; a dipole representation for individual voxel signal compartments can thus be avoided 

(Chen et al., 2013; Sood et al., 2017). This allows us to express each signal compartment of 

an image voxel as a relaxation modulated complex-valued plane wave:  

𝑆(𝑡) = ∑ 𝐴𝑖(𝑡)𝑒
−

𝑡
𝑇2,𝑖

∗  −𝑖2𝜋∆𝑓𝑖𝑡
𝑁

𝑖=1

, 

where N is the total number of signal compartments used to fit the measured signal, Ai 

denotes the volume fraction, T*
2,i defines the compartment spin-spin relaxation time in the 

presence of field inhomogeneities, and Δfn signifies the frequency shift for each signal 

compartment. We considered the cases of N = 1 to 6. We implemented a non-linear least 

squares fitting algorithm in MATLAB (Mathworks, Natick, MA, USA) and solved for model 

parameters (Ai, T
*

2,i, and ∆fi). Initial values and optimization search ranges are summarized in 

Table 1. Initial values for the volume fraction were varied for the six compartment models 

tested; volume fractions for each compartment were set to  
|𝑆(𝑇𝐸1)|

𝑁
, for compartments 𝑁 =

1 𝑡𝑜 6; T2
* values were set within realistic ranges as reported previously by Peters et al. 

(2007); and ∆f in view of previous studies on GRE-MRI signal compartments (Alonso-Ortiz 

et al., 2017; Li et al., 2015; Sati et al., 2013; van Gelderen et al., 2012; Wu et al., 2017). 

Besides the fixed upper and lower bounds, no other optimization constraint, penalty function, 

or weighting was used for signal fitting. This was performed to reduce parameter estimation 

bias and ensure a data-driven analysis. Modifications to the initial values did not result in 

different fitted parameter values; provided in Appendix Table 1 are parameter estimates for 

three different initializations. We ran 40,000 iterations when a 1 compartment model was 

used, and doubled the number of iterations for every additional compartment to account for 
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increases in search space dimensionality (e.g. three search dimensions introduced through the 

addition of each compartment). 

Table 1 
Initial values and search range used to estimate parameters of one to six compartment signal models. 

𝑆(𝑇𝐸1) denotes the magnitude of the first-echo signal. 𝑁 = 1 𝑡𝑜 6 (number of compartments). 

 A (a.u.) T2
* (ms) f (Hz) 

Initial value |𝑆(𝑇𝐸1)|

𝑁
 

30 0 

Lower bound 0 0 -150 

Upper bound 2 × |𝑆(𝑇𝐸
1

)|  200 150 
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Fig. 1.  Data processing and analysis pipeline—example given for the caudate in one participant. (a) 

ROIs were selected from combined magnitude and combined susceptibility data (mask manually 

generated via magnitude images). (b) Averaged magnitude and susceptibility values were calculated 

for each ROI; averaged susceptibility values were converted to frequency shifts at each echo time. (c) 

The complex signal was generated using as a function of magnitude, frequency shift, and echo-time, 

and fitted to a multi-compartment (1 to 6) model. (d) The most parsimonious compartment models 

were selected via the AIC for further analysis. 
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2.2.6 Model selection and cluster analysis 

 

Achieving model parsimony, or the ideal balance between bias and variance, requires 

a model to exhibit accuracy and simplicity in describing the measured data (Vandekerckhove 

et al., 2014). We implemented the Akaike Information Criteria (AIC) to be able to accurately 

assess features in the data without overfitting (Akaike, 2011; Naik et al., 2007). The AIC fine 

tunes model parsimony by reinforcing improvements in quality-of-fit and penalising an 

increasing number of parameters. Further, the AIC allows for comparison of two or more 

models to the unknown true distribution via a maximum likelihood estimation. When fitting a 

model using least squares regression, the likelihood function can be estimated by the residual 

sum of squares (RSS) returned by the least squares fit, yielding; 

𝐴𝐼𝐶 = 𝑛 log (
𝑅𝑆𝑆

𝑛
) + 2𝑘, 

wherein n is the number of independent measurements, and k represents the number of 

unknown parameters. When implementing the AIC for a small sample, or measurement (e.g. 

n/k < 40), size, an additional bias correction penalty term is required (Bedrick and Tsai, 1994; 

Burnham and Anderson, 2004); this yields a ‘corrected’ AIC (AICc) metric, formulated as, 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
. 

Taken together, we used the AICc metric to identify the number of signal compartments 

within each ROI. The model exhibiting the lowest AICc value, considered as the most 

parsimonious, was selected for inter-region comparison of compartment frequency shifts 

(labelled as ‘AIC-selected models’). We performed a k-means cluster analysis of the AIC-

selected compartment frequency shifts between all nine brain regions to ascertain the 

‘dominant’ underlying signal influences shared across the regions investigated. k-means 

clustering is a vector quantization method which aims to partition a data set into sub-



Exploring the utility of GRE-MRI signal compartments for        Ch. 2 

temporal susceptibility mapping and investigation of neural microstructure 

MPhil Thesis – Shrinath Kadamangudi 

 
39 

components with optimally shared features (Lloyd, 1982). k-means clustering is typically 

implemented as an iterative optimization method, wherein a sample with n observations are 

partitioned into k clusters (Kaufman and Rousseeuw, 2009; Lloyd, 1982). Moreover, the 

individual observations (n) are assigned to a specific cluster (k) with the nearest mean 

(minimized by a distance measure or cost function), or centroid value; these values serve as 

the representative quantitative feature of the respective clusters. Different heuristics have 

been proposed in order to identify representative seeds for the centroid values (Arthur and 

Vassilvitskii, 2007; Ertöz et al., 2003; Kaufman and Rousseeuw, 2009). Through simulation 

results, the k-means++ seeding approach has been shown to yield smaller net distance 

measures (or cost-function errors) at a substantially improved convergence rate in 

comparison to traditional methods (Arthur and Vassilvitskii, 2007). The value of k is chosen 

prior to the optimization process; optimal number of frequency shift clusters were determined 

using a silhouette (SI) analysis. The mean silhouette (SI) value quantifies how close each 

point in one cluster is to points in the neighbouring clusters. The silhouette value for the ith 

point, SI, is defined as;  

𝑆𝐼 =
(𝑏𝑖 − 𝑎𝑖)

𝑚𝑎𝑥 (𝑎𝑖, 𝑏𝑖)
, 

where ai is the average distance from the ith point to the other points in the same 

cluster as i, and bi is the minimum average distance from the ith point to points in a different 

cluster, minimized over clusters (Kaufman and Rousseeuw, 2009). A high SI value indicates 

that i is well-matched to its own cluster, and poorly-matched to neighbouring clusters; thus, a 

high SI mean indicates better clustering. All analyses within this section were performed in 

MATLAB, and built-in functions were utilized for k-means clustering (inclusive of k-

means++ seeding) and SI analysis. 
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2.2.7 Analytical connection map 

 

An analytical connection map was created to visualize how frequency shifts of 

within-region signal compartments linked to dominant signal compartments. This was 

performed by (1) arranging the dominant compartment frequency shifts on a frequency 

spectrum (set to a loose range so as to include all values), (2) plotting volume fraction 

weighted circles of within-region compartment frequency shifts on the frequency spectrum, 

(3) linking the within-region compartment frequency shifts to their respective brain regions, 

and (4) ordering the brain regions by minimizing the path length of their connections. This 

analysis was performed using Adobe Illustrator CC 2015 (Adobe Systems, San Jose, CA, 

USA).  

2.2.8 Generating volume fraction maps based on compartment frequency shifts 

 

We aimed to validate the results of our data driven analysis (e.g. AIC model selection 

and k-means clustering) by mapping the voxel occupancies of the dominant signal 

compartments. The dominant compartment frequency shifts were chosen because they 

represent the broad underlying signal features of within-region signal compartments. A five-

compartment complex-valued signal model, with fixed frequency shifts corresponding the 

five dominant frequency shifts (Fig. 2), was fitted to each complex valued voxel signal. 

Formulation of signal compartments and the optimization procedures remained the same as 

outlined in the previous section. For the ease of data presentation and utilizing this analysis 

primarily as a validation measure, representative image slices for each ROI were chosen from 

only one participant. Choosing slices from only one participant also demonstrates the 

practical utility, potentially for clinical use, of signal compartments in probing tissue 

properties on a case-by-case basis. 
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2.3 Results 

2.3.1 Evaluating temporal trends in the mGRE signal 

  A.  B. 

  
—Caudate   —Putamen  —Fornix   —Corpus Callosum   —Internal Capsule 

—Insula   —Substantia Nigra   —Thalamus   —CSF 

Fig. 2. Shown are (A) signal magnitude and (B) frequency shift as a function of echo time for the nine 

brain regions investigated. Values shown are based on averaging voxel signals in each region-of-

interest and then averaging across participants. For each region, the first echo frequency shift value 

was subtracted to aid interpretation of results.  

 

Fig. 2A shows the signal magnitude as a function of echo time for the nine regions 

investigated. Results are shown when voxel values, within respective regions, have been 

averaged for each individual and averaged across participants. Signal magnitude values have 

been plotted on a log scale, implying that in the case of mono-exponential signal magnitude 

decay governed by the T2
* of individual regions, the curves should be linear. The best level of 

linearity was achieved for the CSF (residual of linear fit = 0.034), whilst other regions depict 

a level of non-linearity (residual of linear fit for caudate = 0.083, putamen = 0.071, fornix = 

0.076, corpus callosum = 0.17, internal capsule = 0.13, insula = 0.047, substantia nigra = 0.38, 

thalamus = 0.094). These results suggest the presence of multiple signal effects which lead to 

a deviation from mono-exponential signal magnitude decay. Notably as well, the shape of the 

curves differ as a function of brain region, implying different effects are likely contributing to 

the signal in different brain regions.  
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In Fig. 2B the computed temporal frequency shifts for each brain region are depicted. 

The variability in the frequency shift curves as a function of echo time is larger than what can 

be observed in the signal magnitude (compare to Fig. 2A). For example, the substantia nigra 

had the highest amount of deviation from linearity for the signal magnitude, whereas its 

frequency shift does not vary as much in comparison to other regions. This observation 

suggests different underlying signal influences may potentially be influencing temporal 

trends in signal magnitude and frequency shift. 

2.3.2 Quality of fit measures and information criteria indicate unique multi-compartment 

models for different brain regions 

Table 2 

ROI fitting results for one to six compartment models assessed via the standard error of regression 

(SER). Normalized SER plateau points for the complex signal, in bold, were utilized to informally 

assess the maximum number of signal compartments within each ROI. SER metrics for the magnitude 

and phase, in italics, are presented to elucidate the effects of increasing model complexity on quality-

of-fit for respective GRE-MRI signal compartments. 
 SER (%) 

No. of 

compartments 1C 2C 3C 4C 5C 6C 

Caudate 19.3 12.7 7.4 6.6 6.3 5.0 

Putamen 28.6 12.9 9.6 7.9 7.4 6.4 

Fornix 12.2 6.8 6.8 3.8 3.8 3.7 

CC 12.3 7.8 3.9 3.2 3.0 2.9 

IC 22.7 13.1 3.7 3.7 2.4 3.3 

Insula 28.9 13.2 11.3 9.1 8.6 7.6 

SN 8.5 7.1 4.6 3.8 3.6 2.9 

Thalamus 4.4 3.6 3.2 2.2 2.1 1.9 

CSF 15.0 10.3 9.2 9.1 9.1 9.1 

 

The temporal complex signal for each region was fitted using one to six compartment 

models, and the standard error of regression (SER) was calculated respectively (referred to as 

‘Complex’) (see Table 2). By increasing the number of signal compartments, the quality-of-fit 

improved, as indicated by the ‘Complex’ SER values for each compartment model; of note, 

the SER for the complex signal was set as the cost function in the optimization algorithm. The 

bold face values indicate the compartment model where less than 5% improvement was 
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achieved with respect to the SER value obtained for one compartment. Nonetheless, SER 

values decrease with the use of a larger number of signal compartments. 

Table 3 

Results from the one (1C) to six (6C) compartment model AIC analysis for each brain region-of-

interest investigated. The smallest AIC value, used for model selection, is in bold face.  

 

Number of compartments 

 1C  2C  3C  4C  5C  6C 

Caudate  110   103   95   103   121   149  

Putamen  121   104   103   109   126   157  

Fornix  98   86   93   89   108   141  

CC  99   90   79   85   103   134  

IC  114   103   77   88   96   127  

Insula  127   110   113   118   136   168  

SN  81   80   75   81   99   127  

Thalamus  69   67   71   72   90   121  

CSF  105   98   102   113   132   166  

 

In Table 2 we used an arbitrary cut-off, related solely to improvements in the quality-

of-fit measure, from which the likely number of signal compartments was estimated; in Table 

3, however, the AIC was used to reduce the bias introduced through increased model 

complexity. The AIC analysis suggests the presence of more than one signal compartment for 

all regions investigated (see Table 3). Two signal compartments were identified for the fornix, 

CSF, insula and thalamus regions. Three signal compartments were selected for the caudate, 

putamen, corpus callosum, internal capsule and substantia nigra. Overall, the AIC selection 

process led to a more stringent cutoff for model selection than the SER selection process. In 

the fornix, for example, the SER plateau value suggests the presence of four signal 

compartments, whereas the AIC analysis suggests two. Overall, it is interesting to note how 

the quality-of-fit parameters vary as a function of number of compartments fitted and the 

differences in regional compartmentalization which arise when different model selection 

criteria are implemented. 
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2.3.3 Cluster analyses reveal dominant inter-region signal compartments 

Within the sample of AIC-selected signal compartment models, we were able to 

identify five compartment frequency shift clusters across all brain regions considered. Results 

from the SI analysis indicated the presence of five clusters within the AIC-selected 

compartment frequency shift pool (Table 4). Fig. 3 elucidates the clustering of compartment 

frequency shifts, wherein the coloured points correspond to the frequency shifts extracted from 

all AIC-selected models and the thick line identifies their respective cluster centroids. Overall, 

the compartment frequency shift clusters within the AIC-selected signal models represent the 

“dominant” components of the mGRE-MRI signal phase across the nine regions considered; 

as such, these clusters are herein referred to as ‘dominant frequency shifts’, each of which 

correspond to a ‘dominant signal compartment’. 

Table 4 

Mean Silhouette (SI) values for AIC-selected compartment models. 

No. of 

clusters 

 

Mean SI 

1  N/A 

2 0.77 

3 0.76 

4 0.83 

5 0.84 

6 0.81 

7 0.84 

8 0.82 

9 0.86 

10 0.83 
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Fig. 3. Clustering results obtained using the AIC-selected signal compartment frequency shifts. Distinct 

frequency shift clusters are identified using different colours, and cluster centroid values are displayed 

as radial lines intersecting the circle at points marked by the cross. 

 

Table 5 provides individual parameter values obtained using the AIC-selected 

compartment models. These results are illustrated in Fig. 4 to help understand how region-

specific signal compartments distribute across other brain regions as a function of frequency 

shift and respective volume fraction. The location of the circles along the abscissa show how 

closely each region’s compartments overlap with compartments from other brain regions. 

The ordinate is used to show the volume fraction, or size occupied by the compartment 

within a given region. Furthermore, the brain regions are arranged from left to right by 

minimizing the total path length of each regions’ horizontal (weighted by frequency) and 

vertical (weighted by volume fraction) compartment linkage arbors. For example, two 

compartments have been identified for the CSF, the primary compartment (86%) near 4.6Hz 

dominant frequency shift, accompanied by a smaller compartment (14%) near -17.8Hz 

dominant frequency shift. In certain brain regions, such as the substantia nigra, multiple 

signal compartments co-localize around the same dominant frequency shift (36% at 5.0Hz 
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and 32% 7.0Hz, both around the 4.6Hz centroid). For other regions, such as the caudate, 

individual signal compartments were associated with unique dominant frequency shifts (25% 

near -17.8Hz, 56% near -4.6Hz, and 19% near 29.5Hz; refer to Table 5). 

Table 5 

Estimated parameters for AIC-selected signal compartment models for each brain region. Frequency 

shifts have been highlighted using bold face, and volume fraction of each compartment is expressed as 

a percentage. Compartments are ordered from largest to smallest volume fraction occupied. 
 A1 ∆F1 

(Hz) 

A2 ∆F2 

(Hz) 

A3 ∆F3 

(Hz) 

IC 
71% -11.0 22% -24.1 7% 17.8 

CC 
37% 1.0 32% 8.1 31% -31.5 

Fornix 
86% -5.9 14% 6.6   

Insula 

52% -8.4 48% 4.7 

 

 

Thalamus 
51% 3.5 49% -1.0 

 
 

CSF 
87% 3.6 13% 16.1   

Caudate 
56% 9.7 25% 22.1  19% -26.8 

SN 
36% 3.4 33% 17.5 32% 7.2 

Putamen 
48% 3.9 27% 15.6 25% 29.5 
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Fig. 4. A connection map of compartment frequency shifts and volume fractions for the nine brain 

regions studied. The AIC-based centroids identified using cluster analysis are shown on the frequency 

axis, and the size of the compartments represented using different sized circles are presented 

vertically; the size of all circles directly correlate to the respective volume fraction values (‘A’ value) 

for each region from Table 5. Each region has been connected to their respective compartment 

frequency shift values. The regions have been arranged in order to minimize the number of 

overlapping lines, only to help with the visualization of signal compartment volume fractions and 

their frequency shifts. 
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2.3.4 Volume fraction maps of dominant signal compartments 
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Fig. 5. Voxel-wise parametric mapping of dominant (AIC-selected) signal compartment volume 

fractions. Representative axial slices for each ROI, marked by the area inside the red outlines, were 

chosen for mapping based on best structural visibility. A gradient colour bar is displayed at the 

bottom for volume fraction quantification. 

 

 
Fig. 6. Error distribution for volume fraction maps in five study participants (P1—P5). SER values for 

each voxel fit were normalized to the highest SER value within representative slices of similar 

anatomical location, and are presented as a percentage for interpretive benefits. 

 

Fig. 5 shows spatially resolved volume fraction maps of the dominant signal 

compartments. Within each image slice, ROIs used in the region-wise analyses are delineated 

using a red outline (Fig. 5). Areas with a high volume fraction for individual signal 

compartments are represented by a yellow hue, while an absence of respective compartments 

can be discerned from the transition to a blue hue. For example, the -8.4Hz signal 

compartment appears to be a primary contributor across all the regions investigated, while the 

-27.5Hz compartment is the weakest contributor. We also observe a close correspondence of 

the analytically calculated within-region compartment model parameters (refer to Table 5) to 

the spatial distribution of signal compartments across gray and white matter regions (Fig. 5). 

For example, in the putamen, we observe three signal compartments with frequency shifts at 

3.6Hz, 15.9Hz, and 29.5Hz; these signal compartments fall within the respective dominant 

signal frequency shift clusters of 4.6Hz, 17.8Hz, and 29.5Hz. When inspecting the volume 

fraction maps for this region, we observe a high degree of localization corresponding to the 

three dominant signal compartments (Fig. 5). A similar correspondence of model-based 

parameters to volume fraction maps can be observed in white matter regions, such as the 

internal capsule. The signal compartment with the highest volume fraction in this region falls 

within the -8.4Hz dominant frequency shift cluster (Fig. 4); this result corresponds to a high 
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representation of the -8.4Hz dominant signal compartment, as displayed in Fig. 5. The other 

two signal compartments in this region, with frequency shifts of -24.1Hz (22%) and 17.8Hz 

(7%) corresponding to the -27.5Hz and 17.8Hz dominant frequency shifts, also display 

regional localization, but to a lesser degree than the highest volume fraction compartment 

(compare Table 5 and Fig. 5). This analytical-to-mapping correspondence can also be 

observed within the CSF. The largest within-region compartment frequency shift, resolved at 

3.6Hz (87%) (Table 5), falls within the 4.6Hz dominant frequency shift cluster; this dominant 

frequency shift exhibits a notably high volume fraction within the CSF (Fig. 5).  

Normalized SER distributions for voxel-wise volume fraction estimation are 

displayed in Fig. 6 for all five participants (P1—P5). Of note, the fitting error distributed 

similarly across all participants and a low fitting error was present within the corpus striatum 

(caudate, putamen, and globus palldius), whilst higher errors were present in surrounding 

structures. Interestingly, these surrounding structures are generally classified as white matter 

structures. Located anterior to the corpus striatum is the genu of the corpus callosum, while 

the internal capsule lies posterior to the corpus striatum. Furthermore, the external capsule 

lines the corpus striatum laterally, while the fornix joins them medially. Lastly, the error 

distribution within the cortical areas do not seem to obviate localization to any particular 

structure, but nonetheless remain higher than sub-cortical regions. 

  A.                                             B. 

 

Fig. 7. Localization of high frequency (29.5Hz) signal compartment in the globus pallidus (A) and red 

nucleus (B), as indicated by the tailed arrows. 
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 Through the voxel-wise volume fraction mapping method, we identified two sub-

cortical areas which exhibited an apparent image contrast and remarkably high volume 

fraction of the 29.5Hz frequency shift compartment (Fig. 7). These areas delineate clearly (A) 

the globus pallidus and (B) the red nucleus, as indicated by the tailed white arrows. 

Interestingly, neither of structures were considered within our ROI selection. 

2.4 Discussion 

We explain temporal variations in mGRE-MRI data acquired at 7T using complex-

valued signal compartments, and explore the utility of susceptibility-based signal 

compartments to probe tissue properties in the brain. By implementing information criteria 

and cluster analyses, we identified five dominant signal compartments shared across the 

mixture of gray (caudate, putamen, insula, thalamus, substantia nigra) and white (corpus 

callosum, internal capsule, and fornix) matter regions investigated and CSF. By fixing the 

frequency shift parameter for each dominant signal compartment in a voxel-wise fitting 

procedure, we (1) generate frequency-based volume fraction maps, and (2) demonstrate the 

generalizability of the dominant signal compartments across the healthy participant cohort. 

2.4.1 Observing trends in the temporal mGRE signal 

Upon plotting the temporal GRE complex signal, we observe a larger variance in the 

temporal frequency shift in comparison to the signal magnitude (refer to Fig. 2). These 

observations extend recent findings which suggest that echo-time dependent changes in 

magnetic susceptibility, sensitive to local shifts in the Larmor frequency, contain information 

on tissue properties. Furthermore, the enhanced sensitivity of signal phase to magnetic 

susceptibility effects at high field strengths underscores the importance of utilizing signal 

frequency shifts to characterize signal compartments and explore underlying tissue properties 

(Duyn et al., 2007; He and Yablonskiy, 2009; Marques et al., 2009; Schweser et al., 2011b, 

2011a; Zhong et al., 2008). 
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2.4.2 Evaluating signal compartments in a data driven framework 

The intricate system of influences which underlie the bulk susceptibility signal 

elucidates the necessity for a data-driven method of signal compartmentalization. Aside from 

an early study which implemented complex-valued signal compartmentalization to map water 

fat separation (Hernando et al., 2008), almost all subsequent compartmentalization studies 

implement the fitting procedure to suit the three-pool model (Li et al., 2015; Nam et al., 

2015; Sati et al., 2013; Wu et al., 2017). The first notable limitation of this approach is the 

failure to consider the multitude of underlying signal effects (e.g. protein concentration, 

tissue iron, calcium, chemical exchange and diffusion), thus confining the utility of signal 

compartments to the investigation of tissue microstructure in white matter regions, primarily 

for myelin water fraction (MWF) imaging. Secondly, MWF studies that utilize signal 

compartmentalization introduce bias into the fitting procedure by applying conditional 

parameter constraints. For example, frequency shifts in the ‘extracellular’ tissue domain are 

commonly assumed to be zero (Alonso-Ortiz et al., 2017; Nam et al., 2015; van Gelderen et 

al., 2012; Wu et al., 2017); this approach is confounded due to a failure to consider the 

aforementioned signal influences. The magnetic properties of the extracellular space have 

been compared to CSF in other MWF  studies (Li et al., 2015). The frequency shift we 

observe in CSF, alongside Straub et al.’s (2017) recent findings, further elucidate a 

discrepancy in the prior assumption ascribed to the null signal effects of extracellular tissue 

(refer to Table 5 and Fig. 5).  

Conditional constraints on the transverse relaxation rate, as it relates to the 

separability of myelin and axonal compartments, have been utilized to resolve and 

characterize signal compartments (Lancaster et al., 2003; Nam et al., 2015; Wu et al., 2017); 

this would indeed bias the convergence of model parameters towards the given condition. For 

example, in an early study which adapted the three-pool model for myelin quantification, the 
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authors calibrate relaxation rates for myelin and axonal compartments to align myelin 

fractions with previously published values and conditionalize a 10% increase for T2 values 

assigned to extracellular water pools (Lancaster et al., 2003). Similar implementations have 

been adopted in more recent studies by including the effects of static magnetic field 

inhomogeneities (T2
*) (Nam et al., 2015; Wu et al., 2017). Estimating model parameters and 

characterizing signal compartments based on highly variable prior information, such as the 

spin-spin relaxation properties of tissue, can lead to unreliability. For example, T2 relaxation 

rates for myelin water and axonal water have been reported anywhere from 10ms to 70ms 

and 40ms to 80ms, respectively, wherein the static magnetic field strength across these 

studies varied only between 1.5T and 3T (Lancaster et al., 2003; Menon et al., 1992; Stewart 

et al., 1993; Wachowicz and Snyder, 2002; Whittall and MacKay, 1989).  

Model selection plays an important role compartmentalizing the GRE signal, given 

the potential for Type I and Type II errors to influence the outcome of optimized model 

parameters. In the current study, we adopt a data driven approach to identify the number of 

signal compartments within each region. In previous studies, quality-of-fit for the three 

compartment model was assessed based on the coefficient of determination statistic (R2) (Li 

et al., 2015; Sati et al., 2013; Sood et al., 2017). This metric, however, is inappropriate for 

non-linear models (such as the complex-valued plane-wave formulation), due to the 

underlying assumption regarding error distributions. The R2 value is calculated as such: 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
=  

∑(𝑦 − �̂�)2

∑(𝑦 − �̅�)2
 

Thus, it follows that the total sum-of-squares (TSS) must equal the regression sum-of-squares 

(REGS) plus the residual sum-of-squares (RSS) (TSS = REGS + RSS); a condition only 

assured in regressing linear models (Spiess and Neumeyer, 2010). This condition is not a 
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requirement for standard error estimations (e.g. the standard error of regression analysis 

(SER), mean squared error (MSE), or root mean squared error (RMSE) of the regression). 

However, standalone interpretations of standard error estimations for non-linear models and 

linearized non-linear models suffer from a high case-to-case variance with increasing model 

complexity (Peddada and Haseman, 2006; Ruckstuhl, 2010). The Akaike information criteria 

has been shown to identify parsimony accurately, without requiring prior information, when 

evaluating the bias-variance tradeoff between non-linear models (Hurvich and Tsai, 1989; 

Snipes and Taylor, 2014; Vandekerckhove et al., 2014). Though analyses of SER provided an 

approximate measure of signal fit (Table 2), the Akaike information criterion implementation 

consolidated the point of maximum information capture (Table 3). Furthermore, the 

silhouette analysis and k-means clustering methods extracted dominant signal influences 

across the gray-white matter regions in an unbiased manner. Aside from the plane-wave 

model itself, we incorporate no prior information with regards to the number of signal 

compartments, and avoid using any conditional parameter constraints during the optimization 

process. The number of signal compartments was extended to six in order to ensure model 

parsimony was achieved, but limited to this number after observing optimal information gain 

at approximately half the maximal number (near three compartments) (refer to Table 3). 

Results from the AIC analysis largely validate the presence of three signal compartments; 

five out of nine regions investigated contained three signal compartments (caudate, putamen, 

corpus callosum, internal capsule, and insula; see Table 3). However, the AIC values for the 

CSF, thalamus, and insula, indicate optimal information gain with merely two compartments. 

The data driven method was implemented further to evaluate inter-regional trends in signal 

compartments by way of k-means cluster analyses.  

When brain regions are arranged by minimizing the path lengths of connections, as in 

Fig. 4, an underlying microstructural pattern emerges in which the thalamus is in the centre. 
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As the nervous system’s primary relay centre for ascending and descending pathways 

(Sherman, 2016), a diverse regional cytoarchitecture can be assumed; a combination of 

paramagnetic and diamagnetic inclusions, as well as multiple fiber orientations could result in 

the low number of signal compartments resolved (refer to Table 3). The insula, caudate, 

putamen and substantia nigra vary significantly at a microscopic level (e.g. < 0.1 mm—

receptor topography, dendritic arborization, neurofilament distribution, etc.); at a mesoscopic 

level (0.1 mm —1.0mm) however, they share similar structural elements. Typically identified 

as gray matter structures, these regions contain densely packed neuronal cell bodies, synaptic 

terminals, and weakly myelinated regions of the axon hillock (Purves et al., 1997). As a 

whole, these gray matter structures exhibit multiple within-region compartment frequency 

shifts around the dominant 17.6Hz and 4.6Hz signal compartments, and are grouped 

adjacently on the right side of the compartment relationship map (see Fig. 4). In contrast, the 

three white matter regions investigated (internal capsule, corpus callosum, and fornix) are 

grouped uniformly on the left side of the relationship map, exhibiting frequency shifts around 

the -27.5Hz and -8.4Hz dominant signal compartments (Fig. 4). These results extend prior 

findings which report a bulk diamagnetic susceptibility effect, measured as a reduced 

resonant signal frequency, within white matter regions (Duyn et al., 2007; Fukunaga et al., 

2010; Lee et al., 2012). There exists convergent evidence amidst NMR biophysics literature 

(Hong et al., 1971; Morell and Quarles, 1999; O’Brien and Sampson, 1965; Rosenblatt et al., 

1987) and structural MRI studies (Baxan et al., 2010; Duyn and Schenck, 2017; Koenig, 

1991; Lee et al., 2012; C. Liu et al., 2011) to ascribe diamagnetic properties to myelin lipids, 

a defining tissue constituent of white matter structures (Purves et al., 1997). The overarching 

trend observed within the signal compartment relationship map suggests an underlying link 

between mesoscopic tissue properties and signal compartment frequency shifts. 
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The dominant frequency shifts ascertained from our data driven analysis allowed us to 

resolve volume fractions of identified mGRE-MRI signal influences (Fig. 5). Representative 

image slices for one participant were mapped to allow a ROI-based analysis of spatial 

distributions of dominant signal compartments. The error distributions, provided in Fig. 6, 

demonstrate a similar quality of voxel-wise fitting across all participants. This result validates 

the generalizability of the extent to which these dominant signal compartments influence the 

mGRE-MRI signal. Furthermore, this exercise validated our analytical evaluation of inter-

region signal compartment trends (Fig. 4), and elucidated the utility of providing new 

quantitative contrast mechanisms for clinical and empirical purposes.  

2.4.3 Considering the biophysical origins of signal compartments and respective frequency 

shifts 

 

The biophysical sources of Larmor frequency shifts are manifold, and the results from 

this study demonstrate a highly complex system of contributions to the GRE-MRI complex 

signal. This complexity resonates throughout the previous literature, and is manifest in the 

form of contradiction. For these reasons, accurately characterizing signal compartments 

within individual brain regions, and their respective frequency shifts, would be confounded. 

However, rationalizing inter-region signal compartment frequency shifts (illustrated in Fig. 4 

and resolved in Fig. 5) may be more robust to nuisance effects (e.g. orientation and noise) 

and informative of the dominant underlying signal influences. At large, these influences can 

occur as a result of local tissue microstructure, or a wide array of dynamic processes (e.g. 

chemical exchange, diffusion, blood flow, and neural activity). Early works ascribe the 

effects of tissue microstructure to the density and arrangement of non-heme iron, proteins 

(e.g. transmembrane proteins, metalloprotein complexes, cytoskeletal fibers, etc.), lipids (e.g. 

from endoplasmic reticulum, cell membranes, endosomal membranes, etc.), and de-

oxyhemoglobin; these inclusions create tissue specific, inhomogeneous magnetic fields that 

affect resonant frequency of water molecules (Duyn et al., 2007; He and Yablonskiy, 2009; 
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Yablonskiy and Haacke, 1994). A comprehensive summary table of the underlying influences 

discussed in the following paragraphs is provided in Appendix Table 2. 

One of the most well-characterized influences underlying susceptibility contrast is the 

presence of non-heme iron (Deistung et al., 2013; Drayer et al., 1986; Fukunaga et al., 2010; 

Haacke et al., 2007, 2007; Schenck and Zimmerman, 2004; Schweser et al., 2011b, 2012). 

Non-heme iron is typically found in the tissue parenchyma bound to ferritin complexes, or as 

its metabolite hemosiderin (Schenck and Zimmerman, 2004; Schweser et al., 2011b). The 

unpaired orbital electrons in both ferric (Fe3+) and ferrous (Fe2+) ions assign paramagnetic 

properties to non-heme iron, albeit more so to the latter form (Harrison and Arosio, 1996; Ke 

and Qian, 2007; Taiwo, 2003). Some of the highest concentrations of tissue iron have been 

reported in the basal ganglia regions (e.g. caudate, putamen, globus pallidus, and substantia 

nigra) (Aquino et al., 2009; Drayer et al., 1986; Hallgren and Sourander, 1958; Schweser et 

al., 2011). The largest positive frequency shift (29.5Hz) assigned to a dominant signal 

compartment coincidentally displays a high degree of localization within the putamen, 

substantia nigra, and nominally in the caudate (Fig. 5). A notably large representation of this 

signal compartment can be observed within two brain regions that were not considered in this 

study, the globus pallidus and red nucleus (Fig. 7). Both of these regions are well 

characterized for high concentrations of non-heme iron during physiological conditions (Aoki 

et al., 1989; Aquino et al., 2009; Hallgren and Sourander, 1958; Schweser et al., 2011b; 

Zecca et al., 2004). These findings strongly suggest the 29.5Hz signal compartment reflects 

the paramagnetic influence of non-heme tissue iron.  

Though non-heme iron in brain tissue is stored in the form of ferric iron, as the ferritin 

complex, the prevalent mechanism of iron translocation across the intracellular endosomal 

membrane requires the iron to be reduced into the ferrous form (Harrison and Arosio, 1996; 
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Ke and Qian, 2007; Qian and Shen, 2001; Zecca et al., 2004). In ferric iron, all electron 

orbitals contain unpaired electrons, whereas in ferrous iron, one electron orbital contains a 

full pair of electrons; due to the spatial occupancy of two like charges, a repulsive, or 

diamagnetic effect is created. This effect occurs only in one orbital; thus, the overall 

paramagnetic property is maintained, but slightly attenuated in ferrous iron. Interestingly, we 

observe a high volume fraction of the 17.6Hz signal compartment within and around the 

basal ganglia regions, namely the caudate, putamen, and substantia nigra (Fig. 5); these areas, 

as outlined earlier, are key regions for iron metabolism and storage. Taken together, the 

17.6Hz could in fact reflect iron in its paramagnetically weaker, ferrous state. This 

observation is also analytically validated through the temporal fitting process; with respect to 

frequency shift maps, all three of the aforementioned regions (caudate, putamen, and 

substantia nigra) contain one compartment within the 17.6Hz cluster (refer to Fig. 4 and 

Table 3). Increasing densities of ferric iron, however, have been observed primarily within 

the context of ageing and disease. Since we are investigating brain images from healthy 

young adults (mean age: 34 years), we may be capturing the onset of oxidative ferric iron 

deposition, commencing in the corpus striatum.  

Trace amounts of ferritin and transferrin bound iron have also been observed in the 

CSF (Khalil et al., 2014; Straub et al., 2017). We observe a minor signal compartment (13%) 

near the 17.6Hz cluster which could potentially reflect these iron complexes (see Fig. 5 and 

Table 3). However, upon close inspection of CSF’s signal compartments, the bulk 

susceptibility signal is explained by one compartment with a substantially high volume 

fraction (3.6Hz; 87%). A recent study performed by Straub et al. (2017) found the CSF to be 

a stable and robust region for susceptibility referencing in healthy participants; the authors of 

this study report a volume susceptibility of 0.010ppm, corresponding to frequency shift of 

3.0Hz at 7T.  
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The 3.6Hz frequency shift of the major signal compartment in CSF lies in close 

proximity to the 4.6Hz inter-regional frequency shift cluster (Fig. 4). When observing the 

volume fraction maps, the dominant signal compartment at 4.6Hz is localized to most gray 

matter regions, but is also sparsely distributed amidst white matter regions (Fig. 5). 

Distributed throughout CSF are dynamic quantities of salts, proteins and glucose; these ionic 

and macromolecular moieties could be captured collectively as a signal compartment, 

previously unobservable due to decreased sensitivity to susceptibility influences at lower 

field strengths (Alonso-Ortiz et al., 2017; Duyn et al., 2007; van Gelderen et al., 2012; 

Wharton and Bowtell, 2012). A lack of structural coherence amidst these inclusions, 

however, provide reason as to why this signal compartment exhibits the lowest magnitude of 

induced field change. It is important to note that this dominant signal compartment 

encompasses the largest number of within-region signal compartments (refer to Fig. 4). This 

comes to no surprise as water is the primary constituent of CSF (Sakka et al., 2011). Water, 

nutrients, electrolytes, and other vital constituents of CSF are absorbed into the brain by peri-

cortical structures adjacent to the subarachnoid spaces, as well as the deep subcortical 

structures, such as the basal ganglia and limbic regions, adjacent to the first and second (or 

lateral) ventricles (Miyajima and Arai, 2015; Sakka et al., 2011). From the magnified volume 

fraction map of CSF, a high volume fraction of the 4.6Hz signal compartment can be 

observed within the medial ventricle; upon closer inspection, this compartment seems to 

emanate outside of the ventricular zone (Fig. 5).  

Iron in the brain can also be bound to oxygen-containing metalloprotein complexes in 

the form of hemoglobin (Haacke et al., 2005; Lee et al., 2010a; Ogawa et al., 1990). The 

oxygenation state of hemoglobin plays a key role in hemoglobin’s susceptibility effect by 

changing from diamagnetic to paramagnetic upon the loss of bound oxygen to surrounding 

tissue (He and Yablonskiy, 2007; Ogawa et al., 1990). He and Yablonskiy (2009) incorporate 
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this susceptibility difference into the Lorentzian sphere model and report values for de-

oxyhemoglobin in the frontal lobe ranging from 0.21ppb to 0.90ppb (referenced to water); 

this corresponds to frequency shifts at 7T from 0.80Hz to 3.40Hz.  

The presence of iron and myelin lipids in the brain are not entirely unrelated; 

oligodendrocytes, the principal cells that produce myelin in the CNS, stain for iron under 

normal conditions (Todorich et al., 2009). On average, 70-80% of myelin is composed of 

cholesterol, a principle lipid (Saher et al., 2005). In the presence of an external magnetic 

field, cylindrical tubules composed of radially oriented lipids exhibit a diamagnetic 

susceptibility in reference to de-ionized water (Hong et al., 1971; Rosenblatt et al., 1987). 

Under healthy conditions, a high density of neuronal fiber bundles in white matter regions 

makes these regions differentially sensitive to susceptibility effects originating from myelin 

lipids (Duyn and Schenck, 2017; Koenig, 1991; Lee et al., 2012; Luo et al., 2014). Numerous 

studies investigating susceptibility induced tissue contrast in the brain report negative signal 

frequency and signal phase in cortical and sub-cortical white matter regions containing 

heavily myelinated neuronal fiber bundles (Duyn et al., 2007; Duyn and Schenck, 2017; 

Langkammer et al., 2012; Lee et al., 2012; Szczepaniak et al., 2002). For example, Lee et al. 

(2012) validate the diamagnetic effects of myelin by reporting an observed reduction in tissue 

contrast, corresponding to an increased signal frequency, due to cuprizone induced myelin 

loss in the corpus callosum. The signal compartment frequency shifts we observe within the 

white matter regions investigated in our study further validate the diamagnetic property of 

myelin lipids; signal compartments in the internal capsule, corpus callosum and fornix exhibit 

heavy clustering around the -8.4Hz and -27.5Hz frequency shift centroids, with the volume 

fractions being weighted more to the former centroid (see Fig. 4). Furthermore, when 

observing the volume fraction maps, the -8.4Hz compartment exhibits high volume fractions 
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within the internal capsule, corpus callosum and fornix, and also globally throughout all 

white matter regions (Fig. 5).  

The presence of myelin is suggested to engender distinct microscopic water 

environments, each with unique signal relaxation properties, due to differences in within-pool 

exchange and between-pool proton exchange rates. This biophysical theory of tissue 

microstructure in white matter brain regions has resulted in the three-pool, or three-

compartment model; namely myelin water, axonal water, and extracellular water 

compartments (Alonso-Ortiz et al., 2017; Du et al., 2007; Hwang et al., 2010; Lancaster et 

al., 2003; Nam et al., 2015; Sati et al., 2013; Wu et al., 2017). Concomitantly, two recent 

studies that implemented the three-pool model report frequency shifts for the compartment 

assigned to axonal water within a comparable range of the -8.4Hz dominant signal 

compartment. Sati et al. (2013) report axonal water frequency shifts at -6.0Hz in the optical 

radiatum and -4.1Hz in the splenium of the corpus callosum; frequency shifts in the same 

range -6.3Hz in the optical radiatum and -6.5Hz in the splenium of the corpus callosum) were 

observed in a following study performed by Li and colleagues (2015). Sati and colleagues 

(2013) also found that axonal water and myelin water frequency shifts are close when white 

matter fibers are oriented near parallel to the scanner field. They found the fast relaxing 

signal compartment associated with myelin water to have a frequency shift of -5.4Hz. For 

fibers oriented approximately perpendicular to the scanner field, axonal water frequency 

shifts ranged between -4.1Hz to -6.9Hz. Thereby, orientation of myelin microstructure with 

respect to the scanner field can result in changes in the axonal water frequency shift. In 

addition, our results align with previous studies which report negative echo-time dependent 

frequency differences in orientation dependent white matter structures (Duyn et al., 2007; 

Duyn and Schenck, 2017; Lee et al., 2012; C. Liu et al., 2011; Wharton and Bowtell, 2012). 

Overall, our results align with previous studies which report negative echo-time dependent 
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frequency differences in orientation dependent white matter structures (Duyn et al., 2007; 

Duyn and Schenck, 2017; Lee et al., 2012; C. Liu et al., 2011; Wharton and Bowtell, 2012). 

2012 

Lipids and proteins play complementary roles in comprising the fundamental 

cytoarchitecture for neurons. Cerebrosides, cholesterol, and a host of other lipids embed 

diamagnetic proteins (e.g. surface receptors and ion channels) into cellular and sub-cellular 

biological membranes, while a lattice of polypeptide chains form the cytoskeletal fibers that 

provide the core structure for neurons (Morell and Quarles, 1999; Yuan et al., 2012). Akin to 

lipids, the two main factors which could influence protein related phase contrast stem from 

magnetic susceptibility and chemical exchange; the structured neurofilaments could 

contribute to the bulk susceptibility effect, while the membrane embedded proteins would 

undergo chemical exchange with the surrounding tissue parenchyma. In an early study by 

Hong et al., (1971), rhodopsin, a G-protein-coupled receptor (GPCR) was reported be the 

primary constituent for orientation dependent magnetic susceptibility effects in rod cells, in 

comparison to phospholipid molecules. Recent studies extend these findings by reporting 

diamagnetic susceptibility properties for proteins in gray and white matter brain regions 

(referenced to CSF), ranging on the order of parts per billion (ppb) in the susceptibility 

domain and Hertz (Hz) in the frequency domain, at 7T (He and Yablonskiy, 2009; Leutritz et 

al., 2013; Luo et al., 2010; Zhong et al., 2008). Taken together, the –25.9Hz dominant signal 

compartment could in fact reflect the bulk susceptibility effect arising from the microscopic 

arrangement of proteins the brain (Fig. 5). The bulk diamagnetic susceptibility effects of 

lipids and proteins, however, were reported to field effects of similar magnitude, but in the 

opposite direction, in comparison to chemical exchange effects (Leutritz et al., 2013). Thus, 

though the bulk susceptibility effect of proteins could be potentially observed via signal 
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compartmentalization, however image contrast may be attenuated in the volume fraction 

maps due to field averaging chemical exchange effects.  

2.4.4 Methodological considerations 

A major challenge for studies which aim to investigate tissue microstructure is 

removing the confounds of non-local field effects. Quantitative susceptibility mapping has 

established itself in addressing this issue, and was consequently incorporated in our data 

processing pipeline (Haacke et al., 2015; Kee et al., 2017; Li et al., 2011; Reichenbach et al., 

2015; Schweser et al., 2012; Wang and Liu, 2015). In addition to the general limitations 

posed to MRI image processing (e.g. motion correction, flow compensation, etc.), the current 

approach confers the confounds associated with the overall QSM process, as well as the 

specific susceptibility pipeline (e.g. STI Suite) utilized.  

Contextualization of the biophysical effects of myelin on the measured signal can be 

confounded by the radial susceptibility anisotropy which results from the molecular 

arrangement of glyco— and phospholipids with respect to the static magnetic field (He and 

Yablonskiy, 2009; Lee et al., 2017; Li et al., 2012; Liu, 2010; Wharton and Bowtell, 2012; 

Xu et al., 2017). Both the anisotropy of tissue and susceptibility could explain the high fitting 

error observed in white matter structures surrounding the corpus striatum (Fig. 5). This result 

falls in line with previous reports of high structured errors in white matter regions, arising 

from the effects of tissue and susceptibility anisotropy on signal frequency dispersion 

(Alonso-Ortiz et al., 2017; Lee et al., 2017; van Gelderen et al., 2012; Wharton and Bowtell, 

2012; Yablonskiy and Sukstanskii, 2017). The effects of susceptibility anisotropy in human 

white matter brain regions have been quantified within the range of 0.012ppm (Lee et al., 

2012) to 0.022ppm (Li et al., 2012) yielding frequency shifts of 3.6Hz to 6.6Hz at 7T, 

respectively. Though multi-angle acquisitions were not implemented in our approach, our 
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data-driven approach results in a distribution of frequency shifts around the dominant inter-

region signal compartments (refer to Fig. 6).  

The sign conventions utilized to characterize the signal phase during signal 

acquisition and post-processing steps also play an important role in characterizing 

susceptibility effects. Hagberg et al. (2010) demonstrate the dependence of signal phase sign 

conventions on the coordinate system in which phase information is mapped. For example, 

examining the signal frequency in the rotating frame of reference would yield a positive 

frequency shift for spins accelerated in the counter-clockwise direction, whereas in the 

complex frame of reference (also known as the Argand plane), acceleration in this direction 

would yield a negative frequency shift. Thus, analytical frame of reference should also be 

carefully considered when processing and modelling the complex mGRE signal, as well as 

interpreting the magnetic properties of resulting signal compartments. 

The conversion of the temporal frequency shift from susceptibility values is also a 

question of debate. In the only other study implementing tissue susceptibility into the signal 

compartmentalization method, susceptibility values were converted to frequency shifts by 

way of the Lorentzian sphere approximation (Wu et al., 2017). In our study, we opted to 

calculate tissue frequency shifts from the apparent susceptibility effects observed at the voxel 

scale (Schweser et al., 2011b, 2016). This approach assumes no specific shape effect of the 

dipole field generated and internal frequency shift induced at a microscopic level; rather, the 

bulk susceptibility effects of all underlying signal influences are probed at the meso-

macroscopic (0.5mm – 1 mm) interface and consequently discretized as individual signal 

compartments.  

Modelling data over smaller echo times, with larger data points, and in a larger 

participant sample would assist in improving the accuracy and precision of model parameter 

estimation. Exploring ex-vivo histology and microscopy procedures would also be necessary 
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validate the biophysical underpinnings of signal compartments. We invite future research to 

tackle the aforementioned issues and extend our findings to develop imaging biomarkers 

sensitive to micro-scale changes within an MRI voxel. 

2.5 Conclusion 

We explain variations in mGRE-MRI data using complex-valued signal 

compartments, and explore the utility of signal compartments to probe tissue properties in the 

brain. The overall results from this study suggest the presence of five dominant signal 

compartments distributed differentially across the mixture of gray and white matter regions 

investigated. Furthermore, the frequency shift signatures exhibited by these signal 

compartments inform tissue properties through parametric mapping of their respective voxel 

occupancy. Our approach highlights the importance of information based multi-compartment 

signal modelling, in comparison to the traditional three-compartment method, for unbiased 

extraction of features from temporal GRE-MRI data. Such an approach may be used to 

systematically investigate micro-scale influences on the GRE-MRI signal, and assist in 

identifying parametric biomarkers of neural tissue properties in physiological and 

pathological conditions. 
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Chapter 3: Exploring echo-time dependent trends in GRE-MRI at 3T and 7T 

3.1 Introduction and Aims 

Sood et al. (2017) previously found that QSM values change as a function of echo 

time in a manner that differs between brain regions. The non-linear relationship between 

QSM values and GRE-MRI echo time can be explained by compartmentalising the voxel 

signal (Chen et al., 2013; Sood et al., 2017; Wu et al., 2017). While QSM and signal 

compartmentalization can be performed and applied at 1.5T and 3T, significant gains in 

sensitivity to tissue related field effects (e.g. susceptibility, exchange, diffusion, etc.) can be 

achieved with the use of ultra-high field strength measurements, e.g. using 7T GRE-MRI data 

(Bilgic et al., 2012; Deistung et al., 2008; Duyn, 2012; Duyn et al., 2007). The increased 

availability of ultra-high field human scanners (e.g. 7T) make available increased levels of 

signal-to-noise ratio (SNR), yielding improved visualization of small anatomical regions 

(Bourekas et al., 1999; Cho et al., 2011; Dumoulin et al., 2017; Duyn et al., 2007; 

Lodygensky et al., 2012). Beyond SNR gains, static field increases enhance sensitivity to 

local magnetic field perturbations induced by variations in tissue composition and structure 

(Abduljalil et al., 2003; Deistung et al., 2008; Duyn, 2017; Reichenbach et al., 1997; Schenck 

and Zimmerman, 2004). This can be observed by referring to the Larmor equation, wherein 

the measured signal frequency, ,  is a function of the gyromagnetic ratio () and the static 

magnetic field strength (B0), 

𝜔 =  𝛾𝐵0. 

Further, changes in the static magnetic field (∆B0) would be encoded as a shift in the 

measured signal frequency (∆), 

∆𝜔 =  𝛾∆𝐵0. 

Magnetic susceptibility (denoted as ) induced perturbations in the static magnetic field 

could be expressed as,  



Exploring the utility of GRE-MRI signal compartments for        Ch. 3 

temporal susceptibility mapping and investigation of neural microstructure 

MPhil Thesis – Shrinath Kadamangudi 

 
67 

∆𝐵0 =  𝜒𝐵0. 

This allows shifts in the Larmor frequency to be expressed as function of magnetic 

susceptibility; 

∆𝜔 =  𝛾𝜒𝐵0. 

Consequently, at higher field strengths, the induced frequency shifts increase in magnitude and 

allow for improved encoding of tissue related field perturbations.  

Though many aspects of ultra-high field imaging prove beneficial, the increased utility 

of 7T human scanners has engendered mixed reports in relation to temporal trends in the multi-

echo GRE-MRI signal. In a recent study, for example, Cronin et al. (2017) ascribe echo time 

dependent variations in the GRE-MRI signal to a failure in phase unwrapping, particularly in 

areas of high susceptibility. However, this study was performed at 3T whereas Sood et al. 

(2017) used 7T data. Furthermore, an increasing number of studies within the domain of myelin 

water fraction imaging aim to characterize temporal trends in multi-echo GRE-MRI data 

through the use of multi-compartment signal models. What began as a magnitude-based fitting 

procedure on GRE-MRI data acquired at 3T (Du et al., 2007; Hwang et al., 2010) has evolved 

through the use of complex-valued model parameters to fit GRE-MRI complex data 

(magnitude and phase) in the 7T regime (Li et al., 2015; Sati et al., 2013; Wu et al., 2017). 

Signal compartments expressed in complex form have also been utilized in 3T GRE-MRI data 

(Nam et al., 2015). Consequently, relating parameter estimates, and subsequent mapping 

results (volume fraction, T2
*, or ∆f), across these studies remains confounded due to inherent 

signal differences in the field strength regimes.  

To this end, we aimed to address two main questions. First, how are temporal trends in 

the GRE-MRI signal influenced by the static magnetic field strength; in particular, how 

comparable are 3T and 7T findings in different brain regions? Second, do GRE-MRI signal 

compartments reflect underlying variations in the GRE-MRI signal at different field strengths? 
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3.2 Methods 

3.2.1 Data acquisition 

The University of Queensland human ethics committee approved this study and 

written informed consent was given by six healthy participants (19, 30 and 60 year old males 

and 26, 33 and 47 year old females). 3D gradient recalled echo flow compensated scans were 

conducted on a 7T ultra-high field whole-body MRI research scanner (Siemens Healthcare, 

Erlangen, Germany) equipped with a single channel transmit and 32 channel receive head 

coil (Nova Medical, Wilmington, USA) using the following parameters: TE1 = 4.98ms, echo 

spacing = 3.13ms, 9 echoes, TR = 52ms, flip angle = 15o, voxel size = 0.75 × 0.75 × 

0.75 mm, and matrix size = 242 × 280 × 160. The same participants were scanned using a 3T 

Siemens Magnetom Tim Trio scanner (Siemens Healthcare, Erlangen, Germany) using the 

product 32 channel receive head coil with TE1 = 6.29ms, echo spacing = 5.26ms, 9 echoes, 

TR = 60ms, flip angle = 18o, voxel size = 1 × 1 × 1 mm, and matrix size = 210 × 210 × 120. 

MP2RAGE data were acquired with the following parameters: TE = 3.44ms, TR = 4550ms, 

voxel size = 0.75 × 0.75 × 0.75 mm, and matrix size = 300 × 320 × 256 at 7T. We used 

monopolar readout for both 3T and 7T acquisitions. Echo times for the 3T and 7T GRE-MRI 

data took into account the reduction in T2
* at 7T compared to 3T, thus resulting in different 

echo times for 3T and 7T acquisitions. The same number of echoes were acquired at both 

field strengths. To allow for direct comparison of temporal trends between both 3T and 7T 

data, we refer to echo points rather than echo times in our results. 

3.2.2 Signal processing 

The 32 channel 3T GRE-MRI data were combined on the scanner as a body transmit 

coil was used during the data acquisition. Since a 7T body coil is not available, the 32 

channel 7T GRE-MRI magnitude and phase data were processed as previously described 

(Vegh et al., 2016). Magnitude images were used to create a mask using the brain extraction 
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tool in FSL (FMRIB, University of Oxford) (Smith, 2002). Signal phase processing 

(unwrapping and background field removal), QSM calculations, and temporal frequency shift 

profiles were generated and performed as outlined in Ch. 2, Sections 2.2.2 – 2.2.4 (QSM 

pipeline summarized in Fig. 1). 

 
Fig. 1. The pipeline used to compute quantitative susceptibility maps. Individual channel data were 

processed using STI Suite and combined into a single image at the very end. Susceptibility was then 

converted to a frequency shift value.  

 

3.2.3 Regions-of-interest  

3T GRE-MRI data were registered to the 7T GRE-MRI data using MIPAV 

(McAuliffe et al., 2001). FreeSurfer (V6, 2017) was used to segment individual brain regions 

using the 7T MP2RAGE data (Dale et al., 1999). Regions-of-interest (ROI) were eroded 

(using the erode function in FSL with a threshold between 80% and 90%) to reduce partial 

volume effects due to adjacent brain regions. MATLAB® (The MathWorks, Natick, MA, 

USA) scripts were used to extract region-based values and to produce frequency shift plots. 

Three ROI, namely the corpus callosum, cerebrospinal fluid (CSF), and putamen were 

specifically chosen for their unique microstructural properties and influences on the GRE-

MRI complex signal. From our analysis in Ch. 2, we identified the corpus callosum and 



Exploring the utility of GRE-MRI signal compartments for        Ch. 3 

temporal susceptibility mapping and investigation of neural microstructure 

MPhil Thesis – Shrinath Kadamangudi 

 
70 

putamen to lie on opposite sides of the frequency shift spectrum, with the CSF aligning 

approximately in the centre (Section 2.3.3, Fig. 4). In observing these differential effects on 

the signal frequency, we focused on characterizing the temporal frequency shift profiles 

between these regions, wherein respective regions broadly represent gray matter (putamen), 

white matter (corpus callosum), and CSF. The first echo time signal was subtracted from all 

other echo time signals for the purpose of standardising frequency shift plots. 

3.2.4 GRE-MRI signal compartmentalization 

The GRE-MRI complex data were fitted to signal compartments using the same 

model and methods as outlined in Ch. 2, Section 1.2.5. To avoid over-fitting, we used our 

results from the AIC analysis in Ch. 2 (Section 2.3.2) to determine the number of signal 

compartments for each ROI. The standard error (SER) was calculated for each multi-

compartment fit by summing the normalized residual squared errors (nSER) across all echo 

times. 

3.2.5 Generation of temporal magnitude and frequency shift plots 

Echo-time dependent variations in the signal magnitude were linearized on to a log-

scale to more readily visualize inter-regional differences in T2
*decay rates. A single 

compartment mono-exponential model was used to fit signal magnitude as a function of echo 

time for the purpose of evaluating how T2
* values change as a function of field strength. At 

each field strength we also computed the average T2
* and a measure of variation through the 

coefficient of variation (CoV) metric (calculated as 
𝜎

�̅�
). Frequency shifts have been plotted as a 

function of echo point, since echo times do not directly align between 3T and 7T GRE-MRI 

data. Because the Larmor frequency is a function of magnetic field strengh (𝜔 = 𝛾𝐵0), 

subsquent shifts in the Larmor frequency will be larger at higher field strengths (∆𝑓 =
𝛾𝐵0

2𝜋
). 

To allow for direct comparison of temporal curves, 7T frequency shifts were scaled (via a 



Exploring the utility of GRE-MRI signal compartments for        Ch. 3 

temporal susceptibility mapping and investigation of neural microstructure 

MPhil Thesis – Shrinath Kadamangudi 

 
71 

multiplication of 3/7) to 3T; the scaled 7T temporal frequency shifts were labelled as 7T
#
. 

After compartmentalizing the complex signal, resulting compartment frequency shifts in 7T 

data were also scaled down to 3T to allow for a direct comparison; scaled frequency shfits 

were labelled ∆𝑓7𝑇
# . 

3.3 Results 

3.3.1 Variations in signal magnitude 

 

Fig. 2. Shown are the signal magnitudes at 3T and 7T plotted over a log scale for the three regions 

investigated. Temporal variations seem more pronounced in 7T data in comparison to 3T data. 

 

Fig. 2 displays echo-time dependent variations in the signal magnitude plotted on a log 

scale. Upon visual inspection, the temporal plots highlight increased variation in the log of the 

signal magnitude of brain regions at 7T as a function of echo number, implying an increase in 

sensitivity to underling signal effects, and a subsequent deviation from mono-exponential 

decay. Values for the signal at time zero (S0), relaxation time (T2
*) and covariance metrics for 

the signal magnitude decay are summarised in Table 1. As expected, the initial signal 

magnitude at 7T is larger than at 3T and the T2
* relaxation time decreases with an increase in 

field strength. Furthermore, we find T2
* values to vary more at 7T than at 3T (CoV of 0.23 

versus 0.37), suggesting an enhanced sensitivity to underlying field perturbations. 

Table 1 
Results of fitting the signal magnitude using a single compartment mono-exponential model. Shown 

are the signal magnitude at time zero (S0), the relaxation time (T2*) for both the 3T and 7T data. As 
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expected, the use of 7T leads to higher signal and lower relaxation times than 3T. 7T also leads to higher 

levels of variability in relaxation times as indicated by the CoV values. 

3.3.2 Frequency shifts as a function of echo time 

Fig. 3 depicts frequency shift curves obtained at 3T and 7T for the three regions 

investigated. The solid line in each plot corresponds to the mean frequency shift after 

averaging voxel values in each region and across participants. The shaded area matched in 

colour with the solid line shows the standard deviation computed across subjects. Qualitative 

observations in variations due to field strength can be deduced from each plot, whilst 

quantitative differences are elucdiated by signal compartment parameters listed in the 

corresponding tables.  

Regions S0 (a.u.) T2
* (ms) 

3T 7T 3T 7T 

Corpus callosum 389 643 37 22 

Putamen 372 552 36 23 

CSF 295 551 62 45 

Average/CoV 352 582 0.23 0.37 
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Fig. 3. Frequency shift values at 3T and 7T plotted as a function of echo number for the three regions 

investigated. The mean (solid line) and standard deviation (corresponding shaded area) across the six 

participants are shown. Frequency shifts from 7T measurements were scaled to 3T values (a 

multiplication by 3/7), and are labelled 7T#, to allow for direct comparison of temporal trends. Signal 

compartment frequency shifts and their respective volume fractions are provided in the tables 

corresponding to each region. The SER of complex signal fit was calculated for both 3T and 7T 

measurements. 

Temporal variations in the 3T and 7T frequency shifts exhibit consistent trends within 

each ROI; in other words, the shape of the mean frequency shift curves appear similar 

between 3T and 7T measurements (refer to plots in Fig. 3). For example, frequency shifts in 

the corpus callosum trend in an exponentially decaying manner, while the putamen decays in 

a more linear fashion, and the CSF appears to increase logarithmically (refer to plots in Fig. 

3). However, the trends in 7T measurements appear less temporally variable. For example, 
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the 3T result in the corpus callosum and CSF exhibit a small oscillation after the fifth echo, 

whereas the 7T result is relatively smooth at all echo times.  

Upon general inspection, variability at each echo number appears larger at 3T than at 

7T. Table 2 summarises this observation quantitatively through the area spanned by the error 

bars over echo time. To generate this table the distance between the positive and negative 

error bars at each echo number was calculated and summed over echo numbers. In essence, 

this metric measures the change in the level of variation in the data (e.g. across participants) 

between 3T and 7T. Irrespective of the method, variability at 3T is always larger and by 

moving to 7T the inter-subject variability can approximately be halved.  

Table 2 
Measure of variability across participants. Areas spanned by variations in Fig. 3 plots, calculated by 

taking the difference between the upper and lower error bounds at each echo number and by summing 

over echo numbers. The areas reduce with increasing field strength, suggesting that inter-subject 

variability can be mitigated through field strength increases.   

Regions 3T (Hz) 7T (Hz) 

Corpus callosum 331 190 

Putamen 162 87 

CSF 211 95 

 

3.3.3 Explaining temporal frequency shifts using GRE-MRI signal compartments 

The tables beside each of the plots in Fig. 3 show the frequency shifts obtained by 

fitting a multi-compartment signal model. Model parameters were obtained using the 3T and 

7T GRE-MRI data, and frequency shifts are presented alongside the normalized SER (nSER). 

The overall quality-of-fit, for both 3T and 7T trends, is the best for the putamen (9.8 and 8.4, 

respectively), then followed by the CSF (11.3 and 9.8), and corpus callosum (19.5 and 24.0). 

Furthermore, the nSER values for 3T and 7T fit are the closest to each other within the 

putamen (9.8 and 8.4; a difference of 1.4), then followed by the CSF (11.3 and 9.8; a 

difference of 1.5), and finally by the corpus callosum (19.5 and 24.0; a difference of 4.5). 

Expectedly, similarities in nSER values seem to correspond broadly to qualitative trends 

between 3T and 7T frequency shift curves. For example, when observing the plots in Fig. 3, 
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the putamen exhibits the most similarity between 3T and 7T trends (featuring the lowest 

difference in nSER), whereas the corpus callosum, albeit arguably, exhibits the least 

coherence between 3T and 7T trends (featuring the highest difference in nSER). 

Additionally, a better quality-of-fit (indicated by a lower nSER) can be observed in the 7T 

data for the putamen and CSF (compare 3T and 7T nSER values within putamen and CSF in 

Fig. 3). In the corpus callosum, however, the 3T data exhibits a better quality-of-fit in 

comparison to 7T (compare 3T and 7T nSER within corpus callosum in Fig. 3). The signal 

compartments are arranged in the table by matching the 7T
#
 frequency shifts to the closest 

corresponding 3T frequency shift; in doing so, respective compartment volume fractions 

within the putamen and CSF correspond well between 3T and 7T data (compare volume 

fractions in Fig. 3 tables for putamen and CSF). For example, in the CSF, the signal 

compartment with the highest volume fraction (~75%) at both 3T and 7T
#
 exhibit frequency 

shifts within a close range (2.5Hz and 2.0Hz); the smaller volume fraction compartment 

(~25%) also correspond well (-12.3Hz and -13.2Hz). A similar, well-suited correspondence is 

also exhibited by the compartment frequency shifts and their respective volume fractions 

within the putamen. In the corpus callosum, the three compartment frequency shifts identified 

correspond to similar values between at 3T and 7T; however, their respective volume 

fractions do not correspond between the field strengths (Fig. 3). 

3.4 Discussion 

We studied echo time dependence of the GRE-MRI complex signal acquired at 3T 

and 7T in three human brain regions (corpus callosum, CSF, and putamen). Qualitatively, 

three primary effects were observed. First, temporal trends in signal magnitude and frequency 

shift as a function of echo time varied across brain regions studied. Second, non-linear trends 

in temporal frequency shift evolution were observed in both 3T and 7T measurements. Third, 
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frequency shifts computed from 7T susceptibility data were less variable (for all regions 

investigated) across the participant cohort than those obtained using 3T data. Additionally, 

we found the signal compartments and their respective quality-of-fit measures to broadly 

reflect similar underlying influences in both 3T and 7T data. 

The reduced inter-cohort variability for echo time trends in frequency shifts at 7T can 

be attributed to a higher SNR present at higher field strength measurements (Dumoulin et al., 

2017; Duyn, 2017, 2012; Duyn et al., 2007; Zwanenburg et al., 2011). This in turn would 

yield improved sensitivity to underlying field effects arising from tissue microstructure, and 

would explain the deviations from mono-exponential decay in the temporal signal magnitude 

(van Gelderen et al., 2012). It is interesting to note that the broad shape of temporal 

frequency shift curves, at 3T and 7T, remain consistent within each ROI; however, subtle 

inter-field-strength differences do exist (refer to plots in Fig. 3). We speculate that the GRE-

MRI signal exhibits a similar sensitivity to macroscopic (≥ 1 mm), voxel-scale field effects 

at both 3T and 7T. However, 7T measurements may be differentially sensitive to sub-voxel 

influences at the meso-macroscopic interface (0.5—1.0mm); this would engender gross 

similarities in the curve shape, but also result in subtle variations in field dependent temporal 

trends.  

A favourable correspondence between the quality-of-fit for respective multi-

compartment models and qualitative signal trends comes as no surprise. For example, the 

difference in SER values between the 3T and 7T fit is lower for the putamen when compared 

to the corpus callosum; correspondingly, mean frequency shift curves for the putamen are 

more coincident in comparison to the corpus callosum. When fitting to the same signal 

model, similar signal trends should yield similar fitting errors. When observing the SER 

measures within specific regions, we find improved fitting in 7T data when compared to 3T 

in the putamen and CSF; the opposite was observed in the corpus callosum. The putamen and 
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CSF are often characterized as isotropic in their biomolecular distribution (Purves et al., 

1997; Sakka et al., 2011). Diffusion tensor imaging studies validate these observations by 

reporting fractional anisotropy (FA) values in these regions at ≤0.1, and within a range of 

0.2—0.7 in white matter regions, such as the corpus callosum (Alexander et al., 2007); FA 

values fall with a range of 0 and 1, wherein values close to 0 indicate low anisotropy and 

those close to 1 exhibit high anisotropy (Huisman, 2010). Furthermore, recent studies 

demonstrate a strong influence of fibre orientation and susceptibility anisotropy within the 

corpus callosum, especially at higher field strengths, on GRE-MRI signal phase 

measurements (Alonso-Ortiz et al., 2017; Lee et al., 2017; W. Li et al., 2012; van Gelderen et 

al., 2012; Wharton and Bowtell, 2012; Yablonskiy and Sukstanskii, 2017). The anisotropic 

properties of tissue orientation and magnetic susceptibility have been shown to induce a 

broad range of shifts in the Larmor (Lee et al., 2010b; Wharton and Bowtell, 2012, 2013); 

thus, the frequency shift signature for an individual component of tissue microstructure could 

be interspersed across a range of frequency shifts due to anisotropic effects. Consequently, 

the effects of both tissue and susceptibility anisotropy would prove more difficult to explain 

as discrete signal compartments and yield higher fitting errors in 7T data when compared to 

3T. This phenomenon could also explain a lack of coherence between the volume fractions 

assigned to the respective frequency shifts in 3T and 7T compartments within the corpus 

callosum (refer to tables in Fig. 3). In more isotropic medium (e.g. putamen and CSF), 

however, we observe a close correspondence between the individual frequency shifts and 

their respective volume fractions resolved at 3T and 7T (refer to tables in Fig. 3). Thus, 

comparing GRE-MRI signal compartments computed from 3T and 7T data would appear to 

be more robust when considering regions characterized by a more isotropic tissue 

microstructure (e.g. gray matter regions).  
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The multi-echo GRE-MRI signal was compartmentalized with the primary aim of 

generating a quantitative platform for comparing temporal signal evolution acquired at 3T 

and 7T. A detailed contextualization of the signal compartments, as they relate to tissue 

microstructure and underlying biophysical origins, has already been discussed (Section 2.4 

Discussion). 

3.5 Conclusions 

We investigated the influence of the static magnetic field strength on temporal 

variations in the multi-echo GRE-MRI signal. Using 3T and 7T GRE-MRI data, we compared 

temporal trends in the signal magnitude and frequency shift as a function of echo time, and 

compartmentalized the GRE-MRI complex signal to identify quantitative differences in the 

temporal signal at different field strengths. Our results demonstrate (1) the persistence of non-

linear variations in echo-time dependent frequency shifts at both 3T and 7T (exhibiting similar 

profiles at both field strengths), (2) a lower inter-participant variability in temporal frequency 

shifts in the 7T signal, when compared to 3T, and (3) a close correspondence of GRE-MRI 

signal compartment parameters, resolved at 3T and 7T, in areas of relative isotropic tissue 

composition (e.g. putamen and CSF) when compared to regions of high anisotropy (e.g. corpus 

callosum).  
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Chapter 4: Conclusion 

4.1 Considerations for signal compartmentalization studies 

The unique signal properties in MRI used to inform tissue properties are well 

established. Furthermore, the utility of tailored signal models to maximize the information 

gained from these unique signal properties is also prevalent (e.g. diffusion tensor imaging, 

myelin water fraction imaging, functional MRI, and dynamic contrast enhanced MRI). 

Regardless of the advances in hardware technology, image pre-processing techniques, and 

post-processing layers, multi-compartment signal modelling can be used to extract additional 

features from mGRE-MRI data. For example, we utilize the temporal GRE-MRI signal 

acquired at the highest available field strength for human imaging (7T), optimize signal pre-

processing (e.g. selective channel combination and phase offset correction), and implement 

the latest post-processing techniques (e.g. background field removal and susceptibility 

estimation) to maximize the quantitative and visual information gained. However, there 

remains a large gap in characterizing and quantifying tissue information at the micro-scale. 

The utility of signal compartments lies herein. 

4.2 Developing susceptibility-based signal compartments as a biomarker for tissue 

properties 

 

Due to the simple formulation of the plane wave model utilized in our study, any 

tissue property which affects either the GRE-MRI signal magnitude or phase could be 

characterized using signal compartments which take this form. The immediate utility of 

susceptibility-based signal compartments would be used to quantify the micro-scale 

constituents, and characterize the spatial arrangement, in various tissues of interest. Within 

the context of structural neuroimaging, one use case would be to quantify tissue components 

that would influence the local magnetic field distribution, such as biometals (e.g. non-heme 

iron, manganese, copper, and zinc), de-oxyhemoglobin, and structured macromolecules (e.g. 
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lipids—myelin, proteins—neurofilaments, and carbohydrates—glucose) (Chen et al., 2013; 

Duyn et al., 2007; Duyn and Schenck, 2017; He and Yablonskiy, 2009; Schweser et al., 

2011a). These moieties could be quantified in physiological (development and ageing) and 

pathological conditions (e.g. myelin integrity in multiple sclerosis, cell density 

characterization in glioblastoma, amyloid-beta quantification in Alzheimer’s disease, etc.). 

Previous studies demonstrate the effect of fiber orientation on the measured GRE-MRI 

signal, both in the spatial (Liu, 2010; Wharton and Bowtell, 2012; Yablonskiy and 

Sukstanskii, 2017) and temporal (Lee et al., 2017; Nam et al., 2015; Sukstanskii and 

Yablonskiy, 2014) domains. Thus, compartmentalizing the GRE-MRI signal in data acquired 

using different orientations and analysing the changes in the compartment frequency shift 

would allow for quantitative estimation of underlying fiber orientation. This application 

could be systematically applied alongside diffusion tensor imaging to better characterize 

white matter structure, or to remove the confounds of fiber orientation when aiming to 

quantify myelin water fraction or any other underlying tissue susceptibility influence (e.g. 

iron and all other biometals). The benefits of signal compartmentalization should not be 

regarded as a supplantive tool, rather as a supplementary one, wherein additional information 

is gained towards characterization of underlying tissue properties or a convergent clinical 

diagnosis. 

4.3 Final comments and future directions 

Further benefits from GRE-MRI signal compartmentalization could be derived 

through the development of more informative biophysical models, robust parameter 

estimation algorithms, advances in scanner technology, and diversification of the applied 

domains. A recent study, for example, extends the traditional (Maxwellian) signal model to 

tease apart the effects of susceptibility anisotropy, on a cellular level, arising from myelin 

layering (Sukstanskii and Yablonskiy, 2014). This modification, however, notably increases 
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model complexity in formulating the myelin signal compartment as a quadratic exponential 

as opposed to the traditional linear exponential. This work, alongside ours, further 

exemplifies the need for more sophisticated optimization algorithms to cope with evolving 

model complexity. For example, implementing global optimization methods (e.g differential 

evolution, particle swarm, CMAES, etc.) may improve the accuracy of parameter estimation 

(Zhigljavsky and Žilinskas, 2007) in comparison to the traditional deterministic approaches 

utilized for signal compartmentalization (Chen et al., 2013; Li et al., 2015; Nam et al., 2015). 

Another recent study by Alonso-Ortiz et al. (2017), reports the additional utility of including 

complex-valued GRE signal information to be gained at higher field strengths (7T vs. 3T). 

These results, akin to our findings in Ch. 3, demonstrate the benefits derived from 

improvements in magnet technology. In conclusion, our study is one of the first to 

systematically demonstrate the utility of GRE-MRI compartments outside of the context of 

MWF imaging. Further implementations to image and characterize tissue properties in this 

manner will precipitate additional improvements and applications for GRE-MRI signal 

compartments. We invite future research to tackle the aforementioned issues and extend our 

findings to develop imaging biomarkers, sensitive to microscale changes, by way of mGRE-

MRI signal compartmentalization. 
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Appendix 

Table 1 

Parameter estimates for three different initialization values. 

 A (a.u.) T2
* (ms) f (Hz) 

Initial value 1 |𝑆(𝑇𝐸1)|

𝑁
 

30 0 

Initial value 2 |𝑆(𝑇𝐸1)|

𝑁
 

10 -10 

Initial value 3 |𝑆(𝑇𝐸1)|

𝑁
 

50 10 

Parameters for AIC-selected models from initial values 1:        

 A1 ∆F1 

(Hz) 

A2 ∆F2 

(Hz) 

A3 ∆F3 

(Hz) 

IC 

71% -11.0 22% -24.1 7% 17.6 

CC 
37% 1.0 32% 8.1 31% -31.5 

Fornix 

86% -5.9 14% 6.6   

Insula 

52% -8.4 48% 4.7 

 

 

Thalamus 

51% 3.5 49% -1.0 

 

 

CSF 

87% 3.6 13% 16.1   

Caudate 

56% 9.7 25% 22.1  19% -26.8 

SN 

36% 3.4 33% 17.5 32% 7.2 

Putamen 

48% 3.9 27% 15.6 25% 29.5 

 

Parameters for AIC-selected models from initial values 2: 

A1 ∆F1 

(Hz) 

A2 ∆F2 

(Hz) 

A3 ∆F3 

(Hz) 

71% -11.0 22% -24.1 7% 17.6 

34% 1.0 34% 8.1 32% -31.6 

86% -5.9 14% 6.6   

52% -8.4 48% 4.7 

 

 

50% 3.5 50% -1.0 

 

 

87% 3.6 13% 16.1   

56% 9.7 25% 22.1  19% -26.9 

44% 2.9 30% 17.3 24% 7.1 

48% 3.9 27% 15.6 25% 29.5 

 

Parameters for AIC-selected models from initial values 3: 
A1 ∆F1 

(Hz) 

A2 ∆F2 

(Hz) 

A3 ∆F3 

(Hz) 

71% -11.0 22% -24.1 7% 17.6 

34% 1.0 34% 8.2 32% -31.7 

83% -6.0 17% 6.1   

52% -8.4 48% 4.7 

 

 

50% 3.5 50% -1.0 

 

 

87% 3.6 13% 16.1   

56% 9.7 25% 22.1  19% -26.9 

49% 4.0 30% 17.3 21% 7.1 

48% 3.9 27% 15.6 25% 29.5 
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Table 2 
Summary of tissue-based signal influences considered in explaining signal compartments. 

Influence on measured signal Sample Field strength 

of 

measurement 

Region Susceptibility () ∆f at 7T Remarks Study 

Tissue 

susceptibility 
  

  

  
  

  

  
  

  

  
  

  

  
  

  

  
  

  

  

 

 

 
 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 

Tissue Iron 

  
  

  

  
  

  

Non-heme 

iron 
  

  

  
  

  

  

In-vivo, 

human 
  

  

  
  

  

 
 

 

 
In-vivo, 

human 

 

3T 

  
  

Frontal cortical WM 0.041 ± 0.010ppm 12.22 ± 2.98Hz Myelin corrected 

susceptibility values 
attributed to tissue iron. 

 

0.0127 ppm *100 
g/mg*cm3/gr*[Fe] (Hallgren 

and Sourander, 1960) 

 
Susceptibility calculated via 

Krylov-subspace solver 

(LSQR) with spherical 
constraints. 

 

Schweser et 

al., 2011 
  

  

Medial GM 0.066 ± 0.011ppm 19.67 ± 3.28Hz 

  
 

  

 3T 
 

GM (frontal lobe) 4.40 x 10-3 ppm 
(CGS) 

16.48Hz (SI) Susceptibility calculated 
using generalized Lorentzian 

approach (converted from 

CGS to SI)
a

 

He and 
Yablonskiy, 

2009 

  WM (frontal lobe) 4.40 x 10-3 ppm 
(CGS) 

16.48Hz (SI)     

  CSF (frontal lobe) 0.33 x 10-3ppm 

(CGS) 

1.12Hz (SI)     

 
 

In-vitro (cell 

fractions), rat 

Precision NMR Cortex f(molecular 

concentration, tissue 

density) 

f(molecular 

concentration, 

tissue density) 

Regression: 

-1.209 ppb/(mg/ml) 

Leutritz et 

al., 2016 

Lipids 

  
  

  

Myelin In-vivo, rat 7T Corpus Callosum -0.089ppm -26.52Hz Susceptibility calculated 

using generalized Lorentzian 
approach. 

Lee et al., 

2012 

Other 

  

  

In-vivo, 

human 

3T GM (frontal lobe) 2.37 x 10-3 ppm 8.88Hz 
See description

a
. 

He and 

Yablonskiy, 

2009 

    WM (frontal lobe) 5.52 x 10-3 ppm 20.67Hz     

    CSF (frontal lobe) 0 0     

Proteins 
  

  

  

Non-specific 
  

  

In-vivo, 
human 

3T GM (frontal lobe) -4.17 x 10-3 ppm -15.62Hz 
See description

a
. 

He and 
Yablonskiy, 

2009 

    WM (frontal lobe) -4.56 x 10-3 ppm -17.08Hz     
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     CSF (frontal lobe) -0.0016 x 10-3 ppm -0.006Hz     

Synaptosomes In-vitro (cell 

fractions), rat 

Precision NMR Cortex f(molecular 

concentration, tissue 
density) 

f(molecular 

concentration, 
tissue density) 

0.368 ppb/(mg/ml) Leutritz et 

al., 2016 

De-

oxyhemoglobin 
  

  

  

  

  
  

  

In-vivo, 

human 

3T GM (frontal lobe) 0.90 x 10-3 ppm 3.37Hz 
See description

a
. 

He and 

Yablonskiy, 
2009 

    WM (frontal lobe) 0.21x 10-3 ppm 0.79Hz     

    CSF (frontal lobe) 0 0     

In-vitro, 

NMR 

3T Human blood 0.27 ± 0.03ppm 80.47 ± 8.94Hz Susceptibility measured 

using SQUID magnetometer 
and analytically adjusted 

with signal modelling 

techniques. 

Spees et al., 

2001 

Tissue 

properties 

  
  

  

  
  

  

  
  

  

  
  

  

  
  

  

  
  

  

 
 

 

 

 

 

 
 

 

 

Relaxation of 

distinct water 

pools 
  

  

  
  

  

  
  

  

  
  

  

  
  

  

Myelin water 

  

  
  

  

In-vivo, 

human 

7T OR ( ⏊) N/A 25Hz Three compartment 

modelling of GRE-MRI 

complex signal. 

Sati et al., 

2013 

    SCC ( ⏊ ) N/A 31.8Hz     

    OR (||) N/A -5.4Hz     

    SCC ( ⏊ ) N/A 25.8Hz   Li et al., 2015 

    OR ( ⏊ ) N/A 22.5Hz     

Axonal water 

  

  

  

  

In-vivo, 

human 

 7T OR ( ⏊ ) N/A -6.0Hz   Sati et al., 

2013 

    SCC ( ⏊ ) N/A -4.1Hz     

    OR (||) N/A -2.5Hz     

    SCC ( ⏊ ) N/A -6.3Hz   Li et al., 2015 

    OR ( ⏊ ) N/A -6.5Hz     

Extra-cellular 

Water 
  

  

  
  

In-vivo, 

human 

 7T OR ( ⏊ ) N/A 1.5Hz   Sati et al., 

2013 

    SCC ( ⏊ ) N/A 2.0Hz     

    OR (||) N/A 1.1Hz     

    SCC ( ⏊ ) N/A 0   Li et al., 2015 

    OR ( ⏊ ) N/A 0     

Fiber orientation/ 

Susceptibility 

anisotropy 

(sign negligible_ 

  
  

  

  

  

  

  

In-vivo, 

human + 

Simulations 

 

7T Sub-cortical WM 0.016ppm  4.76Hz  Implementation of hollow 

cylinder model in white 

matter. 

Wharton and 

Bowtell, 

2012 

In-vitro + 

Simulations 

7T Corpus Callosum 0.012ppm 3.58Hz  Difference between 

perpendicular and parallel 
fiber orientations using 

simulations. 
 

Lee et al., 

2010b 
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In-vivo, 

human 

7T Sub-cortical WM & 

GM 

0.004 - 0.029ppm 1.19 to 8.64Hz  Difference between 

perpendicular and parallel 
ROI-based susceptibility 

values. 

Li et al., 

2012a 

In-vivo, 

human 

3T Sub-cortical WM 0.019 ppm 5.67Hz    Li et al., 

2012b 

Chemical 
exchange 

  

  
  

  

  

Non-specific 
protons 

  

  
  

  

  

  
  

  

  

In-vivo, 
human 

 

7T Sub-cortical WM 0.010ppm 2.98Hz Implementation of hollow 
cylinder model. 

Wharton and 
Bowtell, 

2012 

In-vivo, 
human 

14T GM N/A 6.99Hz   Shmueli et 
al., 2011 

    WM N/A 

 

11.03Hz     

In-vivo 7T GM & WM 0.010ppm 3Hz Difference between GM and 
WM.  

Regression:  

0.040 ppm/mM of BSA. 
 

Zhong et al., 
2008 

 

Myelin In-vitro (cell 

fractions), rat 

Precision NMR Cortex f(molecular 

concentration, tissue 

density) 

f(molecular 

concentration, 

tissue density) 

Regression: 

1.283 ppb/(mg/ml) 

Leutritz et 

al., 2016 

Synaptosomes 
   

f(molecular 

concentration, tissue 

density) 

f(molecular 

concentration, 

tissue density) 

Regression: 

0.775 ppb/(mg/ml) 

  

Diffusion Fast Regime   Simulation   f(mesoscopic 
susceptibility 

arrangement, 

compartment volume 
fraction, and 

compartment packing) 

N/A N/A Need to consider spin 
population interaction 

statistics. 

Ruh et al., 
2017 
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