
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

Leandro
Ricardo

Sistema de Suporte à Decisão para Transportes
Públicos
Decision Support System for City Public
Transportation

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática,

2017

Leandro
Ricardo

Sistema de Suporte à Decisão para Transportes
Públicos
Decision Support System for City Public
Transportation

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quisitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação cient́ıfica da Professora
Doutora Susana Sargento, Professora Associada com Agregação do De-
partamento de Eletrónica, Telecomunicações e Informática da Universidade
de Aveiro e co-orientação cient́ıfica do Professor Ílidio Oliveira, Professor
Auxiliar do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro.

o júri / the jury

presidente / president Professor Doutor José Manuel Matos Moreira
Professor Auxiliar do Departamento de Eletrónica Telecomunicaões e Informática

da Universidade de Aveiro

vogais / examiners committee Professor Doutor Pedro Miguel Alves Brandão
Professor Auxiliar do Departamento de Ciência de Computadores da Faculdade de

Ciências da Universidade do Porto

Professora Doutora Susana Isabel Barreto de Miranda Sargento
Professora Associada com Agregação do Departamento de Eletrónica Telecomu-

nicaões e Informática da Universidade de Aveiro (orientadora)

agradecimentos /
acknowledgements

No culminar do meu percurso académico não me poderia esquecer de
agradecer a todas as pessoas que contribuiram para o meu sucesso.

Em primeiro lugar, agradeço aos meus pais Jorge e Elisabete e aos meus
irmãos Rita e Francisco, por todo o amor, carinho e apoio incondicional.

À minha namorada, Maria António, por todas as horas de paciência e
carinho.

Aos meus amigos, Nuno Henriques, Marco Silva, Cristina Silva, Rui Pedro,
David Silva, Eduardo Sousa, Mafalda Rodrigues, Aléxio Simões, Daniela
Sousa, João Simões e José Moreira pelo companheirismo e amizade que
concerteza permanecerão durante muito mais anos.

À minha orientadora, a incansável Susana Sargento, que além de me ter
dado a oportunidade de colaborar num grupo de investigação relevante e
me ter ajudado com todos os problemas recorrentes do desenvolvimento
deste trabalho, me incentivou e inspirou a pensar e a desenvolver trabalho
com impacto.

Ao meu co-orientador, Iĺıdio Oliveira, pelas suas sugestões, opiniões e visão,
ajundando-me a melhor reflectir sobre os problemas deste trabalho.

Ao professor José Maria Fernandes, pelas suas sugestões e infindáveis ideias.

Ao Jorge Pereira e Bruno Areias colegas do grupo de investigação que apesar
de terem também os seus problemas, arranjaram sempre um tempinho para
me ajudar com os meus.

Aos investigadores postdoc do grupo de investigação, em particular ao
Miguel Lúıs, pelas suas cŕıticas extremamente assertivas e construtivas, ao
Carlos Senna pela sua partilha de experiência e ao Lucas Guardalben.

Resumo Hoje em dia existe tecnologia para tornar as cidades inteligentes. As cid-
ades inteligentes são capazes de sentir, analizar e reagir: sentir através dos
variados sensores espalhados em torno da cidade, sensores estes que podem
ser fixos (sensores para a monitorização do estado ambiental) ou móveis
(por exemplo, os cidadãos, graças aos seus smartphones). Um caso notável
é o da cidade do Porto, que incorpora uma rede em malha com mais de
600 véıculos (autocarros, taxis e camiões do lixo) que comunicam entre si,
habilitando os passageiros dos autocarros da maior operadora da cidade a
navegar na internet gratuitamente, enquanto viajam.

O maior impacto de uma rede como esta é a mobilidade; e uma das pre-
ocupações das instituições governamentais locais é como elas podem mel-
horar a mobilidade.

É por isso crucial analisar o que pode ser feito para melhorar a mobilidade
de uma cidade. Utilizando os dados gerados pelo movimento dos autocarros
é posśıvel fornecer um conjunto de novas utilidades práticas que podem ser
úteis ao quotidiano dos cidadãos e dos gestores de frota. Na perspetiva dos
passageiros pode ser introduzido o conceito de smart schedule que consiste
em fornecer o tempo estimado de chegada de um autocarro que se vai
adaptando ao longo do tempo, de acordo com a dinâmica da cidade, que
pode ser acedido diretamente a partir do seu smartphone. Na perspetiva dos
gestores de frota é posśıvel fornecer introespeções sobre o comportamento
habitual das linhas de autocarros, dando abertura a que estes sejam capazes
de melhor reagir a novas ou anormais dinâmicas dos transportes públicos
da cidade.
Esta dissertação apresenta uma abordagem para analisar os dados proveni-
entes da rede veicular e de como usá-los para tornar as ideias previamente
esclarecidas, posśıveis. Devido à inexistência da identificação do traço GPS
a uma linha de autocarro, um algoritmo de map-matching foi implementado.
Isso torna a computação de estimações e predições sobre o tempo de pas-
sagem dos autocarros posśıvel. No que toca à predição, foram testados
três algoritmos diferentes de aprendizagem automática em conjunto para a
construção de modelos preditivos. Por fim, foram implementadas aplicações
como prova de conceito que demonstram a aplicabilidade no mundo real,
ajudando os passageiros dos autocarros e os gestores de frota a reagir aos
diferentes eventos do seu quotidiano.

Os resultados demonstram que o algoritmo de map-matching apresenta uma
boa qualidade. Também demonstram que o melhor algoritmo de aprendiz-
agem automática, considerando o erro de predição, é o Bagging utilizando
como estimador base Support Vector Regressor. Por fim, os perfis obtidos
pelo painel de controlo permitem distinguir linhas de autocarro com um
funcionamento ótimo daquelas em que o funcionamento é insatisfatório.

Abstract Nowadays, the technology to turn cities smart already exists. Smart Cities,
as they are called, are capable to sense, analyze and react: sense through
the set of sensors displaced along the city, as they are sensors either fixed
(for environmental monitoring) or moving (for instance, citizens with their
smartphones). A notable case is Porto, which incorporates a mesh network
with more than 600 vehicles (buses, taxis and garbage trucks), communic-
ating in-between and enabling the passengers of the buses of the city major
bus carrier to access freely to the Internet while commuting.

A vehicular network like this has huge positive impact in the city mobility,
which is one of the biggest concerns of the governmental institutions.

Therefore, it is crucial to understand what can be done to improve mobility.
By analyzing the data generated by the movement of the buses, it is possible
to deliver a new set of tools that might be useful for the everyday life of the
bus passengers and bus fleet managers. From the passengers perspective,
the utility can be brought by the introduction of smart schedules, which
consists on delivering estimated time of arrival that is adapting itself to the
city dynamics, through the evolution of the time, and that can be accessed
directly from their smartphones. From the perspective of the bus fleet
managers, it is possible to deliver insights about the usual behaviour of
their bus lines, giving openness for them to react to the new or abnormal
city public transportation dynamics.

This dissertation presents an approach for analyzing the data descendent
from the vehicular network and how to use it to answer the previously ad-
dressed problems. Regarding the missing link between the GPS trace from
the bus and the bus line that they are doing, a map-matching algorithm
is implemented. That turns possible the computation of estimations and
predictions of the bus’ passing times. In what concerns prediction, three
machine learning ensemble algorithms have been tested. Finally, proof-of-
concept applications are implemented to demonstrate the real-life applicab-
ility, by helping the bus passengers and bus fleet managers to react to the
different events of their quotidian.

The results show that the map-matching algorithm presents a good quality.
Also, they demonstrate that the best machine learning algorithm, consider-
ing the prediction error, is Bagging using Support Vector Regressor as the
base estimator. Finally, the profiles obtained in the performance dashboard
enable distinction between optimal and non-optimal bus lines.

Contents

Contents i

List of Figures v

List of Tables vii

Acronyms ix

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 3

1.4 Acknowledgments . 3

1.5 Document outline . 3

2 Concepts 5

2.1 Introduction . 5

2.2 Smart Cities . 5

2.2.1 Definition . 5

2.2.2 Challenges on mobility . 7

2.3 Vehicular Networks . 7

2.3.1 Definition . 7

2.3.2 Importance of VANET under the context of this work 9

2.4 Fundamentals of mapping . 10

2.4.1 Introduction . 10

2.4.2 The shape of the earth . 10

2.4.3 Datums and projections . 11

2.4.4 Issues regarding spatial data handling 13

2.5 Data processing fundamentals . 13

2.5.1 Introduction . 13

2.5.2 Concurrent, parallel and distributed computing 13

2.5.3 Big Data definition and characteristics paradigms 14

Big Data processing Paradigms . 15

2.6 Machine Learning . 16

2.6.1 Definition . 16

2.6.2 Types of Machine Learning . 17

Supervised Learning . 17

i

Unsupervised Learning . 18

Reinforcement Learning . 18

2.6.3 Fundamental concepts . 19

Machine Learning Workflow . 19

Generalization, Overfitting and Underfitting 20

Model Selection and Cross-Validation 20

Improving models performance with Ensemble Learning 21

2.7 Summary . 22

3 Related Work 25

3.1 Introduction . 25

3.2 Bus Trajectory Identification by Map-Matching 25

3.3 Comparing state-of-the-art regression methods for long term time prediction . 26

3.4 Empirical Study of Travel Time Variability Using Bus Probe Data 27

3.5 Using Bus Probe Data for Analysis of Travel Time Variability 28

3.6 A review of travel time estimation and forecasting for Advanced Traveller In-
formation Systems . 30

3.7 Real-time Trip Planner in Urban Public Transport 32

3.8 Summary . 33

4 Matching lines with GPS logs and Building Performance Indicators 35

4.1 Introduction . 35

4.2 Problem Setting . 35

4.3 Available Context . 36

4.3.1 Data Sources . 36

4.3.2 Insights on the log database . 36

Database Tables . 36

A detailed view on node data: attributes, granularity, quality and
quantity . 37

4.3.3 STCP Website as data source . 38

4.4 Exploring, visualizing and choosing data . 38

4.4.1 Position Log Data . 39

4.4.2 Bus network data description . 39

4.5 Performance Indicators . 41

4.5.1 Definitions . 41

4.5.2 Main restritions . 42

4.6 Summary . 42

5 Architecture and Technical Design 43

5.1 Introduction . 43

5.2 Requirements . 43

5.2.1 Functional requirements . 43

5.2.2 Non-functional requirements . 44

5.3 Architecture . 44

5.4 Technical Design . 46

5.4.1 Overview . 46

5.4.2 Exploiting parallelism using the Worker Design Pattern 47

ii

5.4.3 Algorithm Design . 49
Making spatial searches . 50
Using and choosing a detection radius 50
Detecting line starts . 52
Finding a solution . 52

5.4.4 Building performance indicators . 57
A deeper overview on completeness metric 57
Estimating arrival times . 57
Predicting arrival times . 59

5.5 Summary . 60

6 System Implementation 61
6.1 Introduction . 61
6.2 Bus Network Information Retrieval . 62

6.2.1 Script to retrieve base data implementation details 64
6.2.2 Script to transform base data implementation details 65

6.3 Matching Unit . 66
6.3.1 Development History . 66
6.3.2 Overview . 67
6.3.3 Modules . 67
6.3.4 The entities module . 68

Worker implementation overview . 68
Dispatcher implementation overview 69
Logger implementation overview . 69

6.3.5 The pipeline module . 69
Algorithm to detect when a line starts 70
Algorithm for finding solutions from line starts 70

6.3.6 The tools module . 73
6.4 Matches Database . 73

6.4.1 Overview . 73
6.4.2 Database schema description . 74
6.4.3 Routines . 75
6.4.4 Functions . 75

6.5 Estimation Database . 76
6.5.1 Overview . 76
6.5.2 Development history . 76
6.5.3 Database diagram . 77
6.5.4 Database schema description . 77
6.5.5 Routines . 78

Functions . 78
Triggers . 80

6.5.6 How estimates are calculated . 80
6.6 Synchronization Script . 80
6.7 Prediction Module . 81

6.7.1 Overview . 81
6.7.2 Algortihms . 81
6.7.3 Data Collection and Preparation . 82

iii

Requirements . 82
Dataset characterization . 83

6.7.4 Model Selection and Cross Validation 83
6.7.5 Evaluation . 84
6.7.6 Deployment . 85

6.8 Database Wrappers Module . 85
6.9 Integration APIs . 85

6.9.1 Bus Network Information API . 86
6.9.2 Match API . 87
6.9.3 Estimation API . 87
6.9.4 Prediction API . 87

6.10 Applications . 87
6.10.1 Bus Line Performance Dashboard . 88
6.10.2 Bus Passenger Mobile Application . 89

6.11 Summary . 90

7 Deployment and Results 93
7.1 Introduction . 93
7.2 Deployment . 93

7.2.1 Hardware . 93
7.2.2 Software . 93

7.3 Results . 95
7.3.1 Matching GPS traces with bus lines 95

Context . 95
Processed Data in numbers . 95
Results presentation . 95
Analysis and Validation . 96

7.3.2 Delay metrics for bus lines and estimated times of arrival 98
Context . 98
Result presentation 1.1: Delay plot of a bus line match 98
Result presentation 1.2: Detecting problematic lines 102
Result presentation 2: Estimated time of arrival given a previously

defined static value from the STCP time tables 103
Result presentation 3: Estimated time of arrival given a dynamically

chosen value (user given or inferred by the delay plot analysis) 104
Validation . 104

7.4 Prediction Module Results . 104
7.4.1 Regression Metrics Comparison . 105

7.5 Summary . 107

8 Conclusion and Future Work 109
8.1 Conclusion . 109
8.2 Lessons Learned . 109
8.3 Future Work . 112

Bibliography 113

iv

List of Figures

1.1 A figurative image of a smart city . 1

2.1 A vehicular network and its interactions . 8

2.2 Vehicular Network Architecture (figure from Andre Cardote) 9

2.3 The earth Geoid GOCE (ESA/HPF/DLR) 11

2.5 A standard Lambda Architecture, its modules and methodologies, presented
by the company MapR [23] . 16

2.6 An example of classification task distinguishing cats from dogs [26] 17

2.7 An example of a clustering task, which distinguished 3 different groups [26] . 18

2.8 The typical machine learning workflow [26] 19

2.9 Presentation of the relation between the model complexity and the model pre-
diction error (taken from [14]) . 21

2.10 Majority voting used in a machine learning ensemble method (taken from [33]) 22

3.1 Comparison of the different time periods in terms of stability [6] 28

3.2 Data transformation steps described by Uno et al. [45] 29

3.3 Traffic data sources. (a) Point detectors, (b) probe vehicles and (c) Interval
detectors (figure from the review [28]) . 31

3.4 ”Difference between time travel estimation and prediction”[28] 32

3.5 NextBus Architecture (figure from [3]) . 33

4.1 An all day long position Log from a bus from the first day of March 40

4.2 Bus stops of Porto . 40

4.3 Bus lines of Porto . 41

5.1 Architecture components and the data flow 45

5.2 Data Processing Pipeline . 46

5.3 Matching Unit Architecture . 47

5.4 Worker Design Pattern Design . 48

5.5 A non-ideal and an ideal radius . 51

5.6 The stop S has two lines starting in its position. If the bus is passing near
that position S, there is a probability that one of the lines starting there is the
solution. 52

5.7 Detect line starts algorithm . 53

5.8 Algorithm phases . 54

5.9 Matching Algorithm Flowchart . 56

5.10 Example of a distribution of time points for calculating a estimation 58

v

6.1 Line Details Page from STCP Website . 62
6.2 Capture on Wireshark showing the filter and the HTTP GET Requests to the

STCP API . 63
6.3 Matching Unit Modules . 68
6.4 Matches Database Diagram . 74
6.5 Data Mart Diagram . 76
6.6 Data Mart Diagram (not definitive image) . 77
6.7 TimeSeriesSplit iterations over data . 82
6.8 User Interface of Matches API, generated by Swagger 86
6.9 This is the match browser view, where the bus fleet manager can analyze each

one of the matched bus journeys. 89
6.10 A view over the delay plot . 89
6.11 Two different views of the mobile application 91

7.1 The match from the node id 2764 from March, 1 St, from 07h00m to 07h55m,
with 100% completeness. 96

7.2 The match from the node id 2474 from March, 15 St, from 14h32m to 15h19m,
with 100% completeness . 96

7.3 The match from the node id 2801 from March, 8 St, from 18h10m to 19h17m,
with 91% completeness due to gaps on the input records from the position log
database, outlined with stroked circles. 97

7.4 A line completion with uncertainty . 98
7.5 Line 204 Hospital de S. João from 07:01:33 to 07:53:48 100
7.6 Line 204 Hospital de S. João from 07:57:50 until 09:02:20 100
7.7 Line 204 Hospital de S. João from 12:01:05 until 12:56:51 100
7.8 Line 204 Hospital de S. João from 15:03:36 until 15:59:51 101
7.9 Line 204 Hospital de S. João from 17:26:37 until 18:44:52 101
7.10 200 Castelo do Queijo, 3 months analysis . 102
7.11 204 Hospital de S. João, 3 months analysis . 102
7.12 902 Boavista, 3 months analysis . 103
7.13 Bagging (using support vector regressor) . 106
7.14 Random Forrest . 106
7.15 Gradient Boosting . 107

8.1 Development phases . 110

vi

List of Tables

3.1 Time Periods from this study[6] . 28

4.1 Description of the attributes of the table node data 37

7.1 Statistics for a time query associated to a bus line and bus stop 103
7.2 Statistics for a time query associated to a bus line and bus stop 104
7.3 Resulting Evaluation Metrics . 105

vii

viii

Acronyms

API Application Programming Interface. 45, 61–63, 83, 85–90, 94, 104, 107

CPU Central Processing Unit. 44, 47, 66

ESA European Space Agency. 11

GOCE Gravity field and steady-state Ocean Circulation Explorer. 11

GPS Global Position System. 2, 3, 7, 11, 12, 23, 25, 28–30, 33, 35, 37, 39, 49–51, 54, 55, 57,
104

HTTP Hypertext Transfer Protocol. 63, 65

ICT Information and Communication Technologies. 23

JSON JavaScript Object Notation. 64, 65, 67, 87

LMA Local Mobility Anchor. 9

MAG Mobile Access Gateway. 9

MIT Massachusetts Institute of Technology. 33

mMAG Mobile MAG. 10

MNN Mobile Network Node. 10

NoSQL Not-Only SQL. 15, 111

OBU On-Board Unit. 10, 37

RAM Random Access Memory. 44

SMS Short Message Service. 2

SQL Structured Query Language. 73, 75, 79, 85

SSD Solid-State Disk. 44

ix

STCP Sociedade de Transportes Colectivos do Porto. 2, 9, 27, 38–40, 44, 46, 57, 62–64, 90,
94, 95, 98, 99, 103, 104, 108

SVM Support Vector Machine. 20

TETRA Terrestrial Trunked Radio. 27

TTL Time To Live. 70, 71

TTP Travel Time Prediction. 26

URL Uniform Resource Locator. 63

VANET Vehicular Ad-hoc Networks. 2, 7–9

WGS World Geodetic System. 11

WLAN Wireless Local Area Network. 7

x

Chapter 1

Introduction

1.1 Motivation

In the last several years, the term Smart City has been acknowledged, first by the re-
searchers, then by the governments, and finally by the people.

As a multidimensional concept, Smart City covers a wide range of equally smart topics:
green city (related to smart profiteering of the environmental resources), the smart growth
(related to a human-aware and sustainable urban development), the smart grid (related to
efficient electrical energy delivering), etc.

These topics are intersected between them, and they have a thing in common: they look
to enhance the people’s life through the use of the technology. The Figure 1.1 depicts this
relation.

Figure 1.1: A figurative image of a smart city

Mobility is also a concern for the governmental institutions. Citizens are moving around

1

the city and commuting is, for some, a significant part of their everyday life. Therefore, the
concept of Smart Transportation becomes apparent and answering to the question ”how can
cities improve their public transportation system” becomes a top priority.

Regarding mobility and the smart transportation topic, an accessible case-study can be
further explored. Porto, the second largest city in Portugal after Lisbon, is a Smart City,
and it deploys a world-level pilot project which implements a Vehicular Ad-hoc Networks
(VANET) connecting buses, garbage trucks and taxis. This mesh network is capable of deliv-
ering free wireless internet access to bus passengers, enhancing their commuting experience.
One may ask what can be done for enhancing further the commuting experience.

Thinking about the impact of the existing applications in everyone daily life, Sociedade
de Transportes Colectivos do Porto (STCP), which is the major Porto’s bus carrier, provides
a service called SMSBUS. It delivers estimated times of arrival for a given line or bus stop,
recurring to the sending of a Short Message Service (SMS). Unfortunately, it is a paid ser-
vice1 and it depends on specific and expensive requirements (like using antenna triangulation).

Regarding the existing framework (the vehicular network), it may be possible to produce
mobile applications with the objective of delivering bus line schedules, routes and others for
free. Also, it would be interesting if it was possible to provide customer oriented services
enabling bus passengers to subscribe a bus stop and querying for delays, which could be dy-
namic, depending on the past history (estimated time of arrival) and on the current traffic
(prediction of the time of arrival).

Predicting the bus route behavior in terms of delay is relevant for the bus carrier managers,
in the scope of understanding if there are problems due to road works, bus route congestion,
and other events that may interfere, even despite of the existence of proprietary systems, in
production for years.

Therefore, the answer may live on optimizing the way the passengers commute, poten-
tially by increasing the knowledge about the behaviour of the buses. This may be possible
through the development of a mobile application concerning a map of bus stops, bus lines, and
schedules which could be estimated, using the past history. On the other hand, bus carriers
are constantly looking for optimizing the way they manage their resources, being absolutely
essential for them to understand how is their bus carrier performing in a particular bus line.

Given the data resulting from the operation of the network, like the movement of the
nodes in space (GPS position, velocity, etc), it is possible to tackle these specific problems.
The motivation of this work is to make use of the network operation data for optimizing the
way bus passengers commute, and optimize also, the way bus carrier managers perceive the
bus network behavior.

1.2 Objectives

Given the previously exposed problems, the main purpose of this dissertation is to:

1SMS BUS tax (http://www.stcp.pt/smsBusMicroSite/quantocusta.html)

2

http://www.stcp.pt/smsBusMicroSite/quantocusta.html

• Create a solution for obtaining the bus estimated times of arrival in a given line and
stop (or a set of stops), based on the past history.

• Regarding the first objective, solve the missing link between the position log data and the
bus network infrastructure because it is not possible to know which bus was completing
a given line. This will require matching the Global Position System (GPS) trace of the
buses with a bus line.

• Using machine-learning techniques on historical data, predict the bus behavior, in terms
of delay, in the days to follow.

• Deliver proof-of-concept applications as they are an important step on extracting some
results and on generating real life examples and tests.

1.3 Contributions

Following this study development, two articles have been submitted, with the same title
”Decision Support System for City Public Transportation”.

The first submission was targeted to INForum 2017, in October 12th and 13th, as a
communication. It was accepted and presented via oral presentation and poster.

The second submission was targeted to VEHITS 2018, in October 30th and it is waiting
for approval.

1.4 Acknowledgments

This work was supported in part by National Funds through FCT - Fundação para a
Ciência e a Tecnologia under the project UID/EEA/50008/2013, in part by the IT Internal
Project SmartCityMules and in part by the CMU-Portugal Program through S2MovingCity:
Sensing and Serving a Moving City under Grant CMUP-ERI/TIC/0010/2014.

1.5 Document outline

This document is organized as follow:

• Chapter 1 is the introduction for the work.

• Chapter 2 focuses on explaining some fundamental concepts which are useful on un-
derstanding some decisions.

• Chapter 3 presents some of the most relevant works and their fundamental ideas.

• Chapter 4 explains the problem setting in further detail.

• Chapter 5 presents the architecture and the theory behind the implementation.

• Chapter 6 presents the implementation of the components comprising the architectural
specification.

3

• Chapter 7 presents how can this system be deployed and discusses the results of this
work.

• Chapter 8 presents the conclusion and the future work.

4

Chapter 2

Concepts

2.1 Introduction

This chapter introduces the main concepts which are meaningful for this work, presenting
definitions which provide ground for understanding the importance of enclosing paradigms
and the most common terminologies.

We start by explaining what is a smart city and presenting its challenges on mobility.
Then, due to the fact that this study is based on data collected from a vehicular network,
this topic is addressed too.

The data descending from the vehicular network is spatial-temporal and it has considerable
volume. Regarding this data nature, the fundamentals of mapping are presented as means
for drawing attention to the impact of this data type into the information systems. On the
other side, because the volume of the data raises some concerns on the processing times, the
different data processing paradigms are presented, first by explaining the concepts of the
concurrent, parallel and distributed computing and then, by presenting the data processing
paradigms.

Finally, it is presented the fundamental concepts of machine learning, which is a way
of extracting knowledge from data.

2.2 Smart Cities

2.2.1 Definition

”There is neither a single template of framing smart city nor a one-size-fits-all definition
of smart city. ... The label smart city is a fuzzy concept and is used in ways that are not
always consistent.” [29]

To better define what is a Smart City, one could understand it as a multidimensional
representation of a generic city, with three main fronts [29][11]:

• Technology dimension.

• Human dimension.

• Institutional dimension.

5

The Technology Dimension borrows most of its meaning from the concept of Digital,
Ubiquitous and Information City, and thus, it is objectively focused on the infrastructure.

The concept of Digital City focuses on the communication infrastructure and on under-
standing how flexible, service-oriented, based on open standards and capable should it be for
delivering innovative services for citizens, businesses and to the government.

The Ubiquitous is referred to the set of ubiquitous devices which can be available on the
urban elements, either active or passive urban particles (people, public or private transport-
ation, or buildings and infrastructure) and generate information which results from the state
or interaction between these devices.

Finally, Information City refers to the characteristic of the city on being capable of ex-
ploring and delivering information from local communities and systems, through the use of
the Internet (not necessarily from web portals but also from other closer alternatives like
mobile applications).

The Human Dimension focuses its meaning in child concepts like Creative, Learning
and Knowledge City, which are subsequently related on human relations and on how can they
improve a city as a whole.

Creative City concerns the view of the city as friendly environment for the development
of the human and social infrastructure. Human infrastructure defines the set of human or-
ganizations where people are engaged due to work or other activity (for example, through
an association, a volunteer group, etc) while Social Infrastructure is about the people, their
relationship and how they generate benefit from social capital i.e.., how human relations can
”generate benefits that flow from the trust, reciprocity, information, and cooperation associ-
ated with social networks” [18].

Last but not least important, the Institutional Dimension is an umbrella definition
which relies on the Smart Community and Smart Growth concepts to highlight governance
among stakeholders and institutional factors for governance [29].

One strong definition for Smart Community ”was coined by a blue-ribbon panel of experts,
created by the Canadian government in 1998, to provide advice on a potential national Smart
Communities programme” [47]. They defined Smart Community as community with common
or shared interests in which its members, organizations and/or governing institutions work
with information technologies to transform their daily life in a positive and significant way,
regardless of the community size [24].

From another perspective, Smart Growth and Green City are two related concepts. The
first one, Smart Growth, is focused on strategies which promote the development and conser-
vation of the citizens health and environment. The second defines city as green when it puts
effort on designing itself to generate the lowest impact possible to the environment, minim-
izing its resource consumption requirements (food, water, energy, etc) and greatly reducing
the production of pollution (air, heat, gas emissions, noise, etc).

Thus, the concept of Smart City could be expressed as an urban development vision which
tries to bring the best out from the cooperation between people (citizens, organizations and
the government), infrastructures (telecommunications, transports, general purpose building
like schools, bridges, etc) and policies (either environmental, either urban development ones)
through the use of Information and Communication Technologies, that connects and empowers
both.

6

2.2.2 Challenges on mobility

The previous subsection supports the idea that the”Smart City will be the future trend
of urban development”[42]. Generally, the development of a smart city encompasses the last
three dimensions, which can have a huge impact in the real life.

The umbrella term for the smart initiatives concerning the mobility is called ”Smart
Mobility”. It is not only concerned on increasing the commuting speed of the people around
the city, but also, with reducing the costs of commuting, improving people safety, reducing
pollution (either by the reduction of the emissions, either by the reduction of the noise) and
reducing traffic congestion. This definition was first employed by Benovolo et al [8].

These objectives are overlapped in-between, being part of the scope of the smart mobility
concept, and also, under the scope of the Smart Transportation.

Smart Transportation is all about ubiquity. Taking ”good advantage of sensor network,
the Internet of Things and other technical means” [42] a city can increase its intelligence
(i.e., knowledge) about the way urban particles – citizens, buildings, transportation and
communication – interact.

It is almost classic to think of this as mean for understanding more about traffic and
public transportation in such a way that it is possible to establish a smart traffic manage-
ment system, or a dynamic public transportation performance tracker which could provide
performance metrics and dynamic schedules. Therefore, the concept of Smart Urban Man-
agement arises.

Viewing citizens as urban particles is also a current vision. For example, SenseMyCity [36]
points out some observations which make clear why citizens are good candidates as ”moving
sensors”.

Citing the same work, it is observed that ”people treat smartphones as a second skin,
having them around nearly 24/7 and constantly interacting with them” and also that they
(smartphones) ”are equipped with a wide range of embedded sensors, like GPS for location,
magnetometer, accelerometer, gyroscope”.

If one takes advantage of this huge sensor network, it is possible to go further and un-
derstand how the mobility (or the lack of it) affects citizens and how they interact with the
existing infrastructures.

In sum, it would be possible to deliver a myriad of solutions capable of delivering strong
support for the integration between the different smart city areas of development (the urban
planning, construction, management and operations) and providing a deep understanding
how the smart urban ecosystem works.

2.3 Vehicular Networks

2.3.1 Definition

In the wide topic of the intelligent transport systems, vehicular networks have been one
of the trending areas in the last several years. Vehicular Ad-hoc Networks (VANET) is a
network development paradigm that makes use of ”inexpensive wireless local area network
(WLAN) technology that connects notebook computers to each other and the Internet, and,
with a few tweaks, install it on vehicles”[15].

7

Figure 2.1: A vehicular network and its interactions

The concept of VANET is more ”similar to the one applied on ad-hoc networks”[25],
meaning that there is a dynamic/spontaneous creation of a wireless mesh network.

The effort of bringing such technologies to vehicles results in a unique environment which
raises new opportunities, challenges and requirements:

• Vehicles communicating between each other directly and with the infrastructure, raise
opportunities for developing a more safe and aware road network and for building a
set of applications in diverse areas, like safety, marketing, etc. For example, one of the
earliest applications of vehicular networks was delivering internet access.

• Current vehicles are able to reach high speeds and work in highly dynamic environ-
ments, which can differ a lot in terms of connectivity, being reasons that can raise some
challenges on modelling the communication infrastructure and the communication
protocols.

• Several issues regarding the government concerns on privacy and security raise new
requirements [15]. Also, the new applications can raise new demands regarding higher
packet delivery rates and lower packet latency.

8

2.3.2 Importance of VANET under the context of this work

Porto, the second largest city in Portugal after Lisbon, is a living lab. Thanks to an
alliance between IT 1, UA2, UP3, VENIAM 4, Porto Digital 5 and STCP6, it was possible to
deploy a large dimension mesh network using the buses, taxis and garbage collection trucks
for providing free WIFI access to bus passengers.

This mesh network is, objectively, a Vehicular Ah-hoc Network capable of exchanging big
amounts of information. It is also capable of generating big amounts of heterogeneous data
(for example, time-series or spatial data) related to the buses position and velocity, opening
opportunities for the creation of new applications not only related with safety, but also, with
mobility and other important smart city issues.

Regarding that, being familiar with the meaning of the components of the architecture
and its terminologies is very important for extracting meaning from wrangling7 the data.

The figure 2.2 shows the Vehicular Network Architecture, as deployed on Porto.

IEEE 802.11p
Access Network

Cellular Access
Network

Internet

Ad-Hoc

Fixed Infrastructure

RSUs

Mobile Infrastructure

IEEE 802.11g/n
Access Points

Figure 2.2: Vehicular Network Architecture (figure from Andre Cardote)

The architecture of the VANET deployed i.e. Porto can be divided in four major com-
ponents:

• Local Mobility Anchor (LMA): is the central component of the architecture that
manages the IP mobility. It is located in one of the network machines (it could be either
on a server, either on the cloud).

• Mobile Access Gateway (MAG): ”is a fixed infrastructure access point” [25]. It
connects the mobile agents to the core of the network. A MAG can be a road side unit,

1Instituto de Telecomunicações
2Universidade de Aveiro
3Universidade do Porto
4A vehicular networks company (https://veniam.com/)
5Porto Digital is a private association which promotes ICT projects within the context of Porto City and

Porto’s metropolitan area (https://portodigital.pt/index.php?artigo=19)
6Porto’s major bus carrier (http://www.stcp.pt/en/travel/)
7Data wrangling is the process of transforming raw data into a more valuable and meaningful format, for

a variety of purposes such as classification, analytics, etc.

9

https://veniam.com/
https://portodigital.pt/index.php?artigo=19
http://www.stcp.pt/en/travel/

a specific kinf of stationary units which are distributed strategically in space, along
roads for example, Wi-Fi hotspots, etc.

• Mobile MAG (mMAG) is a mobile access point inside the vehicles, which acts like
the access layer of this network architecture, it enables the connection of end-devices.
The main architecture component is called On-Board Unit (OBU) and it is composed
by multiple network interfaces ”such as Wi-Fi (IEEE 802.11a/b/g/n), WAVE (IEEE
802.11p) or LTE (4G)”[25], enabling connected vehicles for ”sharing contents or spread-
ing messages”[25] between them.

• Mobile Network Node (MNN) corresponds to the devices from the end-users (note-
books, smartphones, tablets, etc).

This Figure 2.2 shows the strong interest on implementing the Always Best Connected
paradigm, ”which refers to the target of keeping always the best connection available for the
user while performing all the horizontal/vertical handovers without impacting on the running
services” [25].

2.4 Fundamentals of mapping

2.4.1 Introduction

Geodesy (also known as geodetics) is the field of study in area of the applied mathematics,
which focuses on studying the representation of Earth, including the shape, the gravitational
field and the exact position of geographical distributed points.

When working with spatial data, some attention is required, regarding the spatial reference
system being used. If we consider two different maps, with the same scale, and we look up for
two random locations on both, we may find it disturbing that overlapping them, they may
not intersect. That happens because they are not using the same spatial reference system.

The main objective of this subsection is to introduce some hints about the fundamental
of mapping, by explaining and introducing some terms and definitions.

2.4.2 The shape of the earth

Understanding the shape of the earth is a big step on understanding how geodetic models
work.

The photography Earthrise, taken by the astronaut William Anders, under the Apollo 8
mission in 1968, left no apparent clues about the earth shape: it is blue and round like a
marble.

For us, living on earth, that is very far from true. ”Earth is a very misshapen object.”[22]
”The surface of the earth with all its nooks and crannies resembles a slightly charred English
muffin much more than a lustrous marble.”[31] Even the idea of the earth being spherical
like a marble is not accurate, because the earth is flattened in the poles, meaning that the
theoretical circumference along the equator is bigger than the one passing through any of the
meridians.

The earth true shape can be known using an omnipresent phenomena: the gravity. At
the school, we were being told that gravity is a constant – 9.8 m/s2. In the reality, this
standard value assumes that the earth has a fixed radius (or in other words, that is a sphere).

10

Regarding this and other reasons [13], the value of gravity is not constant and slightly varies
between 9.78 m/s2 and 9.82 m/s2.

From the measurement of the gravity, the definition of geoid emerges. A geoid is a very
complex surface which results from the measurement of gravity in the different positions of
the earth.

The figure 2.3 shows a geoid caputred by the European Space Agency (ESA) GOCE
mission 8.

Figure 2.3: The earth Geoid GOCE (ESA/HPF/DLR)

As previously said, the geoid is a very complex mathematical surface. Regarding this
reason, geodesists make use of a different and more spherical surface to model the overall
shape of the earth: an ellipsoid.

An ellipsoid is a ”closed surface of which all plane cross sections are either ellipses or
circles”[35], being symmetrical in the mutually perpendicular three-dimensional axes.

In the first model of the earth, ”the blue marble”, the earth was seen as a sphere, that is
an ellipsoid where the sections are circles. Because of the earth shape is flatten in the poles,
a better approximation is using an ellipsoid where the plane cross sections are ellipses.

The figure 2.4a and 2.4b shows the two types of referred ellipsoids.

Datums define the ellipsoid shape. For example, the World Geodetic System (WGS),
which is the standard used on GPS, defines an oblate spheroid. For understanding more
about datums, refer to the next subsection.

2.4.3 Datums and projections

It is often referred that ”the ellipsoid models the overall shape of the earth.”[31] Being
noted as global, it means that it is non-optimal too. With respect to this situation, geodesists
choose the elipsoid that best fits their regional area geoid, when studying a particular area.

A datum is a standard point of reference, a set of points or surface from which survey
measurements are based. It can be seen as system of coordinates that results from this

8ESA GOCE (http://m.esa.int/Our Activities/Observing the Earth/GOCE/Introducing GOCE)

11

http://m.esa.int/Our_Activities/Observing_the_Earth/GOCE/Introducing_GOCE

(a) The earth as a Sphere[22]

(b) The Earth as an Ellipsoid [22]

approximation to earth surface, using an ellipsoid which is anchored to a given location (local
datum) or using an ellipsoid that approximates globally to the earth surface (global datum).
A local datum from Europe would fit poorly in another place in the world, with different
geographical attributes (like the local datum of Canada).

It was a recurrent practice to divide a datum in two types: an horizontal and a vertical
datum. Horizontal datums allow to measure distances on Earth surface. To do that, they
often define two zero levels references: one delimited by the equator and other delimited by
the Greenwhich meridian. These two references set the base coordinate reference system for
locating objects in space: latitude and longitude. Vertical datums are used for measuring
the Earth elevation relatively to reference point (for example, the mean sea level) – this
characteristic is called elevation.

Thanks to the creation of the global navigation satellite systems such as GPS, GLONASS
and Galileu, global datums had to be created. They are based on the idea of an ellipsoid
that almost fits the earth surface, being the center of the ellipsoid concentric with the Earth’s
center of mass.

Latitude and longitude are coordinates of spherical surface, but, they are used also as
coordinates for locating positions in planar surfaces, like it happens in a map. A map is
a flat surface which, regarding its differences with a spherical one, needs to have their key
components (e.g. shapes) transformed. This transformation with mathematical roots is called
projection.

A projection morphs the ellipsoid into a flat surface. There are lot of different ways
of doing it, and some techniques are better than others. The most popular projection is
called Mercator and it is the one that is seen usually on maps, and taught on schools. It is
”good for maintaining shape and direction and span the globe”[31], but not so good for making
measurements as regions that are nearest to the poles become exaggeratedly stretched, raising
some misconceptions regarding its observation.

For example, using the Mercator projection, Greenland seems as bigger as Africa. In the

12

reality, Africa is 14 times9 bigger than Greenland. This interesting website 10 is focused on
showing this misconception regarding the bad measurements.

Examples of datums are:

• ED5011

• Datum 7312

• NAD8313

2.4.4 Issues regarding spatial data handling

All these particular concepts have the objective of making evidence that spatial data is a
very sensitive data type, requiring a special handling.

First of all, due to the existence of several datums and projections, one must ensure that
the chosen reference system is the most adequate for the existing data. If one deals mostly
with ”regional data, say for a country or state, then it’s generally best to stick with one of
the national grid or State Planes systems” [31]. They provide a good measurement accuracy
and look fairly well on a map.

Then, regarding the fact that coordinate reference system is three-dimensional (because
latitude and longitude are units measured on spherical surface), measuring the distance
between two points in the Earth surface is not a matter of applying the distance between
two points in a Cartesian plane, but rather, a matter of using different approximations like
the Vincenty Formulae [44]. Ignoring this fact will lead to errors while making, for instance,
proximity queries.

2.5 Data processing fundamentals

2.5.1 Introduction

Dealing with moderate or high amounts of data, requires some knowledge about the tech-
niques which can enable a faster processing. Along time, computers have been evolving
towards the direction of doing more and more faster. For doing more in less time, there are
three techniques that can be employed. Over this section, we present the concepts of concur-
rency, parallelism and distributed computing, which are progressive methodologies enabling
this purpose.

2.5.2 Concurrent, parallel and distributed computing

The further developments in computer systems have been driven by the increasingly need
of doing more in less time. The term concurrency refers ”to the general concept of a system
with multiple, simultaneous activities”[32] and the term parallelism is ”the use of concur-
rency to make a system run faster”[32]. Modern processors are known as multi-programming

9Ratio between Africa and Greenland, by Wolfram Alpha (https://www.wolframalpha.com/input/?i=
africa+area+vs+greenland+area+ratio)

10The True Size Of (http://thetruesize.com/)
11European Datum 1950 (https://epsg.io/6230-datum)
12Portugal Mainland Datum (https://epsg.io/4274)
13North American Datum (https://epsg.io/6140-datum)

13

https://www.wolframalpha.com/input/?i=africa+area+vs+greenland+area+ratio
https://www.wolframalpha.com/input/?i=africa+area+vs+greenland+area+ratio
http://thetruesize.com/
https://epsg.io/6230-datum
https://epsg.io/4274
https://epsg.io/6140-datum

systems, meaning that, if a computer system has a uni-processor and it is running, apparently,
many programs at the same time, none of them is truly executing in the same and exact time.
But, if the system has a multi-processor, two or more programs can run exactly at the same
time. Regarding this, the concept of parallelism can be divided in two different types [5]:

• pseudo-parallelism is related to the illusion of running a set of tasks at the same time.

• true parallelism or hardware parallelism is the kind of parallelism that is exploited
by the use the multiple cores of the CPU.

Concurrent and parallel programming are two programming paradigms related with the
concept of modular programming, regarding the fact of big task being divided in a set of
smaller tasks that can be done, respectively, concurrently and in parallel.

These paradigms must be applied under different circumstances. Concurrent programming
is useful for dealing with slow I/O device access, human interaction, servicing multiple network
clients, etc. Parallel programming is more convenient when the main objective is to complete
a set of tasks as fast as possible.

Sometimes, requirements demand for a faster processing which can not be achieved using
only one system, even when it is already using concurrent and parallel computing techniques.
A third paradigm that goes beyond these two concepts is called distributed computing, and
its model assumes software components which are common but distributed across different
computers, cooperating between them.

These three computing paradigms are always present in different tiers of the software ar-
chitecture, being fundamental concepts on the understanding of the purpose of some solutions
and also, crucial for tackling and optimize computational intensive tasks.

2.5.3 Big Data definition and characteristics paradigms

”In the past decade the amount of data being created has skyrocketed. More than 30,000
gigabytes of data are generated every second, and the rate of data creation is only accelerat-
ing”[30]. Such amount of data is generically referred as big data.

From a high-level point-of-view, some authors defend that “big data is all about seeing and
understanding the relations within and among pieces of information that, until very recently,
we struggled to fully grasp” [46].

In a more technical and low-level fashion, Big Data is defined as a massive volume of
data, that may be structured or unstructured, being so extensive that it outsizes the available
capacity for storing, processing, analyzing and understanding it. This means that traditional
software and databases do not provide enough power for delivering results, being needed
different and more innovating techniques for tackling this problem. It is important to notice
that data may be classified as big data depending on the context of institution, and not
regarding quantities. For example, in the context of our research group, big data is about
5TB14. But for other business company, like eBay, that reaches over 90 PB!15.

The literature often presents four essential problems of big data, first introduced by IBM
[20]. They are:

14Having into account the existing computational resources, like computers and storage
15Inside eBay’s 90PB data warehouse (https://www.itnews.com.au/news/

inside-ebays-90pb-data-warehouse-342615)

14

https://www.itnews.com.au/news/inside-ebays-90pb-data-warehouse-342615
https://www.itnews.com.au/news/inside-ebays-90pb-data-warehouse-342615

• Volume is the characteristic of the data which is related to its scale (size).

• Variety defines the different forms of data.

• Velocity is a definition regarding the data regeneration rate.

• Veracity is a characteristic which reflects the uncertainty about the quality of the data.

These characteristics reflect the current state of the of technology after the development
of the latest years, particularly since the early 2000’s.

First, the web evolved towards a maturing state characterized by the rising of blogs and
the social media - the Web 2.0. Early since the rise of Web 2.0, new platforms enabled
people to generate information in the form of text, images, audio and video (variety). For
example, Google reported that it ”is receiving 400 hours of video uploaded to YouTube every
minute”[17].

At the same time, there was the development of the cloud storage and computing, deliv-
ering an always available data (velocity). Later, we have been witnessing an increasingly bet
on the Internet of Things and the proliferation of always connected mobile devices like smart
phones and tablets, which augment the consumption of media in daily basis, on a worldwide
level (also related with variety and volume).

Big Data appeared has a constant developing paradigm, adapting to evolutionary needs.
New technologies and paradigms surged. For example, in terms of databases, Not-Only SQL
(NoSQL), which appeared in the late 60s, turned out to be very relevant on tackling the
variety problem, by enabling a data modeling that goes beyond the classic tabular model,
being adopted by the early Web 2.0 adopters like Facebook, Amazon and Google. The three
more relevant paradigms which developed during time were batch processing, real-time
processing and hybrid processing.

Big Data processing Paradigms

Batch Processing has been employed as a technique for tackling the new problem of
data volume. It is focused on processing big amounts of data in group of similar objects,
for processing them sequentially, as fast as possible and without human intervention. This
processing paradigm is scalable, meaning that, it is able of maintaining ”performance in the
face of increasing data or load by adding resources to the system”[30]. Also, regarding the
large amount of data, this type of processing is, generally, fault tolerant, so it is possible to
resume it after being interrupted. The major problem of using the batch processing paradigm
is the fact of having a high latency.

After the popularization of batch processing, dealing with velocity was the top priority for
some business companies because of their specific need of faster response time from the in-
telligence systems. Real-time Processing plays a significant role, by reducing significantly
the latency (when comparing it to the batch processing) by processing data continuously (for
example, by using data streams).

Finally, in the last years, a new paradigm has emerged, with the objective of combining the
best characteristics of the previously described paradigms. This paradigm is called Hybrid

15

Processing and its most popular architecture is called Lambda Architecture (as shown on the
figure 2.5. Lambda Architecture is designed to handle massive amounts of data by combining
batching and real-time processing. It is divided on three layers: the batch layer, the serving
layer and the speed layer. ”Each layer satisfies a subset of the properties and builds upon
the functionality provided by the layers beneath it”[30]. For a better description about the
function of each layer, please, refer to the presentation [40] or to the book [30].

Figure 2.5: A standard Lambda Architecture, its modules and methodologies, presented by
the company MapR [23]

2.6 Machine Learning

2.6.1 Definition

Machine Learning (also known as predictive analytics or statistical learning) is ”a research
field at the intersection of statistics, artificial intelligence, and computer science” [4] which
focuses on extracting knowledge from data.

This methodology evolved as a branch of artificial intelligence dedicated to the develop-
ment of self-learning algorithms. With machine learning, humans are not required to derive
rules and build models for analyzing big amounts of data, but rather to offer ”a more effi-
cient alternative for capturing the knowledge in data to gradually improve the performance of
predictive models, and make data-driven decisions”[33].

Machine learning is not a popular methodology that is only used on research. It is ”already
being used in your daily lives” [16] even though we may be not aware of it. Examples of
common applications are:

• Getting a set of pictures by keyword in a photo gallery (as it happens in Google Photos16.

• Email spam filters.

16Suggested Sharing, Shared Libraries, and photo books in Google Photos util-
ize machine learning to group photos together (http://www.zdnet.com/article/
google-weaves-machine-learning-into-new-google-photos-features/)

16

http://www.zdnet.com/article/google-weaves-machine-learning-into-new-google-photos-features/
http://www.zdnet.com/article/google-weaves-machine-learning-into-new-google-photos-features/

• Content moderation filters, as seen, for instance, on the web search engines to detect
and discard graphic images.

• Automatic generation of music playlists for a specific user based on his musical tastes
(as seen, for instance on Spotify17).

The literature often refers three types of machine learning: supervised, unsupervised and
reinforcement learning. They are presented on the subsections to follow.

2.6.2 Types of Machine Learning

Supervised Learning

Supervised learning is a type of machine learning applied when we want to ”make predic-
tions about the unseen or future data”[33] from a model that has been learning from labeled
training data, a type of data that is previously characterized, either by a class, either by a
set of attributes. In simpler words, machine learning ”is learning from examples” [33].

The two major types of supervised machine learning are:

• Classification consists in predicting a class label from ”a choice of predefined list of
possibilities” [4] (labels), having into account a set of features (a list of known attrib-
utes). Those classes act like a group membership, being unordered [33]. For instance,
we could classify a car as being a sedan, a minivan, a pickup or a sports-car giving the
height, width, depth, number of doors, cylinder capacity.

• Regression, consists in predicting a continuous value giving, also, a set of features.
One example is predicting a price of a house or apartment given its location, number
of rooms, area, etc.

Figure 2.6: An example of classification task distinguishing cats from dogs [26]

17Spotify’s Discover Weekly: How machine learning finds your new music (https://hackernoon.com/
spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe)

17

https://hackernoon.com/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe
https://hackernoon.com/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe

Unsupervised Learning

Unsupervised learning is a machine learning technique concerned on finding meaningful
information from data that is unlabeled or its structure is not known. In simpler words, the
goal of unsupervised learning is to discover unknown patterns on data.

The two most common tasks of unsupervised learning are:

• Clustering, which is a data exploratory analysis technique [33] that allows us to relate
information in groups without having any prior knowledge about possible relations
that can exist in-between. One example of a task that can be accomplished using
this technique is the discovery of new market segments given a non-identified set of
customers.

• Dimensionality reduction, which consists in removing dimensions (individual char-
acteristics, also known as features) while retaining most of the relevant information.
It is commonly employed when the high dimensionality of the features degrades the
performance of the computational system or hardens the data visualization. It is also
applied to remove noisy data that is capable to ”degrade the predictive performance of
certain algorithms” [33].

Figure 2.7: An example of a clustering task, which distinguished 3 different groups [26]

Reinforcement Learning

Reinforcement learning is the type of machine learning which is more closely related
with AI. This type of machine learning is about learning ”what to do”[43] and ”how to map
situations to actions” [43].

Regarding that, its goal is to build an agent that progressively learns better, based on
successive ”interactions with the environment” [33]. At each interaction, an action is dispo-
leted and a reward signal is given to the agent. The main goal of the agent is to learn a set
of actions that are capable to maximize the returned reward, either, by trial-and-error, either
by deliberative planning [33].

18

Some examples of reinforcement learning include:

• A chess game agent, whose objective is to win a game.

• A robot that learns how to jump between platforms.

• A drone flying in autonomous mode that decides if it will continuing to fly or if it has
to go back before the battery ends.

2.6.3 Fundamental concepts

Machine Learning Workflow

There is an almost standard way of using machine learning. The steps are the following:

• Data Collection Phase.

• Data Preparation Phase.

• Data Splitting Phase.

• Training Phase.

• Testing and Validation Phase.

• Deploying Phase.

Figure 2.8: The typical machine learning workflow [26]

The Data Collection Phase consists on gathering data from a raw data source (for
instance, in a database) or, from an already processed source of data (like UCI Machine
Learning Repository18).

Then, Data Preparation Phase is used for preparing the data for processing. This
preparation can be achieved by normalizing features (for example, normalizing class labels
that vary their description in case letters, removing special symbols) or scaling the data for
making the data representation more suitable for some algorithms, that are very sensible to
the scaling of data (like SVM) [33].

18UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/index.php)

19

http://archive.ics.uci.edu/ml/index.php

After having prepared data, the algorithm must be fed for learning from data. This process
is called training. But before, the data must be split. This is accomplished under the Data
Splitting Phase, where the original dataset is divided in two parts: the train and the test
dataset. The training dataset is a dataset that is used as example for feeding the algorithm
that is building the mathematical model in training phase, while the testing dataset is used
to evaluate the quality of the built model and its consequent predictions (under the Testing
and Validation Phase).

Finally, under the Deploying Phase, the model is prepared and optimized for use on
production applications.

Generalization, Overfitting and Underfitting

In machine learning, an algorithm fits a model to data. This model is, in fact, like a
mathematical function and its goal is to predict the actual class or continuous value resulting
from the input of a given data object.

If we overtrain our model, or, in other words, if we train the model with the same data
all and over again, it will make a prediction with almost 100% accuracy over already seen
data but, it will perform poorly when unseen data is presented. This phenomena is called
overfitting and happens when a model is incapable of providing a good generalization to
unseen data. Otherwise, when we undertrain our model, it becomes pessimistic: it is incapable
of predicting the class of either the training data, either unseen data. This phenomena is called
underfitting.

The figure 2.9 presents the relation between the model complexity and the model predic-
tion error. The top left plot presents a case of underfitting, highlighting that, despite of being
a simple model, it has a high training and prediction error.

In the top right, the plot presents a case of overfitting. The model becomes too optimistic
because it is overtrained, meaning that the training error is low, but the prediction error is
high regarding its difficulty to predict value from unseen data.

Finally, at the middle top, it is shown how a good generalization looks like and presents
the best trade-off between the model complexity and the model prediction error.

Model Selection and Cross-Validation

As described previously, finding a good generalization is the objective of machine learning.
Achieving it requires a more careful examination, for understanding which generalization is
the best.

The definition of Model Selection embraces its full meaning here. It is a methodology
that consists on ”tuning and comparing different parameter settings to further improve the
performance for making predictions on unseen data”[33]. These tuning parameters are also
known as hyperparameters.

Choosing those parameters carefully is not enough by itself. There must be means for
obtaining performance metrics. The two most common means are the Holdout Cross-
Validation and K-Fold Cross-Validation.

The Holdout Cross-Validation is the most simple and popular way used for evaluating
a given model. It consists on spliting the initial dataset in two parts: the first for training
and the second for assessing its performance (for testing). Unfortunately, this method is
discouraged because it only makes use of a single test iteration and if more than one is done,

20

Figure 2.9: Presentation of the relation between the model complexity and the model predic-
tion error (taken from [14])

the same dataset for training the model more than once, making it optimistic (or in other
words, making it overfit).

The other technique, called K-Fold Cross-validation, consists in splitting randomly the
initial data into k folds (without repetition) where k−1 folds are used for model training and
the remaining one is used for testing. This process is subject to be repeated exactly k times in
such a way that it is possible to obtain k models and k performance assessments, calculating
then the average of the estimates of each one of the groups, being a ”less sensitive” estimate
than the one provided by the holdout [33].

Improving models performance with Ensemble Learning

Parameter tuning and cross-validation help on adjusting the model bias. However, there
are also ”methods that combine multiple machine learning models to create more powerful
models” [4]. These methodologies are called ensemble methods.

We may perceive an ensemble as a set of experts from which we gather a value (a predic-
tion), allowing us ”to strategically” combine them [33].

Ensemble methods are commonly separated in two different categories:

• Averaging Methods are methods compounded by several independent estimators,
which use the average of the predicted value of each one of them, as result.

21

• Boosting Methods are methods that combine weak and inaccurate estimators for
creating a more accurate one.

An example of an averaging method is a random forest. A random forest is, essentially,
an assortment of slightly different decision trees. As decision trees tend to overfit [4], this
methodology tends to reduce overfitting by averaging the results. On the other hand, an
example of a boosting method is AdaBoost [38].

The figure 2.10 shows how ensemble works, using an approach called majority voting.

Figure 2.10: Majority voting used in a machine learning ensemble method (taken from [33])

For a more insightful explanation about how ensemble learning works, please refer to the
references [16], [33], [4] and [39].

2.7 Summary

This chapter started by presenting a set of different but related concepts.

A Smart City is presented as multi-dimensional definition focused more on the human
and urban development, where ICT works as a mean to an end. One of the main smart city
concerns is the mobility, and it will be subject of further development in the following years
to come.

Vehicular Ad-hoc Networks are reaching maturity, opening opportunities for further
development on the same topics covered by Smart Cities, such as smart transportation.

On the other hand, we learned that the earth shape is irregular, requiring several ap-
proximations for warranting spatial information usability, either in analog way (maps), either
in the digital ones (GPS, databases, etc). Operations concerning this type of data must be
done carefully. One example of operation that must be carefully handled is the distance
between two points.

22

Data processing is a very important topic for the development of this work. Under
this topic, we explained some important notions such as concurrency, parallelism and dis-
tributed computing. More complex processing paradigms like batch, real-time and hybrid
processing are presented, as a manner for introducing the readers to the current data pro-
cessing paradigms. The development of the data processing paradigms evidence the urge of
methodologies and technologies which appeared as an answer for the development of techno-
logy, particularly, to the Web 2.0, Cloud Computing and Internet of Things.

Finally, Machine Learning is presented as a methodology for extracting knowledge from
data. It can be useful in a wide-range of areas, solving problems like classification, regression,
pattern detection and more. Machine Learning has an almost standard workflow that consists
on 6 phases: data collection, data preparation, data splitting, training, testing, validation
and deploying. The phases requiring the most scientific effort are the training and testing
phases because the main goal of machine learning is not finding the model delivering the best
precision, but rather chosing the one that offers the best generalization. Cross-Validation is a
possible solution for minimizing the effect of overfitting, finding the most general model that
fits the data. Finally, we present a brief definition of the ensemble methods, which are a type
of machine learning estimators that conjugate multiple estimators that, together, perform
better than a single one.

23

24

Chapter 3

Related Work

3.1 Introduction

This chapter presents approximations done by the scientific community as an effort for
tackling several problems which in part, intersect the interest of this work. These themes in-
clude map matching, travel time estimation, prediction, travel time variability, among others.

3.2 Bus Trajectory Identification by Map-Matching

Raymond and Imamichi [34] solve the problem of identifying bus trajectories from a
geospatial-temporal dataset, by applying a simple and robust technique which results from the
combination of map-matching, a variation of the bag-of-words heuristic and a dimensionality
reduction.

The authors focus on three important topics:

• The importance of spatial-temporal datasets.

• The noisy and sparsity characteristics of GPS data.

• The notion and the problem setting.

Despite of the many advanced map-matching techniques claims about being capable of
achieving a high accuracy, only few public datasets trajectories exist, supporting them. There-
fore, such datasets are highly valuable for map-matching. In the oposite direction of some
studies which do not use real world data, this one makes use of a real world dataset which
belongs to Rio de Janeiro city hall open data initiative1.

Several problems arise from the usage of GPS trajectories from buses. GPS datasets
are noisy and sparse, what means that the overall shape of the traversed routes are not
easily obtained. Also, buses may behave abnormally, drifting away from their predefined
routes. This is subject to happen due to special events like festive events or unexpected
traffic situations like congestion or road closures.

Regarding this, the authors determination in defining the problem setting delivers some
answers which help understanding not only this problem but also similar types of problems
too.

1Rio de Janeiro City Hall Open Data Portal (http://data.rio/)

25

(http://data.rio/)

This work is modeled to handle bus trajectories, so it is needed to have two types of data:
data produced by the position variation from each bus (latitude, longitude, time stamp) and
information about the bus network, regarding a set of predefined routes.

Two different classification problems arise, from actual perspective:

• The identification of the predefined route for each bus GPS position log.

• The identification of the predefined route of each bus where predefined routes are not
reliable.

On each of the cases, several assumptions are done. In the case of the first one, the authors
assume that ”all buses strictly follow their assigned routes”, while in the second, they rely on
the observation that ”there should be a group of buses serving the same route, and therefore”,
that it is possible to predict a trajectory of an unknown bus ”by comparing its trajectory to
those of buses with known routes”.

Several insights about the techniques are extensively done and can be consulted on [34].
The most important ones refer to the map-matching of GPS sequences, and to route simil-
arity and comparison. The two topics have a big relevance on the understanding of general
operation, on the type of applied machine learning (unsupervised vs supervised learning) ,
and on the heuristics borrowed from text mining (like bag-of-words, which is a role model
under the document classification problem).

As concluding remarks, the authors found that the map-matching based on the Hidden
Markov Models was proven as the most significant, regarding its effectiveness on the noisy
and sparse GPS data, challenging potential new out comers to use different types of map
matching in the same data, and test their accuracy on the same dataset.

3.3 Comparing state-of-the-art regression methods for long
term time prediction

Sometimes the literature is very vague on expressing the true dependencies and urging
necessities of the public transport agencies. Also, most of them, ignore the operation planning
of a public transportation agency.

The work in [27] makes an import remark on understanding how the public transportation
agencies planning works, how operational systems operate and on how and which metrics have
relevance. This work also makes an important overview on how can one handle the data from
those operational systems with the objective of applying different regression methods for
obtaining the best approximation for a long term time prediction.

Long-term Travel Time Prediction (TTP) is a travel time prediction method based on
historical data retrieved in a long-term base, in conjunction with actual measures. The authors
defend that long term TTP is not used due to the ”implementation of dispatch systems that
allow monitoring of the fleet” [27] and also, due to the ”lack of knowledge” [27] on how to
handle this type of of data in order to ”reduce costs and/or increase clients satisfaction”[27].

Regarding this, the paper later focus on making the data and experimental description.
For curiosity sake, the experiments described in this study, use data from the same bus carrier
from where the data used on this dissertation is generated, but from different sources. Their
dataset, which is more complete than ours, comes from SAEI (a bus dispatching system) which
makes use of ”different reckoning sensors supplemented by differential GPS technology” [27],
”voice and data communication using Terrestrial Trunked Radio (TETRA)” [27] and others.

26

SAEI is designed for control, but despite of that, it is the main data source for an existing
data warehouse owned by STCP, which is very relevant for management purposes. This data
warehouse is very detailed, ”allowing a very detailed level of analysis” [27]. This study uses
data from SAEI system, for predicting travel time of trips of the routes, in a end-to-end
fashion, i.e. only taking into account the beginning and end times. The data warehouse
provides information until the ”bus stop level” [27], and bus stops passing time is available
but this information is discarded in the scope of this paper.

Other hints are provided, regarding the spatial-temporal nature of the data. In particular,
they refer the usage of a 30-day time stamp sliding window regarding the expectation of the
last days giving more information about what can happen in the three days to follow.

Finally, a deep overview is done, with the purpose of choosing the regression methods. To
do that, they define which characteristics should the algorithms have. The chosen algorithms
were SVM2, PPR3 and RF4 - without any special justification from the authors. Further-
more, the study regards tests and considerations that result from the comparison between
the algorithms operation and quality of their results. For more details, please refer to this
reference [27].

3.4 Empirical Study of Travel Time Variability Using Bus
Probe Data

As the name implies, this work [6] is focused on exploring techniques to classify the usual
behaviour of a bus network. First, they starts by defending that one of the most valuable
resources that can be given to the bus passengers is the estimated time of arrival. Their
argument is that, by enabling bus passengers to know “their departure time and arrival time
at the destination”[6] they can ”reduce their waiting time at the bus stop”[6]. It also presents
a solution for better understanding the time variability of a bus line, because the bus line
“reliability is closely linked to the unpredictable variations”[6], meaning that bus passengers
are unwilling to use bus lines which behave irregularly. Also, this variation makes any possible
prediction about the estimated time of arrival or about the trip time less accurate.

To achieve such result, they developed a method which consists in dividing the day in eight
different time periods: early morning, morning peak, late morning, mid-day, early afternoon,
afternoon peak, evening and late night. The time periods can be observed in further detail,
in table 3.1. Then, the average travel time between each of the bus stops is calculated and
accumulated accordingly (each interval with another interval in a different time, but in the
same departure and arrival bus stop), for calculating the standard deviation and the average
of the time.

The used probe data was provided from a Japanese company (NISHITETSU), referring
to approximately one month (from November 21st to December 20th, 2013). It contains
information such as “time and position of buses, route number, a day of a week, numbers of
bus stops, travel direction and bus performance history”[6].

This work resulted in a detailed investigation and classification of the time variability
of the routes, having successfully distinguished the stable bus lines (bus lines which usually

2Support Vector Machines (http://scikit-learn.org/stable/modules/svm.html)
3Project Pursuit Regression
4Random Forest

27

http://scikit-learn.org/stable/modules/svm.html

Table 3.1: Time Periods from this study[6]

No Time Time Period Symbol

1 05:00:00 - 07:29:00 Early Morning EM

2 07:30:00 - 09:29:59 Morning Peak MP

3 09:30:00 - 11:59:59 Late Morning LM

4 12:00:00 - 12:59:59 Mid-Day MD

5 13:00:00 - 15:29:59 Early Afternoon EA

6 15:30:00 - 17:29:59 Afternoon Peak AP

7 17:30:00 - 19:29:59 Evening E

8 19:30:00 - Later Late Night LN

perform similarly) from the unstable ones (those bus lines with hard to predict behaviours),
as presented in the figure 3.1.

Figure 3.1: Comparison of the different time periods in terms of stability [6]

3.5 Using Bus Probe Data for Analysis of Travel Time Vari-
ability

Regarding the fast progress of the information technology, the authors of the work [45]
agree that new insights about the traffic phenomena can be solved. Also, they refer that the
identification of particles moving through the city is one of the key areas of application on the
traffic and transportation study areas. This work focuses first , on presenting a methodology
for using GPS data with the aim of turning it meaningful to transportation analysis. It
summarizes also methodologies and transformation techniques that can be applied to the
GPS data. The final aim of this study is to propose an approach for evaluating the bus lines
quality of service, from the point of view of the travel time stability and reliability.

The used methodologies are very broad. The second chapter presents a detailed perspect-
ive on how GPS data can be used for traffic analysis. In other perspective, the third chapter
focuses on solving the study aim.

In what concerns the use and transformation of GPS data, a general procedure is presen-
ted, consisting in four steps: map matching, data reduction, data processing and data re-
porting. Map matching is the act of “matching the GPS data to a digital map” [45]. Data

28

reduction consists, as the name implies, into reducing the data by transforming it into links
(or paths). Data processing is the act of operating individual vehicle data. Finally, data re-
porting consists in “generating indicators easily understood by the users”[45]. All the reasons
and considerations about why is this general procedure is needed, are explained in [45], in
further detail.

Figure 3.2: Data transformation steps described by Uno et al. [45]

For evaluating the travel time reliability, a study was conducted over 18 bus lines. Some
important information is outlined. For example, the Ministry of Land, Infrastructure and
Transport (of Japan) is collecting bus probe data in Kansai district since 2001, with a capture
granularity of 1 second. Their dataset does not consider any information about the bus
network (bus line, bus stops, etc). Therefore, a supplemental survey was needed. It consisted
in assigning each researcher “to each bus route”[45] for observing ”the operational modes”[45]
while capturing the location of the bus location with a GPS unit.

Through the same chapter, some hints are given regarding the bus probe data:

• The bus probe data is reviewed, with the objective of extracting the trajectories from
them. The researchers making the survey make annotations about the times where
the bus stopped in a bus stop, where the operational modes of the bus, verifying if it
stopped in a bus stop, in a traffic light or sign, etc.

• Then, they correct the travel time by detecting the amount of time where the bus was
stopped.

Later in the same chapter, it is also explained how they have developed a procedure for
estimating the travel time distribution of a bus line, explaining also the used mathematical
functions and a case-study, showing the level of service of a line.

The level of service is a metric focused on both efficiency and stability of the road transport
conditions. The optimal road transport condition happens when the bus passengers are able
to “reach their destinations in rapid and reliable manner”[45]. The level of service can be
divided separately for evaluating different dimensions of the bus network:

• The coefficient of variation (COV) of a bus line gives hints about the reliability of the
network.

• The average travel time for one kilometre gives hints about the efficiency of the network.

Having these into account, they managed to implement a methodology which is capable
of evaluating the metrics generated by the already existing infrastructure.

29

3.6 A review of travel time estimation and forecasting for Ad-
vanced Traveller Information Systems

This academical work [28], presents an overview on the literature about the travel time
modelling and introduces the fundamental concepts and methodologies associated with it.
Most of the attention of this review is focused on the concepts of time estimation and time
prediction, which are the ”two of the most relevant challenges in travel time modelling”.

In the introduction, the challenges and base concepts are introduced. Regarding the fact
that the traffic volume and the congestion increased in the last years, several problems arosed.
The technological advancement enabled the creation and diffusion of the traffic information.
Regarding that, two types of systems have been developed over the years:

• Advanced Traffic Management Systems (ATMS), which are used, usually, ”by
traffic engineers and administrators in order to enhance mobility and obtain a more
efficient and safe traffic in road networks”[28].

• Advanced Traveller Information Systems (ATIS), which are focused on provid-
ing to the commuters, ”the necessary traffic information and tools to enable decision-
making”[28].

Concerning the previous systems, three definitions are presented. The first is called travel
time, which is ”defined as the total time for a vehicle to travel from one point to another
over a specified route, taking into account the stops, queuing delay and intersection delay”[28].
Time estimation and time prediction are also introduced, as main issues of the previous
definition:

• Travel time estimation results from calculating ”travel times of trajectories that have
already ended, using data captured during the trip”[28].

• Travel time prediction makes use of ”the current and past data to forecast the travel
time in future time intervals”[28].

This review claims that estimation and prediction are very useful on the traveler inform-
ation systems, and because of that, that these themes deserve focus on this study.

Before advancing into studying the travel time estimation and prediction in further detail,
the authors have chosen to describe aspects related with the data sources, as they differ a lot
and must be treated differently. Given the devices used, they classified the data sources in
two different types:

• Point detectors, which are devices set on different and fixed points of the road, cap-
turing traffic variables.

• Interval detectors, which ”capture data that enables the direct calculation of travel
time between two points, as opposed to point detectors that are only able to describe a
single point of the road”[28].

The GPS enabled vehicles are classified under the second point. However, it is made a
distinction between GPS enabled devices as well. The first type defines floating vehicles,
which are vehicles ”specifically employed for data collection purposes”[28]. On the other hand,

30

-Flow

(a) (b) (c)

-Occupancy
-Point Speed

VEHICLE PASSAGE
DETECTION

-Position
-Timestamp
-Point Speed

CONTINUOUS
VEHICLE TRACKING

VEHICLE IDENTIFICATION
IN TWO POINTS

-Travel time between
the two points

Figure 3.3: Traffic data sources. (a) Point detectors, (b) probe vehicles and (c) Interval
detectors (figure from the review [28])

probe vehicles ”are passive vehicles that travel in the road network for other reasons”[28]
(as seen in the Figure 3.3).

Looking further to the third chapter, the definitions and differences between the travel
time estimation and prediction are explained. As a rephrasing of the previous definition
of travel time estimation, the authors clarify that the ”travel time estimation consists in
reconstructing travel times of trips completed in the past based on data collected during the
trip”[28]. The figure 3.4 shows graphically, the difference between these two concepts.

The chapters 4 and 5 of this work are focused on explaining travel time estimation and
predictions models, respectively, in a high-level of detail. For more information regarding
those methods, please, refer to this study [28].

The review ends after a evaluation and a discussion. The discussion makes a critic to the
state of the art of the time travel modelling methodologies and results.

The first appreciation is that the method choice depends very closely on the ”typology,
quantity and quality of the available data.” [28].

Then, it is also referred that most of the authors of reviewed studies ”attempt to use real
data to validate their proposals, especially in the case of prediction”[28]. Despite of being
increasingly easy to acquire real data, obtaining data from ”specific traffic contexts such as
incidents, road works, congestion”[28] can be more difficult. Regarding that, in [28] the
authors defend that ”simulated data acquire more relevance in estimation models because of
the difficulty in obtaining ground truth travel time measurements for validation”[28].

An analysis regarding the popularity, accuracy and the efficiency of the methods is also
available.

It is clarified that the ”methods based on traffic flow theory and simulation are more
popular for estimation tasks than for prediction”[28], a characteristic that was expected due
to the fact that prediction models are ”estimation models that become predictive”[28].

In terms of accuracy, the authors of this review defend that such results ”should be handled
and interpreted with caution” because there is no evidence about the data provided by the
studies and ”no complete comparative studies”[28] have been done.

Finally, with scope on the efficiency, [28] refers that despite of this being an import factor
to have in account when comparing techniques, it is ”completely ignored by the authors and is
almost never mentioned in the publications”[28], making it harder to make any conclusions.

31

DATA COLLECTION
PERIOD

PRESENT

DATA IS UNAVAILABLE

Space

Time

L

Trajectory in
road section R

TT?Departure Arrival

TRAVEL TIME
PREDICTION

DATA COLLECTION
PERIOD

PRESENT

DATA IS UNAVAILABLE

Space

Time

L

Trajectory in
road section R

TT?Departure Arrival

TRAVEL TIME
ESTIMATION

PAST

FUTUREPAST

FUTURE

Figure 3.4: ”Difference between time travel estimation and prediction”[28]

3.7 Real-time Trip Planner in Urban Public Transport

The study in [3] was driven in the framework of the master thesis dissertation of David
Manuel de Oliveira Alves, a student of the Master in Civil Engineering from Instituto Superior
Técnico, in October of 2011.

The objective of his work was to create a real-time trip-planer for Carris, the major public
transportation carrier in Lisbon, Portugal. Despite of being a different project, it aims for
the same type of results, namely, getting the estimated times of arrival.

Before starting to solve the purposed problem, David studied the state of the practice in
terms of real-time information systems on public transportation. The document summarizes
the current devices and mechanisms like dynamic message signs and internet and mobile
devices. In particular, it is demonstrated one of the operating systems in that time, NextBus,
and its architecture, which differs a lot from the one presented by this dissertation. The
author also presents real world examples of systems deployed world-wide, in cities like London,
California and Singapore. A summary table makes evidence of the lack of a real-time travel
time forecasts in a list of 25 cities.

Then, the study presents the log data used for his study and explains how the data mining
techniques were applied to the logfiles which were obtained through a data availability protocol
signed between EFACEC (which produced the system and owns the system operation) and
MIT Portugal Program, under the project CityMotion [21]. The main difference between

32

Figure 3.5: NextBus Architecture (figure from [3])

those log files and the position log database that we have access (as seen later in the chapter
4.3.1) is that their attributes consider the stop identification, a bus line identification, a
vehicle identification and other bus network specific attributes. Therefore, the problem of
matching GPS positions with a given line did not existed and thus, the classification problem
was already solved.

Regarding this, most of the problem is driven in a more straight fashion. First, he de-
veloped a set of procedures to tackle some intermediary problems. Then, a data mining
pipeline was created, and a clustering algorithm was chosen. The results were evaluated
later, for understanding if the prediction model was or not right, and finally, a model for
simulating ”the bus network operation and travel time prediction was developed within the
framework of Agent-Based Simulation”.

More details about this work may be found in [3].

3.8 Summary

This chapter presented a set of related academic works. They were not chosen randomly
and each one reveal something interesting: an observation concerning the data, a methodology,
an exploration technique, and even a global comparison of the most popular methodologies.

The first thing to notice is the assertiveness of the related work. For instance, Bus Tra-
jectory Identification by Map-Matching, by Raymond and Imamichi presents a clarification
about importance of real data sets, highlighting the importance of validating and comparing
new methods.

Then, ”A review of travel time estimation and forecasting for Advanced Traveller Informa-
tion Systems” not only confirms the claims of the previous study, as it also presents significant
terminologies (like the difference between time estimation and prediction) while presenting
data gathering techniques and their impact on the data treatment.

The other works are also significant, presenting relevant insights about the problem setting
and about the development of the bus infrastructures in different places (Porto, Lisbon, Japan)
and revealing approaches that can be followed on the development of our solution. One
example is in [27] that highlights the performance of the different machine learning methods.

33

34

Chapter 4

Matching lines with GPS logs and
Building Performance Indicators

4.1 Introduction

The objective of this chapter is to explain what are the problems that need to be solved
and what information is available for helping solving it:

• The section Problem Setting explains what are the main objectives and challenges of
this work.

• The section Available Context presents what and how are the existing data sources.

• The section Exploring, visualizing and choosing data presents some interpretations
about the data, its shape, and how it can be chosen and visualized, for a specific purpose
(such as debugging).

4.2 Problem Setting

As previously seen, Porto has a Vehicular Ad-hoc Network deployed over the city. This
vehicular network connect buses, taxis and garbage trucks, being capable of delivering Internet
connection to the bus passengers. The information generated by the movement of these
nodes is stored into a central database (described in the next section), and it can be used for
developing new mobility applications. There are 4 major problems to be solved:

• The first, refers to the missing link between the log position database and the bus
network information: there is no information, in the central database, about the route
being completed by a given node. This gap in the knowledge makes it impossible to
process the estimated times of arrival. It is required to match a GPS position log with
a given line, before going further.

• Then, an extensive study must be done, in order to understand what data will be used
for producing such time estimations (passing times, times between bus stops, etc).

• Time estimations are based in the past. A more sensible approach would be using past
and current data to deliver a more accurate result, process that is commonly known as
prediction. This is possible using a data science technique like machine learning.

35

• Finally, having data is not useful per se. Applications must be developed for delivering
the results produced by the newly created system.

The following section, explains what information is available, so it is possible to reach
such results.

4.3 Available Context

This section objective is to present the available context, in terms of what data is available
and discuss its quality.

4.3.1 Data Sources

There are two major data sources:

• vanetV3, a MySQL database which has stored logs from the nodes (buses), in terms of
its position and speed.

• STCP website, which provides a big collection of information about the bus carrier
infrastructure.

4.3.2 Insights on the log database

The positions log database is a central point of raw data storage. In the following subsec-
tions, it is presented a brief description about its tables, attributes and data quality attributes.

Database Tables

vanetV3 is a MySQL database, containing five different and relationshipless tables:

• lma data, whose purpose is to store the LMA information about the amount of internet
traffic data, such what traffic comes from cellular or using the mesh network. This is
the data that traverses the central server and represents the uplink and downlink users
data.

• node data, whose purpose is to store information about the nodes (buses with OBUs),
in terms location (latitude, longitude, altitude), speed, number of hops, traffic, etc.

• rsu data, whose purpose is to store information about the RSUs in terms of the amount
of internet traffic.

• sessions and sessions data, which are meant for storing information about the WIFI
sessions of the mobile clients: MAC address, incoming and outcoming traffic, location,
etc.

36

Attribute Description

node id Node identifier

system time The node’s OBU OS time

GPS time The time of the GPS chapture

server time The time when the server received the record

latitude GPS captured latitude

longitude GPS captured longitude

speed GPS captured instant speed

heading GPS captured heading

hdop GPS dilution of precision

accel x Accelerometer capture for the x axis

accel y Accelerometer capture for the y axis

accel z Accelerometer capture for the z axis

Table 4.1: Description of the attributes of the table node data

A detailed view on node data: attributes, granularity, quality and quantity

For the purpose of this work, the focus must be on the tables which present valuable data.
The table node data delivers most value as it contains floating car data.

The following table presents the attributes representing most of the interest.

The attribute gps time identifies the exact time when the spatial attributes (latitude,
longitude, altitude, heading, hdop) were captured. They enable the calculation of the
average speed of a given node.

The granularity is also important and can be discussed in terms of time and GPS deriving
attributes. The time between the insertion of two records in the database is 15 seconds.
Latitude and longitude granularity is good, compressing at the least six decimal cases. It
means that the precision range is about thirty meters - which may arise some problems but
it is enough for most applications.

In terms of quality, the present data can deliver most of the answers. The only real
problem with it, is that it does not hold any information about the type of node (if it is either
a taxi, a truck or a bus) and its current state. Having into account this data, it is trivial to
understand if some particle is moving or not, due to the fact that position and time stamp
are being logged. In contrast, it is not easy to find what line is the bus doing if it is, indeed,
a bus. Thus, this last problem has to be solved.

Another existing problem occurs due to the bad synchronization of this replica. It is
being synchronized from the original that is controlled by VENIAM. When they change the
original database (a table, a type, etc) or when there exist a power failure or other third-party
problem, the replica is not able to receive new data.

Regarding this, there are consecutive days (reaching months) of synchronization with
errors. This data is not suitable to be processed and therefore, a different time frame has to
be chosen.

Finally, the quantity. Depending on the months and on health of the synchronization
status of the database, the number of records vary, day to day. Looking to the most stable
months, each day produces between 1.2 to 3 millions of SQL records - at the least, 36 million
of records per month. As consequence, strategies for processing this data in parallel or even,

37

in distributed manner should be applied, depending on the target deploy system and speed
requirements.

4.3.3 STCP Website as data source

While vanetV3 delivers floating car data, STCP Website provides static information about
the bus supporting infrastructure and environment, specifically:

• Bus stops (code, name, address and zone);

• Lines (code, name, direction).

• Stops within lines (which bus stops belongs to a given line).

• And more recently, the full path of the line (not available in the time of the implement-
ation).

Their website also explains:

• The line naming conventions. The most important aspect is the existence of night lines
that, as the name implies, are lines operated only by the dawn. These lines are often
very similar to daily lines and may cause route matching problems.

• Service modifications, which can be useful to understand if a given algorithm classific-
ation is well done or not.

The extraction of this information into a computational friendly representation can be
performed in several ways: one is scrapping the website, work that usually requires creating
a program, recurring to some HTML or XML library (like LXML in the Python Language);
other is to check the page source code for API calls; and finally, the third is using packet
inspection tool (like Wireshark) to detect API calls while querying the site (from client-side).

Despite of the mostly static nature of this information, it may change over time when
lines change, thus requiring it to be extracted again.

Finally, due to the spatial nature of this data, using spatial data structures might prove
convenient for making spatial queries (querying a point for proximity queries, for example) is
a foreseeable possibility.

Regarding all this, the extracted information should be stored into a file (or a set of files)
with the objective of being later loaded by the applications. The spatial data structures can
be built once and loaded when the applications need, or they can be built every single time
that the application loads.

4.4 Exploring, visualizing and choosing data

The previous sections explained that two main data sources exist and that these data can
be extracted in convenient way to be used computationally.

Regarding the spatial nature of the information, it is useful for the analyst to visualize
the extracted data for having notion of its shape and distribution through the space, so he
is able to become familiar with dataset and more aware of potential anomalies which are not
visible at first.

38

QGIS1 is extensively used for visualization. It is also a powerful tool that can be used for
debugging results from the algorithm to be built and making queries.

In the following subsections, it is presented a small discussion supported by figures showing
the data shape and distribution.

4.4.1 Position Log Data

The position log data is considered to be raw data, meaning that is data which has not
been processed yet, being exactly the same as the one that exits from the vehicular network
sensors.

There are various advantages that outcome from visualizing it graphically:

• Visualizing the position log data gives instant hints about the spatial distribution of
the bus positions. This is useful for understanding potential issues on the design of the
algorithm or in the bus line completion development.

• It enables the recognition of patterns in the movement of these bus, enabling the analyst
on identifying the existence of the line visually. Important patterns include detecting
lunch hours, returns to the bus station and bus line chaining (doing the same line in
the opposite direction).

• It helps choosing fixed datasets for developing the study and implementing the al-
gorithm, by helping on identifying captures which are not suitable for this study (like
the ones from buses which are stopped all day long in the bus carrier parking lots).

One must also concern about the data health, a characteristic that refers to the balance
between quantity, quality and the granularity.

The first indicator for noticing the health state of the data is to verify how many database
records are stored in a day. Daily, there are stored 1.2 to 3 million records2. If the value is
exaggeratedly lower than the normal quantity, there might be an error.

The second indicator that evidences a potential issue on data health are the gaps in the
granularity. This issue can be easily visualized, either on a table form, either on QGIS,
because the interval between records is much higher than the usual (up to three minutes).

The figure 4.1 shows a position log, from one bus, in March 1st. The red dots represent
the bus GPS position variation along the day.

4.4.2 Bus network data description

The bus network data, which is available on STCP website, regards bus stops and bus
lines of the bus carrier. Visualizing this data is very important. For instance, it is a way
of understanding the shape of the bus lines, a characteristic that may be important on the
development of the algorithm. Regarding this, the following paragraphs and figures describe
the bus stops and lines distribution and shape.

Figure 4.2 shows the stop density over Porto city. The yellow dots represent bus stops,
which are more dense in Porto’s downtown. The bus stop presence is less dense once one exits
Porto main area: less dense from Matosinhos and upper areas, below Porto in the direction

1QGIS Website (http://www.qgis.org/en/site/)
2This value can be obtained by consulting the source database

39

http://www.qgis.org/en/site/

Figure 4.1: An all day long position Log from a bus from the first day of March

of Douro river (Gaia) and also less dense in the center east after Campanhã, in the direction
of Valongo.

Then, Figure 4.3 shows the bus line map of STCP in Porto. The line coverage is so high
that it is easy to recognize the city given the path of the bus lines. The density of the lines is
as equally distributed as the bus stops because each line has a set of bus stops ie., they are
related.

Figure 4.2: Bus stops of Porto

40

Figure 4.3: Bus lines of Porto

4.5 Performance Indicators

4.5.1 Definitions

There are several factors that can be used for evaluating the performance of a bus line.
Some of the factors that may be explored are:

• The completion rate, which measures the number of bus stops completed out of the
total bus stops that define a bus line.

• The time between bus stops, which measures the elapsed time between two bus
stops. This can be seen as the period time understood between two states of inactivity.

• The stay time, which measures how much time takes a bus on each of the bus stops.

• The passing time, which consists on the moment that a bus was first detected in a
bus stop. This metric can be perceived as the ”estimated time of arrival”.

• The total completion time, that measures the total time that a bus took to complete
a bus line.

Each one of these factors raise the concern about their relative importance on the con-
text. Understanding which of them is best suitable for our use-case and if it is possible to
complement each one of them for building a more reliable metric are natural questions.

The completion rate helps on understanding empirically if the line is suffering or not
modifications, and on understanding if the suppressions are arising due to delays or because
of external factors (like road words). Alone, the completion rate does not provide any more
answers.

The time between stops enables a fine and detailed perspective of elapsed times between
the bus line pairs that, together build the concept of bus line. The time between stops analysis

41

enables to understand if a segment is generally faster or slower than its counterparts, being
a particulary useful metric for the city planers and bus fleet managers.

In a similar way, it is possible to measure the amount of time that a bus is stopped in a
bus stop. The stay time measures that time and it may be useful for inferring the occupancy
of a vehicle, given the total amount of stoped time or its popularity.

Then, the stay time captures the approximate time that a bus passes by a given bus stop.
This metric is important because of its simplicity, and because it is easy to compare with the
fixed time tables, known by the carrier. Also, they enable the inferring of the schedules by
taking a simple statistical value like the average or the median from its values.

Finally, the total completion time may be useful for understanding what is the usual
rhythm of conclusion of a bus line, and to study how actually is a bus line impacted during
different periods of the day.

4.5.2 Main restritions

Despite of those methods being useful, they depend on the data granularity for providing
a good accuracy. For instance, the time between stops and the stay time are hard to
compute with a high accuracy on the system that we want to develop because of the capture
of our granularity being too low, i.e., too spaced in time.

Regarding this, only the completion rate and the passing time will be explored, despite of
being easily implemented after matching the information.

4.6 Summary

This chapter started by highlighting the 4 fundamental problems that need to be ad-
dressed. Then, it is presented the overall context, for better understanding what knowledge
can be extracted from this raw data.

The terminologies present inside the data sources have a clear inheritance from the vehicu-
lar network. Persons willing to explore this database should be aware of the terminologies,
which are explained in the section 2.3.

Then, some focus is given to the process of choosing and visualizing data, as a manner for
being aware of the layout of the data and its density, something that will certainly be useful
when implementing the solution.

Finally, the performance indicators are presented for the knowledge of this project devel-
opment, and its exploitability is discussed regarding this study’s limitations.

42

Chapter 5

Architecture and Technical Design

5.1 Introduction

This chapter’s objective is to present a theoretical foundation for the overall solution. Its
outline consists on:

• The section Requirements which define the expected behaviour and function of the
system we want to develop.

• The section Architecture presents the main architecture of the system and also its
components and flows.

• The section Technical Design describes the main components of the architecture and
discusses the most important design options.

5.2 Requirements

Having present the objectives and the available context, it becomes clear what the re-
quirements are for designing and implementing an architecture.

Making a separation between the requirements which refer to the operation of the system
and for those which refer to its behavior and function, the following subsection present the
functional and non-functional requirements.

5.2.1 Functional requirements

The functional requirements are:

1. There must be a mobile application where a bus passenger is able to verify the estimated
time of arrival of a bus.

2. There must be a dashboard for monitoring the line performance in terms of delay.

3. Due to the non-existence of a relation between the bus network information and the log
position data enabling the construction of delay metrics, this data set must be matched
first. The system should find what line was a bus doing and output a matching result
identifying the node, the date of the capture and the identification of the matched bus
stops with the corresponding detection time stamp.

43

4. In behalf of delivering metrics for analyzing the performance of a line, it is needed to
understand if a bus stops, in a given line, is or not delayed respecting to a defined time-
frame like the past week, the past two weeks, the past month, the three later months.
(which resulted from the previous matching).

5. Regarding the amount of data, the system must be capable of processing the data
differential between two days of capture in the maximum of three hours.

6. There must be an abstract way of delivering the different types of data to the different
applications, giving opportunity to other applications being developed too.

5.2.2 Non-functional requirements

The non-functional requirements define that:

• In terms of resource constraints, only one computer is available. The target system has
8 CPU-cores, 32 GB of RAM memory, 512 GB of SSD memory storage.

• It should be easily deployed, regarding the research group potential out-comers and
partners.

• It should be fault tolerant.

• It should be easy to scale, either vertically, either horizontally.

5.3 Architecture

With respect to these requirements, an architecture is implemented, with the objective of
satisfying each of them.

The proposed system architecture, represented in the figure 5.1, includes several modules
and data sources to support the processing pipeline.

From the bottom of the diagram to the top, please find the description of each element:

• vanetV3 and the STCP website are the main raw data sources. They make part
of the architecture because, without them, it wouldn’t be possible to match the records
with a bus line due to the nonexistence of data to be processed or context, respectively.

• The Extraction Scripts transform the raw data, available on the website, in a set of
well-known and well structured files containing all the context information such as the
bus lines, bus stops, etc.

• The Matching Unit consists in a Python program which is able to match the log
position data with the bus network data, producing matches: a set of objects regarding
the node identifier, the date of the capture and the identification of the matched bus
stops with the corresponding detection timestamp.

• The Matches Database is responsible for holding the Matching Unit results (match
identification, matched bus stops, etc).

• The Data Mart helps to gather performance metrics from bus delays.

44

External Data Sources

Data Exctracting and Preparation

APIs

Applications

vanetV3 STCP Website

Extraction Scripts

Matching Unit

Synchronization
Script

Matches
Database

Estimation
Database

Bus Network
Information Database

Matches API

Line Performance
Dashboard

Bus Passenger
Application

Estimation API Prediction API Bus Network
Information API

Figure 5.1: Architecture components and the data flow

• The Synchronization Script updates the Data Mart. It performs the synchronization
between the Matches Database and the Data Mart, being aware of the differences since
the last synchronization. It is meant to be executed every night.

• The Bus Network Information Database holds information about the carrier in-
frastructure, such as line, bus stops and their relation.

• The Matches API is an API for consulting the output that resulted from the Matching
Unit and stored in the Matches Database.

• The Estimation API is meant to provide an interface for querying estimated times of
arrival. It makes queries to the Data Mart and it should be used by both mobile and
web applications.

• The Prediction API provides a service for making time prediction on-demand.

• The Bus Network Information API provides a front-end for the same named data-
base and it is used to deliver information about the bus carrier infrastructure for both
web and mobile applications.

45

• The Line Performance Dashboard is a dashboard for the bus carrier manager to
consult the performance of the carrier’s lines. It is a decision support dashboard because
it provides hints about the health of the bus transportation system.

• The Bus Passenger Application is a mobile application meant to provide for the
carrier’s end-users estimated times of arrival for a given line and bus stop.

5.4 Technical Design

5.4.1 Overview

The Matching Unit is the central piece that drives the overall architecture. It implements
an algorithm that matches the data from vanetV3 with a bus line, given the context informa-
tion existing in the STCP website. It also grants parallelism, with the goal of taking a better
advantage of the computational resources.

To exploit parallelism, one can divide processing flow into smaller pieces and then, make
use of entities which are able of processing each piece independently. Those entities implement
a data processing pipeline, having a well-defined set of tasks, as seen in the figure 5.2.

Data Fetch Data Processing Data Staging Data Store

Figure 5.2: Data Processing Pipeline

The first task is called Data Fetch. As the name implies, it is the moment in the
pipeline where the data is retrieved from the log database. As soon as the data is available,
it is delivered to the next stage.

The Data Processing task consists in the algorithm implementation. It makes use of a
heuristic and a validation procedure, as described in the subsections 5.4.3 and 5.4.3.

Once processing is done, the Data Staging task prepares that data to be stored into the
Matches Database.

Finally, the Data Store task is responsible for storing the staged results into the Matches
Database, for further analysis and use.

These pipeline stages have a temporal dependency but, all of them except the first can be
parallel, or in other words, can be done at the same time. The Matching Unit implements an
architectural style called Worker Design Pattern, that consists in having a set of entities where
one is ”master”, controlling the process, and the others are ”slaves”, processing a subset of the
problem. If the master entity is responsible for creating the jobs and the workers implement
the other three-stages, two types of parallel execution can be achieved: data-level parallelism
and task-level parallelism. The explanation regarding the entities and how they collaborate
are explained in further detail in the section 5.4.2.

The following subsections explain:

• How Worker Design Pattern is designed and how it can be made effective on taking
better advantage of the computational resources.

• How the algorithm is designed and what are the main principles and techniques which
are crucial for solving this problem.

46

Processing Unit

Actors

DispatcherLogger Worker

algorithm

Figure 5.3: Matching Unit Architecture

5.4.2 Exploiting parallelism using the Worker Design Pattern

Despite of the matching algorithm being a central part of this work, additional measures
need to be implemented in order to increase the throughput of the system, mainly, through
the use of parallelism.

As clarified in the subsection 4.3.2, 1.2 million of records are, at the least, stored in
the database per day. Although the data dimension is not in the ”big data” level, it can be
partitioned and processed in parallel, taking better advantage of the computational resources.

Generally speaking, software has been written for serial computation [7]: one single pro-
cessor, with only one instruction to be executed at any moment in time. But today, major
part of the processors are called multi-processors. This means that multiple instructions can
be done at the same time. If no measure is taken for making a software parallel, it will work
in a sequential way, and potentially, taking more time than its parallel version.

One should not confuse concurrency with parallelism. The objective of concurrency is to
manage the share of the state between different threads, while, the objective of parallelism is
to use multiple CPU cores for achieving the maximum performance, reducing the processing
time. Those entities should be running on different processors. Under these circumstances,
the algorithm is implemented on top of an architecture based on the Worker Design Pattern.

The are three types of entities:

• The dispatcher retrieves the information from the position log database, keep tracking
the work being done and it is responsible for managing the program flow.

• The logger is responsible for logging what jobs are already done and what is the progress
of the processing.

• The worker is the unit which receives a small subset of the data, implements the
algorithm and stores the results into the Matches Database. The number of Workers
should be approximately, the number of CPU cores.

The figure 5.4 presents how these entities interact, sequentially:

1. The Dispatcher is launched and starts to fetch data from the Position Log Database.
The data is retrieved day by day and then it is filtered and divided by node identifier.
Each one of this data portions, with the given identifiers, is called Job. As soon as a
job is ready, it is inserted on the Job Queue. When it ends dispatching all its jobs, it
inserts termination jobs in the queue, so Workers can turn itselves off. This work is
done in the Data Fetch phase of the architecture.

47

Dispatcher

Worker

Feedback QueueJob Queue

Job

Logger

Worker Worker Worker

Res

Res

Res

Res

Res

Res

Log

Job Job

Log

Log

Log

Log

Log

Job

Job

Job

Job

Job

Job

Log Queue

1

2

3

5

6

4

Figure 5.4: Worker Design Pattern Design

48

2. When a Worker is launched or ends processing a job, it tries to retrieve a Job from the
queue. If it is unable to, it blocks until one is available. Otherwise, it starts to process
a job (as figured by the two middle Workers of the figure). The Worker implements the
other three stages of the pipeline architecture.

3. After a Worker finishes its job, it puts a log in the log queue with the objective of
informing the Logger that the job is completed, about the time that it took, etc.

4. The Logger blocks until a log message arrives in the log queue. When one arrives, it
parses and writes it to disk.

5. The Worker also informs the dispatcher that it completed its jobs, so it can also keep
tracking of the current number of completed jobs, and repeats the process described on
the second step.

6. The Dispatcher, which dispatches jobs and keeps tracking of the process is notified,
through the Feedback Queue, that a Worker completed a job or that it is completed.
When all the Workers terminate, the Dispatcher sends a termination job to the Logger,
through the logger queue.

This relationship between entities enables an efficient division of tasks and it is a way
of exploiting processing parallelism, since there can be multiple workers processing different
data in the processing pool. Otherwise, only one unit of processing would be done, at time.
The purpose of using pooling is to limit the amount of workers that can be executing work in
parallel.

5.4.3 Algorithm Design

The initial available data, described in the section 4.3.2 does not provide the identification
of the bus route being done. Therefore, there is the need of matching those positions with
the bus line being done by a given node.

Addressing this problem, a custom algorithm is implemented. It has, as main development
vision, the simulation of the bus route. To understand the concept behind the algorithm, we
will use a metaphor.

Let us consider a person called John. John is french, having strong difficulty to talk other
language like English or German. He travelled to Germany and has felled asleep inside a bus.
Later, he wakes up and doesn’t remember anything, even, the bus he decided to catch. No
person is in the bus, only the driver and he is not able to communicate with him. John finds
a flyer in a seat, with the location of the bus stops and the lines. Then he tries to identify
the bus destination.

The first thing John can do is to memorize all the bus stops in which the bus is stopping
(thankfully marked in the bus interior display). Then, given the stops and their relative order,
he can check the flyer for lines which meet those characteristics. If he finds a line that meets
them, his problem is solved: he knows the bus destination.

Having this metaphor in mind, it is easy to transport it to this real world use-case. First,
the log database contains the position of all the buses. We can retrieve the GPS trace of the
bus and process it. Then, iterating all (latitude, longitude) pairs one can find the lines which
start between the geographical space. This requires making proximity queries for finding
which bus stops are nearby, and then, selecting which bus stop is the first stop of a line.

49

Then, using a strategy that borrows foundation from the exhaustive and greedy ap-
proaches, an algorithm will try and test each of the starting lines that were detected and,
iteratively, it tries to reach for a solution meeting a criteria: completeness rate, detected
stops, detection order, line conclusion.

In the following subsections, we explain in more detail the set of smaller problems that
need to be solved in order to make the algorithm effective, like:

• How it is possible to make spatial searches.

• How it is possible to make more specific spatial searches, using a capture radius of fixed
or dynamic length.

• How can starts of a line can be detected and why finding them is a good heuristic for
minimizing the number of candidate solutions.

• How it is possible to find a solution, using proximity queries and matching bus stop
detection occurrences.

Making spatial searches

Finding the nearest bus stops to a given GPS position requires some attention. There are
some questions that need to be answered. The first is to find which bus top is near of a given
point in the geographical space.

Spatial data structures enable a kind of sorting given the spatial attributes of their objects
– like latitude and longitude.

Our fixed data set includes the bus stops and the lines. Bus stops have various properties,
including latitude and longitude. They will be subject of search and thus, inserting them into
a spatial data structure would be a good idea, because spatial data structures are able to sort
its objects relatively to a position or by the relation in terms of distance between them.

R-tree is a notable example of these type of data structures. It is ideal for indexing the
spatial objects of this problems – namely, bus stops. R-tree helps out finding the K-nearest
neighbours spatially but it does not cover the problem of finding the K-nearest neighbours
inside a radius of X meters. This must be calculated aside: first by using the proximity (using
R-tree) and then, by filtering points which are above a given radius. Two questions remain:
how to calculate the distance between two points and which radius should be used.

Using and choosing a detection radius

As seen on the chapter 2, the Global Position System uses the Global Position System
1984 which views the earth as an ellipsoid.

Regarding this, measuring the distance between two geographical points can not be
achieved in the same way as measuring the distance between two points in a Cartesian plane.
The Cartesian plane is flat, in contrast to the ellipsoid plane. Thus, ignoring this fact leads
to increase the error in the calculation of those distances; this aspect should not be put aside.

Several approximations for calculating the distante between two (latitude, logitude) points
have been done, like Haversine or Vincenty’s formulas. Given that it is needed to minimize
the error, using these formulas to compute the distance between two geographical points must
be done, either by implementing these formulas, either by using third-party libraries.

50

The behaviour of smaller and larger radius is known. If the radius is very small, bus stops
are likely to be defectively detected, either by GPS jitter, either by the speed between two
captures.

In contrast, if the radius is too big, there will be a huge amount of bus stops, and thereby,
more candidate lines and, consequently, more processing.

d

Figure 5.5: A non-ideal and an ideal radius

The figure 5.5 illustrates what can happen when the radius is smaller than the ideal. The
red markers represent bus stops, while the blue dots represent the GPS logs from one bus,
which is moving down the road (as the grey arrow indicates).

Because of the speed that the bus travel and given the periodicity of insertion between
two consecutive GPS positions, the distance between two captures can be greater than twice
of the radius, and so, such radius would be insufficient to detect stops between those two
points. The figure on the right depicts what happens when the radius is optimally placed and
thus, all the bus stops are successfully detected.

The approach for solving this problem is choosing the radius which is equivalent to half of
the maximum distance between two points when the bus is driving at the maximum speed.
In Portugal the maximum speed limit inside municipalities is 50 kilometers per hour. If we
consider punctual events resulting from the driver behavior, like speeding, a margin of 10%
could be added and so, 55 kilometers per hour is a very reasonable max value for the maximum
speed, 15.2 meters per second.

Regarding the capture’s periodicity being from 15 to 15 seconds, the maximum travelled
distance translates, theoretically, to 15 seconds×15.2 meters per second, that is 228 meters,
and therefore, resulting in a radius with length of half that distance – 114 meters.

Despite of these theoretical values, it may be reasonable to increase the radius, for com-
patibility with slightly higher bus speeds. If it is a priority to have a dynamic radius, which
would change over time depending on the current speed of a bus, it can be implemented by
analyzing the GPS log pairs for finding the speed between those two point and calculating
a radius from it. It is very important to have in mind the limitation of GPS and that jitter
exists, being subject to increase with trees, buildings, bridges, etc – so radius lower than 30

51

meters are not recommended.

Detecting line starts

After understanding that the bus stops objects can be indexed in a spatial data structure,
and that, using a helper method, spatial proximity searches with a radius become possible
and applying the problem heuristic becomes easier.

Detecting line starts is a heuristic divided in two steps:

• Detecting bus stops nearby while iterating over the retrieved positions log.

• For each bus stop in range, verify if it is the very first stop of a line.

If, in the second step, the detected bus stop turns out to be the first bus stop of a line,
that line becomes a candidate for solution.

S

Figure 5.6: The stop S has two lines starting in its position. If the bus is passing near that
position S, there is a probability that one of the lines starting there is the solution.

The main objective in detecting line starts is not to find the final and best solution, but
rather to, reduce the dimension of the problem. Instead of having a total of N lines per
record in the worst case, that number of lines turn to be much lower as they will be related
geographically to the positions log.

Figure 5.7 presents a flowchart representing this algorithm logic.

Finding a solution

While finding line starts is an exhaustive search algorithm which reduces the problem
dimension, the algorithm for finding solutions is greedy. An algorithm is said to be greedy
when it ”always takes the best immediate, or local, solution while finding an answer.”[9]

For finding a solution, this algorithm iterates over the detected line starts and, for each
one, it evaluates whether or not it is the best immediate solution.

Evaluating a candidate line as solution implies iterating the positions log with the hope
of finding enough evidence that such candidate is the solution. This iteration can be seen as
kind of simulation where a context is built, iteration over iteration. That context collects all

52

Start

Get the next
record from the log

database

Extract its
latitude and

logitude

Detect bus stops
nearby

Get the next bus
stop from the set
of detected ones

Save it

Records
left to

process?

End
Detected

bus
stops?

Is it
the first stop

of a line?

Stops
left to

process?

No

Yes

NoYes

Yes

Yes

No

No

Figure 5.7: Detect line starts algorithm

53

the detected bus stops of the candidate line and the detection timestamp. This simulation
ends when no more records are left for processing.

S

S

1

2

3

4

5

6

7

8

9

10

11

12

S

E

1

2

3

4

5

6

7

8

9

10

11

12

S

E

1 2

3 4

Figure 5.8: Algorithm phases

The figure 5.8 shows the execution steps of this algorithm. First, it is shown the position
log, being the blue dots the GPS positions. Then it proceeds to the line start detection,
described in the subsection before. In this case, it detected two.

Then, it starts to test each of the line starts. The line is outlined in red, as markers do.
Each of the markers illustrates a bus stop.

Finally, the fourth square shows an in-going iteration where the finding solutions algorithm
tries to find a bus stop that matches the candidate line. The detection radius are marked in
green, around the bus stop markers. The bigger dashed blue dot is the position of current
record being iterated (with no bus stops nearby).

A candidate becomes a solution when:

54

• The last stop of the candidate line is detected.

• The number of detected bus stops of that line is above a certain threshold, that needs
to be calculated.

These two conditions are purely probabilistic. One another consists in analyzing the bus
stop order monotony. If the bus stop sequence appears to not be increasingly monotonic, or
other words, it appears to be out of order, that candidate line is not a solution.

Often, the movement of a bus is not related with a line. It can happen due to a lot of
reasons, including:

• Not moving at all, for an extended period of time (e.g.: when a bus is stopped in the
bus station).

• Moving to the bus carrier platform (e.g.: when there is an end of shift).

• Cross the city for starting a line (e.g.: when there is a start of a shift).

These reasons are significant to increase the amount of false positives. If the candidate
line that is being analyzed is not a solution and, at the same time, none of the evidenced
conditions are able to declassify it as solution, the simulation can go further and naturally,
waste more processing time than expected. To address this problem, a timeout can be used.

A timeout is a time that defines a deadline for something to happen. Two types of
timeouts can be implemented. The first is more permissive and consists in establishing that a
line should be completed within a given time. This value can be set statically as 2 hours, for
example. The second and smartest consists in defining that the next suitable bus stop must
be found in 20 minutes. These values are examples, and must be studied and tested for an
ideal suitability.

One thing that must be noticed is that, generally, a node’s GPS position log from a given
day has several hours of capture and then, there is almost always more than one line to be
matched. Thus, when a line is found, all the records together with starting lines between the
first and the last bus stop of the current solution must be discarded for processing, and the
algorithm will continue to iterate the starting lines from the index corresponding to the last
bus stop from the last solution.

After processing all the data, the core algorithm may or not present results. This is
as expected. First, because no profiling is being done to the data, which means that, be-
fore processing, no information exists about the spatial variance of it, and thus, even if a bus
was stopped everyday and it was storing data into the database, there is no way of knowing it.

But, otherwise, the core algorithm produces results. They are the following:

• The line code and direction.

• The bus stops of the line which were detected and their order.

• The percentage of stops which were detected by the node in that path.

These results are enough for taking the next step – extracting performance metrics.
In figure 5.9, it is placed the flowchart of this algorithm.

55

Simulation
timeout
ended?

Simulation
timeout out
of scope?

Does a
line start

in the current
position?

Line
starts
left to

process?

Are there
bus stops
 nearby?

Was the
last stop

detected?

Is
completeness

greater
than 80%?

Is the
sequence

increasingly
monotonic?

Get the next
record

Iterate to the last
record of the

solution

Initialize the
context

Does it
belongs to

the
candidate?

Was it
already

detected?

Retrieve the
next one

Compute
completeness rate

Save it to the
context

Save solution

Find bus stops
nearby

Start

End

No

Yes

No Yes

Yes Yes

No

No

YesYes

Yes

No No

No

No

No

No

Yes

Yes

Yes

Figure 5.9: Matching Algorithm Flowchart

56

5.4.4 Building performance indicators

After matching GPS coordinates with the context information, it becomes possible to
build statistics about the performance of the lines being matched. By performance we mean
the set of the characteristics that evidence the good quality of the bus line completion. Those
are clarified upon the chapter 4.5.1. The logic behind the interpretation and calculation of
them is discussed below.

A deeper overview on completeness metric

The concept of completeness is trivial to understand:

• If a line has one-hundred percent completeness, it means that all bus stops of the line
were detected.

• If a line has zero percent completeness, it means that none of the bus stops were matched.

• Otherwise, if the values are placed between those previous marks, it means that bus
stops were missing.

Completeness can be seen as a mean for classifying a match as valid or invalid. Most
of the times, due to line modifications and other unexpected behaviours like bad matching
events, gaps between records and others, the completeness metrics might not be 100%.

One way to calculate a static but yet reasonable completeness rate is to calculate the
median number of bus stops of the available data set. The median number of bus stops per
line is a characteristic of the context information in use, and it depends on the bus carrier
and on the city that the study is being employed.

Regarding the contextual information of this case-study, the median length of a line in
terms of bus stops is 36. The chosen statistical attribute is the median as it measures the
most popular value, being more accurate than the average.

Then, it is needed to understand how many suppressions may a line suffer at the same
time.

Taking into account that typical service modifications impact this metric negatively, it is
important to think about where they happen and look for real life evidences, such as lines
subject to change temporarily to a parallel street due to road works or lines subject to have
more than one line modification. It can be observed, on the STCP website, lines missing up
to 6 stops due to those reasons.

It is fair to discuss this value, considering that one must ensure that it is enough to
provide a good metric. The analyst can choose it based on the quality of results he wants. If
the goal is to obtain a more permissive system, delivering more results but with less quality,
the completeness rate should be decreased. On the opposite, if the goal is to obtain a more
rigorous system that gives less but better results, the completeness rate should be increased.

Given those reasons, the adopted completeness rate is 80%, which is equivalent to not
detecting 7 in 36 bus stops. Values below 80% are not valid as solution. This threshold value
might and should be adjusted to the other cities bus networks.

Estimating arrival times

After the system is being capable of identifying which bus line has a bus completed, it is
possible to use the data from the source database to build statistics about the bus line arrival

57

times. Unlike most of the literature, which makes use of times between stops to calculate
time estimations, our study uses passing times, mainly because they require less computation
power and because the data granularity is very low (15 seconds).

The process of estimating arrival times consists in the following steps:

1. Choosing a bus line and a bus stop.

2. Finding a reference time (for instance, a timestamp chosen by the user or a timestamp
gathered from a fixed time table of the carrier).

3. Then, over all the found matches in a period of time (for instance, one month), find
the matches that fit the previous captured timestamp in a given reference window (for
instance, 5 minutes around the reference time).

4. Obtain those corresponding timestamps.

5. Compute the average or the median of the gathered timestamps.

The figure 5.10 highlights the concepts which serve as core for making estimations.

average

median

time

10
:0

0
a.

m

10
:1

0
a.

m

reference

reference window

Figure 5.10: This figure presents the main components used for calculating an estimation.
First a reference time is set and all the history points inside a limit (for instance, 5 minutes)
are loaded (reference window). Finally, we chose to calculate the median because it is a better
representative of the distribution than the average. The first and third quartiles, despite of
not being represented, can be used for representing the dispersion of the times around the
median.

Building time estimations is important because:

• They can be seen as a performance metric, expressing the execution rate of a bus
line.

• They are, in their natural form, an arrival time recommendation meaning that
they can be delivered to the bus passengers.

The execution rate is a performance metric related to the speed that a bus takes
between bus stops. It may perform faster or slower, thus impacting directly the time of arrival

58

to the next target bus stop. The estimated time, by itself, expresses a timestamp that is
computed based on experience.

For calculating both of these metrics, we may use passing times, as in 4.5.1. They can
be easily manipulated for calculating the average, the median, and other statistical artifacts.
This methodology enables the computation of an estimated time of arrival, but there are
two main problems that need to be solved. The first is finding a reference, and the later is
choosing a time period.

Finding a reference timestamp may be easily solved by obtaining the system time of a
device, by user input or by using a static asset. For the use-case of the bus carrier, using
values from a static assets (like the existing schedules) provides the best reference about the
delay that may or not exist because they are the promise established between the bus carrier
and its passengers. That knowledge can be used to introduce line modifications regarding
consistently abnormal values.

On the other hand, the bus passenger use-case takes a better benefit in using history-based
values because it removes the dependency of having such static references while providing a
more and more accurate estimation about the arrival time, given the increasing convergence
along the development of the time.

This convergence results from the bus lines behaviour that tends to be repeated over time,
reflecting a pattern. For example, the data shows that a particular day of the week is more
similar with the same day of the week, one week later than looking for the 3 last days before.
This pattern impacts the schedules like a butterfly effect: a bus is as fast or as slow as the
number of persons entering or exiting of the bus and also, as fast or as slow as the city traffic
enables. These happenings are subject of being, also, repeated over time, for example, on the
rush hours, being a reflection of the city mobility dynamics. If one collects timestamps of
bus stop detections making statistics concerning the time variation, it is possible to deliver
estimated times of arrival that, together, build a smart schedule: a schedule that changes
over time and is able to adapt itself to punctual situations (like road works, city events, etc).

Regarding those reasons, it is fair to admit that a bus line has a known behaviour that
becomes more and more evident over time, and that behavior can be expressed using statistics.
For instance, the observation of the percentiles respecting the captured passing times is a way
of obtaining recommendation values. The median is represented by the maximum value of
the 50% percentile and corresponds to the most popular time value, while values lower than
the 25% and higher than the 75% percentile are the less popular and are said to represent
abnormal discrepancies. These values can be delivered as recommendation for the users.

Predicting arrival times

While the arrival time estimation makes use of the past history for providing a time
estimate, the arrival time prediction goes on the opposite direction by predicting the future,
by using old data for building a mathematical prediction model.

The essential steps for making arrival time predictions are:

1. Choose a bus line.

2. Find a reference (for instance, a timestamp chosen by the user or a timestamp gathered
from a fixed time table of the carrier).

59

3. Then, over all the found matches in a period of time (for instance, one month), find the
matches containing that reference time for that bus line.

4. Apply a machine learning workflow to the found matches, using a regression technique.

5. Deploy the machine learning model.

The gathered matches should be applied in a patterned way (choosing, for instance, the
last 5 wednesdays), like explained in 5.4.4.

Then, the machine learning workflow requires a different data shape (it requires all the
bus stops matches instead of all the matches regarding a bus stop). The employed machine
learning techinique must be a regression because:

• It is a supervised learning technique (history target values are fed into the machine
learning algorithm).

• The goal is to predict a continuous value (and not to classify a data object in a group).

Finally, after training, testing and validating, the machine learning model should be de-
ployed for better performance (if possible).

5.5 Summary

First, the functional and non-functional requirements are presented. They define some
ground rules, making distinction between an acceptable and non acceptable system behaviour.

Then, the architecture is presented, showing not only the components but also the data
flow through all the components.

Under the Technical Design, it is done a detailed overview about the Matching Unit and
their key elements. Its processing pipeline and its parallel computing solution helps bringing
the best performance out of the computational system. Also, the main ideas that leaded to
the development of the matching algorithm are explained along with its heuristics.

Finally, the foundation for building performance indicators is explained, presenting the
fundamental concerns and methodologies.

60

Chapter 6

System Implementation

6.1 Introduction

Once the problem is known and a strategy as been defined for solving it, the implement-
ation proceeds. The objective of this chapter is to present the practical methodologies which
are crucial for the implementation of the architecture defined previously on this work. The
chapter outline is the following:

• The section Bus Network Information Retrieval present methodologies for gath-
ering bus network information from the bus carrier website.

• The section Matching Unit describes the development of the Matching Unit, de-
scribing its development history, the implementation of its modules, the algorithms
implementation, and more.

• The section Matches Database describes the Matches Database, which is the data
output point for the Matching algorithm.

• The section Estimation Database describes the database supporting the estimation
calculation, which is the location on the architecture responsible for delivering the delay
metrics.

• The section Synchronization Script presents the implementation details about the
synchronization script, which is responsible for synchronizing the Matches Database
with the Estimation Database.

• The section Prediction Module presents the used workflow for implementing the
arrival times prediction.

• The section Database Wrappers Module describes the Database Wrappers Module,
which is a high-level programmatic interface written in python for the applications
interact with the databases.

• The section Integration APIs presents, briefly, the integration APIs, which serve as
bridge between the database and the applications.

• Finally, the Applications presents the applications which make use of the information
generated by the deployed system.

61

6.2 Bus Network Information Retrieval

Bus Network Information is the information that builds a foundation for understanding
and processing the positions log data. This data can be obtained from the STCP public
website, using data extraction routines.

Figure 6.1: Line Details Page from STCP Website

The page issued on the figure 6.1 presents information in wide variety of forms: lists,
tables, maps, etc.

There are two pages that worth being analyzed:

• The lines page1, which contains a dropdown list of bus lines and after selecting one line,
it shows its bus stops and a map representation of the line and stops.

• The journey planner, called itenerarium.net2, contains information about bus stops,
lines, route and journey plans.

To extract the information about the bus lines and bus stops from the STCP public
website, we need to inspect its implementation, either by looking for its source code, either
by using network and packet analysis tools.

For monitoring network requests, we can use one of the most popular web browsers, such
as Google Chrome or Mozilla Firefox, which are bundled with network analyzing tools on
their inspector. For making packet inspection, Wireshark is an excelent opensource tool.
Despite of a web browser being capable of monitoring network requests, Wireshark is used
because it provides a cleaner way for filtering and studying the requests that are being done.

With further investigation, it is easy to understand that this public web site relies on
APIs, primarily because of clues left on the JavaScript source code and then, due to client
side calls which can be detected using the packet inspection tool. The packet inspection helps
understanding the existing web methods and their responses, exposing the URLs and their
input attributes.

1STCP Lines Page (http://www.stcp.pt/en/travel/lines/)
2Iternerarium (http://www.stcp.pt/en/itinerarium/)

62

http://www.stcp.pt/en/travel/lines/
http://www.stcp.pt/en/itinerarium/

For obtaining these URLs, one must:

• Open a web browser and navigate to one of the pages that worth being analyzed.

• Open Wireshark and then, start capturing, with the following filters: ip.addr ==

XXX.XXX.XXX.XXX && http.request.method == "GET". XXX.XXX.XXX.XXX to the ad-
dress of the server hosting STCP website and http.request.method == GET limits the
capture for matching only HTTP GET request methods.

• Finally, it is required to analyze the captures with the objective of finding possible
endpoints.

After following these guidelines, one should be able to observe the APIs endpoint URLs,
as seen below.

Figure 6.2: Capture on Wireshark showing the filter and the HTTP GET Requests to the
STCP API

Analyzing them, we can further conclude that the URL /itinerarium/callservice.php

acts like a router to several API endpoints. These endpoints are:

• linedirslist, delivers the list of bus line directions, with the attributes name and code,
for a given line code and direction.

• linestops, contains the list of bus stops of a line, with their attributes: zone, code,
name, address and sequence.

• linedraw, provides the route and the list of bus stops, with their spatial attributes,
namely the LineString or MultiLineString and the set of Point geometries. This
endpoint was not available at the time of the development of the algorithm.

63

• linelist, provides the list of lines with their attributes: accessability, code and
description.

The information available on those APIs should be fetched in a regular basis and cached
locally, because it will be needed later. This process is a performance and secure wise choice
because the program will not have to rely on the network and on an external service to make
its job.

The bus network data retrieving scripts are written in Python. They extract, transform
and store the data into files that can be used in other programs. The information is stored
in a portable and structured way, using the JSON (and GeoJSON3) format.

Regarding this, two scripts are implemented:

• retrieve base data from rest.py generates six JSON files: lines.json (bus lines),
stops.json (bus stops), line stops.json (stops of a line), stop lines.json (lines of
a stop), and stop coordinates.json (bus stops coordinates).

• transform base data to geojson.py converts the extracted data into GeoJSON.

These files can be shared, later, among other applications with the Matching Unit it-
self. The GeoJSON version is very compliant with most of the spatial software like ogr2ogr

and QGIS. It can be converted to most of the formats and visualized directly, including, in
JavaScript web applications4.

The following subsections explain how are these scripts implemented and what libraries
are used.

6.2.1 Script to retrieve base data implementation details

This script generates the six files previously described. To achieve that, it is divided in
three main parts:

• Initialization, which consists in defining the endpoints URLs.

• Procedure body, is composed by multiple but very similar procedures, responsible for
retrieving different subsets of the data.

• Script main procedure, which arranges the call for the procedures and writes the result
to storage.

The main procedures which retrieve the information from STCP website, are the following:

• get line codes retrieves the bus line codes.

• get lines retrieves the bus lines and their properties.

• get stops codes retrieves the bus stop codes.

• get stops retrieves the bus stops and their properties (except GPS coordinates).

• get stops coordinates retrieves the bus stop GPS coordinates.

3RFC 7946 - The GeoJSON Format (https://tools.ietf.org/html/rfc7946)
4Using GeoJSON with LeafletJS (http://leafletjs.com/examples/geojson/)

64

https://tools.ietf.org/html/rfc7946
http://leafletjs.com/examples/geojson/

• get stops of line retrieves the list of stops which belongs to a given line.

• get lines of stop retrieves the list of lines from which a stop belongs.

• get line geometries retrieves the full path of a line.

These procedures are very similar on the implementation:

• They start by generating a HTTP GET request targeting the REST API, using the
method Request.get from the library requests5.

• The information is handled, and all that information that is repeated or not meaningful
is removed.

• Finally, they read the result from the previous request in the JSON format. This
is possible using the .json() method from the Request.response object which is
returned by the GET request. The JSON map is returned for being used in the main
procedure.

All this procedures return in-memory objects which are handled in the main procedure.
Thanks to the helper function write map to file, the objects are written into files, for later
use in the Matching Unit and for being converted to GeoJSON, as described in the next
subsection.

6.2.2 Script to transform base data implementation details

This script transforms the data stored by the script retrieve base data from rest.py

and converts it to GeoJSON. Two Feature Collection objects are built and stored in two
different files: lines.geojson and stops.geojson. Those files provide less knowledge than
the original ones but they are more portable and compatible.

This script is composed by two procedures, get stops geojson and get lines geojson,
each one with responsibility of generating a map object compliant with GeoJSON.

This program shares the same structure as the previous script. On the procedure body,
its two procedures are implemented. They are, also, very similar.

First, it is created a placeholder object which will store all the GeoJSON Feature objects.
This is the upper-level dictionary with type attribute FeatureCollection.

Then, it is created a string template of a GeoJSON feature. This is called a template
because it is a string object which is later converted into a map. Having placeholders which
are replaced with its own types, it provides a cleaner way of building such structure.

After having a placeholder and a template for a feature, the context information is loaded
from the files. Depending in the procedure, it can load the lines, the stops coordinates, the
lines stops and the lines route, etc.

The object set is iterated, and a string-like GeoJSON Feature objects are built from the
template. Using Python’s ast6, this string holding a map structure is converted to a Python
dictionary.

5Requests: HTTP for Humans (http://docs.python-requests.org/)
6Python’s Abstract Syntax Trees Module Documentation (https://docs.python.org/3.5/library/ast.

html)

65

http://docs.python-requests.org/
https://docs.python.org/3.5/library/ast.html
https://docs.python.org/3.5/library/ast.html

Finally, the placeholder, holding a list of GeoJSON Feature objects is stored into a file,
thanks to the same function write map to file, for storing the FeatureCollection objects
to disk.

For validating the generated files as GeoJSON compliant, one should use a validation
program like geojson-validation7, which is available through NPM8.

6.3 Matching Unit

6.3.1 Development History

The development of this unit considered three approaches, that evolved during time:

1. A non-parallel version.

2. A thread-level parallel version.

3. A process-level parallel version.

The non-parallel version is still being used for testing the algorithm and the pipeline
procedures. It does not implement any type of parallelism and does not consider the ar-
chitecture previously defined for the Matching Unit. Regarding this, it is not suitable for
production, either because it would be very slow.

The thread-level parallel version implements the previously described architecture
strictly. It makes use of Pykka9, which implements the Actor Model in the Python Language.
Pykka was chosen because it seemed to be a well designed implementation of the actor model,
which is a vision that abstracts from the low-level thread primitives, serving ”as mental
scaffolding for building the software implementation”[2].

For implementing parallelism, there are two Python modules that can be used. One is
threading, which implements thread-level parallelism and multiprocessing, which imple-
ments process-based parallelism. Regarding the development progress, it was noticed that
Pykka default implementation makes use of the Python threading module too or alternative
gevent, which does not make use of multi-core processing. They are, in fact, concurrent
solutions rather than parallel (only using a single processor core rather than using multiple
cores in parallel), not being the best approaches to this problem. Having in consideration that
the implemented algorithm is computational intensive, a parallel solution should have been
implemented, regarding the objective of making use of the different CPU cores for processing
more data per time unit. Despite of Pykka being an interesting solution, another had to be
re-thinked for using multiple CPU-cores.

The process-level parallel version implements a variation of the architecture, based
on the Python standard library multiprocessing. This implementation takes the best out
of the computer performance because it makes use of the multiple processor cores. As con-
sequence, it is significantly faster than the previous solutions.

The next subsections explain how is the Matching Unit implemented on its third and final
version.

7geojson-validation (https://www.npmjs.com/package/geojson-validation)
8Node Package Manager (https://www.npmjs.com/)
9Pykka, A Python implementation of the actor model (https://www.pykka.org/en/latest/)

66

https://www.npmjs.com/package/geojson-validation
https://www.npmjs.com/
https://www.pykka.org/en/latest/

6.3.2 Overview

The use of the multiprocessing module required a slight modification to the base archi-
tecture. The major modifications are the following:

• The Dispatcher no longer launches N workers given N jobs. The number of Workers

is equal to the number of CPU cores. This value can be obtained using the method
cpu count from Python os standard library.

• The entities are launched by the main program, one followed by the others. The first
entity to be launched is the Logger, followed by the Workers then followed by the
Dispatcher. This also means that the Dispatcher no longer launches the other entities.

• The communication between entities is done using synchronized queues, implemented
by the Python standard library. These queues act like synchronization devices because
entities life-cycle is driven through the exchange of specific objects (messages).

• Job units are queued by the Dispatcher and then consumed by one of the Workers, as
soon as one of them becomes available.

They exchange messages between them, recurring to queues. Those messages are from 4
types:

• info messages are sent for informing generic stuff, like state changes.

• command messages are sent for sending commands, for instance, telling an entity to
shutdown itself.

• value messages are sent for sending values regarding the program behavior.

• log messages are log specific messages.

Each one of the messages are sent in the JSON format, using standard Python dictionaries,
and have their format.

The figure 6.3 shows the main Python modules which implement the problem solution.

6.3.3 Modules

The matching unit consists in three main modules:

• entities is a module implementing the entities Dispatcher, Worker, and Logger.

• pipeline is a module implementing a set of procedures that are used by the entities,
along the process.

• utilities is a module which gathers the database wrappers, tool for querying data
spatially and utilities for reading files in different formats, for example.

Regarding this, these main modules are explained in further detail in subsections to follow.

67

fetch

pipeline

processing staging store

Dispatcher

entities

Worker Logger

Matching Unit Modules

utilities

wrappers
tools utilities

mysql postgres

Figure 6.3: Matching Unit Modules

6.3.4 The entities module

This module implements Dispatcher and Worker, which extend Process from the module
multiprocessing. They communicate between each other using two Queue objects, from the
same module, which implements a synchronized queue.

Their life-cycle is described in the following subsections.

Worker implementation overview

Workers are the first entities to be launched. First, they are initialized with the following
attributes:

• tool is QueryTool object.

• output db is a database wrapper for storing the computation value to a database.

• job queue is a synchronized queue from which the entity retrieves jobs.

• log queue is a synchronized queue for notifying the Dispatcher that a given job is
completed.

After that, upon the call of the inherited start method, it reaches the method run, which
implements its life-cycle, consisting in a loop composed by four different moments:

1. First, it calls task queue.get() for retrieving a job. If no job is present in the queue,
it blocks until one appear.

2. If the retrieved job contains the flag no more jobs, the worker ends its life-cycle. Oth-
erwise, it continues to the next step.

68

3. The job is processed and its results are stored, implementing the processing and store

phases of the pipeline.

4. Finally, the log is written to disk, identifying what was the processing start time, end
time, its node id and the processed data date

Dispatcher implementation overview

This entity, based on a set of dates, creates job units: collections of different data which
is processed by the workers.

Its life-cycle is divided in four phases:

• First, given a set of dates, it creates a set o job units. A job unit consists in a map-like
structure holding the identification of the node from which the data belongs, the date
of the capture and the records, regarding the previous attributes.

• After that, job terminators are inserted into the queue, so, when the jobs end, the
Worker knows it needs to shutdown itself.

• Then, it tells to the logger that it has asserted the total number of jobs, sending a
message from the type value. This happens because the data fetch from the log position
database happens day-by-day, and so, the job units starts to increase until the fetch
ends. For logging, the best way is to mark it down as soon as the information is available.

• Finally, it waits for the Workers to die.

Logger implementation overview

Despite of its importance, this is the simpler entity. It depends only on two attributes: the
log queue which is a unidirectional point of log information retrieval and the flag verbose,
which is set to True by default and defines whether or not it prints the logs to the console.

Its life-cycle considers only three moments:

• The first consists in starting its context and creating a file.

• Then, it loops, waiting for a message to arrive in the queue. When a log message arrives,
it writes it to a file and prints it to the console, only if, the verbose option is set to be
True.

• Finally, after receiving a command type message from the Dispatcher, it closes its log
file and ends its activity.

Otherwise, if no message is in the queue, it blocks and waits until another message comes.

6.3.5 The pipeline module

This module is composed by another four sub-modules which implement the data pro-
cessing pipeline described on the subsection 5.4.1. They are named similarly: data fetch,
data processing, data staging and data store.

The sub-module data fetch contains procedures for loading the bus network data. They
are used, in particular, by the Dispatcher.

69

Then, each Worker entity implements the remaining pipeline modules. The module
data processing is the most important one, because it implements the two procedures which
together are capable of matching the data: detect line starts and find solutions. The
first implements the heuristic for reducing the number of solutions, as described in the section
5.4.3, while the other implements a greedy algorithm for finding which one of the starting
lines are really a solution, as explained in the subsection 5.4.3.

The later data staging and data store contain, respectively, procedures for preparing
the information to be stored into the database.

Regarding this, only the two procedures of data processing module are explained in
further detail, since they implement the solution for the matching problem.

Algorithm to detect when a line starts

The implementation of the algorithm developed to detect when a bus line start, follows
the present direction:

1. Taking the records and local query tool as argument, a variable is initialized as an empty
list, called start profile. This list will hold all the lines codes of the detected lines
from the GPS trace.

2. Then, all the records are iterated: first the position is extracted from the record and
then, using the local query tool, the program detects all the line stops in the radius.

3. Finally, for each stop, is retrieved a set of lines for starting with it. Those lines are
stored into the list, and then processed as candidates on the next step.

The following algorithm presents the pseudo-code for this solution.

Algorithm 1: Detect Line Starts Algorithm
Input: QueryTool: an object for making spatial queries
Input: Records: a set of records from a given node, in a given day
Output: start profile: a list of the line start detections for each one of the records

1 start profile← ∅
2 foreach record ∈ Records do
3 record position← record.extractLatitudeLongitude()
4 nearest stops← QueryTool.getNearestBusStops(record position)

5 lines of the record← ∅
6 foreach bus stop ∈ nearest stops do
7 line of bus stop← QueryTool.getLinesStartingWith(bus stop)
8 lines of the record.append(lines of bus stop)

9 start profile.append(lines of the record)

Algorithm for finding solutions from line starts

This procedure implements a greedy strategy for finding a solution from a set of candidate
ones, following strictly the design described on the section 5.4.3. Regarding the pseudo-code
present on the Algorithm 2, this section describes its operation.

As input, it take four elements: a QueryTool object for making spatial queries, the position
log database records to be matched, the set of starting lines for each one of the records, and
finally, the base TTL, later explained.

70

The algorithm starts by creating an iteration variable i and initializing it to zero. Then,
it initializes solutions, which is a list data structure for holding a set of solution objects
(lines 1 and 2).

Iterating all over the records, the algorithm starts by verifying if there are or not a set of
starting lines for the currently iterated record. If there are no starting lines, the algorithm
proceeds to the next record. Otherwise, it continues (line 3).

Starting Lines is a list of map like-structures. Inside each one of these structures, there is
also a list of lines starting in the position of the present record. The next step, is to verify if
one of them is a solution. Regarding this, a simulation is done for each of the starting lines
(line 5).

Before starting the simulation, a context must be built. The variable j tracks the current
progress of the simulation. The stops of the the current line are loaded and the remaining
variables are initialized. matches consists in a list of bus stops which will be matched;
indexes is a variable for saving the time of that match, in terms of its record index. Then,
solution found controls the simulation, by interrupting the simulation cycle when a solution
is found. Finally, the target order holds the value of the order of the next bus stop that the
algorithm will try to detect (line 6 to 14). The initial target order is one, regarding that for
solving the problem of the detection of the circular lines (lines starting and ending in the same
place), we transform the circular lines in normal lines by ignoring the first bus stop. This
technique works because of the used heuristic, which detects line starts (not losing, therefore,
the first bus stop detection).

The implemented timeout strategy consists in setting a metric called time-to-live (or
simply TTL), as described in the section 5.4.3. With this metric, the algorithm is able to give
up on the current simulation, if it is unable to find the target bus stop in a certain amount of
time. The default timeout is 15 minutes because, based on the experience, it is the value that
delivers best results. TTL will decrease along the simulation. If the simulation is not being
successful, the cycle will go on until it reaches its termination, trying another candidate (line
15).

Then, the simulation starts, and it needs to verify if the simulation iterator reached out
the data length. If that is true, the algorithm exits (lines 16-19). TTL decreases.

After that, the current GPS position is extracted, and the nearest bus stops are retrieved
(lines 20-21). For each of the bus stops, it is verified if they belong to the line and if they are
not already matched. If they are not matched, the bus stop order is extracted and it is made
a verification for asserting that the bus stop is expected in a near future. This verification
prevents bad matching of circular lines (lines 20-23).

If the order of the detected bus stop fits this criteria, both matches and indexes are
updated, as is the target order updated too. The variable TTL is put to its default (lines
24-29).

After all the bus stops finish the evaluation, the completeness rate is computed. If the
last stop was detected and the completeness is greater than 80%, the solution is saved into a
data structure and added to the solutions. The lines 32 and 33 handle the detection of the
first stop, which is the first to be detected but the last to be tracked. This is also implied
as technique for detecting circular lines since, if the completeness metric is targeted and the
last stop is detected, only one bus stops will be missed (the first, regarding the initial target
order). The iteration variable i is updated, making the main control cycle ignore the analysis
of all the intermediate records which are covered by the found solution (lines 32-41).

71

Algorithm 2: Find Solutions Algorithm
Input: QueryTool: an object for making spatial queries
Input: Records: a set of records from a given node, in a given day
Input: StartingLines: a start profile of the the records, output from the procedure implementing the

heuristic detect line starts

Input: BaseTTL: the timeout for finding a next bus stop (the default is 15 minutes)
Output: solutions: a list of matches

1 i← 0;
2 solutions← ∅
3 while i <Records.length() do
4 if StartingLines.index(i) is not empty then
5 foreach candidate ∈ StartingLines.index(i) do
6 j = i;

7 line stops← QueryTool.getStopsFromLine(candidate);
8 first stop← line stops.getFirstElement();
9 line stops.setElement(0, None);

10 last stop← line stops.getLastElement();

11 matches← ∅;
12 indexes← ∅;
13 solution found← False;
14 target order ← 1;

15 ttl← BaseTTL;

16 while ttl >= 0 do

17 if j >= Records.length() then
18 return solutions

19 ttl← ttl − 1;

20 current position← Records.index(j).getLatitudeLongitude();
21 nearest bus stops← QueryTool.getNearestBusStop(current position);
22 foreach nearest bus stop ∈ nearest bus stops do
23 if nearest bus stop ∈ line stops and nearest bus stop /∈ matches then
24 stop order ← line stops.index(nearest bus stop);
25 if stop order ∈ [target order, target order + 5] then
26 matches.append(nearest bus stop);
27 indexes.append(j);
28 target order ← stop order + 1;
29 ttl← BaseTTL;

30 completeness← (matches.size() + 1)/line stops.size();
31 if last stop ∈ matches and completeness >= 0.8 then
32 matches.insert(0, first stop);
33 matches.insert(0, i);
34 solution← initializeMap();
35 solution.map(’line’, candidate);
36 solution.map(’stops’, matches);
37 solution.map(’indexes’, indexes);
38 solution.map(’completeness’, completeness);

39 solutions.append(solution);

40 i← j;
41 solutionfound← True;

42 j ← j + 1;
43 if solution found is True then
44 break;

45 i← i + 1

72

6.3.6 The tools module

This tools module implements a spatial querying tool, through the object QueryTool.
This spatial querying tool enables a wide-range of spatial and bus carrier intelligence queries,
such as:

• Get the nearest bus stops from a given GPS point.

• Get all the lines from which a bus stop belongs.

• Get all the stops belonging to a bus stops.

• And more.

To implement it, two main third-party libraries are used. One is Rtree10, which provides
spatial indexing for Python. Its functions enable operations like the nearest neighbour search,
an essential feature for this program. Also, it serves as an inexpensive spatial in-memory
database. Having into account that queries are exclusively done to bus stops, those stored
attributes can be bus stops or bus stop codes. Because of the inevitable overhead and easiness
of operation, a full GeoJSON feature representing each one of the bus stops is stored.

Unfortunately, Rtree is incapable to answer for proximity queries given a radius. For im-
plementing this feature, this software makes use of geopy11, for calculating distances between
two GPS points, using Vicenty’s formula.

6.4 Matches Database

6.4.1 Overview

The Matching Unit generates new data, which reflects an association between the data
which is initially available from the different data sources. This relation, which is called by
match, is stored in a database, defined in the architecture as the Matches Database.

This database stores the output of the algorithm 2. The main algorithm output is the
match, which answers to the questions ”what”, ”when”, and ”which”: ”what” node produced
such result, ”when” it happened, and ”which” line it matched. Also, the algorithm 2 stores
more detailed information about that match, like ”what bus stops were matched” and ”how
much time passed between those bus stops”. This information is correlated with the contex-
tual information, as can be seen on the following database diagram in figure 6.4 and detailed
description.

Regarding this, the following database modeling schema is implemented, using the SQL
database management system PostgresSQL. Several functions are implemented, increasing
the usability and security on the interaction with this database.

One of the most important functions is get matches, as it is used on the Synchronization
Script. In the fact, that stored procedure, from itself, extracts and transforms the data in
the exact format needed to be loaded into the Estimation Database.

10Rtree website (http://toblerity.org/rtree/)
11Geopy website (https://github.com/geopy/geopy)

73

http://toblerity.org/rtree/
https://github.com/geopy/geopy

6.4.2 Database schema description

The figure 6.4 presents the database diagram, which depicts the modeling Given the
specified requirements, the following database is designed:

line

id

code

direction

name

description

stop

code

name

address

zone

stop_instance_id : id

match_id : id
match_detail

gps_time

match_id

stop_instance_id

line_id : id

stop_instance

id

order

line_id

stop_id

match

id

node_id

start

end

completeness

stop_id : code

Figure 6.4: Matches Database Diagram

The table match stores all the found solutions. It has six attributes: node id (identifies
which node produced such result), start and end (which are timestamps delimiting the
starting and ending time of the found match) and completeness (the percentage of detected
stops).

The table match detail stores, as the name concerns, details about a match. Its attributes
are match id (identifies the match), stop id (identifies the stop instance) and gps time (a
timestamp for this match occurrence).

Then, the table stop stores the bus stops. Bus stops are part of contextual information
of the system and thus, this table is populated upon creation. A stop has the following
attributes: a code (which serves as slug), a name (a human understandable identifier), a
address (the address of the bus stop) and the zone (which relates to the carrier bus zone
classification).

In a similar way, line stores the bus lines. Regarding the fact that line is also part of
the contextual information, it is also populated upon creation. A line has several attributes,

74

namely, an id (unique identifier), a code and a direction (both can be a identifier too
because the code relates to the set of stops and the direction refers to the iteration order).

Finally, the table stop instance maps the relation between the table stops and the table
line, regarding the many-to-many relationship between those two. The attribute order is
the order of the bus stop (referred by the foreign key stop id) in that line (referred by the
foreign key line id).

6.4.3 Routines

Regarding the interaction with this database, several routines are available. SQL Rotines
are ”are routines that have logic implemented with only SQL statements”[19]. They are used
by the Database Wrapper Module, to later use on the APIs, and are named as follow:

6.4.4 Functions

• get line id

– Description: Obtains the line object unique identifier, from the database, given
the bus line code and direction.

– Entry Parameters: line code, line direction.

– Return Value: An unique identifier of the line object stored in the database.

• get stop instance id

– Description: Obtains the stop instance object unique identifier from the data-
base. , given the bus line code and direction.

– Entry Parameters: stop code, line code, line direction.

– Return Value: An unique identifier of the stop instance object stored in the
database.

• get match count

– Description: Get the total amount of matches.

– Entry Parameters: None.

– Return Value: The amount of matches stored in database.

• get match details

– Description: Gather set of matched bus stops of a given match.

– Entry Parameters: Unique identifier of the match object

– Return Values: A table with the timestamp of the matched bus stop, the bus
stop code, direction, and line code and its direction.

• insert match

– Description: Inserts a match in the database.

– Entry Parameters: Unique identifier of the node which did the matches bus line,
timestamp of the first capture, timestamp of the last capture, completeness rate.

75

– Return Value: Unique identifier of the newly inserted match.

• insert match detail

– Description: Inserts a matched bust stop in the database.

– Entry Parameters: Timestamp of the matched bus stop, unique identifier of the
match, stop code, bus line code and direction

– Return Value: A unique identifier of the newly inserted match detail.

6.5 Estimation Database

6.5.1 Overview

The statistics database is one of the major components of this implementation. It provides
a mean for calculating efficiently the target metrics (the estimated times of arrival and the
time between bus stops).

6.5.2 Development history

The first design of the statistic database is an implementation of a data mart, in a star
schema configuration [37]. In a start schema, the tables on the center are called fact tables,
and the border tables, connected to the central ones, are called dimension tables. The diagram
of this data mart is presented in the figure 6.5.

Figure 6.5: Data Mart Diagram

Later, after running the matching unit several times, the data mart started to showing
some performance problems, mainly because of queries taking too much time (18 seconds).
As a result, the issue was studied and several approaches have been placed.

First, the database columns data types and indexes have been verified. The indexes
have been also rebuilt. The type of the attribute gps time was TIMESTAMP and the stored
procedures that were built for computing the median were not costly in terms of performance.

76

After refactoring them by converting the TIMESTAMP to FLOAT (relative to the start of the
epoch), the footprint was reduced from 18 seconds to 1 second.

Despite of targeting 1 second of query time, it was not enough for providing querying
times directly to the applications, through the APIs. For example, if a bus line has 30 bus
stops, it would take 30 seconds to load the information. Thus, further improvements were
required.

The first approach was to test a compatible schema using InfluxDB12. Influx is a time-
series database, meaning that it is optimized to handle time series data. Unfortunately,
InfluxDB does not provide means for measuring accurately its query performance, being that
a reason to not use it as solution.

The second and final approach consists into using PostgreSQL13, designing a database
with only two relationship-less tables: one for the metrics, condensing the most important
attributes of the previous dimensions existing in the data mart into one single table, and
another for metadata. Multicolumn indexes are also built-in.

This final query time is between 20 and 45 ms being, by far, much more acceptable. Details
regarding this later version are presented in the following subsections. The most noticeable
side-effect is the fact that this schema occupies more more space in disk.

6.5.3 Database diagram

The figure 6.6 presents the estimation database diagram.

Figure 6.6: Data Mart Diagram (not definitive image)

6.5.4 Database schema description

This database schema is composed by two tables:

• times of arrival is the table where the performance metric is stored (unix time).

• sync meta is the table used by the synchronization script for understanding if there
were or not synchronization errors.

The goal of this database is to operate unix time, which is the GPS time of the match
in a form of a UNIX epoch, for getting its most popular values in a set of percentiles (for
instance, 25%, 50%, 75%). The other attributes (columns) are exclusively used as filters:

12InfluxDB (https://www.influxdata.com/time-series-platform/influxdb/)
13PostgreSQL: The world’s most advanced open source database (https://www.postgresql.org/)

77

https://www.influxdata.com/time-series-platform/influxdb/
https://www.postgresql.org/

• line code and line direction identify the bus line of the match.

• stop code identifies the bus stop of the match.

• date identifies the date of the match.

• day of week identifies the weekday.

• match id identifies the match.

Finally, updating the Estimation Database is possible using the Synchronization Script,
explained in the following section. To understand if there were or not synchronization errors,
a meta-data table called sync meta is included.

This table contains 6 columns:

• id is a unique identifier for a synchronization.

• start time is the timestamp referring to the time when the synchronization started.

• end time is the timestamp referring to the time when the synchronization ended.

• start match id refers to the unique identifier of the first match that was fetched under
the synchronization process.

• end match id refers to the unique identifier of the last match that was fetched under
the synchronization process.

• completed defines whether or not the last match was successfully synchronized.

More details about the synchronization process are described in the subsection 6.6.

6.5.5 Routines

Below, it is presented the functions and the triggers developed for building this system.

Functions

• get time estimations

– Description: Gather the time estimations without any time constraint (i.e.,
without distinguishing workdays from weekdays).

– Entry parameters: query time, an initial and a end date for delimiting a period
for calculating the estimations, a tolerance to be used with conjunction with the
query time, for accepting values for the estimation and finally, the bus line code,
direction and bus stop code.

– Return values: The value of the percentiles, as previously cited in 6.5.4.

• get time estimations for weekends

– Description: Gather the time estimations for timestamps in the weekend.

78

– Entry Parameters and Returns Values: are the same as the ones from the
function get time estimations. The difference is that time estimate computation
only considers the days of the weekend.

• get time estimations for working days

– Description: Gather the time estimations for timestamps in the working days.

– Entry Parameters and Returns Values: are the same as the ones from the
function get time estimations. The difference is that time estimate computation
only considers the work days.

• to epoch dirty

– Description: This function converts a SQL timestamp to a UNIX epoch (float), in
1970. This conversion is done because it is not possible to calculate the average or
the median of a UNIX epoch belonging to a different day. Therefore, this function
sets a timestamp as being in 1970-01-01 HH:MM:SS, where HH:MM:SS is the input
timestamp.

– Entry Parameters: A timestamp.

– Return Values: A float representing the time in seconds, as the UNIX epoch,
from 1970.

• get matches corresponding

– Description: Returns a set of match detail objects corresponding to a given bus
line and bus stop, in a certain day of the week.

– Entry parameters: line code, direction, stop code, reference timestamp, day of
week.

– Return Values: a table comprising a list of date and matches corresponding to
the input values.

• get matches corresponding for weekends

– Description: Returns a set of match detail objects corresponding to a given bus
line and bus stop, for the days of the weekend.

– Entry parameters: line code, direction, stop code, reference timestamp

– Return Values: a table comprising a list of date and matches corresponding to
the input values.

• get matches corresponding for workdays

– Description: Returns a set of match detail objects corresponding to a given bus
line and bus stop, for the work days.

– Entry parameters: line code, direction, stop code, reference timestamp

– Return Values: a table comprising a list of date and matches corresponding to
the input values.

• insert time

79

– Description: Function for inserting a match detail in times of arrival.

– Entry parameters: time of the bus stop capture, bus line code, direction, bus
stop code, date, unique identifier of the match from which the inserted match detail
belongs.

– Return Values: an unique identifier of the newly inserted record.

Triggers

• update day of week

– Description: ’After insert’ trigger which updates the column day of week, by
extracting the day of week from the newly inserted timestamp.

6.5.6 How estimates are calculated

The calculation of an estimate is performed, according with the following workflow:

1. Select all of the matches.

2. Filter them using the bus stop code.

3. Filter them using the bus line code and direction.

4. Filter them by restricting them to a date interval.

5. Filter them by restricting them to a time interval.

6. Optionally filter them by restricting them to a day of week.

7. Apply the percentile calculation to the remaining dataset.

This algorithm is implemented by the database function family get time estimations

and based on the workflow described in 5.4.4, which are later used for providing functionality
to the dashboard and to the mobile application. The dashboard makes use of a date interval
of one month and does not apply the restriction by day of week, but rather, by using working
or weekend days depending on the reference date.

6.6 Synchronization Script

Given the system’s architecture, it is fair to admit that the Matches Database is part of
the operational system, because the Matching Unit generates data and interacts directly with
the database, modifying its content, by adding more data.

The data must be loaded into the Estimation Database from other data source, potentially
requiring a staging phase for filtering it and transforming it to the wanted format. In this
case, the design of the two different databases is very similar, resulting from the well-defined
and directed architecture. Thus, the data filtering is not needed, being the synchronization a
matter of extracting the data from one side (Matches Database) and loading it in the other
side (Estimation Database).

Therefore, a synchronization script is implemented, having the following flow:

80

• First, it analyzes the clean state of the Estimation Database, by verifying if the last
synchronization was or not successful (using the meta-data table sync meta). A bad
synchronization consists on having more data in the estimation database than data
which is already logged in the meta-data table. Therefore, it cleans all the insertions
which are not tracked.

• Then, it verifies how many matches are out of sync when comparing the source database
with the target, and builds a list of jobs (matches) to be uploaded.

• Finally, it starts transferring each one of the matches to the Estimation Database. More
precisely, it uploads the result from a procedure called get matches() which outputs
a slight modification of the attributes of the Matches Database table match details

with the line code, line direction and stop code, rather than their identifiers. If an
error occurs, the try-except clause makes sure that the synchronization log is written,
setting the attribute completed to FALSE. It keeps track of the last match identifier,
requiring that only that one must be synchronized again. If the problem source is from
the outside (network, reset container, etc), there is no problem: the synchronization’s
first stage will erase everything which is not marked as done, and synchronize every
single untracked match again. Otherwise, if everything goes right, the log is written,
setting the attribute completed to TRUE.

6.7 Prediction Module

6.7.1 Overview

The goal of the prediction module is to deliver predictions of bus arrival times at each bus
stop of a bus line. Thus, this module can be integrated in a service that can be accessed by
bus passengers, in real-time.

Using machine learning is a natural approach for implementing this module. This approach
can be classified as a supervised learning task because training values are provided (the
timestamps). Since the target value is not a class but rather a continuous value (a float
expressing a time in the form of UNIX epoch), the type of machine learning algorithms that
need to be tested are regressions.

For developing this module, the machine learning workflow presented in 2.6.3 is applied,
using the Python language and the machine learning framework scikit-learn14.

A detailed description concerning the crucial steps are explained in the following subsec-
tions.

6.7.2 Algortihms

The three tested algorithms are the following:

• Random Forrest Regressor 15

14scikit-learn: Machine Learning in Python (http://scikit-learn.org/stable/index.html)
15Random Forrest Regressor on scikit-learn documentation (http://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.RandomForestRegressor.html)

81

http://scikit-learn.org/stable/index.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

• Gradient Boosting Regressor 16

• Bagging Regressor (using decision trees or Support Vector Regression)17

These machine learning algorithms are ensemble methods, as seen in 2.6.3. Their choice
is based upon recommendation of the literature [27], in order to obtain a better accuracy.

The objective of using three different algorithm is to find which of them has the best
overall performance.

6.7.3 Data Collection and Preparation

For feeding the machine learning algorithm, a procedure is called for fetching at the least
one month of matches, counting from the reference date. Those matches must be, either,
from working days or from the weekends, depending on the reference date day of the week.

Requirements

There are two requirements that must be fulfilled before proceeding:

• The first concerns the minimum amount of matches needed to make a prediction work,
that is 2, regarding the used cross-validation method (TimeSeriesSplit, see [41]).
TimeSeriesSplit is based on K-Fold [41] but does not shuffle the data randomly be-
cause time-series data is continuous, so disorganizing it would mean losing information
(see figure 6.7).

• The second requirement is focused on the cardinality of each match. Since the gathered
matches may not have the same completeness rate, the cardinality of each of the matches
can be different, making the cross-validation method generate folds with different sizes
and making the prediction impossible.

train test

train testtrain

train train train test

train train train train test

iteration 1

iteration 2

iteration 3

iteration 4

Figure 6.7: TimeSeriesSplit iterations over data

16Gradient Boosting Regressor on scikit-learn documentation (http://scikit-learn.
org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#

examples-using-sklearn-ensemble-gradientboostingregressor)
17Bagging Regressor on scikit-learn documentation (http://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.BaggingRegressor.html)

82

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html##examples-using-sklearn-ensemble-gradientboostingregressor
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html##examples-using-sklearn-ensemble-gradientboostingregressor
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html##examples-using-sklearn-ensemble-gradientboostingregressor
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html

For solving both problems, the the data is normalized: if a match is missing a bus stop,
its value is populated with the average of the value of the remaining matches. If all of the
matches are missing that bus stop timestamp value, it is set to zero, signalling a miss. In
this way, the machine learning algorithm can be trained, tested and validated using a normal
machine learning workflow or using an utility class for choosing the best model given the
hyper-parameters.

Dataset characterization

The dataset gathered for this study concerns the hypothetical bus passenger query for
finding the time that a bus is predicted to arrive to bus stop PRG4, of the bus line 200

Castelo do Queijo at the 15:00 (smartphone system time) of March 24th of 2017.
To gather the information, the function get matches corresponding is used. It considers

a limit of 5 minutes below and above the reference time, and a date window of 1 month, with
the objective of the machine learning model being more sensitive to newer input data. This
results in 10 bus line completions, each one with 28 samples, being used on the final regression
9 bus for training and the remaining one for testing.

6.7.4 Model Selection and Cross Validation

Choosing a model is not an easy task. Tuning the hyper-parameters manually is an
option but, better than trying to guess the values that make the model fits best the data it
is important to use a scientific approach for obtaining them.

Regarding this, the hyper-parameter tuning is done with the help of GridSearchCV. It
takes three main parameters:

• base estimator: an estimator implementing the Estimator API (in this case, any of
the ensemble learning regression algorithms).

• param grid: dictionary with parameters as keys and lists of values to try as value.

• cv: a cross-validation generator (in this case TimeSeriesSplit is mandatory).

Three similar Python scripts have been developed for testing GridSearchCV with each one
of the algorithms. The parameters which obtained the best settings were the following:

• Bagging, using decision trees:

– max samples (number of samples to use from the train dataset, to train each of
the estimator): 0.9

– n estimators (number of boosting stages to perform): 1000

• Bagging, using SVR:

– base estimator: SVR

∗ C (penalty parameter): 1e4

∗ Kernel (kernel type for being used within the algorithm): ’rbf’

– max samples (number of samples to use from the train dataset, to train each of
the estimator): 0.7

83

– n estimators (number of boosting stages to perform): 10

• Gradient boosting:

– learning rate (contribution of each estimator): 0.05

– loss (loss function that needs to be optimized): ’lad’

– max depth (maximum depth of the individual estimators): 3

– n estimators (number of boosting stages to perform): 1000

• Random Forrest:

– max features (the number of features to consider when seaching for the best split):
’sqrt’

– n estimators (number of boosting stages to perform): 100

6.7.5 Evaluation

GridSearchCV also provides regression metrics to evaluate the model with newly found
hyper-parameters.

Those metrics are:

• Explained variance score measures how well the mathematical model takes into
account the dispersion of the input data. The possible values are between 0 and 1.0,
being higher values better.

• Mean absolute error measures the average of vertical distance between the true point
and the predicted.

• Mean squared error measures the square of the errors of the deviation. It is an
indicator for the quality of the estimator. Values closer to zero are better.

• Mean squared logarithmic error18 measures the square of the errors of the deviation.
It is an indicator for the quality of the estimator. Values closer to zero are better. This
metric is best employed when the target values of the regression has a exponential
growth.

• Median absolute error measures the median ”median of all absolute differences
between the target and the prediction”[1]. Lower values are better.

• R2 score (coefficient of determination) measures ”how well future samples are likely
to be predicted by the model”[1]. Values between 0 and 10, being 1.0 the best.

The metrics comparison are presented in the section 7.4, under Results.

18Mean Squared logarithmic error (http://scikit-learn.org/stable/modules/model_evaluation.html#
mean-squared-logarithmic-error)

84

http://scikit-learn.org/stable/modules/model_evaluation.html##mean-squared-logarithmic-error
http://scikit-learn.org/stable/modules/model_evaluation.html##mean-squared-logarithmic-error

6.7.6 Deployment

It is, often, desirable to persist the machine learning model to avoid retraining the model
again. In this study, the model is not persisted because the data would change for any
variation of time and location. This pre-computation would require an effort that is out of
the domain of this dissertation, requiring a totally different approach to the architecture –
using a lambda architecture.

Therefore, the machine learning model is trained every time that a request is done, as
seen in Prediction API (see 6.9.4), which is not a recommended way of deploying but serves
well as proof-of-concept.

6.8 Database Wrappers Module

Despite of the creation of database functions for interacting with the databases, they still
need a high-level way of interacting with the databases.

From the programmer point of view, calling those functions using a database adapter
requires a certain amount of overhead when writing code: it requires opening a connection,
creating a SQL statement, sending it, retrieving the result and finally, closing the connection.

To decrease this overhead, a set of database wrappers is implemented, making it easier to
manipulate data from the database without having to write SQL code, but simply by using
the methods of Python custom-made object.

This module makes use of psycopg (for the PostgreSQL databases) and pymysql (for the
MySQL database), being reused in several parts of the architecture: on the Matching Unit,
on the Synchronization Script and on the APIs.

6.9 Integration APIs

Delivering information in a interchangeable format must be a concern on applications like
the one in this thesis. Regarding that, a set of very small REST-full services with a very spe-
cific purpose are implemented using the Python language and connexion19, which provides
a mean for presenting the API documentation automatically from a swagger20 YAML21 spe-
cification file.

Four separate APIs are implemented:

• Bus Network Information API delivers information about the bus carrier infra-
structure (the lines, stops, the relation between them).

• Matches API delivers information about the matches, data which is stored in the
Matches Database.

• Estimation API delivers only one endpoint for gathering the estimated times of arrival
given a stop, a line and a date, data which is stored in the estimation database.

19Connexion, a Swagger/OpenAPI First framework for Python on top of Flask with automatic endpoint
validation OAuth2 support (https://github.com/zalando/connexion)

20Swagger, The world’s most popular API tooling (https://swagger.io/)
21YAML Ain’t Markup Language (http://yaml.org/)

85

https://github.com/zalando/connexion
https://swagger.io/
http://yaml.org/

Figure 6.8: User Interface of Matches API, generated by Swagger

• Prediction API delivers an endpoint for making predictions, using the prediction
module.

This is projected with two objectives in mind:

• To deliver information in an agnostic and inter-operable way for this project applica-
tions.

• To serve as an open API for future projects.

The APIs deliver information in the JSON and GeoJSON formats. The endpoints are
explained in more detail on the following subsections.

6.9.1 Bus Network Information API

This API is composed by two endpoints:

• /lines provides the information about the carrier lines. It has two types of view: a list
view and a detailed view. The list view lists all the lines and the detailed view displays
only one line in detail. It is possible to expand the detailed view for obtaining the line’s
stops in a list view too.

• /stops provides information concerning the carrier bus stops. It also compresses a list
view and a detailed view for delivering a list of stops and the details about a single one,
respectively.

86

6.9.2 Match API

As the name implies, this API delivers information about the matches, being compelled
by two endpoints:

• /matches presents a list view of the matches of given line a and date.

• /matches/match id presents match details: a list of the matched bus stops from a given
match, identified by a match id.

In the first endpoint, the match presents some of the attributes of the table match, referred
in the subsection 6.4.2: the match id, node id, start, end and completeness.

In the detailed view, it is shown a list like structure with three attributes: the code of the
matched bus stop, the order of the stop in that matched line, and gps time, which is the
timestamp that is presented on the record which brought this match.

The Match API is used more consistently on the Line Performance Dashboard.

6.9.3 Estimation API

The Estimation API delivers time estimations for a particular bus stop of a bus line, in a
date and time. These estimations are performed by calculating the values on the 0, 25, 50,
75, 100 percentiles. The value at the 0 percentile is referent to the time when the bus arrived
sooner. On the opposite, the value at the 100 percentile is referent to the time when the bus
arrived later.

There is a single endpoint – /estimate. It takes 7 arguments identifying the bus line, the
bus stop and the time frame to gather the estimation from, and returns a single JSON object
with the value of each of the percentiles.

Its main usage is done on the dashboard (described next) for displaying the evolution
of the delays across a day, for example. This endpoint is also very relevant in the mobile
application, where it is possible to a bus user to query the estimated time of a bus, in a given
place.

6.9.4 Prediction API

This API is different than the ones previously stated. Despite of using the same technology
(Python and connexion), it is a proof-of-concept that trains the scikit-learn machine
learning algorithm described in 6.7, for predicting the estimated time of arrival of a bus in a
given stop and line given a timestamp.

6.10 Applications

Two main applications have been developed as an effort to illustrate the outputs of the
system architecture. One is a line performance dashboard, meant of bus carrier managers
and the other is a mobile application for bus passenger. The following subsections explain
each of the applications.

87

6.10.1 Bus Line Performance Dashboard

This dashboard makes use of the estimated times of arrival to deliver statistics based on
the previous matches, and thus, based on past history.

The ideal solution for presenting this plot would be to gather the fixed time tables of
the bus carrier, using them for feeding the estimation database and querying it for results.
Unfortunately, that information is not available, and so, the plot compares the current match
with the usual behavior in last month.

The first page of the dashboard consists on a list view, displaying the matches for a chosen
line. The figure 6.9 presents this view, for the line 200 Bolhao.

Then, after choosing a match, a detail view regarding the match detail for that line at
that hour is shown. The plot, presented in the figure 6.10, presents a delay plot. Each point
in the horizontal axis corresponds to a bus stop. The vertical axis measures the delay (in
minutes). The zero value corresponds to the current measurement. The darker color track
represent the values between the first and third quartile of the values.

To understand this plot, there are several characteristics that one must to be aware. The
first is the stroke of the darker central area. If it is thicker, it means that the times of arrival
have a high variance. However, if it is thin, the variance of the delay is lower, meaning that
the line usually performs well (as the figure 6.10 shows).

In terms of technologies, Angular22 is used. It is very important on the application organ-
ization and driving flow, given its capabilities for routing between pages, while dynamically
fetching content, placing it in the web page seamlessly to the user.

While Angular provides a good foundation for building a web application, ng-charts23

provides an interface for the flexible ChartJS24 charting tool. For the other visual aids,
Semantic UI25 is used and for installing, managing and keep tracking of these libraries,
NPM26 is used.

22Angular (https://angular.io/)
23ng-charts: Beautiful charts for Angular2 based on Chart.js (https://github.com/valor-software/

ng2-charts)
24ChartJS: Simple yet flexible JavaScript charting for designers developers (http://www.chartjs.org/)
25SemanticUI: Design Beautiful Websites Quicker (https://semantic-ui.com/)
26Node Package Manager (https://www.npmjs.com/)

88

https://angular.io/
https://github.com/valor-software/ng2-charts
https://github.com/valor-software/ng2-charts
http://www.chartjs.org/
https://semantic-ui.com/
https://www.npmjs.com/

Figure 6.9: This is the match browser view, where the bus fleet manager can analyze each
one of the matched bus journeys.

Figure 6.10: A view over the delay plot

6.10.2 Bus Passenger Mobile Application

Enhancing public transportation can be done through various ways. One could be through
the provisioning of open APIs, capable to deliver information about schedules, the actual

89

position of a bus, etc. Another way is by building applications whose purpose is to increase
the mobility of public transportation users.

Regarding this, bringing applications for the bus passenger is a more appealing way of
showing how the results can be an advantage for the topic of Smart Transportation.

This application is implemented using Ionic27, which is a ”free and open source mobile
SDK for developing native and progressive web apps with ease”[10]. Being progressive means
that it uses the last and trending technologies. By web app, it means that it uses web
technologies like regular pages use, while it may appear to be looking like a normal mobile
application. It is a cross-platform application too.

For showing the map, it is used LeafletJS with the plugin Leaflet.markercluster,
which is a marker clustering plugin, because there are 2521 bus stops from STCP in Porto,
and showing them in a mobile device in such litle area is computationally very intensive. A
curiosity regarding this is that this implementation is much more faster than the Android
native counter-part.

Other details of the implementation regard Ionic internals which are based on Apache

Cordova28, for the location (because the application is location aware) and 2D acceleration
(used for better visual performance).

This application consists in three views:

• The map view, where the user may find a bus stop or query for its location and find
bus stops nearby.

• The detail view, which enables a user to know from which bus lines the selected bus
stop bellongs, as well as analyze the estimated time of arrival.

The figures 6.11a and 6.11b display the mobile app.

6.11 Summary

This chapter covered the most important implementation details of the project, starting
from the data acquisition, going through the end-users applications.

One of the most important aspects of the implementation focuses on the matching unit, re-
garding the different approaches and conclusions, which resulted almost as direct consequence
of the chosen development language (Python).

Also, the matching algorithm and its heuristic are explained, and the pseudo-code is
provided.

The machine learning problem is also presented, clarifying the main methodologies adop-
ted for computing its models.

Then, an overview was done concerning the database modelling and their routines. As
mean for making applications interacting, APIs were also constructed.

Finally, the applications are presented as immediate results and proofs-of-concept of this
implemented system.

27The top open source framework for building amazing mobile apps.” (https://ionicframework.com/)
28Apache Cordova (https://cordova.apache.org/)

90

https://ionicframework.com/
https://cordova.apache.org/

(a) The application map view (b) The application detail view

Figure 6.11: Two different views of the mobile application

91

92

Chapter 7

Deployment and Results

7.1 Introduction

After the system implementation, two additional steps are required to prove its function-
ality. One is the act of putting it in production. The other is to analyze and discuss the
quality of the results. This last step is required for validating this work.

This chapter presents:

• The Deployment is presented, describing the available hardware and software.

• The Results are presented and discussed, either for the case of the matching algorithm,
either for the case of the travel time estimation and prediction.

7.2 Deployment

7.2.1 Hardware

The system is deployed on two different machines, with different specifications and avail-
ability. One is a virtual machine which, despite of high availability, is not powerful enough
to deploy the full architecture. The other is a desktop computer, used development machine,
that, regardless of not being equipped with power supply redundancy and being subject to
network modifications, it is the only available machine capable of supporting the implemented
system in terms of performance.

Therefore, target deploy system in use is the development machine, having the following
characteristics:

• Intel Core i7-7700, with a base clock of 3.60GHz, with 4-cores and 8 threads.

• 32 GB of RAM memory.

• 512 GB of disk storage (SSD).

7.2.2 Software

The deployment, in terms of software, can be seem in two different layers:

• The operative system.

93

• The deployment tools (for orchestration and containerization utilities).

This software runs on top of a Linux-based operative system. It does not depends on
a specific distribution, but it is required that the distribution supports the containerization
system in use – Docker.

Docker is a top leading container platform which eliminates integration problems because,
as a container platform, everything that is required to make the software to run is packed
inside containers, built with all the libraries and settings which are strictly required to make
the software run. Regarding this, the software will always run, independently of the used
operative system.

Eight containers support the needed infrastructure:

• matches database is based on the official Postgres image from Docker Hub and sup-
ports the Matches Database.

• matches api is based on the official Python image from Docker Hub. It backs the
Matches API, described on the section 6.9.2.

• estimation database is based on the official Postgres image from Docker Hub and
backs the project Estimation Database, where the times of arrival are stored for later
computation.

• estimation api is based on the official Python image from Docker Hub. It backs the
Estimation API, described on the section 6.9.3.

• busnetinfo database is based on an user image denominated mdillon/Postigs, from
Docker Hub, providing a Postgres instance with Postgis extension. It provides STCP
bus network information: the bus lines, stops and their relation. Postgis enables the
making of spatial queries.

• busnetinfo api is based on the official Python image from Docker Hub. It backs the
Bus Network Information API, described on the section 6.9.1.

• algorithm is based on the official Python base image, and provides a base environment
for running the Matching Unit.

• sync is also based on the official Python base image, and provides a base environment
for running the synchronization script.

This arrangement is easily obtained thanks to Docker Compose, which ”is a tool for
defining and running multi-container Docker applications”[12]. It simplifies the management
of the container’s network, forwarding ports from the containers to the host, and also, organize
the orchestration of services. All the containers are able to communicate between them, using
their container name.

Considering the container’s orchestration, a dependency chain is mapped between some
of the containers. For example, the containers which are deploying APIs will launch the
respective database container upon start. The container in which the Matching Unit runs
depends on the containers which run both databases (Matches Database and Estimation
Database).

The system implementation produces two types of results: the line matching and the delay
metrics. The objective of this section is to discuss their quality and meaning.

94

7.3 Results

7.3.1 Matching GPS traces with bus lines

Context

Regarding the objective of obtaining delay metrics, part of this work focuses on solving
the missing link between the position log database and the bus network information.

First, numbers are presented for explaining how many matches were actually done, and
what the indicators tell about the matching processing.

It is essential to understand whether or not the match is acceptable or accurate, because
a non-ideal match will generate inaccurate delay metrics.

Processed Data in numbers

A natural question, at this stage, is how many bus lines were matched in the period of this
study (since the start of January until the end of March). Below, we present some numbers:

• Number of SQL records processed: 94 328 959

• Average processing time (depends on the dataset): 35h14m per month.

• Number of detected bus lines: 268 702, totaling 2985 bus line completions per day.

• Number of detected bus stops: 9 460 737, totaling 105 119 bus stop detections per
day.

• Average of the completeness: 97.199(89) %.

The three months of captures result in more than 94 million SQL records with the location
of the buses. With this technique, 268 thousand matches were found, adding value to vanetV3.

The average completeness, despite of not being a totally reliable metric, shows that in
the average, all of the bus lines detected have 97.2% of its bus stops detected, being a strong
indicator that the algorithm works mostly well.

The inclusion of more variables to assess the accuracy of this algorithm will be a good
topic for the future work.

Results presentation

Given the bus lines diversity in terms of shape, it is needed to test the effectiveness of the
algorithm. The following figures present examples of different matched lines, with different
shapes, on different dates. The figures have two main visual elements: the red dots represent
the GPS log of the match being shown, while the blue line is the matched line.

Circular lines are the trickiest ones because they start and end in the same place. Re-
garding that, a major effort is done for ensuring its correct detection, as referred on the
section 6.3.5.

The figure 7.1 shows the line 300 - CIRCULAR HOSPITAL DE S.JOAO-ALIADOS, that is
one of the most popular STCP Lines.

Most of the lines are one-way straight i.e. not making any cycle, as the figure 7.2 shows.
The algorithm is also able to detect line gaps, thus, detecting the correct line, as seen in

the figure 7.3.

95

Figure 7.1: The match from the node id 2764 from March, 1 St, from 07h00m to 07h55m,
with 100% completeness.

Figure 7.2: The match from the node id 2474 from March, 15 St, from 14h32m to 15h19m,
with 100% completeness

Analysis and Validation

Evaluating weather or not a line is being correctly matched is not an easy job. There is
no way of validating this solution accurately in an automatic fashion.

Therefore, it is done a visual validation. From the visual validation, it can be observed
that the match is done correctly, but some can left respectable clues.

From the analysis of the existing matches, the following type of errors can be observed:

• Errors that result from gaps existing on the input records which are bigger than the
TTL, or gaps that suppress the completion of a line; the gaps on the input records can
be observed on the figure 7.3.

• Errors that result from a bus starting the reverse line that it completed previously,
taking more time than the TTL to reach the first target stop of the new starting line.

96

Figure 7.3: The match from the node id 2801 from March, 8 St, from 18h10m to 19h17m,
with 91% completeness due to gaps on the input records from the position log database,
outlined with stroked circles.

There are other types of situations that do not fall in the error category, but yet, reveal
uncertainty about the match being done. The line 1 - INFANTE, shown on the figure 7.4, can
be matched with 100% completeness, and yet, be a classification mismatch.

Looking deeper to its match details, it is possible to understand what can happen.

Describing the figure 7.4:

• In t0, the bus arrives after completing the line 500 Praça da Liberdade. Then, it goes
around.

• The algorithm tests the lines starting in t1. The reverse line 500 Matosinhos starts
there. Unfortunately, the algorithm is not able to find the line ending because, despite
of the bus going along the route and passing the position marked by the label t3, there
is not any GPS information after the last red dot (in the left), for a long period of time
(almost 30 minutes).

• In t2 it is detected a line that overlaps the previous one. It is tested and it is declared
as a solution on t3.

Regarding this, there are three situations which are plausible of causing problems, de-
creasing the level of confidence in the match, which are:

• There was an error with the log gathering.

97

T1T2T3

T0

T4

Figure 7.4: A line completion with uncertainty

• It was a strategical stop, for making the reverse line 1 - PASSEIO ALEGRE.

• It was the bus driver launch time (this occurred circa twelve o’clock).

Therefore, no accurate validation can be made, except if the bus carrier is involved.

7.3.2 Delay metrics for bus lines and estimated times of arrival

Context

Under the context of this study, the bus carrier network website provides information
about the bus lines and bus stops. The STCP website also considers the bus schedules (also
known as time tables) for a small subset of the bus stops of a bus line1.

Given the previous processing and considering the static timetables available, we can
consider the following results:

• The delay plot of a bus line match.

• The estimated time of arrival in a stop, given a previously defined static value from the
STCP time tables.

• The estimated time of arrival in a stop, given a dynamically chosen value (user given
or inferred by the delay plot analysis).

The following sections present results regarding each one of those three situations.

Result presentation 1.1: Delay plot of a bus line match

The delay plot of a bus line match is presented on the Bus Line Performance Dashboard,
described on the section 6.10.1. This dashboard focuses on displaying statistics for under-
standing the evolution of a given line completion, mainly through the use of a delay plot,
which is a plot enabling the comparison between each timestamp of the matched bus stops
with the usual behaviour, that is based on historic values.

1STCP Timetable Page (http://www.stcp.pt/en/travel/lines/?linha=200sentido=0t=horariostd=2)

98

http://www.stcp.pt/en/travel/lines/?linha=200&sentido=0&t=horarios&td=2

Five values are presented: the current match represents the current bus line completion
that is being compared, the inner red line represents the value of the third quartile (75%) and
the inner green represents the first quartile (25%). These metrics are represented towards the
median value (second quartile, with value 50%), defined as zero. The outter values sample
the edges of the distribution. Values higher than zero are said to be late in relation to the
distribution.

The plot x axis corresponds to the bus stops and the labels identify the stop codes. The
y axis corresponds to the delay, in minutes.

This plot is an important tool because it enables:

• Understanding if the current match does behave normally, when comparing it to its
past history.

• Understanding if the line completion being analyzed on the plot is completed uniformly,
or, if it varies locally (next to a bus stop or a set of bus stops).

• To watch the difference in the behaviour between the line completion in the rush and
non-rush hours.

• Performing long-term time estimations (for instance, in 3 months).

Regarding these characteristics, we have chosen some of the bus lines of STCP that seem
to reveal traffic patterns or mobility problems.

The bus line 204 - HOSPITAL DE SAO JO~AO reveals very well the traffic patterns. It
comprises some popular points of interest, such as Faculdade de Engenharia da Universidade
do Porto, Escola Superior de Educação and Hospital de São João.

Having such important destinations, it is a line that is worth studying. Either students,
teachers and other faculty members must arrive in time to their destination. Topographically,
it traverses the whole city, including the center, being potentially impacted by traffic.

Below, we present the variation of the bus line profiles during February 20, using the
period from January 20th until February 20th of 2017 using 5 distinct periods:

• From 07:01:33 until 07:53:48, which considers the start of the morning rush hour.

• From 07:57:50 until 09:02:20, which is located during the rush hour.

• From 12:01:05 until 12:56:51, which is the lunch time, out of the rush hour period.

• From 15:03:36 until 15:59:51, which is out of the rush hour period but may reveal
some patterns of traffic regarding the city daily life (for instance, end of the school
time).

• From 17:26:37 until 18:44:52, which considers the start of the late hours rush hour.

The plots regarding each one of these time periods are presented on the figures 7.5, 7.6,
7.7, 7.8 and 7.9. The x-axis represents the bus stop codes and the y-axis represents the time
in minutes.

99

Figure 7.5: Line 204 Hospital de S. João from 07:01:33 to 07:53:48

Figure 7.6: Line 204 Hospital de S. João from 07:57:50 until 09:02:20

Figure 7.7: Line 204 Hospital de S. João from 12:01:05 until 12:56:51

100

Figure 7.8: Line 204 Hospital de S. João from 15:03:36 until 15:59:51

Figure 7.9: Line 204 Hospital de S. João from 17:26:37 until 18:44:52

Now that the delay plots are presented, we may take some conclusions:

• Under the figure 7.5, the bus behaviour in that day was very similar to the usual
behavior, in that time frame. The deviation (distance between the value of the first
and third quartiles) is significant in terms of delay, so further inspection is needed to
understand if the line tends to present delay, or if it is a consequence of the bus line
completion in a very low time interval.

• Under the figure 7.6, the deviation increases, intuitively, due to traffic. The darker inner
track limited by the first and third quartile defines a variation that goes almost to 8
minutes, showing that this bus line may present some difficulty on complying with the
schedules. Presenting prediction for bus passenger of those bus lines may present errors
up to more than 5 minutes.

• The figure 7.7 presents a plot showing that, after the rush-hours, the deviation is much
lower. The bus (in blue) performs accordingly with the usual.

• The figure 7.8 shows that, in this period, the bus line works fairly normaly until the third
quarter of the line completion. Later, approximating the faculties, it starts worsening.

• The final plot, 7.9 presents a profile that may be correlated with the traffic of Rotunda da
Boavista, which is one of the main roads of Porto. The deviation increases too, mainly

101

due to the street Diogo de Botelho, which is very dense in traffic regarding Universidade
Católica and being an access to Via de Cintura Interna.

Result presentation 1.2: Detecting problematic lines

Using a longer time to gather estimations results in a great convergence of the percentiles
being calculated. Therefore, the estimations are more accurate providing a better long-term
estimation.

The figure 7.10, 7.11 and 7.12 present bus lines delay plot referring to the same period of
time, on different city flows.

Figure 7.10: 200 Castelo do Queijo, 3 months analysis

Figure 7.11: 204 Hospital de S. João, 3 months analysis

102

Figure 7.12: 902 Boavista, 3 months analysis

Looking to the figure 7.10 plots, we verify that the third quartile is very close to the
median. This means that the variance of the samples in that quartile is low, so it provides a
very strong evidence that the line completion usually completes well.

Then, the plot of the figure 7.11 shows that the bus completion of this day was done
accordingly with the normal. Despite of that, it also reveals that the line has tendency
to present regular delays because the distribution disperses a lot until the third quartile.
This bus line is subject to have mobility issues, but it requires further investigation with
the transportation company to understand the veracity of this conclusion, despite of being a
logical one.

Finally, the plot of the figure 7.12 presents a line that again, does not present mobility
problems.

Result presentation 2: Estimated time of arrival given a previously defined static
value from the STCP time tables

Imagining that the bus carrier wants solid results, quantified by numbers, rather than a
plot, it is possible to deliver the statistical intervals for each of the bus stops, given their
schedules, for understanding if the public timetables are or not up to date.

To do that, there is not an automatic method, but using the Estimation Database, it is
possible to gather such results.

For exemplification purpose, it is shown the table 7.1, concerning statistics from the line
200 Castelo do Queijo, having reference time from STCP Website and considering the
month March only, for the estimation.

Table 7.1: Statistics for a time query associated to a bus line and bus stop

stop code reference time best time first quarter median third quarter worst time
AL1 07:40:00 07:36:23 07:38:50 07:39:49 07:44:53 07:44:58

PRG4 07:53:00 07:50:12 07:51:56 07:53:04 07:54:12 07:56:52
LRD1 07:59:00 07:56:15 07:57:26 07:58:53 08:01:12 08:02:25
MFZ1 08:06:00 08:02:35 08:05:22 08:06:41 08:08:57 08:09:37
CQ10 08:15:00 08:10:15 08:13:07 08:15:04 08:17:19 08:19:25

It can be seen, over the data set, that it is very usual that the median is very close to
the reference times from the STCP Website, indicating that this line worked as expected in

103

March and that the schedules available on the STCP website are right, for this time frame.

Result presentation 3: Estimated time of arrival given a dynamically chosen value
(user given or inferred by the delay plot analysis)

This result is very interesting because it opens possibility for delivering one of the main
objectives: building smart schedules.

One example that can be used is the use-case of an user trying to query for the next
schedule for a bus that he wants to catch. Using his smart phone, he chooses a bus stop, a
line, chooses a time and submits a query like this:

For the Line:”204 Hospital de São João

For the Bus Stop:”For the Bus Stop: Foz”

For the Input Time:”For the input time: 08:10 ”

return a recommendation

As a result the system can output something like this:

”You can catch the bus performing the line 204 Hospital de São João at 8:11.”

This is possible thanks to the Estimation Database methods which are used for retrieving
values for the delay plot. Instead of using the time stamp of a match, it uses an input given
by the user. The statistics table has the format presented on the table 7.2.

Table 7.2: Statistics for a time query associated to a bus line and bus stop

best time first quarter median third quarter worst time
08:05:46 08:10:05 08:11:04 08:12:55 08:14:50

Because the value of the median corresponds to the most typical value in a sorted sequence,
we can consider that the 50% of the values around the median are between 08:10:05 and
08:12:55, providing a solid estimated time of arrival, based on history.

Regarding this result, one may wonder if there is a bus schedule at this time. From the
STCP website, there are, in fact, two schedules for this period: one starting at 08:05 a.m
and another starting at 08:15 a.m. This means that the person will be able to catch the bus
starting at 08:05 (delayed) or the bus which will supposedly arrive at 08:15 a.m.

Validation

Validating these results is again a hard mission. One way of doing it would be contacting
the bus carrier and try to make them collaborate by delivering measures of performance (if
they have them). Although they were contacted, we are waiting for this information.

Another way of validating these results would be by planting a smartphone to probe the
GPS position along time, in a known bus, completing a known line – but it would be a very
restricted test, to very small subset of the bus infrastructure.

7.4 Prediction Module Results

The prediction module main goal is to choose the algorithm that best performs to the
presented date. Therefore, the main goal of this section is to discuss what model is best suited
for being used in the Prediction API. Regarding this, this section presents a comparison of

104

the regression metrics and a comparison between the values resulting from the best prediction
model and the real values.

7.4.1 Regression Metrics Comparison

GridSearchCV is used for training and testing the machine learning models with a different
range of hyper-parameters. It delivers, also, regression metrics for the best hyper-parameter
value combination. Those resulting metrics are presented in the table 7.3.

Table 7.3: Resulting Evaluation Metrics

Bagging
(Decision Tree

Estimator)

Bagging
(Support Vector

Regressor)

Gradient
Boosting

Random
Forrest

Explained Variance Score 0.982 0.975 0.985 0.984

Mean Absolute Error 179.999 133.562 183.049 183.319

Mean Square Error 38972.588 22614.798 39265.194 39925.414

Mean Square Log Error 1.309e-05 7.682e-6 1.320e-05 1.342e-05

Median Absolute Error 201.664 130.909 206.808 206.723

R2 0.899 0.941 0.898 0.897

Despite of having a slightly lower explained variance score, using the bagging algorithm
with the support vector regressor is an overall better choice because:

• The coefficient of determination R2 is higher, meaning that it is likely that this
model is better on predicting accurately.

• The mean square error, mean square logarithmic error, and the median ab-
solute errors are lower than the counterpart models.

• The model is more general: when plotting the solution, the generated regression is
mathematically simpler than the counterparts (see the figures 7.13, 7.14 and 7.15 for a
better comparison).

The figure 7.13 represents the regression curve calculated by the Bagging algorithm, using
SVR as estimator:

• The x-axis represents the bus stops.

• The y-axis represents a UNIX epoch in float.

• The dots are the samples used for training the model, each one belonging to a past
matching experience (i.e. a past bus line completion).

• The green curve represents the regression (built with the regression prediction).

105

Figure 7.13: Bagging (using support vector regressor)

Figure 7.14: Random Forrest

106

Figure 7.15: Gradient Boosting

Therefore, the model chosen for being used in the Prediction API is Bagging with SVR
as base estimator. An important note is that the median error (an mean absolute errors) are
approximately 130 seconds, meaning that predicted passing times may have an error in the
order of 2 minutes and 10 seconds. This is subject to change, depending on the data variance,
something that needs to be studied in more depth, in the future.

7.5 Summary

Despite of being very hard to validate the results, they are interesting and meaningful.
About the matching algorithm, we can conclude that:

• It is capable of matching different shape bus lines, which is a good indicator that the
algorithm works, due to the decision conditions like ”detecting lines starting and ending
in the same place”, or being tolerant to failures due to gaps existing in the position log
records.

• It is not easy to have an accurate metric of accuracy about the matching algorithm
without recurring to third techniques like regressions, spatial analysis, or machine learn-
ing.

• Certain matches are uncertain and cannot be validated unless there is some communic-
ation with the bus carrier to know more about their drivers habits and their operational
mode for scheduling lines.

Regarding the delay metrics and estimated times of arrival, we can also conclude that:

• The delay plot is a good tool for visualizing what usually happens in a bus line. Com-
paring them can give good insights about the line behaviour between a period of time

107

(a morning, a day, etc). It also enables the understanding of the schedule variation,
more precisely, perceive if its variation is higher or lower, a characteristic that raises
more accuracy on the recommended estimated time of arrival.

• Obtaining estimated times of arrival is useful for understanding whether the schedules
from the STCP website are or not right. Despite the fact that it is only shown one
example, it is known that STCP have their schedules up to date.

• Alternatively, estimated times of arrival are also useful and relevant when using a non-
static reference time, like those given by bus passengers.

Finally, considering the Prediction Module, the algorithm with best performance is Bag-
ging with Support Vector Regressor as base estimator. Despite of that, looking for those
indicators is not enough considering that, if the variance of the data is high, the prediction
model is likely to produce inaccurate predictions. It is necessary to study better ways of
fetching data, so the error can be further minimized.

108

Chapter 8

Conclusion and Future Work

8.1 Conclusion

This work started by addressing mobility, defining its timeless importance. Vehicular
networks are raising new opportunities for building new applications that go beyond safety.
This work is integrated in the area of the mobility and smart transportation, proving the
applicability of the operational data, passively built, generating meaningful information for
bus passengers, municipalities and transportation companies.

The match algorithm is a generic solution, depending on few data to deliver a matching
solution. With it, it is possible to guess what bus line is a bus traversing, not only in Porto,
but also in other places, if the vehicular network exist and also information regarding bus
carrier network is provided. The amount of the data being classified is almost 10 times bigger
than the one addressed in the literature, and similarly, it is very hard to make assumptions
regarding the validation and the accuracy of the method.

Then, the arrival time estimation follows a completely different approach than the liter-
ature, but yet, delivers foundations for using as recommendation for bus passenger, or for
delivering reports and decision support systems for the bus fleet operators.

Also prediction is introduced, exploring ensemble learning as a measure for improving the
accuracy of the literature studied methods. The estimators perform in a similar way, but the
best performing one is bagging, using support vector regressor as base estimator, since it is
more general and provides a lower error.

Finally, the applications for bus passengers and bus fleet operators are a proof of the utility
provided by this whole architecture. The mobile application has value as proof-of-concept,
demonstrating an excellent use-case of the use of the newly generated information. It is very
valuable for the bus passenger, because it may help him to decide his schedule depending on
the state of bus network. On the other hand, the performance dashboard shows one of the
many applications of the newly processed data (in this case, studying bus line completion
patterns). Future work will provide real assessment of these applications.

8.2 Lessons Learned

The development history of this work lead to some lessons that can be shared as valuable
information for students or researchers pursuing the same type of work. Regarding this, the
figure 8.1 presents the development history of this master’s thesis practical development, and

109

then, conclusions regarding the work methodologies and technologies choices are drawn.

Problem Analysis

Algorithm
Design

Architecture
Design

Time Estimation,
APIs and Apps

Time Prediction
and enhancements

Figure 8.1: Development phases

Under Problem Analysis phase, which took place from Early December until late Janu-
ary, the main objective was to become familiar with the data and separate the problem into
smaller tasks. Off the smaller problem set, guessing which bus line was a bus completing was
the critical phase because, without it, no time estimations would be possible. Regarding this,
two techniques were studied:

• Graph Matching consisted in transforming the bus network in a graph, and then,
converting also the successive points of the trajectory into a graph to perform complete
and incomplete graph matching. The two main technologies used were Neo4j1 and Net-
workX2. Both produced results, but they produced a huge overhead regarding network
requests and costly data structures, respectively.

• GIS based Map-Matching was not possible regarding the non-existence of the full
route on the STCP website. Even if the whole data had been there, it would be very
difficult to operate and combine such amount of information in a few time.

After spending some time getting familiar with the technologies, making tests and ending
up with the conclusion that none of technologies would work, the first learned lesson was

1Neo4j: The #1 Platform For Connected Data (https://neo4j.com/)
2NetworkX: Software for complex networks (https://networkx.github.io/)

110

https://neo4j.com/
https://networkx.github.io/

simple: no solution is the best on solving all the problems. In fact, graph matching
was a very good methodology for finding the best route regarding a set of locations, GIS
was perfect for making proximity searches, and machine learning was good for finding hidden
patterns on data but, none of them was the best for solving the problem of guessing what
bus line was a bus completing. Not falling into the finding the best technology loop
is very important, and yet another lesson. None of the technologies is an one size fits
it all, so for specific purposes must be implemented specific solutions.

Under the Algorithm Design phase, the main issue was the lack of data. In the start of
a data science related project, it is usual that someone delivers a set of files with a preview
or a small subset of data. This is potentially a bad idea because someone starting a project
does not know how much data is sufficient for studying a set of particular events. Also,
working with dated data is dangerous. For instance, the initial data granularity was from 1
in 1 second; then, after having access to the data, it was from 15 in 15 seconds. Therefore,
some of the efforts related with the amount of data were useless. Regarding this, the lesson to
be learned is that one should assert that the data to be studied has the shape and
form of the data currently in production, and that the data comprises several
samples because different shapes will produce different effects which may reveal
general failures on the algorithm.

Under the Architecture Design, the first version was monolytic: one macro-component
with tightly coupled micro-components. The problem is that, as usual, requirements change.
Therefore, the lack of modular components started to feel heavier and heavier until each of
the components were teared apart. Decouple your project is the third lesson to be learnt,
as it eases the deployability, maintainability, reusability and scaleability.

Then, under the Time Estimation, APIs and Apps phase it was time to study different
ways of producing time estimations, building the apps and also the bridge connecting these
two. The major problem on each of these development objectives is concerned with the
technology choice.

A conservative developer would choose something like PHP for creating the web services,
and would program the applications in Java (native Android), because it is easy to program,
maintain and document. A non-conservative one would take a chance to experiment the latest
trends on technology, like Javascript or Typescript in the different layers of the project, and
so, increasing the risk of having to rewrite some of the code again and again because one of
the libraries have suddenly changed.

Because I chose the second approach, I would not recommend it unless there is time to
learn them or a very strong reason. The Learned lesson is to chose the technology that
best fits the purposes of the architecture. Either regarding database technolo-
gies, either regarding web technologies bet on traditional if there is no previous
experience and heavy time constraints. For instance, AngularJS, which is an older
but well maintained and enterprise level technology would be a better choice than using the
latest Angular, despite of Angular being an interesting solution for future web development
projects. Also, in what concerns databases, InfluxDB is a very interesting and promising
time-series NoSQL database, but it misses a query analyzer3, so measuring its performance is
a hard mission. Keep in mind that the latest and trending technology is not always
the best as it can be hard to use, hard to maintain and in the vast majority of

3Calculate per query statistics (issue on GitHub) (https://github.com/influxdata/influxdb/issues/
263)

111

https://github.com/influxdata/influxdb/issues/263
https://github.com/influxdata/influxdb/issues/263

the times, very incomplete too.
Finally, under the Time Prediction and Enhancement phase, the machine learning meth-

ods were studied and the prediction implemented. The databases were optimized for delivering
the best performance. The final task, studying the results, is very hard and it can require ex-
ternal input. If further input is needed from a third-party, like a business partner,
it shall be made as soon as possible.

8.3 Future Work

This dissertation leaves room for future developments and potential expansions. The most
critical are:

• Enhance the algorithm and the time estimations: the algorithm matches well but with
further granularity it would be more accurate and deliver better estimations regard-
ing the possibility of studying the stay times and measuring also the bus acceleration
dynamics through the different segments of the bus lines.

• Porting this work to a Big Data architecture: the primarily and main objective of this
work is to deliver estimated times of arrival. Regarding the fact of having missing link
between the data existing in the position log database (vanetV3) and the bus network
information, the map-matching problem turned to be one of the main efforts of this work.
Having that solved, an obvious optimization of this system would be implementing on
top of a Lambda Architecture (see 2.5.3).

• Add further functionality to the dashboard : the dashboard is being used as proof-of-
concept. Some important features can be added, including, showing the exact location
of each node on the map in real-time, adding alerts for helping to detect abnormal
situations, etc.

• Integration with the application SenseMyCity : regarding the project S2MovingCity from
the program Carnegie Mellon Portugal, it is expected that the estimated times of ar-
rival produced by this system will be integrated in the application SenseMyCity until
December 2017. This application is popular among our colleagues from FEUP, and will
give us big human feedback.

112

Bibliography

[1] 3.3. Model evaluation: quantifying the quality of predictions — scikit-learn 0.19.1 doc-
umentation. url: http://scikit-learn.org/stable/modules/model_evaluation.
html (visited on 26/10/2017).

[2] Actor Systems • Akka Documentation. url: http : / / doc . akka . io / docs / akka /

current/scala/general/actor-systems.html (visited on 01/07/2017).

[3] David Manuel de Oliveira Alves. Real-time Trip-Planner in Urban Public Transport:
Specifications and Preliminary Tests for Lisbon. 2011.

[4] Sarah Guido Andreas C. Mueller. Introduction to Machine Learning with Python: A
Guide for Data Scientists. O’Reilly Media, 2016. isbn: 978-1-44936-941-5.

[5] Albert S. Woodhull Andrew S. Tanenbaum. Operating Systems: Design and Implement-
ation. 3rd ed. Pearson, 2006. isbn: 0131429388, 9780131429383.

[6] Mansur As and Tsunenori Mine. ‘Empirical Study of Travel Time Variability Using
Bus Probe Data’. In: 2016 IEEE International Conference on Agents (ICA). IEEE,
Sept. 2016, pp. 146–149. isbn: 978-1-5090-3931-9. doi: 10.1109/ICA.2016.050. url:
http://ieeexplore.ieee.org/document/7812995/.

[7] Blaise Barney. Introduction to Parallel Computing. url: https://computing.llnl.
gov/tutorials/parallel_comp/#whatis (visited on 01/07/2017).

[8] Clara Benevolo, Renata Paola Dameri and Beatrice D ’auria. ‘Smart Mobility in Smart
City: action taxonomy, ICT intensity and public benefits’. In: (). url: http://www.
cersi.it/itais2014/pdf/52.pdf.

[9] Paul Black. greedy algorithm. url: https://xlinux.nist.gov/dads//HTML/greedya
lgo.html (visited on 29/05/2017).

[10] Build Amazing Native Apps and Progressive Web Apps with Ionic Framework and An-
gular. url: https://ionicframework.com/ (visited on 08/06/2017).

[11] Annalisa Cocchia. Smart and Digital City: A Systematic Literature Review. Springer
International Publishing Switzerland, 2014. isbn: 978-3-319-06159-7. doi: 10.1007/

978-3-319-06160-3. url: http://link.springer.com/10.1007/978-3-319-06160-
3.

[12] Docker Compose — Docker Documentation. url: https://docs.docker.com/compos
e/ (visited on 08/06/2017).

[13] European Space Agency. A force that shapes our planet (GOCE). url: http://www.
esa.int/Our_Activities/Observing_the_Earth/GOCE/A_force_that_shapes_our_

planet (visited on 19/07/2017).

113

http://scikit-learn.org/stable/modules/model_evaluation.html
http://scikit-learn.org/stable/modules/model_evaluation.html
http://doc.akka.io/docs/akka/current/scala/general/actor-systems.html
http://doc.akka.io/docs/akka/current/scala/general/actor-systems.html
https://doi.org/10.1109/ICA.2016.050
http://ieeexplore.ieee.org/document/7812995/
https://computing.llnl.gov/tutorials/parallel_comp/#whatis
https://computing.llnl.gov/tutorials/parallel_comp/#whatis
http://www.cersi.it/itais2014/pdf/52.pdf
http://www.cersi.it/itais2014/pdf/52.pdf
https://xlinux.nist.gov/dads//HTML/greedyalgo.html
https://xlinux.nist.gov/dads//HTML/greedyalgo.html
https://ionicframework.com/
https://doi.org/10.1007/978-3-319-06160-3
https://doi.org/10.1007/978-3-319-06160-3
http://link.springer.com/10.1007/978-3-319-06160-3
http://link.springer.com/10.1007/978-3-319-06160-3
https://docs.docker.com/compose/
https://docs.docker.com/compose/
http://www.esa.int/Our_Activities/Observing_the_Earth/GOCE/A_force_that_shapes_our_planet
http://www.esa.int/Our_Activities/Observing_the_Earth/GOCE/A_force_that_shapes_our_planet
http://www.esa.int/Our_Activities/Observing_the_Earth/GOCE/A_force_that_shapes_our_planet

[14] Scott Fortmann-Roe. Accurately Measuring Model Prediction Error. 2012. url: http:
//scott.fortmann-roe.com/docs/MeasuringError.html (visited on 18/10/2017).

[15] Kenneth Laberteaux Hannes Hartenstein. VANET Vehicular Applications and Inter-
Networking Technologies. 1st ed. Intelligent Transport Systems. Wiley, 2010. isbn:
0470740566,9780470740569,0470740620,9780470740620.

[16] Peter Harrington. Machine Learning in Action. Manning Publications, 2012. isbn:
1617290181,9781617290183.

[17] Ronan Harris. Improving our brand safety controls. Mar. 2017. url: https://www.
blog.google/topics/google-europe/improving-our-brand-safety-controls/.

[18] Harvard Kennedy School - Saguaro Seminar :: About Social Capital. url: https://
www . hks . harvard . edu / programs / saguaro / about - social - capital (visited on
22/05/2017).

[19] IBM Knowledge Center - Overview of SQL routines. url: https://www.ibm.com/
support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.apdv.sqlpl.doc/

doc/c0024289.html (visited on 23/10/2017).

[20] Infographic: The Four V’s of Big Data — IBM Big Data & Analytics Hub. 2015. url:
http://www.ibmbigdatahub.com/infographic/four- vs- big- data (visited on
18/10/2017).

[21] Intelligent Transportation Systems - MIT Portugal. url: https://www.mitportugal.o
rg/education/transportation/research/intelligent-transportation-systems

(visited on 14/10/2017).

[22] Intergovernmental Committee on Surveying and Mapping. Fundamentals of Mapping.
url: http://www.icsm.gov.au/mapping/datums1.html%7B%5C#%7Djargon (visited
on 19/07/2017).

[23] Lambda Architecture — MapR. url: https://mapr.com/developercentral/lambda-
architecture/ (visited on 18/10/2017).

[24] Helena Lindskog. ‘Smart communities initiatives’. In: Proceedings of the 3rd ISOne-
World Conference April (2004), p. 16.

[25] Diogo Lopes and Susana Sargento. ‘Network mobility for vehicular networks’. In: 2014
IEEE Symposium on Computers and Communications (ISCC). IEEE, June 2014, pp. 1–
7. isbn: 978-1-4799-4277-0. doi: 10.1109/ISCC.2014.6912465. url: http://ieeexpl
ore.ieee.org/document/6912465/.

[26] Machine Learning: Bridging Between Business and Data Science. url: https://www.
altexsoft.com/whitepapers/machine-learning-bridging-between-business-

and-data-science/ (visited on 18/10/2017).

[27] João Mendes-Moreira et al. ‘Comparing state-of-the-art regression methods for long
term travel time prediction’. In: Intelligent Data Analysis 16.3 (2012), pp. 427–449.
issn: 1088467X. doi: 10.3233/IDA-2012-0532.

[28] Usue Mori et al. ‘A review of travel time estimation and forecasting for Advanced
Traveller Information Systems’. In: Transportmetrica A: Transport Science 11.2 (Feb.
2015), pp. 119–157. issn: 2324-9935. doi: 10.1080/23249935.2014.932469. url:
http://www.tandfonline.com/doi/abs/10.1080/23249935.2014.932469.

114

http://scott.fortmann-roe.com/docs/MeasuringError.html
http://scott.fortmann-roe.com/docs/MeasuringError.html
https://www.blog.google/topics/google-europe/improving-our-brand-safety-controls/
https://www.blog.google/topics/google-europe/improving-our-brand-safety-controls/
https://www.hks.harvard.edu/programs/saguaro/about-social-capital
https://www.hks.harvard.edu/programs/saguaro/about-social-capital
https://www.ibm.com/support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.apdv.sqlpl.doc/doc/c0024289.html
https://www.ibm.com/support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.apdv.sqlpl.doc/doc/c0024289.html
https://www.ibm.com/support/knowledgecenter/en/SS6NHC/com.ibm.swg.im.dashdb.apdv.sqlpl.doc/doc/c0024289.html
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://www.mitportugal.org/education/transportation/research/intelligent-transportation-systems
https://www.mitportugal.org/education/transportation/research/intelligent-transportation-systems
http://www.icsm.gov.au/mapping/datums1.html%7B%5C#%7Djargon
https://mapr.com/developercentral/lambda-architecture/
https://mapr.com/developercentral/lambda-architecture/
https://doi.org/10.1109/ISCC.2014.6912465
http://ieeexplore.ieee.org/document/6912465/
http://ieeexplore.ieee.org/document/6912465/
https://www.altexsoft.com/whitepapers/machine-learning-bridging-between-business-and-data-science/
https://www.altexsoft.com/whitepapers/machine-learning-bridging-between-business-and-data-science/
https://www.altexsoft.com/whitepapers/machine-learning-bridging-between-business-and-data-science/
https://doi.org/10.3233/IDA-2012-0532
https://doi.org/10.1080/23249935.2014.932469
http://www.tandfonline.com/doi/abs/10.1080/23249935.2014.932469

[29] Taewoo Nam and Theresa A Pardo. ‘Conceptualizing Smart City with Dimensions of
Technology, People, and Institutions’. In: The Proceedings of the 12th Annual Interna-
tional Conference on Digital Government Research Conceptualizing. 2011, p. 10. url:
https://inta-aivn.org/images/cc/Urbanism/background%20documents/dgo_

2011_smartcity.pdf.

[30] James Warren Nathan Marz. Big Data: Principles and best practices of scalable realtime
data systems. 1st ed. Manning Publications, 2015. isbn: 1617290343,9781617290343.

[31] Regina O. Obe and Leo S. Hsu. PostGIS in action. Manning, 2011, p. 492. isbn:
9781935182269. url: https://www.manning.com/books/postgis-in-action.

[32] David R. O’Hallaron Randal E. Bryant. Computer Systems: A Programmer’s Perspect-
ive. 2nd. Prentice-Hall, 2011. isbn: 0136108040,9780136108047.

[33] Sebastian Raschka. Python Machine Learning. Packt Publishing, 2015. isbn: 978-1-
78355-513-0.

[34] Rudy Raymond and Takashi Imamichi. ‘Bus trajectory identification by map-matching’.
In: Proceedings - International Conference on Pattern Recognition. IEEE, Dec. 2017,
pp. 1618–1623. isbn: 9781509048472. doi: 10.1109/ICPR.2016.7899868. url: http:
//ieeexplore.ieee.org/document/7899868/.

[35] Robert Osserman. ellipsoid — geometry — Britannica.com. url: https://www.brita
nnica.com/topic/ellipsoid (visited on 20/07/2017).

[36] João G P Rodrigues, Ana Aguiar and João Barros. ‘SenseMyCity: Crowdsourcing an
Urban Sensor’. In: (2014). url: https://arxiv.org/pdf/1412.2070.pdf.

[37] Ralph Kimball; Margy Ross. The data warehouse toolkit : the complete guide to dimen-
sional modeling. 2ed. Wiley, 2002. isbn: 0471269433,9780471269434.

[38] Robert E Schapire. ‘Explaining adaboost’. In: Empirical Inference: Festschrift in Honor
of Vladimir N. Vapnik. 2013, pp. 37–52. isbn: 9783642411366. doi: 10.1007/978-3-
642-41136-6_5. url: http://rob.schapire.net/papers/explaining-adaboost.
pdf.

[39] Scikit-Learn. 1.11. Ensemble methods — scikit-learn 0.19.0 documentation. 2017. url: h
ttp://scikit-learn.org/stable/modules/ensemble.html (visited on 18/10/2017).

[40] Jim Scott. ‘Lambda Architecture’. In: (). url: https://spark-summit.org/2014/wp-
content/uploads/2014/07/Lambda-Architecture-Jim-Scott..pdf.

[41] sklearn.modelselection.T imeSeriesSplit. url: http://scikit-learn.org/stable/
modules/generated/sklearn.model_selection.TimeSeriesSplit.html%20http:

//scikit- learn.org/stable/modules/generated/sklearn.model_selection.

cross_val_predict.html (visited on 21/10/2017).

[42] Kehua Su, Jie Li and Hongbo Fu. ‘Smart city and the applications’. In: 2011 Interna-
tional Conference on Electronics, Communications and Control, ICECC 2011 - Pro-
ceedings (2011), pp. 1028–1031. issn: 2327-4662. doi: 10.1109/ICECC.2011.6066743.

[43] Richard S. Sutton. Reinforcement learning: an introduction. Adaptive computation and
machine learning. MIT Press, 1998. isbn: 0-262-19398-1.

[44] T. Vincenty. ‘Direct and Inverse solutions of geodesics on the ellipsoid with application
of nested equations’. In: Survey Review XXII.176 (1975). url: https://www.ngs.
noaa.gov/PUBS_LIB/inverse.pdf.

115

https://inta-aivn.org/images/cc/Urbanism/background%20documents/dgo_2011_smartcity.pdf
https://inta-aivn.org/images/cc/Urbanism/background%20documents/dgo_2011_smartcity.pdf
https://www.manning.com/books/postgis-in-action
https://doi.org/10.1109/ICPR.2016.7899868
http://ieeexplore.ieee.org/document/7899868/
http://ieeexplore.ieee.org/document/7899868/
https://www.britannica.com/topic/ellipsoid
https://www.britannica.com/topic/ellipsoid
https://arxiv.org/pdf/1412.2070.pdf
https://doi.org/10.1007/978-3-642-41136-6_5
https://doi.org/10.1007/978-3-642-41136-6_5
http://rob.schapire.net/papers/explaining-adaboost.pdf
http://rob.schapire.net/papers/explaining-adaboost.pdf
http://scikit-learn.org/stable/modules/ensemble.html
http://scikit-learn.org/stable/modules/ensemble.html
https://spark-summit.org/2014/wp-content/uploads/2014/07/Lambda-Architecture-Jim-Scott..pdf
https://spark-summit.org/2014/wp-content/uploads/2014/07/Lambda-Architecture-Jim-Scott..pdf
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html%20http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html%20http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html%20http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html%20http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_predict.html
https://doi.org/10.1109/ICECC.2011.6066743
https://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
https://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf

[45] Nobuhiro Uno et al. ‘Using Bus Probe Data for Analysis of Travel Time Variability’. In:
Journal of Intelligent Transportation Systems 13.1 (Jan. 2009), pp. 2–15. issn: 1547-
2450. doi: 10.1080/15472450802644439. url: http://www.tandfonline.com/doi/
abs/10.1080/15472450802644439.

[46] Kenneth Cukier Viktor Mayer-Schonberger. Big Data: A Revolution That Will Trans-
form How We Live, Work, and Think. 1st ed. Eamon Dolan/Houghton Mifflin Harcourt,
2013. isbn: 9780544002692,9780544002692.

[47] Roger W.Caves, ed. Encyclopedia of the City. Routledge, 2005, pp. 625–626. isbn:
0415252253 (alk. paper).

116

https://doi.org/10.1080/15472450802644439
http://www.tandfonline.com/doi/abs/10.1080/15472450802644439
http://www.tandfonline.com/doi/abs/10.1080/15472450802644439

	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Objectives
	Contributions
	Acknowledgments
	Document outline

	Concepts
	Introduction
	Smart Cities
	Definition
	Challenges on mobility

	Vehicular Networks
	Definition
	Importance of vanet under the context of this work

	Fundamentals of mapping
	Introduction
	The shape of the earth
	Datums and projections
	Issues regarding spatial data handling

	Data processing fundamentals
	Introduction
	Concurrent, parallel and distributed computing
	Big Data definition and characteristics paradigms
	Big Data processing Paradigms

	Machine Learning
	Definition
	Types of Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Fundamental concepts
	Machine Learning Workflow
	Generalization, Overfitting and Underfitting
	Model Selection and Cross-Validation
	Improving models performance with Ensemble Learning

	Summary

	Related Work
	Introduction
	Bus Trajectory Identification by Map-Matching
	Comparing state-of-the-art regression methods for long term time prediction
	Empirical Study of Travel Time Variability Using Bus Probe Data
	Using Bus Probe Data for Analysis of Travel Time Variability
	A review of travel time estimation and forecasting for Advanced Traveller Information Systems
	Real-time Trip Planner in Urban Public Transport
	Summary

	Matching lines with GPS logs and Building Performance Indicators
	Introduction
	Problem Setting
	Available Context
	Data Sources
	Insights on the log database
	Database Tables
	A detailed view on node_data: attributes, granularity, quality and quantity

	stcp Website as data source

	Exploring, visualizing and choosing data
	Position Log Data
	Bus network data description

	Performance Indicators
	Definitions
	Main restritions

	Summary

	Architecture and Technical Design
	Introduction
	Requirements
	Functional requirements
	Non-functional requirements

	Architecture
	Technical Design
	Overview
	Exploiting parallelism using the Worker Design Pattern
	Algorithm Design
	Making spatial searches
	Using and choosing a detection radius
	Detecting line starts
	Finding a solution

	Building performance indicators
	A deeper overview on completeness metric
	Estimating arrival times
	Predicting arrival times

	Summary

	System Implementation
	Introduction
	Bus Network Information Retrieval
	Script to retrieve base data implementation details
	Script to transform base data implementation details

	Matching Unit
	Development History
	Overview
	Modules
	The entities module
	Worker implementation overview
	Dispatcher implementation overview
	Logger implementation overview

	The pipeline module
	Algorithm to detect when a line starts
	Algorithm for finding solutions from line starts

	The tools module

	Matches Database
	Overview
	Database schema description
	Routines
	Functions

	Estimation Database
	Overview
	Development history
	Database diagram
	Database schema description
	Routines
	Functions
	Triggers

	How estimates are calculated

	Synchronization Script
	Prediction Module
	Overview
	Algortihms
	Data Collection and Preparation
	Requirements
	Dataset characterization

	Model Selection and Cross Validation
	Evaluation
	Deployment

	Database Wrappers Module
	Integration apis
	Bus Network Information api
	Match api
	Estimation api
	Prediction api

	Applications
	Bus Line Performance Dashboard
	Bus Passenger Mobile Application

	Summary

	Deployment and Results
	Introduction
	Deployment
	Hardware
	Software

	Results
	Matching GPS traces with bus lines
	Context
	Processed Data in numbers
	Results presentation
	Analysis and Validation

	Delay metrics for bus lines and estimated times of arrival
	Context
	Result presentation 1.1: Delay plot of a bus line match
	Result presentation 1.2: Detecting problematic lines
	Result presentation 2: Estimated time of arrival given a previously defined static value from the stcp time tables
	Result presentation 3: Estimated time of arrival given a dynamically chosen value (user given or inferred by the delay plot analysis)
	Validation

	Prediction Module Results
	Regression Metrics Comparison

	Summary

	Conclusion and Future Work
	Conclusion
	Lessons Learned
	Future Work

	Bibliography

