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resumo 
 
 

Os sedimentos marinhos são um reservatório de hidrocarbonetos petrogénicos 
libertados naturalmente ou acidentalmente para o ambiente marinho. Nos 
sedimentos marinhos, os hidrocarbonetos são usados como fonte de carbono 
e energia por comunidades bacterianas complexas. Contudo, a eficiência de 
biodegradação poderá ser limitada por fatores ambientais. Este trabalho 
aborda o previsível impacto das condições particulares do mar profundo, da 
acidificação dos oceanos e da adição de dispersantes químicos nos processos 
de biodegradação de hidrocarbonetos em ambientes marinhos. Numa primeira 
fase, a função de destoxificação primária das bactérias degradadoras de 
hidrocarbonetos aromáticos policíclicos (HAP) nos sedimentos do mar 
profundo foi avaliado através de uma compilação de informação disponível na 
literatura científica e também através de uma análise dependente do cultivo 
envolvendo culturas de enriquecimento de sedimentos de vulcões de lama do 
mar profundo. Posteriormente, o impacto interativo da acidificação do oceano e 
da contaminação por hidrocarbonetos petrogénicos em comunidades 
bacterianas bênticas foi avaliado, em experiências de simulação multifatorial 
em sistema de microcosmo previamente executadas, com sedimentos 
subsuperficiais estuarinos. Finalmente, foi executado uma experiência 
multifatorial em sistema de microcosmos para avaliar o impacto da aplicação 
de dispersantes químicos em situações simuladas de derrame de 
hidrocarbonetos em sedimentos estuarinos portuários. 
Os resultados obtidos, através da análise da fração cultivável, indicam que nos 
sedimentos do mar profundo a comunidade bacteriana degradadora de HAP é 
distinta da encontrada noutros sedimentos marinhos devido à predominância 
de bactérias relacionadas com o género Bacillus. Nos ensaios de 
microcosmos, apesar das diferenças entre os cenários testados, as 
comunidades bacterianas revelaram-se em geral, estáveis. Nos sedimentos 
subsuperficiais estuarinos, as alterações abióticas impostas foram 
provavelmente atenuadas pela barreira sedimentar sobrejacente e a 
comunidade bacteriana pareceu ser estável em termos de estrutura e 
atividade. Do mesmo modo, a dispersão química de hidrocarbonetos 
petrogénicos, apesar de aumentar a biodisponibilidade de PAH, não alterou 
significativamente a composição das comunidades bacteriana de sedimentos 
superficiais estuarinos. Possivelmente, a exposição prévia do sedimento 
portuário a poluição por hidrocarbonetos poderá ter condicionado a resposta 
da comunidade bêntica bacteriana à contaminação por petróleo. 
Em conclusão, a degradação bacteriana de hidrocarbonetos é um processo 
ubíquo em sedimentos marinhos e as comunidades bacterianas degradadoras 
revelam elevada estabilidade relativamente à variação de fatores ambientais.  
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abstract 
 

The marine sediment compartment is a key sink for naturally and accidentally 
released oil hydrocarbons in the marine environment. Here, complex 
communities of interacting bacterial species will efficiently use oil hydrocarbons 
as sources of carbon and energy. However, the efficiency of the biodegradation 
process can be limited by some near-future scenarios. This work addresses 
different environmental scenarios regarding oil hydrocarbon biodegradation in 
marine sediments. First, the role of bacteria as primary detoxifiers of polycyclic 
aromatic hydrocarbons in deep-sea sediments was evaluated through the 
compilation of available data and through a culture-dependent analysis of 
enrichment cultures derived mud volcano sediments. Next, the impact of the 
interactive effects of ocean acidification and oil hydrocarbon contamination was 
further analyzed in subsurface estuarine sediments. Finally, the impact of 
chemically dispersed oil in estuarine port sediments is evaluated through a 
multi-factorial microcosm simulation. 
Results show that , in deep sea mud volcano sediments, the culturable fraction 
of the PAH-degrading bacterial community seems distinct from other 
environments, with a predominance of Bacillus-like bacteria. In the microcosm-
based assays, despite the differences between them, the overall bacterial 
community exhibit a reliable stability. In subsurface sediments, abiotic changes 
tested were possibly attenuated by the superficial sediment barrier and 
bacterial seem stable to environmental changes. Also, the chemical dispersion 
of oil, despite enhancing PAH concentration, did not impose significant 
alterations to the bacterial community composition at the marine sediment 
surface. The potential pre-exposure of the port sediment to oil hydrocarbon 
pollution may have preconditioned the response of the benthic bacterial 
communities to oil contamination. 
In conclusion, oil-hydrocarbon biodegradation is ubiquitous and communities 
exhibit a structural stability to environmental changes. 
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Justification, Objectives and Thesis Outline 

Justification 

The marine sediments and the benthic microbial communities are, respectively, an important 

sink and fate for oil hydrocarbons released into the environment from e.g. natural seepage, the accidental 

discharge of petroleum and its refined by-products and the deposition of hydrocarbonous soot. The 

extensive documentation of underwater seepage systems and of the most catastrophic oil spills (and the 

research and technological development they have sparked), has progressively enlarged our knowledge 

on the biodegradation of oil hydrocarbons at marine sediments. However, much is still unknown 

concerning the metabolic turnover of oil hydrocarbons at the marine sediments and new challenges that 

have or will emerge, will bring new disruptions to the system. For example, although natural seepage 

systems might be the most significant source of oil hydrocarbons in the ocean, a substantial fraction of 

the seeped oil will be degraded immediately at the sediment layer by the local microbial communities. 

However, the functional role of its heterotrophic members is frequently unknown and considering the 

extreme abiotic conditions present in these environments, the bacteria involved in oil hydrocarbon 

degradation here may be useful in biotechnological applications. Also, the rise of carbon dioxide 

emissions is projected to reach unprecedented rates, indirectly acidifying the world ocean. This 

phenomenon, in combination with oil hydrocarbon pollution, has previously been shown to alter the 

core composition of the active microbial communities at superficial estuarine sediments, potentially 

affecting oil hydrocarbon biodegradation. Yet, at the underlying subsurface sediments, where inhumed 

oil hydrocarbons can persist for decades because of a slow and thermodynamically unfavourable 

anaerobic biodegradation, this effect has never been demonstrated. Furthermore, chemical dispersants, 

although frequently used in the context of emergency responses to oil spill, are controversial since their 

net benefit is uncertain. Their application, in contrary to expectations, has been shown to suppress oil 

hydrocarbon biodegradation and increase oil hydrocarbon transfer to sediments, where its impact has 

never been evaluated. 

Objectives 

This thesis will broaden our comprehension on the effects of oil hydrocarbon contamination 

on sediment bacterial communities and its removal by bacterial biodegradation in marine sediments. 

More specifically, three main objectives are proposed: 
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 To determine the bacteria potentially involved in the biodegradation of polycyclic aromatic 

hydrocarbons at deep sea mud volcano sediments. 

 To determine if the surface sediment barrier attenuates the impact of the interactive effects of 

oil hydrocarbon contamination and acidified seawater on subsurface benthic bacterial 

community composition. 

 To determine the effect of chemical dispersion of oil contamination on the fate of oil 

hydrocarbons and on the bacterial community composition from estuarine sediments obtained 

from a chronically contaminated port area. 

These proposed objectives will be addressed in Chapter II, Chapter III and Chapter IV, respectively. 

Thesis Outline 

Chapter I is composed of two parts. In the first part, a brief and informative literature review 

of topics that are considered essential to the understanding of the subsequent chapters is presented. In 

the second part, existing information regarding the role of the deep sea sediments as a potential sink 

for oil hydrocarbons in marine environments is summarized. Here, the interactions between 

recalcitrant polycyclic aromatic hydrocarbons (PAHs), deep sea sediments, and the local bacterial 

community are examined, with emphasis on the functional role of bacteria in the fate of these 

pollutants considering both current and future climate conditions. 

Chapter II analyzes the cultivable fraction of the polycyclic aromatic hydrocarbon degrading 

bacterial community from in vitro enrichment cultures with added phenanthrene and chrysene as the 

predominant carbon sources. Results show that the culturable fractions of the enrichment cultures were 

dominated by Bacillus-like isolates. This result was unexpected since Bacillus-like isolates are not 

commonly detected as PAH-degraders in marine environments but is coherent with some studies from 

similarly extreme environments. 

Chapter III examines the interactive and independent effects of oil hydrocarbon contamination 

and reduced seawater pH on the core bacterial community composition of subsurface estuarine 

sediments at two time points. Here, the bacterial community from the subsurface sediments involved in 

a previously executed multi-factorial microcosm simulation was analyzed through a 16S gene-based mass 

sequencing approach. Results revealed that, despite some taxa-specific alterations, the overall bacterial 

community was stable to the factors tested, which contrasts with indications from the most superficial 

sediments. It is speculated that the super-adjacent sediment barrier may function as a buffer, thus 

attenuating the effects of both oil hydrocarbon pollution and reduced seawater pH. 

Chapter IV examines, for the first time, the potential impact of chemically-dispersed oil on the 

benthic bacterial community composition in estuarine superficial port sediments. A multi-factorial 

microcosm simulation was planned and executed to test the interactive and independent effects of oil 
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hydrocarbon contamination and dispersant addition. The results obtained indicate the chemical 

dispersion of oil increased the mass transfer of PAH to the sediment phase during the experiment and 

altered the relative abundance of some lesser abundant putative hydrocarbon-degrading bacteria. 

However, the overall bacterial community was not affected by t the factors independently and in 

interaction.





 

 

Chapter I 
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Chapter I 

I. Bacterial degradation of hydrocarbons in marine environments 

Oil hydrocarbon contamination in marine environments can be derived from both natural and 

anthropogenic sources. Naturally occurring seeps are responsible for an estimate of 47% of the total oil 

hydrocarbons released into the ocean [(Kvenvolden and Cooper 2003); Figure I-1]. However, since seep 

distribution may be substantially underestimated, their ultimate contribution may be higher (Kvenvolden 

and Cooper 2003). Despite their magnitude, a substantial fraction of oil hydrocarbons emitted are totally 

consumed at the seabed by the local microbial communities, which transfer the assimilated energy and 

carbon into the higher trophic levels, ultimately having a fertilizing effect on the local ecosystem (Coelho 

et al. 2016b; D'souza et al. 2016; Hovland and Thomsen 1989). Anthropogenically-derived oil 

hydrocarbons in marine environments are expected to increase concurrently to the global rise in oil 

consumption (International Energy Statistics 2015; Transportation Research Board and National 

Research Council 2003). Although the stricter maritime vessel regulations, approved in the last decades, 

have considerably reduced oil tanker related spills, new threats are emerging [e.g. riskier offshore oil 

extraction projects, a deteriorating infrastructure (Jernelöv 2010) and the anarchic regulation of vessels 

by some flag states (Miller et al. 2015)]. The recent 2010 Deepwater horizon oil spill (DWH) is an 

example that major marine oil spills can recur and still be catastrophic. Also, the continuous release of 

oil hydrocarbons through minor spills that may occur during production, transport, refining and storage 

of petroleum or its derived products, and through the atmospheric deposition of combusted 

hydrocarbonous soot is also likely to increase [(Transportation Research Board and National Research 

Council 2003); Figure I-1]. These sources can chronically contaminate coastal marine environments sited 

near high density urban and industrial areas, seaports and at the mouth of major rivers (Lipiatou et al. 

1997; Telli-Karakoç et al. 2002). Here, hydrocarbon concentrations can be similar or even reach values 

100 times higher (He et al. 2014; Telli-Karakoç et al. 2002) than those measured in sediments surrounding 

the DWH epicentre, one year after blowout (Liu et al. 2012b). 

The Portuguese exclusive economic zone (PEEZ), given its central location in the north 

Atlantic, is susceptible to major oil hydrocarbon events. The PEEZ is both a passageway, in the Atlantic 

Ocean, for vessels moving north to south and east to west, and vice-versa. More importantly, the 

coastline of mainland Portugal is located near a vessel corridor, with intense traffic, that links the North 

Atlantic, North Sea and Baltic Sea to the Mediterranean Sea through the Gibraltar strait. The 

susceptibility of this region to oil spills is further aggravated by the rough sea conditions found during  
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Figure I-1 - Sources of oil in the ocean. Copyright of the Woods Hole Oceanographic Institution. Used with 

permission. (Woods Hole Oceanographic Instituition 2011) 

 

the winter (Otero et al. 2014). The Iberian western coast has experienced 4 of the 20 largest tanker related 

oil spills, namely the Jacob Maersk (1975), the Uriquiola (1976), the Aegean Sea (1992) and the most 

recent Prestige (2002) (ITOPF 2013).  

Major oil spills, although not the main source of oil hydrocarbons in marine environments 

(Figure I-1), are catastrophic to local environments since they release a substantial amount of oil in a 

restricted location. To minimize their socio-economic and environmental impact and/or accelerate 

restoration, environmental and civil protection agencies employ a diverse array of oil spill response 

strategies. First response frequently relies on the physical containment and the quick recovery of spilled 

oil, by use of boomers and skimmers, respectively. These strategies are environmentally benign, but they 

are ineffective in harsh meteorological conditions and when spilled oil is substantial and/or outspreaded. 

In these situations, biodegradation by autochthonous heterotrophic microorganisms will be the most 

relevant removal process for oil hydrocarbons (Head et al. 2006). Nonetheless, if not intervened, the 

depletion of some essential metabolic factors (e.g. nutrients and oxygen) and/or the limited 

bioavailability of the substrate may limit and retard biodegradations full potential. The use of 

bioremediation strategies will attempt to enhance and accelerate this natural biodegradation by 

countering its limiting factors. The application of chemical dispersants is the most frequently employed 
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strategy (National Research Council 2005; Prince 2015). Nonetheless, its use is controversial among 

scientists (Kleindienst et al. 2015a; Kleindienst et al. 2016; Prince 2015; Prince et al. 2016) since its 

benefits may not compensate its increased environmental impact. Chemical dispersants will promote the 

formation and the stabilization of micron-size oil-in-water droplets that will increase oils bioavailability 

and buoyantly entrain the micelles in the water column, thus restraining them from reaching the seabed. 

However, although an increase in bioavailability will undoubtedly benefit biodegradation, it may also 

increase the exposure of the marine biota to the toxic constituents of oil (Barron et al. 2003; Shimada 

and Fujii‐Kuriyama 2004; Wolfe et al. 2001). Chemically dispersed oil has been repeatedly measured to 

be more toxic to marine biota in general (Almeda et al. 2014; Anderson et al. 2014; Barron et al. 2003; 

Gardiner et al. 2013; Goodbody-Gringley et al. 2013; Özhan et al. 2014; Rico-Martínez et al. 2013) than 

non-dispersed oil and has, inclusively, been found to suppress the activity of hydrocarbon-degrading 

bacteria (Kleindienst et al. 2015b). This enhanced toxicity has been correlated with the concentration of 

polycyclic aromatic hydrocarbons(PAHs) in the water-accommodated fraction (Gardiner et al. 2013; 

Özhan et al. 2014; Radniecki et al. 2013), which are known to be enhanced by the application of chemical 

dispersants (Gong et al. 2014b; Zhao et al. 2016). Also, since biodegradation may instead be limited by 

nutrient (e.g. nitrogen, phosphorus and iron) and/or oxygen deficiencies, the unnecessary application of 

dispersant can further delay biodegradation by augmenting the carbon ratio in the system (Kleindienst 

et al. 2015a). In this situations, the exogenous supplementation of deficit nutrients (biostimulation) and 

oxygenation has proved to be more beneficial (Coulon et al. 2007). 

Oil is a complex carbon-rich mixture of hydrophobic constituents which can be divided into 

four main classes, based on structural properties: aliphatics, aromatics, resins and asphaltenes. Each class 

has distinct physico-chemical properties that will influence their ultimate environmental fate. The 

constituents of each class can be progressively divided based on their volatility, solubility and 

biodegradability. Because of this physico-chemical heterogeneity, spilled oil will, with time, change its 

composition in a process known as weathering. Through weathering, most volatile and most soluble oil 

constituents will progressively evaporate and dissolve. Also, biodegradation will act on oil hydrocarbons 

differentially, with mid-range saturated linear aliphatic hydrocarbons (n-alkanes) being preferentially 

biodegraded than, for example, the PAHs and the alkylated aliphatic hydrocarbons (iso-alkanes) (Garrett 

et al. 1998). Eventually, weathering will reduce oil to a tar remnant, composed by its heaviest and most 

recalcitrant constituents that, by adhering to suspended particulate matter, may settle at the sediments 

(Gong et al. 2014a). PAHs, in particular, will be enriched in this remnant. PAHs are problematic 

environmental pollutants, mainly because their partial metabolism and photooxidation originates 

oxygenated and highly reactive metabolites (Aeppli et al. 2012; Knecht et al. 2013; Lee 2003; Toyooka 

and Ibuki 2007). Consequently, PAHs are considered carcinogenic, mutagenic and overall toxic to 

humans (IARC Working Group on the Evaluation of Carcinogenic Risks to Humans 2010) and, thus, 
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their concentrations in soil and water are routinely monitored and regulated by public environment and 

food safety agencies (Code of Federal Regulation 2015; Lerda 2010). 

Despite environmentally nefarious, oil hydrocarbons are a rich source of carbon and energy for 

the heterotrophic microorganisms capable of degrading them. However, their degradation is limited by 

poor bioavailability and low chemical reactivity (Widdel and Musat 2010). Therefore, oil hydrocarbon-

degrading microorganisms will need to dispend some energy to counter these limitations (Rojo 2009; 

Widdel and Musat 2010). For example, by producing biosurfactants , oils bioavailability will increase and 

the transmembrane uptake of oil hydrocarbons by microorganisms will be facilitated (Bouchez et al. 

1997; Bouchez Naïtali et al. 1999; Chrzanowski et al. 2012; Noordman and Janssen 2002). In marine 

sediments, biosurfactants may further enhance the desorption of oil hydrocarbons from sediment 

particles (Mnif et al. 2014; Nakazawa et al. 2016). Also, due to the absence of a functional group, that 

would facilitate the enzymatic cleavage of their carbon bonds, in hydrocarbon molecule, oil hydrocarbon-

degrading microorganisms are required to perform an initial metabolic endergonic reaction that would 

lead to the formation of an alcohol functionality (Himo 2005; Widdel and Musat 2010). This initial 

oxygenation involves the activity of oxygenases and requires molecular oxygen as a reactant (Seo et al. 

2009). It will increase the chemical reactivity of the oil hydrocarbon (Widdel and Musat 2010), and from 

here a subsequent carboxyl group is enzymatically obtained and the carbon-bond can be cleaved (Seo et 

al. 2009). Although it involves a slight input of energy from the bacteria, this oxygenation step is crucial 

in oil hydrocarbon biodegradation since, in the end, the energy yield is substantially higher in comparison 

to that calculated for direct carboxylation (Rojo 2009; Seo et al. 2009; Widdel and Musat 2010). However, 

since required enzymes are not widespread among microorganisms, as in comparison to those for 

subsequent steps, the initial oxygenation step can be a bottleneck in oil hydrocarbon biodegradation 

(Rojo 2009; Seo et al. 2009). 

Oil hydrocarbons, due to their hydrophobicity and consequent immiscibility with water, have 

the propensity to concentrate at the interfaces. Spilled oil will initially float at the air-water interface but, 

with time, it will accumulate at the sediment-seawater interface, horizontally through the action of waves 

and tides and vertically through the sinking of oil-sediment aggregates (Gong et al. 2014a; Romero et al. 

2015). Simulations estimate that 65% of spilled oil in the water column will reach sediments through 

vertical settling (Bandara et al. 2011). Here, organic particles and clay will adhere strongly to oil 

hydrocarbons and entrap them. These adhesion forces between oil hydrocarbons and sediment particles 

will strengthen with time through a phenomenon known as aging (Kim et al. 2009) and will ultimately 

limit oil hydrocarbon bioavailability and, consequently, its biodegradation (Semple et al. 2003). In low 

energy environments (e.g. estuaries), because the organic and clay contents are higher, oil hydrocarbon 

pollution can be particularly problematic (Semple et al. 2003). Therefore, the sediments are considered 

the most sensitive areas to oil spills and their protection is prioritized during decision-making (Adler and 

Inbar 2007). Here, the sediment-bound hydrocarbons are quickly inhumed, by sedimentary accretion, 
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from a narrow superficial oxic layer to the adjacent anoxic sediments. If not resuspended, they can persist 

for decades (Reddy et al. 2002) because biodegradation is substantially slower in anoxic conditions 

(Duran and Goňi-Urriza 2010) and they are occluded from photooxidation (Kim et al. 2009). 

The marine sediment surface is a biological hotspot, where the benthic microbial community is 

denser and more diverse that in adjacent compartments (Duran and Goňi-Urriza 2010; Paissé et al. 2008). 

Here, the interactive effort of a multitaxon microbial mat will synergistically enhance oil biodegradation 

(Coelho et al. 2016a; McGenity et al. 2012). In this heterotrophic consortium, Bacteria are of vital 

importance because of their versatile enzymatic capabilities (Head et al. 2006; Schmidt et al. 1998). Their 

possible functional replacement by Fungi has been shown to comparatively decrease n-alkane removal 

in sediments (Coelho et al. 2016a). In Bacteria, aerobic hydrocarbon biodegradation can occur through 

the action of generalist heterotrophic bacteria (e.g. genera Pseudomonas and Bacillus), which are capable of 

oxidizing other carbon substrates in the absence of oil, and/or through the action of hydrocarbonoclastic 

bacteria (Yakimov et al. 2007). Hydrocarbonoclastic bacteria are specialized in the biodegradation of 

specific classes of oil hydrocarbons [e.g. Alcanivorax sp. degrades saturated mid-range n-alkanes and 

Cycloclasticus sp. specifically degrades PAHs; (Schneiker et al. 2006; Yakimov et al. 2007; Yakimov et al. 

1998)] and are more ubiquitous in marine aerobic environments than in terrestrial soils (Rojo 2009). 

They are sparsely present in non-contaminated environments and will respond rapidly to oil input 

(Yakimov et al. 2007). As crucial intervenients in the first metabolic step of aerobic hydrocarbon 

biodegradation (oxygenation), they will initially bloom but, gradually, as diversity rises, other 

heterotrophic bacteria will appear and feed on oils metabolic intermediates (Vila et al. 2010). Also, with 

time the predominant aerobic hydrocarbonoclastic bacteria will change concurrently with oil weathering 

(Dubinsky et al. 2013). The initially dominant alkane-degrading bacteria (i.e. Alcanivorax) are progressively 

replaced by PAH-degrading bacteria (e.g. Cycloclasticus) as the concentration of alkanes decreases 

(Dubinsky et al. 2013; Terrisse et al. 2017). In the end, as oil disappears, microbial communities may 

return to its initial pre-spill state (Yang et al. 2014). 

Under anaerobic conditions, biodegradation will occur, but it will be comparatively slower than 

in aerobic conditions (Vitte et al. 2011; Widdel and Musat 2010). Alternative electron acceptors to 

molecular oxygen are abundant in sediments and microorganisms are known to efficiently use them in 

other metabolic pathways. Yet, in aerobic hydrocarbon biodegradation molecular oxygen is also used as 

a reactant in the initial activation step. In anaerobic conditions, alternative reactants (more commonly 

fumarate, but also water and nitrate) are used, but their energetic yields are substantially lower (Rojo 

2009; Widdel and Musat 2010). For example, in hexadecane biodegradation, activation with fumarate 

has a potential free energy gain for the bacteria ten-fold lower than to aerobic oxygenation (Rabus et al. 

2001). Anaerobic hydrocarbon biodegradation is predominantly achieved directly by sulfate-reducing 

bacteria in marine intertidal sediments (Davidova et al. 2006) or indirectly through syntrophic 

relationships with these and methanogenic archaea (McInerney et al. 2009). Other common metabolic 
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pathways include hydrocarbon biodegradation coupled to metal reduction [e.g. Fe(IV) and Mn(IV)] 

(Dorer et al. 2016). Despite its poor energetic gain, anaerobic biodegradation is still an important via for 

oil hydrocarbon removal in sediments, particularly in fine-grained sediments. Here, a more superficial 

redoxcline layer limits aerobic biodegradation to the most superficial sediments, which in oil 

contaminated environments can be quickly depleted of oxygen because of an increased heterotrophic 

activity. 

In sum, the restoration of oil-impact marine environment can be achieved through the metabolic 

interaction of a multitaxon microbial community. However, and despite the substantial amount of 

research dedicated to the theme, the mechanistic details of the biodegradation of oil hydrocarbons in 

marine environments are still poorly understood. The functional role of specific microbial groups and 

the microbial dynamics inside the community, remain elusive. Although catastrophic incidents are ideal 

sources of new data for research, their occurrence is both undesirable and unpredictable in time and 

space. Therefore, validated microcosm simulations of oil spills are required to answer these surging 

questions. Also, climate alterations induced by global warming (e.g. ocean acidification) may alter the 

baseline of the microbial dynamics of oil hydrocarbon biodegradation in marine environment and should 

be considered when designing these experiments. In the end, a more thorough understanding of the 

biodegradation of oil hydrocarbons in marine environments will incite new oil response strategies and a 

more informative decision-making, certainly benefiting environmental protection. 
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Abstract 

Recalcitrant polycyclic aromatic hydrocarbons (PAHs) released into seawater end up in the deep 

sea sediments (DSS). However, this compartment is often oversimplified by theoretical models. 

Biodegradation of PAHs in DSS is assumed to be similar to biodegradation in surface habitats, despite 

high hydrostatic pressures and low temperatures that should significantly limit PAHs biodegradation. 

Bacteria residing in the DSS (related mainly to α- and γ-proteobacteria), however, have been shown to 

or predicted to possess distinct genes, enzymes and metabolic pathways, indicating an adaptation of 

these bacterial communities to the psychro-peizophilic conditions of the DSS. This work summarizes 

some of the most recent research on DSS hydrocarbonoclastic populations and mechanisms of PAHs 

degradation and discusses the challenges posed by future high CO2 and UV climate scenarios on 

biodegradation of PAHs in DSS. 

Highlights 

 PAHs tend to accumulate in DSS 

 High hydrostatic pressure and low temperature adversely affect PAHs biodegradation in DSS 

 DSS bacterial communities house distinct strains, catabolic genes, enzymes and pathways  

 We review the impact of DSS bacteria on PAHs degradation under current and future climate 

scenarios. 

 Future climate scenarios may indirectly affect PAHs biodegradation in DSS. 

Keywords: Oil pollution; Abyssal sediments; biodegradation, Climate change, High hydrostatic pressure; 

Polycyclic aromatic hydrocarbons 

Introduction 

Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic molecules consisting of two or more 

fused aromatic rings arranged in a variety of structural configurations. PAHs bioaccumulate through 
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trophic webs (Clements et al. 1994; Kanaly and Harayama 2000) and exert acute toxic, mutagenic, 

teratogenic and carcinogenic effects on living organisms (Kanaly and Harayama 2000; Menzie et al. 1992; 

Neff 2002). PAHs with two and three aromatic rings are considered low molecular weight (LMW) PAHs, 

while compounds with four or more aromatic rings are known as high molecular weight (HMW) PAHs. 

In Table I-1, we listed the 16 priority PAHs as classified by the US Environmental Protection Agency 

(EPA) along with measured and estimated physico-chemical data. Overall, organic carbon-water 

partition coefficient (Koc), octanol-water partition coefficient (Kow) and half-life values increase with 

increasing numbers of rings, whereas vapour pressure decrease. An increasing number of rings reduces 

volatility, solubility and biodegradation rates, and increases hydrophobicity, adsorption to particulate 

matter, toxicity and recalcitrance (Seo et al. 2009). 

Bioavailability refers to the forms and quantity of chemicals that biota can take up during their 

lives and thus determines how and to what extent these chemicals enter the food chain. In the 

biodegradation of hydrophobic pollutants, bioavailability is important and is expressed as the relative 

fraction of a specific pollutant that is available to microbes. Solubility and sorption are important 

parameters when considering bioavailability. The first is directly correlated with bioavailability, while the 

second is affected by various external factors. All PAHs are hydrophobic and lipophilic, and adhere to 

soil particles, if available, in a seawater environment. The 'strength' of this association varies and is 

related, among other things, to soil properties (Semple et al. 2003). Koc (Table I-1) directly reflects the 

sorption capacity of PAHs and increases with increasing number of rings. Sorption also increases with 

increasing soil organic carbon content (Wang et al. 2001) and decreasing pore size (Semple et al. 2003). 

In soot, a carbon-rich matrix, pyrolytic PAHs are highly sorbed and occluded, which reduces their 

degradation in comparison to other surfaces (Kim et al. 2009). At DSS organic carbon content is lower 

than at coastal marine sediments (Nagata et al. 2010) thus PAHs are more bioavailable. Over time, the 

rate of desorption of organic pollutants from the matrix decreases exponentially (aging). Aging 

functionally resumes to the shift from weaker hydrogen and van der Waals to covalent bonds. By aging, 

PAH-soil interaction becomes more stable and irreversible (Semple et al. 2003). 

PAHs are introduced into the marine environments sporadically through marine oil spills and 

continuously through urban run-off, industrial and domestic wastewater/sludge discharge, atmospheric 

deposition, ship ballast cleaning, offshore oil exploration and natural seepage (Guitart et al. 2007; Guitart 

et al. 2010; Notar et al. 2001). PAHs inputs into marine environments can be classified into two groups: 

petrogenic and pyrolytic (Ke et al. 2002). Petrogenic sources derive directly from petroleum and 

derivatives, while pyrolytic sources derive from the combustion of fossil fuels. Higher PAHs 

concentrations in seawater are normally associated with anthropogenic coastal activities, particularly 

shipping harbours (Cincinelli et al. 2001; Coelho et al. 2010; Fang et al. 2008; Wurl and Obbard 2004) 

and major rivers. The highly urbanized coastal waters are reported to be 1.5 and 4.5 times more enriched 

in dissolved and particulate PAHs, respectively, than pristine sites (Guitart et al. 2007). 
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Table I-1 - List and associated relevant information of PAHs labeled as priority pollutants by the US Environmental Protection Agency — EPA. 

EPA 16 Priority 
PAHs 

Conformation Physical Chemical Parameters Toxicology Biodegradation 

nº 
rings 

Structure 
Solubility 

mg L-1a  

logkoc 
logkow

b  
Vapour Pressure 
(mm Hg at 25ºC) TEFc  IARCd  EPAe  

Estimated 
Half-lives 

(days)f  

Measured 
Half-lives 

(days)g  MCIh  kow
i  Measured 

Naphthalene 2 

 

31.0 j  3.189 2.864 2.96k  3.30 8.5x10-2l  n.d. 2B C 5.56 n.d. 

Acenaphthene 3 

 

3.93 3.701 3.402 3.59k  3.92 2.5x10-3m  0.001 3 D 18.77 n.d. 

Acenaphthylene 3 

 

1.93 3.701 3.419 3.75k  3.94 6.68x10-3m  0.001 n.c. D 30.7 n.d. 

Anthracene 3 
 

0.076 4.214 3.862 4.31k  4.45 6.53x10-6n  0.01 3 D 123 2.7 

Phenanthrene 3 

 

1.20 4.223 3.870 4.35k  4.46 1.2x10-4m  0.001 3 D 14.97 5 
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Fluorene 3 

 

1.68-1.98 3.962 3.627 3.7k  4.18 6.0x10-4m  0.001 3 D 15.14 n.d. 

Fluoranthene 4 

 

0.20-0.26 4.744 4.426 4.8k  5.10 9.22x10-6m  0.001 3 D 191.4 9.2 

Benzo[a] 
anthracene 

4 

 

0.010 5.508 4.999 5.37k  5.76 4.11x10-3o  0.1 2B B2 343.8 >182 

Chrysene 4 

 

1.5x10-3 5.256 5.042 5.37p  5.60 6.23x10-9q  0.010 2B B2 343.8 n.d. 

Pyrene 4 

 

0.132 4.735 4.235 4.9k  4.88 4.5x10-6m  0.001 3 D 283.4 151 

Benzo[a] 
pyrene 

5 

 

3.8x10-3 5.769 5.320 5.95s  6.13 5.49x10-9t  1.0 1 B2 421.6 11 
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Benzo[b] 
fluoranthene 

5 

 

0.0012 5.778 4.495 5.82p  5.18 5.0x10-7m  n.d. 2B B2 284.7 n.d. 

Benzo[k] 
fluoranthene 

5 

 

7.6x10-4 5.769 4.235 5.6u  6.11 9.7x10-10t  0.1 2B B2 284.7 n.d. 

Dibenzo[a,h] 
anthracene 5 

 

5.0x10-4 6.281 5.858 6.22k  6.75 9.55x10-10v  n.d. 2A B2 511.4 n.d. 

Benzo[g,h,i] 
perylene 

6 

 

2.6x10-4 6.290 5.754 6.26p  6.63 1.0x10-10w  n.d. 3 D 517.1 n.d. 

Indeno[1,2,3-cd] 
pyrene 

6 

 

0.062 7.333 5.815 6.26p  6.70 1.25x10-10q  n.d. 2B B2 349.2 n.d. 

a (ATSDR 1995) 
b (Paraíba et al. 2010) 
cToxic equivalent factor relatively to Benzo[a]pyrene (Chang et al. 2014) 
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dInternational Agency for Research on Cancer Classification Monographs Volume 1-111 updated 18 February 2015 (1-Carcinogenic to humans; 2A-Probably 
carcinogenic to humans; 2B-Possibly carcinogenic to humans; 3-Not classifiable as carcinogenic to humans; n.c.-not classified) 

eEPA Carcinogenic Classification: A-Human carcinogenic; B1 and B2: Probable human carcinogenic; C-Possible human carcinogenic; D-Not Classifiable as to human 
carcinogenicity; E-Evidence of non-carcinogenicity for humans 

f Estimation using BioHCwin software v1.01 on EPI Suite software develop by (Howard et al. 2005) 
g (Comber et al. 2012) 
hEstimation using KOCWIN v2.00 software on EPI Suite program by the MCI method(Meylan et al. 1992; SRC 1991) 
iEstimation using KOCWIN v2.00 software on EPI Suite program by the kow method using kow values presented above 
j (Bojes and Pope 2007) 
k (Schüürmann et al. 2006) 
l (Ambrose et al. 1975) 
m (Sonnefeld et al. 1983) 
n (Oja and Suuberg 1998) 
o (Mackay and Shiu 1977) 
p (Hawthorne et al. 2007) 
q Estimated using Mpbpwin v1.43 software of EPI Suite program using the Grain Method(Neely and Faust 1985) 
r (Hoyer and Peperle 1958) 
s (Meylan et al. 1992) 
textrapolated (Murray et al. 1974) 
u (HSDB 2008) 
vextrapolated (Lei et al. 2002) 
w (Lee et al. 1993) 
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Increasing energy demand will lead to an increase in the transportation, storage and use of fossil 

fuels thereby increasing the risk of oil spill. Remediation of oil pollution response rely on physical, 

biological and chemical processes. Biological methods mainly focus on enhancing natural biodegradation 

through the supplementation of nutrients, surfactants (biostimulation) or microorganisms 

(bioaugmentation). Nutrient biostimulation approaches rely on N and P supplementation in the form of 

inorganic salts to contaminated areas. Microbial biodegradation of oil pollutants is often limited by the 

low concentrations of bioavailable nitrogen in comparison to carbon. Supplementation of N and P 

increases microbial degradation but is only effective when these elements are limiting. This approach is 

more effective in soil, sand and embayments. In the open ocean, nutrient dispersion significantly reduces 

its effectiveness and requires continuous supplementation, which raises costs (Nikolopoulou et al. 2007). 

Oil degradation is also limited by the reduced oil-water interface, where biodegradation occurs. 

Application of surfactants reduces the interfacial tension and increases oil-water emulsification, 

enhancing biodegradation (Hazen et al. 2010). Bioaugmentation (addition of exogenous or endogenous 

bacteria) is an overlooked tool in oil spill response and has been deemed ineffective and relatively 

expensive (Megharaj et al. 2011). Maladaptation of the inoculated microorganisms to the new 

environment constitutes a major barrier to successful bioaugmentation (Churchill et al. 1995). However, 

the use of autochthonous strains could help to overcome this limitation and improve bioremediation 

efficiency (Hosokawa et al. 2009) and bioaugmentation with PAH-degrading bacteria, immediately after 

spill, can minimize persistent PAH afterwards (Ron and Rosenberg 2014). 

The extension of oil exploration towards deeper ocean introduces novel technological 

challenges and environmental concerns. Therefore, in depth scientific knowledge and new technological 

skills need to be developed. Here we focus on the particular features of the deep sea that make it a 

relevant bioremediation site: the origin and fate of PAHs in deep sea sediments and the microbial players, 

pathways and genes involved in PAHs biodegradation. 

Bacterial life in the deep sea 

In the present review, deep sea sediments refer to the sea floor below 1000 m depth. This 

environment is considered extreme because of the challenging conditions to microbial life in terms of 

nutrient supply, electron donors and acceptors, and exposure to physical factors such as temperature 

and pressure. 

The DSS environment is characterized by high pressure (10–50 MPa), low temperatures (2-3ºC, 

except in hydrothermal vents) and low concentration of labile organic carbon. Salinity varies between 

34.3–35.1 g L-1 and pH between 7.5–8.0 (Nagata et al. 2010). Collectively, the data indicate that physico-

chemical conditions of the deep sea environment are more stable than the ocean surface (Nagata et al. 

2010). Although the abyssal plains form the major part of the deep sea, other habitats are present and 
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include hydrothermal vents, cold seeps, mud volcanoes, Fe(III)-Mn(IV) nodules, trenches, seamounts 

and canyons (Nagata et al. 2000). 

Marine sediments, in general, are covered with biofilms of dense and diverse microbial 

communities (Chipman et al. 2010). They are efficient players in the biogeochemical cycles of carbon, 

nitrogen and phosphorus (Kostka et al. 2011; Shao et al. 2010; Silva et al. 2003). Life in the deep sea 

mainly depends on the input of organic carbon from the ocean above. Dissolved organic carbon in the 

superficial deep sea sediments varies from 509-1038 µmol L-1 in the Atlantic Ocean and 672-1529 µmol 

L-1 in the more eutrophic Arabian Sea (Lahajnar et al. 2005). Exogenous organic carbon inputs into the 

deep sea derive from lateral advection from slopes and shelves, diffusion and sinking. Resuspension 

from bottom sediments by turbulence mixing, chemosynthetic activity and hydrocarbon seeps also 

contributes to the microbial food web. 

Organic matter is continuously degraded by microbes while sinking, leaving behind a refractory 

remnant (Nagata et al. 2010). Bacteria in the deep sea are adapted to degrade these recalcitrant 

compounds. Specific adaptations to oligotrophic environments, such as the production of 

bioflocculants, have been reported in deep sea bacteria and assist in nutrient and carbon sequestration 

(Wu et al. 2013). Deep sea microbial communities have been reported to decompose biodegradable 

plastics (Sekiguchi et al. 2011), hydrocarbons, PAHs (Cui et al. 2008; Shao et al. 2010; Wang et al. 2008) 

and polychlorinated biphenyls (Froescheis et al. 2000). 

The microbial community in the bathypelagic environment has been shown to be surprisingly 

diverse (DeLong et al. 2006; Sogin et al. 2006). Although microbial abundance is relatively stable at 104-

105 cells cm-3 and biomass decreases with depth (Nagata et al. 2000; Nagata et al. 2010; Sogin et al. 2006), 

microbial diversity has been shown to increase due to the preponderance of low abundance operational 

taxonomic units (OTU) also known as the "rare biosphere" (Sogin et al. 2006). The "rare biosphere" is 

thought to serve as a microbial seed-bank which may increase in relative abundance in response to 

environmental change (Agogué et al. 2011). Deep sea microbial communities contain numerous novel 

taxa; for example, a culture-independent analysis of an extinct hydrothermal field, revealed that only 4% 

of the bacterial sequences had > 94% sequence similarity to sequences from NCBI database (Nercessian 

et al. 2005).  

A number of studies have reported the composition of DSS bacterial communities (Table I-2) 

However, these results should be compared with caution due to the variation in molecular techniques 

employed and biases in DNA extraction and PCR amplification protocols that may over- or under-

represent certain taxa (Al-Awadhi et al. 2013; Hazen et al. 2013). Overall, Proteobacteria, particularly 

belonging to the α-, γ- and δ- classes are the most abundant taxa in molecular surveys of DSS microbial 

communities (Jamieson et al. 2013; Jiang et al. 2007; Li et al. 1999; Nercessian et al. 2005; Pachiadaki et 

al. 2011; Wu et al. 2013; Xu et al. 2005; Zeng et al. 2005). ϒ-Proteobacteria the most abundant group in 

the mid-Atlantic ridge's Rainbow hydrothermal vent (≈50% of total OTU) (Nercessian et al. 2005), the 
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Table I-2 - List of culture-independent studies of the deep sea benthic bacterial community. 

Matrix Location Method Main conclusions Reference 

Hydrothermal 
vents 

Rainbow 
Hydrothermal 
vent field, Mid 
Atlantic Ridge 
(2300m) 

16S rRNA clone 
library 

Clones correspond to sequences classified as γ- (≈50%), 
α-(12%) and δ- Proteobacteria (6%), Planctomycetes 
(8%) and Bacteriodetes (6%) 

(Nercessian et al. 2005) 

DSS Western Pacific 
"Warm Pool" 
(1901m) 

16S rRNA clone 
libraries 

Clones correspond to γ- (45.3%), α- (17%) and δ- 
(12.3%) Proteobacteria. Less represented OTU 
correspond to β- (4.7%) and ε- (7.5%) Proteobacteria, 
Cytophaga/Flavobacteria/Bacteriodetes group (5.6%), 
Planctomycetes (2.8%) and gram-positive bacteria (2.8%)  

(Zeng et al. 2005) 

Indian Ocean 
sediments at a 
high and low 
Chlorophyll 
Sites 

16S rRNA clone 
library 

Clones correspond to γ- and α-Proteobacteria. Other less 
abundant clones included δ- and ε-proteobacteria 
(grouped) and Planctomycetes. Actinobacteria relevant at 
a particular site.  

(Jamieson et al. 2013) 

Sea of Okhotsk 
(1225m) core 
with of clay with 
interlaying layers 
of volcanic ash. 

16S rRNA clone 
libraries 

Distinct geohydrological environments have distinct 
bacterial communities. In clay, green sulfur bacteria at the 
surface, and the candidate division OP9 in subsurface. 
Volcanic ashes dominated by γ-Proteobacteria (genus 
Halomonas, Methylophaga and Pyschobacter) and α and δ-
Proteobacteria.  

(Inagaki et al. 2003) 

Gas Hydrates 

South China Sea 
sediments 
(1508m)  

16S rRNA clone 
library 

OTU correspond to γ- Proteobacteria (82%). Less 
abundant clones include α-(13%) and δ-( 3.2%) 
Proteobacteria. Bacterial community presented low 
diversity and high relatedness to cultured organisms. 
Sequences had high similarity with sequences from HC 
and PAH-degrading and Fe(III)-Mn(IV) and sulfate 
reducing isolates. 

(Jiang et al. 2007) 

Polymetallic 
nodules 

South Pacific 
Ocean (5000-
5500m)  

16S rRNA clone 
library 

OTU were similar mainly to sequences classified as α-, γ- 
and δ-Proteobacteria. Other less abundant clones 

(Wu et al. 2013) 
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included Actinobacteria, Acidobacteria and 
Planctomycetes. 

Mud Volcanoes 

East 
Mediterranean 
Sea sediment 
core 0-30cm 
(2025) 

16SrRNA clone 
library 

All together 20 phylogenetic groups were represented in 
this study, Shannon–Wiener diversity index H of 1.92-
4.03, that decreased from 0cm to 15cm. δ- (21.3%), γ- 
(22.3%) and ε-Proteobacteria (14.9%) dominated 0-5 cm 
samples and were substituted by division Chloroflexi 
(42.3%) and JS1 candidate division (15.5%) at 10 cm 
sample, δ-Proteobacteria (24.6%-27.1%) and JS1 
candidate division (34.8%-28.8%) at 15-20 cm and δ-
Proteobacteria at 25 cm (65.6%) (in part due to 
abundance of the Desulfosarcina/Desulfococcus group). 
Unaffiliated sequences and Chloroflexi (19.2%) were the 
highest at the deepest sample (30cm) 

(Pachiadaki et al. 2011) 
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Pacific Ocean Fe(III)-Mn(IV) nodules (≈70% of clones) (Xu et al. 2005) and the Western Pacific Warm 

Pool sediments (≈ 45%) (Zeng et al. 2005). δ-Proteobacteria were the most abundant group in cold 

seeps in the Japan Trench (6200 m) (Li et al. 1999) and ε-Proteobacteria, along with γ- and α- 

Proteobacteria, composed the majority of sequences from some deep sea hydrothermal vent systems 

(Moyer et al. 1995; Moyer et al. 1998; Reysenbach et al. 2000). Other relatively abundant taxa include the 

Cytophaga/Flavobacteria/Bacteroidetes group (Li et al. 1999; Martín-Cuadrado et al. 2007; Nercessian 

et al. 2005; Xu et al. 2005; Zeng et al. 2005), Planctomycetes (DeLong et al. 2006; Jamieson et al. 2013; 

Martín-Cuadrado et al. 2007; Nercessian et al. 2005; Wu et al. 2013; Zeng et al. 2005), Chloroflexi (mainly 

affiliated with Dehalococcoidetes (Inagaki and Nakagawa 2008)) (DeLong et al. 2006; Martín-Cuadrado 

et al. 2007; Pachiadaki et al. 2011), Acidobacteria (Martín-Cuadrado et al. 2007; Wu et al. 2013), 

Firmicutes (Li et al. 1999; Martín-Cuadrado et al. 2007; Zeng et al. 2005), CFB group (Xu et al. 2005; 

Zeng et al. 2005), JS1 candidate division (previously joined with the OP9 candidate division) (Inagaki 

and Nakagawa 2008; Inagaki et al. 2006; Inagaki et al. 2003) and Actinobacteria (Jamieson et al. 2013; 

Wu et al. 2013). Functions such as sulfate reduction in hydrothermal vents and cold seeps have been 

mainly attributed to ε- and δ-Proteobacteria (Desulfococcus and Desulfosarcina) (Inagaki et al. 2002; 

Longnecker and Reysenbach 2001; Zeng et al. 2005), sulfur oxidation to γ- and ε-Proteobacteria (Inagaki 

and Nakagawa 2008), methane oxidation to members of the uncultured candidate division JS1 (Inagaki 

et al. 2002), γ- and α-Proteobacteria (Xu et al. 2005) and dechlorination to members of δ-Proteobacteria 

and Chloroflexi (Inagaki and Nakagawa 2008). Archaea are also crucial players in the chemosynthetic 

activity of the DSS microbial community, e.g., in the fixation of dissolved inorganic carbon (Herndl et 

al. 2005), methane oxidation (Havelsrud et al. 2011) and nitrification (Beman et al. 2008). Archaea have 

also been shown to be relatively more abundant components of DSS microbial communities (Herndl et 

al. 2005). The unique physico-chemical conditions of the DSS induce a selective pressure on the resident 

microbial community (Table I-3). There are a number of pronounced differences between microbial 

communities in DSS and surface waters (Konstantinidis et al. 2009). Microbial communities from the 

deep sea maintain higher metabolic activity under pressurized conditions than under normal atmospheric 

pressure, which indicates an adaptation to a piezophilic environment (Nagata et al. 2010). Furthermore, 

metagenomic and biochemical analysis of the microbial community has unveiled a number of distinct 

features. The occurrence of surface attachment and biofilm associated genes encoding for pilus, 

polysaccharide, and antibiotic synthesis suggest surface-attachment and biofilm organization as 

important lifestyles in bathypelagic microbial communities (DeLong et al. 2006). The absence of genes 

that encode for proteins involved in light driven DNA repair (DeLong et al. 2006), a higher metabolic 

diversity (Konstantinidis et al. 2009), cell membranes with a higher proportion of unsaturated fatty acids 

suited to sustain cold and high pressure conditions (Wang et al. 2008), enzymes with weaker 

intermolecular interactions favouring molecular flexibility and catalytic efficiency, and larger genomes 

(1.35±0.25 fold in comparison to bacteria from surface waters) with extensive intergenic regions and 
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Table I-3 - List of unique phenotypical features found in the DSS microbial community indicative of adaptation to this extreme 

marine habitat. 

Features  References 

Genes associated to surface attachment and biofilm lifestyle (DeLong et al. 2006) 

Absence of genes involved in light driven reactions (DeLong et al. 2006) 

Higher metabolic diversity (Konstantinidis et al. 2009) 

Higher proportion of unsaturated fatty acids in cell wall (Wang et al. 2008) 

Weaker intramolecular enzymatic interactions (Nagata et al. 2010) 

Large genomes (Konstantinidis et al. 2009) 

 

large numbers of rRNA genes (Konstantinidis et al. 2009; Nagata et al. 2010) are also characteristic 

features of bacteria from DSS. 

Accumulation of PAHs in deep sea sediments 

Despite its remoteness, the deep sea has been an overlooked sink for PAHs (Bouloubassi et al. 2006; 

Shao et al. 2010). In Table I-4 a list of studies measuring ΣPAHs in DSS is available. Overall, 

concentrations of ΣPAHs in DSS are lower than those measured in other marine sediments, particularly 

when compared to salt marshes and estuaries (Yuan et al. 2014), although in coastal shelf sediments, 

relatively low concentrations of ΣPAHs have been measured (Wang et al. 2014). Nevertheless, it may 

prove incorrect to generalize information, since the quantity and quality of PAHs pollution in DSS 

depends on the distance from land-based sources, anthropogenic pressure, natural seepage and 

hydrological circulation. The Mediterranean Sea has been relatively well-studied due to the relatively high 

anthropogenic impact and low water exchange (Bouloubassi et al. 2006; Mandalakis et al. 2014; Parinos 

et al. 2013). Here, a 1-year sediment trap at 2850 m revealed a mean daily flux of 53 ± 39 ng m-2 d-

1(Bouloubassi et al. 2006) . HMW PAHs and LMW PAHs were dominating winter and summer sampling 

events, respectively, indicating the main source of PAH varied with season and climate (Bouloubassi et 

al. 2006). An extensive survey in the Mediterranean measured ΣPAHs from 11.6-223 ng g-1 (mean of 

63.9 ng g-1); the mean ΣPhenanthrene/ΣHMWPAHs ratio was 0.45 ± 0.19 indicating that pyrolytic 

sources were  dominant (Parinos et al. 2013). With the exception of a single dataset (Bouloubassi et al. 

2006), this seems to be the general consensus of all studies in the Mediterranean Sea (Bouloubassi et al. 

2012; Mandalakis et al. 2014; Tolosa et al. 1996). PAHs concentrations in the Mediterranean Sea are 

similar to those found in distant mid-Atlantic sub-surface sediments (455 ng g-1) (Shao et al. 2010), in at 

Arctic Sea surface sediments (113-2504 ng g-1) (Yunker et al. 2011) and the Gulf of Mexico (Soliman and 

Wade 2008). In remote DSS, LMW PAHs (Shao et al. 2010) and alkylated PAHs (aPAHs) 
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Table I-4 - List of studies measuring ΣPAHs in DSS. 

Reference Location Depth (m) Average ΣPAHs (ng g-1) Source 

(Bouloubassi et al. 2006) West Mediterranean Sea (39ºN 
6ºE) 

2850 551 ± 198  HMW PAHs and LMW PAHs were dominant in winter and summer 
sampling times, respectively 

(Bouloubassi et al. 2012) West Mediterranean Sea/ Gulf of 
Lions 

2854  289.3  Pyrolytic PAHs have higher relative abundance 

(Tolosa et al. 1996) Western Mediterranean Sea >1000 pyrolytic (147-604) HMW PAHs clearly dominant ΣPAHs. Indicating a high contribution 
of pyrolytic sources. petrogenic (24-112) 

diagenetic (1-10) 

(Parinos et al. 2013) East Mediterranean Sea 1018-4087 63.9  Mean Phenanthrene / ΣHMWPAHS ratio was 0.45 ± 0.19 indicating a 
pyrolytic source. 

(Mandalakis et al. 2014) Southern Cretan Basin 215-4392 9-60  All ratios used indicated a pyrolytic origin. Benzo[b]fluoranthene, 
indenol[1,2,3-cd]pyrene and Benzo[ghi]perylene had the highest 
abundance in all samples. LMW PAHs / HMW PAHs was at average 
0.55 ± .010. 

Northern Cretan Basin 14-34  

Levantine Basin 17-27  

(Yunker et al. 2011) Arctic Sea extensive sampling 867-4230 113-2504  Predominance of aPAHs indicate petrogenic origin 

(Shao et al. 2010) Mid Atlantic Ocean (11º11'S 
11º41'W) 

3962 445  A high relative abundance of LMW PAH (Phenanthrene (222 ng g-1)) 
indicate petrogenic origin. Analysis did not target aPAHs 

(Cui et al. 2008) Mid Atlantic Ocean (0º8.42'N, 
24º23.63'W) 

3542 266  A high relative abundance of LMW PAH (Acenaphthene (89 ng g-1)) 
indicate petrogenic origin. Analysis did not target aPAHs 

(Dong et al. 2014c) Arctic Ocean North-South 
Transect 

 2.02 to 41.63  LMW PAHs were dominant in all but the site nearest to land. 
Petrogenic sources are dominant sources in sites furthest from land. 

(Ohkouchi et al. 1999) Pacific Ocean 175ºE Transect 2505-5906  0.81-60.6- Authors assume that atmospheric deposition of pyrolytic PAHs are 
the main origin of PAHs in DSS, although aPAHs/PAHs ratios are 
between 2-6 indicative of petrogenic origin 

(Yang 2000) South China Sea 1045-2432 124.7-199.1 Despite high relative abundance of naphthalene, 
Phenanthrene/Anthracene ratio was always <15 indicative of pyrolytic 
origin. 
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(Soliman and Wade 2008; Yunker et al. 2011) had the highest relative abundances, indicating that 

petrogenic sources are the main source of PAHs, and natural seeps are the most probable explanation 

(Shao et al. 2010). Air-sea exchange may also be an important contributor when LMW are dominant, as 

explained below. 

Geochemical processes such as hydrothermal activity and, especially, cold seeps, are an 

important source of PAHs in offshore sites such as the mid-Atlantic ridge (Cui et al. 2008; Konn et al. 

2009). Here, PAHs have been reported to accumulate in surrounding sediment (Burns et al. 2010; Etkin 

2009), despite natural communities degrading a significant fraction of the pollutant (Kappell et al. 2014). 

Natural seepage represents 47% of the oil introduced to marine environments (Kvenvolden and Cooper 

2003; National Academy of Science 2002). The estimated quantity of seep oil has been reported to be 

between 108-109 L annually) (Kvenvolden and Cooper 2003). However, estimations are based on 

available data, mostly from continental margins and in oil producing regions, and omit the vastness of 

the ocean realm including the deep sea. Therefore, overall marine seepage is probably higher. 

Of the remaining oil introduced in the marine environments, only 2.9% and 11.5% result from 

the production and transportation of oil, respectively. Nonetheless, major oil spills represent a major 

threat to marine ecosystems, especially near oil production areas and vessel corridors, because of the 

rapid release of high volumes of oil over a limited area and the frequency of spills near coastal regions. 

Even in areas with abundant natural seep sites (i.e., the Gulf of Mexico) the capacity of microbes to 

remove high amounts of oil has been questioned, due to limited dispersion and low oxygen 

concentrations at some depths (Ramirez-Llodra et al. 2011). During oil spills, physical weathering 

completely or partially removes the more volatile and polar hydrocarbons, namely small chain alkanes 

(< C14) and LMW PAHs (Ke et al. 2002), while biodegradation removes long chain alkanes and some 

branched alkanes (Reddy et al. 2002). Subsequently, a remnant fraction that includes HMW PAHs and 

aPAHs, among others, persists (González et al. 2006; Teira et al. 2007; Yamada et al. 2003) and will tend 

to adhere to the sediment (Bouloubassi et al. 2006). In the recent Deepwater Horizon (DWH) oil spill, 

HMW PAHs represented 31% of ΣPAH in the particulate phase while their relative abundance in oil 

was only 8% (Boehm et al. 2011). Traces of PAHs, mainly HMW and aPAHs have been found in marshes 

30 years after oil spill incidents (Peacock et al. 2007; Reddy et al. 2002).  

The remaining hydrocarbons that enter marine environments are derived from land run-off and 

atmospheric deposition. Here, rivers are important contributors of PAHs, particularly HMW PAHs with 

high Koc, to deep sea basins near river mouths. Rivers concentrate and transport these pollutants from 

their basin to the river mouth (Lipiatou et al. 1997; Scheringer et al. 2004). As an example, the sub basin 

of the Adriatic Sea (75 m) is enriched in PAHs derived from the agro-industrialized Po Valley 

hydrological system (Marini and Frapiccini 2013). When freshwater reaches the sea, the increase in 

salinity causes mass transfer of PAHs to the particulate phase and subsequent sedimentation (Marini and 

Frapiccini 2013). Sedimentation is the main process by which PAHs enter marine sediments (Lipiatou 
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et al. 1997). The concentration of PAHs in marine sediments is positively correlated with the 

concentration of particles < 15 µm (Charlesworth et al. 2002) and organic carbon (Mandalakis et al. 

2014). PAHs fluxes to the deep sea are influenced by size and degree of pollution of nearby rivers and 

can be enhanced by natural meteorological events such as typhoons, hurricanes and floods (Lin et al. 

2013). PAHs are transported to the deep sea by lateral advection from the continental shelf, mainly 

through submarine canyons (Bouloubassi et al. 2012). Atmospheric deposition is an important 

contributor of PAHs in oceans (Tsapakis et al. 2006). Atmospheric deposition consists of three 

processes: wet deposition and dry deposition that mainly transports PAHs with higher Koc, and air-sea 

gaseous exchange processes that mainly transport PAHs with higher vapour pressure (Tsapakis et al. 

2006). In contrast to what was initially assumed, air-water exchange is a significant source of PAHs into 

oceans (mean 706 µg m-3 yr-1) and accounts for ≈ 76% of atmospheric deposition in the Eastern 

Mediterranean Sea (≈200 km) (Tsapakis et al. 2006). At sites further from pollution sources, air-sea 

exchange represented almost the totality of PAHs in atmospheric deposition (Ma et al. 2013). A 0.7% 

fraction (8 µg m-3 yr-1) of the total atmospheric deposition (929 µg m-3 yr-1) of PAHs reached sediment 

traps located at 1440 m of depth and phenanthrene (associated to air-gas exchange) was the most 

abundant PAH (92 ng g-1) (Tsapakis et al. 2006). 

PAHs are known to bioaccumulate in macrofauna in rivers, estuaries and coastal marine habitats 

(Bandowe et al. 2014; Li et al. 2014). In DSS, PAHs and other organic pollutants such as 

organochlorinated compounds (Froescheis et al. 2000) tend to bioaccumulate in deep sea organisms 

(Escartín and Porte 1999; Soliman and Wade 2008). At 480 m depth in the Mississippi Canyon, Gulf of 

Mexico (before the DWH incident), PAHs were quantified in deep sea amphipods and results revealed 

a mean bioaccumulation factor (BAF) of 4.37 ± 2.55, with higher values for aPAHs in comparison to 

the respective parent-PAHs (Soliman and Wade 2008). This was attributed to the high impact of oil 

exploration and natural oil seepage present in the area and reduced rates of degradation of aPAHs 

(Soliman and Wade 2008). BAFs were positively correlated with logKow (Soliman and Wade 2008); 

however, in another study using marine fish samples aPAHs were excluded from the analysis and BAF-

logkow correlation was parabolic with a peak estimated at a log Kow value of 5 (Li et al. 2014). Overall, 

aPAHs and HMW PAHs have a higher tendency to bioaccumulate, but this relationship is not always 

linear and may depend on the type of fauna sampled (Li et al. 2014). 

The half-lives of PAHs increase in deep sea environments due to low temperature, high salinity 

and absence of light (Tansel et al. 2011). High salinity increases adsorption, due to the salting out effect, 

and consequently reduces bioavailability and increases persistence, particularly among HMW PAHs 

(Marini and Frapiccini 2013). Low temperature and absence of light favours PAHs persistence in deep 

sea environments due to lower metabolic activity of PAH-degrading organisms and, possibly, reduced 

solubility and absence of photodegradation (Marini and Frapiccini 2013). 
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Degradation of PAHs under hydrostatic high pressure (HHP) and low temperature 

(LT). 

PAHs degradation in the deep sea is often assumed to be similar to surface waters. However, 

similarly to what was proposed for the ecotoxicological impact to marine macrobiota (Mestre et al. 2014), 

HHP and LT, may synergistically affect hydrocarbon degradation (Boesch and Rabalais 1987). HHP in 

DSS increases 10 MPa km-1 and temperature is 2-3ºC (Nagata et al. 2010). HHP is used to increase yield 

in biotechnological applications by enhancing oxygen rate in high-density bioreactors (Follonier et al. 

2012). Nonetheless it has also been shown to reduce poly-β-hydroxybutyric acid degradation by deep 

sea fungi (Gonda et al. 2000). Meanwhile, LT is known to universally reduce the kinetics of biochemical 

reactions, and thus, to reduce PAHs degradation under aerobic conditions (Brakstad and Bonaunet 2006; 

Eriksson et al. 2003; Weissenfels et al. 1990) thereby leading to a build-up of dead-end metabolites 

(Eriksson et al. 2003). Synergistically, HHP and LT can affect PAH degradation reactions by 1) affecting 

cell physiology; 2) affecting catabolic enzymes and 3) affecting substrate bioavailability (Eisenmenger 

and Reyes-De-Corcuera 2009). 

HHP and LT affect biological activity in mesophilic bacteria by reducing membrane 

functionality (Barria et al. 2013), and by denaturing proteins leading to a reversible inactivation (Privalov 

1990). As an acclimation reaction, bacteria alter their membrane composition and synthesize protective 

cold-shock proteins (Barria et al. 2013). Monomeric proteins are generally well preserved by HHP, while 

pressure can affect the supramolecular configuration and catalytic site of polymeric enzymes and, 

consequently, reduce substrate affinity (Eisenmenger and Reyes-De-Corcuera 2009; Follonier et al. 

2012). In dioxygenases(Seo et al. 2009), HHP can induce the release of iron from Fe-S clusters (Malone 

et al. 2006). PAHs degradation relies on Fe-S clusters to initially oxygenate PAHs. 

Solubility is an important aspect of PAHs degradation in DSS. In DSS, LT reduces PAHs 

solubility differently (41.2% and 35% reduction for anthracene and pyrene, respectively, between 25ºC 

and 9ºC; (Bamford et al. 1999; Reza et al. 2002) and thus affects bioavailability. The overall effects on 

PAHs bioavailability may depend on the quality of the PAHs pool. The influence of an increase of HPP 

on PAHs solubility at low or ambient temperature has, to our knowledge, not been reported. 

Few PAHs-degrading DSS strains have been tested under simultaneous HHP and LT 

conditions. Recently, the PAHs degrading strain Sphingobium yanoikuyae B1, isolated from a polluted 

stream (Gibson et al. 1973), was grown in naphthalene minimal medium at HHP ranging from 0.1-13 

MPa and LT of 4ºC (Schedler et al. 2014). Results show a reduction in cell growth and naphthalene 

degradation at 13.9 MPa in comparison to 0.1 MPa. Bacterial growth was also shown to slightly decrease 

until 8.8 MPa followed by a sharp reduction in growth until 12 MPa. The final naphthalene concentration 

was below the detection limit from 0.1 to 12 MPa, but was 25.2% and 17.9%, respectively, at 12.5 and 

13 MPa (Schedler et al. 2014). HHP reduced growth and, above 12 MPa, reduced PAHs degradation 
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(Schedler et al. 2014). This represented the first evidence of a reduction in PAHs degradation under DSS 

conditions. Future work employing DSS isolates or the DSS microbial community, without 

depressurization, is necessary to elucidate the fate of PAH in abyssal marine sediments. 

The combined effect of LT and HHP can reduce PAHs biodegradation, since the reduction in 

permeability may hamper PAHs uptake; this is essential for the initial oxygenation reaction that occurs 

intracellularly, and the alteration of PAH-dioxygenase supramolecular conformation and/or catalytic site 

may inactivate essential enzymes. It is plausible that PAH-degrading bacteria are adapted to these 

conditions. Microbial communities from deep sea maintain higher metabolic activity under pressurized 

conditions than under atmospheric pressure, which indicates adaptation to a piezophilic environment 

(Nagata et al. 2010). This may be similar to adaptations found in psychrotrophic environments (e.g. 

Arctic), because similar taxa are found in both types of environment (McFarlin et al. 2014). It would be 

interesting to assess these psychro-piezophilic adaptations in PAHs degradation and outline their 

benefits for bioremediation or other biotechnological process applications. 

PAH-degrading marine bacteria 

PAH-degrading strains have been isolated from numerous marine environments including 

seawater, marine sediments, saltmarshes and estuaries. These isolates are phylogenetic distributed to 

phyla Proteobacteria (α, β and γ classes), Actinobacteria, Cyanobacteria, Bacteroidetes and Firmicutes. 

Several genes encoding for PAH-degradation, that have been identified from different bacterial species 

share high homology, thus suggesting that PAHs catabolic genes are transferred horizontally - [horizontal 

gene transfer (HGT)] - this is acquired through conjugal transfer of plasmids (Anokhina et al. 2004; 

Coelho et al. 2011; Jutkina et al. 2011). Genes encoding PAH-degrading enzymes are often located in 

IncP plasmids, that are prone to broad range HGT and insertion in DNA sequences (Dennis 2005). For 

example, in a microcosm experiment, the nah gene detected in Shewanella oneidensis and Bacillus sp. was 

similar to that detected in Pseudomonads from the same sample (Ben Said et al. 2008). Similar results 

were obtained in a microcosm seeded with sea surface samples (Coelho et al. 2011) and in saltmarsh 

rhizospheres (Oliveira et al. 2014a). PAH-degrading bacteria are generally found in low abundance in 

microbial communities from non-impacted marine environments (Yang et al. 2014). 

The dynamics in the microbial community, following an acute PAH pollution event, is 

characterized by a rapid shift in composition, due to sudden dominance of the pioneer degrading strains 

present (Vila et al. 2010). As PAHs are gradually degraded, other taxa, such as Roseobacter (Buchan and 

González 2010), start to recover and feed on the PAHs intermediates as secondary consumers (Wang 

and Tam 2011). At the end of this process, the bacterial community has been reported to return to its 

original state (Kasai et al. 2001; Yang et al. 2014). 
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PAH-degrading isolates are frequently found within the α- and γ-Proteobacteria classes, 

although this may be related to their ease of cultivability. The genera Cycloclasticus, Pseudomonas and some 

genera of the Sphingomonadaceae family (Novosphingomonas, Sphingomonas and Sphingobium) are also frequent 

among marine PAH-degrading isolates (Dyksterhouse et al. 1995; Kasai et al. 2002). The genus 

Cycloclasticus is widely distributed in marine environments and has been isolated from estuarine 

environments (Chung and King 2001; Dyksterhouse et al. 1995; Niepceron et al. 2010), sea sediments 

(Cui et al. 2014) and DSS (Wang et al. 2008). Cycloclasticus is considered an obligate marine PAH-degrader 

and the chlorinated derivatives thereof (Yakimov et al. 2007). It is frequently found during the mid-

succession stages of oil degradation (Yakimov et al. 2007) and in cold environments (Coulon et al. 2007; 

Lozada et al. 2008). The genera Novosphingomonas, Sphingomonas and Sphingobium (Sphingomonadaceae) are 

known to use many organic compounds including PAHs (Huang et al. 2008; Kertesz and Kawasaki 2010; 

Leys et al. 2005). Sphingomonads have been isolated from various marine environments including DSS. 

They are efficient PAH-degraders in oligotrophic environments because they possess a high-affinity 

uptake system (Johnsen et al. 2005). In Pseudomonas, PAHs degradation genes and biochemical pathways 

are extensively studied (Gomes et al. 2005; Suen and Gibson 1993). Pseudomonas spp. are ubiquitous and 

are described as competitive PAH-degrading bacteria in polluted terrestrial soils and sediments (Cébron 

et al. 2008; Daane et al. 2001), in estuarine water (Coelho et al. 2011; Niepceron et al. 2010), sediments 

(Oliveira et al. 2014a) and in seawater (Uad et al. 2010). Although apparently ubiquitous, Pseudomonads 

were absent in enriched consortia from DSS in the Pacific and Atlantic Oceans (Cui et al. 2008; Wang 

et al. 2008), but were found in DSS from the Arctic (Dong et al. 2014c). Pseudomonads are considered 

useful for biotechnological applications due to extensive data available on their activity and metabolome, 

ease of cultivation, stress resistance and presence of genetic mobile elements (Puchałka et al. 2008). 

PAH-degrading marine bacteria have been used in bioaugmentation approaches to mitigate 

environmental contamination, but the results have been disappointing so far (Kadali et al. 2012). 

Complete mineralization tends to be slow (Wang et al. 2008), or cannot be achieved by a single strain, 

because of the accumulation of toxic intermediates (Festa et al. 2013; Tixier et al. 2002). Under these 

circumstances, mineralization is better achieved by consortia (Cui et al. 2014; Festa et al. 2013; Gallego 

et al. 2013; HuiJie et al. 2011; Mao et al. 2012; Nzila 2013; Vallero 2010). Bioaugmentation with bacterial 

consortia will have a synergistic effect because complementary PAHs degradation pathways promote 

cross-feeding and avoid the build-up of inhibiting metabolites (Bouchez et al. 1999). Also, the inclusion 

of secondary strains with, for example, high cell hydrophobicity and biosurfactant production in the 

consortia will enhance the efficiency of the bioaugmentation process (Pedetta et al. 2013; Sorensen et al. 

2005) by increasing PAHs bioavailability (Pedetta et al. 2013) and providing essential growth factors and 

nutrients (Sorensen et al. 2005). 
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PAH-Degrading Bacteria in Deep Sea Sediments 

PAH-degrading isolates from deep sea environments known to date are listed in Table I-5. 

Fifteen PAH-degrading strains from deep sea microbial communities were classified as novel species. 

Isolation efforts have focused on the 4 major ocean basins: Arctic, Atlantic, Indian and Pacific. Some 

reported isolates were not included in Table I-5 because they had low similarity with sequences from the 

NCBI database or were not classified by the authors. PAH-degrading isolates from the deep sea were 

mainly classified as γ- and α-Proteobacteria, which are abundant classes in deep sea environments. 

Representatives of the β-Proteobacteria, Actinobacteria and Flavobacterium have also been found. 

Other abundant taxa found in DSS, such as Chloroflexi, δ- and ε-Proteobacteria and Planctomycetes, 

have no reported PAH- degrading isolates. Several marine PAH-degrading genera including 

Cycloclasticus, Sphingomonas/Novosphingobium/Sphingobium, Halomonas, Alcanivorax, Thalassophira and 

Marinobacter have been found in DSS and are often similar to their coastal counterparts (Cui et al. 2008). 

Others, such as Oceanicola, Parvibaculum, Nitratireductor (α-Proteobacteria) and Bowmanella (γ-

Proteobacteria), were first reported as PAH-degraders in DSS. During the DWH oil spill, the first major 

deep sea (≈1500 m) oil pollution event, strains classified as Colwellia, Cycloclasticus and Pseudoalteromonas 

dominated in the oil-degrading community when the relative aromatic (mono- and PAHs) content was 

the highest (Hazen et al. 2010). 

An OTU assigned to the genus Cycloclasticus, from DSS of the Western Pacific Ocean (Wang et 

al. 2008) and Mid Atlantic Ocean Ridge (Cui et al. 2008; Shao et al. 2010), had 99-100% similarity with 

a strain of Cycloclasticus spirillensus M4-6 (AY026915) isolated from the intertidal sediments of Lowes Cove, 

Maine (Chung and King 2001). In addition to Cycloclasticus, other OTU were similar to the following 

sequence in NCBI database: Flavobacterium frigoris (AJ601393) (92.6%), Novosphingobium pentaromativorans 

(AF502400) (98.8%), Halomonas alimentaria (AY553075) (96.9%), an uncultured proteobacterium 

(DQ230971) (98.2%) and Roseovarius tolerans (Y11551) (94.7%) (Wang et al. 2008b). In the Western 

Pacific Ocean, a pyrene-degrading microbial consortium degraded 93.87% of pyrene in 7 weeks, with 

60% removal by week 2. Overall, a reasonable amount (46%) of the sequences obtained from DGGE 

had low similarity (<97%) with sequences available at NCBI database (Wang et al. 2008).In the universe 

of the 21 genera represented, the proteobacteria phylum (α- (53.8%) γ- (38.6%) and β- classes (3.8%)) 

(Wang et al. 2008) was dominant. 

PAH-degrading microbial consortia from two subsurface sediment samples from the mid-Atlantic ridge 

revealed a dominance of α- and γ-Proteobacteria using DGGE (Cui 2008; Shao 2010).In addition to the 

main band, associated with Cycloclasticus spirillensus M4-6, other DGGE bands had high similarity with 

Alcanivorax venusti ISO4 (98-100%), Marinobacter alkaliphus (100%), M. viniformis FB1 (99%), 

Marinobacterium georgiense (100%) and Tistrella mobilis (99%) (Cui et al. 2008). At a different location in the 

mid-Atlantic ridge OTU were assigned to the taxa Cycloclasticus sp. P1 (99%), Alcanivorax borkumensis SK2  
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Table I-5 - PAH-degrading isolates from the deep sea environment. (*) indicates strains that were published as novel species and (∆) indicates the complete genome sequence. DSS- Deep Sea 

Sediments; DSW - Deep Sea Water. 

Class Specie Strain Matrix Location 

Accession nº 
NCBI 
database for 
partial 16S 
rRNA 

Accession nº at 
NCBI database 
for draft or 
complete 

genome∆ 

Accession nº 
at NBCI 
database for 
gene or MGE 
encoding 
enzymes 
crucial for 
PAHs 
degradation 

Reference 

α-Proteobacteria 

Celeribacter indicus P73T DSS Indian 
Ocean 

   (Lai et al. 2014) 

Erythrobacter flavus W4-3C DSS 
Pacific 
Ocean DQ649539   (Wang et al. 2008) 

Erythrobacter aquimaris MARC2A11 DSS Atlantic 
Ocean 

DQ768671   (Shao et al. 2010) 

Hyphomonas jannaschiana W6-15 DSS Pacific 
Ocean 

DQ649546   (Wang et al. 2008) 

Labrenzia aggregata W6-16 DSS 
Pacific 
Ocean DQ649543   (Wang et al. 2008) 

Maribaculum marinum * P38 DSW Indian 
Ocean 

EU819081   (Lai et al. 2009a) 

Maricaulis virginensis MARC4M DSS 
Atlantic 
Ocean DQ768642   (Shao et al. 2010) 

Martelella mediterranea MARC4H DSS Atlantic 
Ocean 

DQ768639   (Shao et al. 2010) 

Nitratiredutor pacificus * pht-3B DSS 
Pacific 
Ocean DQ659453 AMRM00000000  

(Lai et al. 2012a; 
Lai et al. 2011c) 

Novosphingobium indicum H25* DSW Indian 
Ocean 

EF549586  

EU526902 
EU526901 
EU526900 
EU526899 

(Yuan et al. 2009b) 
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TVG9-II 
Deep Sea 
hydrothermal 
environment 

Indian 
Ocean 

JF706227  JF710635 (Dong et al. 2011) 

Oceanibaculum indicum  
P24T * DSW 

Indian 
Ocean EU656113   

(Lai and Shao 
2012a; Lai et al. 
2009c) 

MARC2P-F DSS 
Atlantic 
Ocean DQ768653   (Cui et al. 2008) 

Oceanibaculum pacificus * 
LMC2up-
L3 

Deep Sea 
hydrothermal 
environment 

Pacific 
Ocean FJ463255   (Dong et al. 2010) 

Oceanicola pacifus * W11-2B DSS 
Pacific 
Ocean DQ659449   (Yuan et al. 2009a) 

Parvibaculum indicum * P31 DSW 
Indian 
Ocean 

FJ182044   (Lai et al. 2011b) 

Pseudaminobacter sp- W11-4 DSS Pacific 
Ocean 

DQ649552   (Wang et al. 2008) 

Roseovarius inducus * B108 DSW 
Indian 
Ocean EU742628   (Lai et al. 2011d) 

Roseovarius pacificus * 81-2 DSS Pacific 
Ocean 

DQ120726   (Wang et al. 2008; 
Wang et al. 2009) 

Sphingobium sp. C100 DSS 
Arctic 
Ocean  AYOY00000000  (Dong et al. 2014b) 

Stappia indica * B106T DSW 
Indian 
Ocean 

EU726271   (Lai et al. 2010) 

Thalassopira profundimaris 
* 

WPO211 DSS Pacific 
Ocean 

 AMRN00000000  (Lai and Shao 
2012b) 

Thalassospira sp DBT DSS 
Pacific 
Ocean DQ649535   (Wang et al. 2008) 

Tistrella mobilis MARC2P-R DSS Atlantic 
Ocean 

DQ768659   (Cui et al. 2008) 

β-proteobacteria 
Achromobacter 
xylosoxidans 2MN-2 DSS 

Pacific 
Ocean DQ649533   (Wang et al. 2008) 
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γ-proteobacteria 

Alcanivorax borkumensis MARC4D DSS Atlantic 
Ocean 

DQ768649    

Alcanivorax deiselolei MARC2C-S DSS 
Atlantic 
Ocean DQ768647   (Cui et al. 2008) 

Alcanivorax pacificus * W11-5 DSS Pacific 
Ocean 

DQ629451 AJGP00000000  (Lai et al. 2011a) 

Alcanivorax sp. 

MARC2C-
G DSS 

Atlantic 
Ocean DQ768658   (Cui et al. 2008) 

MARC2C-P DSS Atlantic 
Ocean 

DQ768644   (Cui et al. 2008) 

MARC2C-R DSS 
Atlantic 
Ocean DQ768646   (Cui et al. 2008) 

521-1 DSS 
Pacific 
Ocean 

DQ659430   (Wang et al. 2008) 

Alcanivorax venustensis MARC2C-T DSS Atlantic DQ768621   (Cui et al. 2008) 

Bowmanella pacifica * W3-3AT DSS 
Pacific 
Ocean EU440951   (Lai et al. 2009b) 

Cycloclasticus sp. P1 DSS Pacific 
Ocean 

NR074683 CP003230 ∆  (Lai et al. 2012b; 
Wang et al. 2008) 

Halomonas meridiana 
MARC2C-B DSS 

Atlantic 
Ocean DQ768623   (Cui et al. 2008) 

MARC4B DSS 
Atlantic 
Ocean 

DQ768627   (Shao et al. 2010) 

Halomonas sp. 2MN-1 DSS Pacific 
Ocean 

DQ649534   (Wang et al. 2008) 

Marinobacter alkaliphilus MARC2C-P DSS 
Atlantic 
Ocean DQ768658   (Cui et al. 2008) 

Marinobacter bryozoorum MARC2C-C DSS Atlantic 
Ocean 

DQ768624   (Cui et al. 2008) 

Marinobacter 
hydrocarbonoclasticus MARCAF DSS 

Atlantic 
Ocean DQ768638   (Shao et al. 2010) 

Marinobacter sp. 
MARC2C-
K/ 521-2 DSS 

Atlantic/ 
Pacific 
Ocean 

DQ768641/ 
DQ659431   

(Cui et al. 2008; 
Wang et al. 2008) 
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MARC4V DSS Atlantic 
Ocean 

DQ768635   (Shao et al. 2010) 

MARC4S DSS 
Atlantic 
Ocean DQ768634   (Shao et al. 2010) 

Marinobacter vinifirmus MARC2P-E DSS Atlantic 
Ocean 

DQ768652   (Cui et al. 2008) 

Marinomonas 
profundimaris * D104 DSS 

Arctic 
Ocean  AYOZ00000000  

(Bai et al. 2014; 
Dong et al. 2014a) 

 
Mesorhizobium sp. W6-20 DSS Pacific 

Ocean 
DQ649544   (Wang et al. 2008) 

Pseudoalteromonas 
ganghwensis 

MARC2C-
A DSS 

Atlantic 
Ocean DQ768622   (Cui et al. 2008) 

Actinobacteria 
Micrococcus luteus W5-11 DSS 

Pacific 
Ocean 

DQ659431   (Wang et al. 2008) 

Rhodococcus sp- TW35 DSS Pacific 
Ocean 

DQ462176   (Peng et al. 2008a) 

Flavobacterium Flavobacterium sp. W6-14 DSS 
Pacific 
Ocean DQ649545   (Wang et al. 2008) 
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(100%), A. venusti ISO4 (100%), Marinobacter salsuginis SD-14B (100%) Roseovarius crassostreae CV919-312 

(100%) and Marinobacter sediminum (94% similarity) (Shao et al. 2010). 

The contribution of broad host range plasmids to PAHs biodegradation in the deep sea is still 

poorly understood. Genes pheA1a (UniProt accession nº G4WYQ4) and pheA1b (UniProt accession nº 

G4WYQ4), that encode for the α- and β- subunits of phenanthrene dioxygenase, respectively, were 

detected in the transposon tnp1 (JF710635.1) in strain TVG9-VII isolated from a deep sea hydrothermal 

vent (Dong et al. 2011). This strain was closely related to the isolate Novosphingobium indicum H25, also 

from the deep sea (Jun et al. 2008). BLAST similarity search (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 

indicated a 99% similarity between partial sequences (query coverage - 63%) of these two genes (pheA1a 

and pheA1b) and those detected in the large plasmid pNL-1, which is commonly detected in 

sphingomonads, inclusively in N. aromaticivorans DSM 12444 [NCBI accession nº CP000676, isolated 

from subsurface sediments from Atlantic coastal plains (Balkwill 1989)]. The pNL-1 plasmid is 

transferred among many strains belonging to the Sphingomonas and Pseudomonas genera (Basta et al. 2005). 

However, this similarity may be limited to the nah gene, and not to the mobile genetic element itself, 

since the transposases of TVG9-II have no similarity with those of N. aromativorans. The aminoacid 

sequence of both genes (pheA1a and pheA1b) have a 99% sequence similarity to aromatic degrading 

enzymes from strains DSM 12444, N. indicum H25 and Sphingobium sp. C100, all isolated from deep sea 

waters from the Indian or Arctic Ocean, and with Sphingobium strains PNB and LH128 isolated from 

wastewater treatment plant (Roy et al. 2013b) and contaminated soil (Schuler et al. 2009). 

A total of 6 strains from the deep sea environment have a draft or complete genome publicly 

available (Table I-5): Sphingobium sp. C100, Marinomonas profundimaris D104, Alcanivorax pacificus W11-5, 

Thalassopira profundimaris WPO11, Cycloclasticus sp. P1 and Oceanibaculum indicum P24. Using this public 

information we performed a BLAST (http://www.uniprot.org/blast/) analysis of the putative catabolic 

enzymes’ aminoacid sequences involved in initial steps of PAHs degradation [as determined by gene 

annotation in bacterial.ensemble.org] (Curwen et al. 2004; Kersey et al. 2012; Potter et al. 2004). Results 

revealed a high similarity with sequences from UNIPROT database. Enzymes of strains Sphingobium 

C100 and M. profundimaris D104 had 100% similarity with enzymes from Sphingobium strains PNB and 

LH128 (Roy et al. 2013b), and from Alteromonas sp. SN2 (Math et al. 2012), respectively. Strain SN2 was 

isolated from petroleum contaminated tidal flats and its genes involved in PAHs degradation are located 

at genomic island GI-11 flanked by two transposases, indicative of a past HGT event (Math et al. 2012). 

For Cycloclasticus sp. P1, the aminoacid sequences of estradiol dioxygenase, α- and β- subunit dioxygenase, 

catechol dioxygenase and ferredoxin reductase, all had high similarity (between 99 to 100%) with 

sequences from C. zancles 7-ME, isolated from marine sediment at the site of the MT Hazen oil tanker 

shipwreck (78 m depth), and with sequences from Cycloclasticus sp. PY97M, isolated from Yellow Sea 

sediments [17.8 m depth; (Cui et al. 2014)]. Additionally, gene clusters encoding α- and β- subunits of 

dioxygenase and ferredoxin/ferredoxin reductase in the isolate Cycloclasticus P1 were previously reported 
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to have 98.8% and 99.8% similarity with equivalent genes in Cycloclasticus sp. A5, isolated from seawater 

(15m) (Kasai et al. 2002). In T. profundimaris WPO11, the aminoacid sequences of protein involved in 

PAH-degradation by gene annotation had 74-82% similarity with sequences from T. xiamensis M-5. M-5 

was isolated from oil wastewater and both were initially reported to be similar on the basis of morphology 

and 16S rRNA gene similarity (98.5%) (Wang et al. 2008). 

In A. pacificus W11-5 and O. indicum P24, the aminoacid sequences of proteins involved in PAH-

degradation had low similarity (<51% and <58%, respectively) to database sequences. Deep sea bacteria 

thus contain PAH degrading genes that are similar to and markedly different from genes encountered in 

shallow water bacterial communities. Enzymes unique to the deep sea bacterial community can be availed 

for biotechnological applications and promoting DSS as a relevant habitat for bioprospection effort. 

Pathways of PAH degradation in marine environments. 

The fate of PAHs, after entering the marine environment, is determined by various processes, 

including sedimentation, volatilization, sinking, resuspension, photo- and biodegradation. Bacterial 

biodegradation strongly depends on chemical properties such as molecular size (number of aromatic 

rings) and molecule angularity (Kanaly and Harayama 2000). Generally, an increase in size and angularity 

leads to an increase of toxicity (Table I-1; (Banerjee et al. 1995; Kanaly and Harayama 2000), chemical 

reactivity and a reduction in aqueous solubility and volatility (Kanaly and Harayama 2000; Seo et al. 

2009). In soil, the estimated half-lives of 3-ring phenanthrene and 5-ring benzo[a]pyrene range from 16 

to 126 days and 229 to 1400 days, respectively (Peng et al. 2008b; Shuttleworth and Cerniglia 1995). In 

situ biodegradation of PAHs in nature also depend on environmental factors, such as nutrient and 

substrate bioavailability, oxygen availability, electron acceptors and temperature (Quan et al. 2009). PAHs 

biodegradation involves metabolic reactions catalysed by a variety of enzymes. 

Generally, the initial step of PAHs catabolism is crucial and, although varying among substrates 

and microorganisms (Seo et al. 2009), in aerobic conditions always involves the introduction of one or 

two oxygen molecules in the ring structure of the PAHs with formation of a metabolite with one or two 

-OH radicals, in a reaction known as oxygenation, catalyzed by di- or monooxygenases (Kanaly and 

Harayama 2000; Seo et al. 2009). This reaction is the rate-limiting step in PAHs biodegradation and is 

carried out by the α- subunit of the aromatic ring dioxygenases (ARD) with a non-heme iron catalytic 

domain (Demanèche et al. 2004). Iron and oxygen availability are thus vital in aerobic PAHs catabolism. 

The diversity of genes encoding ARD among PAH-degrading bacteria from soil has been clustered into 

two groups associated with gram-negative and gram positive bacteria (Cébron et al. 2008). ARD of gram-

negative bacteria is further clustered into various subtypes, three of which are well-defined: phnAC, 

phnA1 and nahAC, related to Alcaligenes faecalis AFK2, genus Cycloclasticus and genus 
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Pseudomonas/Sphingomonas, respectively (Lozada et al. 2008). In DSS, ARD sequences related to 

phnAC/phnA1 and nahAc subtypes are encountered in draft genomes of previously mentioned isolates. 

Substrate specificity of ARD varies widely among PAHs (Peng et al. 2008b). Microbial 

communities potentially harbour a wide array of organisms with distinct ARD and that can shift quickly 

in response to PAH inputs (Kimura and Kamagata 2009; Selvakumaran et al. 2011; Wang et al. 2008). 

After the oxygenation step, the dihydrodiol intermediate ring structure is cleaved by intradiol- or estradiol 

oxygenases in between the hydroxyl groups (meta-cleavage) or before the hydroxyl groups (ortho-

cleavage) yielding protocatechuate and catechol intermediates that can be further converted to 

tricarboxylic acid cycle intermediates (Jiménez et al. 2004; Nzila 2013; Seo et al. 2009). Frequently, PAHs 

from three to n benzenic rings form sequentially, intermediate dihydriol with n-1 aromatic rings until 

reaching 1,2-naphthalene dihydrodiol from which the pathway proceeds as described in naphthalene 

biodegradation (Nzila 2013). In PAHs degradation, the intermediate metabolic products and enzymes 

are similar to other metabolic pathways and are widespread among bacteria (de Lorenzo 2008). 

There is little information on the metabolomics of PAH-degrading isolates in DSS. In 

Cycloclasticus sp. P1, some metabolites from pyrene biodegradation identified by GC-MS (Wang et al. 

2008) were distinct from those previously reported (Kweon et al. 2011; Moscoso et al. 2012; Seo et al. 

2009). A pathway involving an initial dioxygenation of the pyrene molecule to form a pyrene-4,5-

dihydrodiol, which was further metabolized to cyclopenta(def)phenanthrone (main metabolite) was 

proposed. This was followed by cyclopenta(def)phenanthrone metabolization to a lactone and 

subsequently to a 4-phenantrenol (secondary metabolite). The subsequent pyrene biodegradation 

pathway would follow the most usual phenanthrene degradation pathway via 3,4-dioxygenation (Seo et 

al. 2009). Although many intermediates lack analytical confirmation, DSS may harbour unknown 

metabolic pathways since the main metabolite (cyclopenta(def)phenanthrone) has not yet been detected 

in pyrene degradation pathways in the available literature. 

Future perspectives: PAHs biodegradation in DSS within a global change context. 

Future climate scenarios have proposed an increase in partial CO2 pressure (pCO2), which will 

lead to a reduction in oceanic pH (Rhein et al. 2013). Mean pH values for ocean waters have already 

decreased from 8.21 to 8.10 from pre-industrial times until present and will be further reduced by 0.3-

0.4 units by 2100 (Caldeira and Wickett 2003; Doney et al. 2009). Under this scenario, some biological 

processes in the marine environment are predicted to increase, namely the production of extracellular 

polymeric substances (EPS), nitrogen fixation and enzyme activity (Liu et al. 2010), while calcification in 

the majority of calcifying organisms will be adversely affected (Doney et al. 2009). Iron bioavailability 

will also be reduced, particularly in distant offshore waters, by increasing the adsorption by organic 

particles, (Shi et al. 2010). UV radiation (UVR) is currently higher than in pre-industrial times, but 
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because of the recovery of the ozone layer is expected to regress and stabilize to levels of the 1980s (and 

possibly to 1960s levels) in high an mid latitudes and an increase in 3% in the tropics by the end of the 

21st century, but also be adversely affected by an increase in greenhouse gases and pollution (Bais et al. 

2011). 

To our knowledge, the impact of future climate scenarios on the biodegradation of PAHs in 

DSS has not been addressed in the scientific literature. Climate change is thought to synergistically 

exacerbate overall marine pollution, by adversely affecting the biodegradation of oil and other pollutants 

(Coelho et al. 2013). However, few studies have experimentally measured this impact and interlinked the 

compilation of direct and indirect impacts that result from the rise in greenhouse gases. The integration 

of the predicted effects of the interplay of climate change and pollution on the structure and activity of 

microbes in the water column and in marine sediments may provide the basis for a theoretical model on 

the fate of PAHs in DSS in future climate scenarios. 

In the deep sea, the direct impacts of global warming are expected to be mild. Although future 

scenarios for the deep sea environment are not consensual, the rise in temperature is expected to occur 

at a reduced rate (0.03ºC per decade) when compared to the ocean surface (Rhein et al. 2013). However, 

at a regional scale, abrupt temperature shifts can occur (Danovaro et al. 2004). Also, the concentration 

of the carbonate ion and salinity are expected to decrease at a depth range of 1000 – 4000 m and >4000 

m, respectively (Rhein et al. 2013), while pH is predicted to slightly increase (Rhein et al. 2013). However, 

the impact of climate change effect on surface waters will affect marine primary production (PP), which 

will impact deep sea ecosystems due to shifts in chemical energy derived from the sedimentation of 

detritus (McClain et al. 2012). Increased pCO2 is expected to directly increase marine primary production 

(PP) (Riebesell et al. 2007). However, increased pCO2 rise will also increase surface water temperatures 

leading to stratification that will adversely affect PP and increase the relative abundance of pico- and 

nanoplankton (Smith et al. 2008). Any alteration in PP will affect heterotrophic activity, organic carbon 

content and bacterial respiration (Joint et al. 2011) and bacterial community structure (Endo et al. 2013) 

in the overall ocean. Additionally, an increase in atmospheric pCO2 will increase terrestrial PP and 

increase organic carbon fluxes to DSS, particularly via the major rivers. An increase in particulate matter 

may increase PAHs adhesion and thus reduce its bioavailability due to strong adhesion of PAHs to 

particles, particularly HMW PAHs (Nam et al. 1998). Also, a more prolonged and defined thermal 

stratification, as a result of an increase in surface water temperature, and a reduction in upwelling may 

reduce total PP (Chavez et al. 2011). Ocean stratification and the overall warming of seawater will also 

reduce oxygen by 6 to 12 μmol kg–1 by the year 2100 (Frölicher et al. 2009), mainly at 200 – 400 m depth 

and at mid-latitude, expanding the marine hypoxic and suboxic zones (Rhein et al. 2013; Stramma et al. 

2010). Because oxygen is an important element in the initial steps of PAHs biodegradation, PAHs 

degradation may be limited by oxygen in some marine areas and depths under future climate scenarios. 
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Long term studies on the impact of a pCO2 increase on bacterial processes of degradation and 

mineralization of organic matter are, however, lacking (Witt et al. 2011). 

A mesocosm study provided evidence that the interactive effect of reduced pH and oil 

contamination can adversely affect the structure and functioning of sediment benthic communities in 

marine coastal ecosystems(Coelho et al. 2015). This study also showed that reduced seawater pH caused 

a significant change in the structure of the active bacterial communities, with a marked reduction in the 

relative abundance of the anaerobic oil-degrading and sulfate-reducing Desulfobacterales. This effect 

was, however, negated in the reduced seawater pH and UV-B treatment (Coelho et al. 2015). The 

presence of UVR can thus potentially alleviate the impact of ocean acidification on oil-degrading 

organisms. This may be because photooxidation converts oil compounds, including PAHs, into more 

water soluble metabolites that are more reactive and toxic (Mallakin et al. 2000) (namely epoxides and 

quinones (Petersen and Dahllöf 2007)) but are also more bioavailable (Yu 2002). This is particularly the 

case for recalcitrant HMW PAHs (Guieysse et al. 2004; Lehto et al. 2000). PAHs bioavailability is the 

most limiting factor in PAHs removal in polluted environments (Pedetta et al. 2013), thus UVR can 

accelerate the overall PAHs detoxification (Zhang et al. 2008). We speculate that when oil pollution 

originates from natural seepage and leakage or blowout of oil extraction at aphotic depths, the absence 

of photooxidation will lower its degradation rate under reduced pH conditions. 

In addition to UVR, PAHs bioavailability, solubility and volatility will increase because of an 

increase in water and atmospheric temperature and therefore, the amount of HMW PAHs that reach 

DSS may be reduced. Additionally, changes in PAHs toxicity in the deep sea environment may occur as 

a result of interactions between high hydrostatic pressure and the physiological adaptations of DSS 

organisms (Mestre et al. 2014). If, as observed in shallow sediments, the synergy between acidification 

and pollution leads to a change in the structure of the active bacterial community, the interaction between 

changing pCO2, UVR and temperature may have site or region specific effects on the amount, 

composition and rate of biodegradation of the PAHs pool in DSS. 

Conclusions 

Inputs of PAHs in marine environments are likely to increase and this represents a long-term 

environmental risk. During descent, recalcitrant compounds are little affected by biodegradation in 

comparison to the more labile organic carbon. Thus, the DSS can be considered a "sink" for PAHs in 

the marine environment. The source and quality of the PAHs pool encountered at DSS may vary 

between locations. DSS nearer to land have higher relative abundance of HMW PAHs derived from wet 

and dry deposition and from land run-off, while land-distant DSS have higher relative abundance of 

LMW PAHs and aPAHs that derive from gas-water exchange and underwater oil seeps. Theoretical 

models of PAHs biodegradation in DSS neglect the importance of the abiotic conditions, namely HPP 
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and LT. More realistic data on biodegradation rates of PAHs in DSS are needed to understand the 

ultimate fate of PAHs there. Here, we assume that, although these abiotic conditions complicate PAHs 

degradation, bacterial adaptation may counter this. Overall, many novel isolates have been obtained in 

the DSS and are mainly related to phylum Proteobacteria, particularly the α- and γ- classes. PAH-

degrading isolates in DSS harbour genes and enzymes involved in initial steps of PAHs degradation, 

have low and high similarity to those present in the NCBI database, while others have high similarity 

with known genes encoded in mobile genetic elements. Thus, the DSS gene pool simultaneously 

harbours genes indicative of past HGT of mobile genetic elements and genes that are unreported and 

potentially novel. 

It is still difficult to predict the role of DSS on hydrocarbon biodegradation under future climate 

scenarios, and field and laboratory results are urgently needed. However, from the integration of field 

evidence with experimental results obtained from the water column and in shallow sediments, local or 

region-specific effects may be expected. 
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Abstract 

Oil hydrocarbons emitted by deep sea mud volcanoes (MV) are efficiently consumed at seabed 

by the local benthic microbial community. Among the oil hydrocarbons emitted are include, in small 

amounts of other hydrocarbons, such as polycyclic aromatic hydrocarbons (PAH). Yet, in contrary to 

the other hydrocarbons, the bacterial players involve in PAH turnover has never been accessed. 

Furthermore, these bacteria may possess interesting adaptations to the extreme abiotic conditions and 

thus have potential biotechnological adaptations. In this study we isolated and identified PAH-degrading 

bacteria from sediment samples obtained from apparently active and inactive craters of the Mikhail 

Ivanov mud volcano and a reference site (abyssal plain). Minimal medium containing phenanthrene and 

chrysene as primary sources of carbon were used to enrich and isolate PAH-degrading bacteria. Our 

results revealed that the isolates from all enrichment cultures were mostly composed by members of the 

family Bacillaceae (Bacillus and Virgibacillus genera) and, in most of the cases, capable of producing 

biosurfactants. Additionally, in the inactive crater and in the reference site, isolates from Acinetobacter and 

Rhodococcus genera, respectively, were obtained. Our results indicated that Bacillus-like bacteria may 

contribute for the metabolic turnover of seeped PAHs in the deep sea Mikhail Ivanov mud volcano and 

in surrounding environments. 

 

Keywords: Polycyclic aromatic hydrocarbons, Cold seeps, Virgibacillus, Bacillus, Biosurfactant, Bathyal 

zone 
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Introduction 

An extensive occurrence of mud volcanoes (MV) has been reported, at depths between 200 m 

and 5000 m, in vicinities of strike-slip fault lines at the frontier of the Eurasian and African tectonic 

plates in the southwest Iberian margin of the gulf of Cadiz (Hensen et al. 2015; León et al. 2012; Pinheiro 

et al. 2003). MV where first reported at the accretionary wedge of the Gulf of Cadiz, but during the 

SWIMGLO/Transflux M86/5 cruise, three new MV [Abzu, Tiamat and Mikhail Ivanov (M. Ivanov)] 

were discovered at the outer margins of the accretionary wedge, in the Horseshoe valley (Hensen 2014). 

MV are piercement structures created by compression forces (e.g. tectonic force) that propel upward, 

through a soft sediment layer (e.g. accretionary wedges or deltas), a pressurized fluid mostly composed 

of water and hydrocarbons, thus creating mud seepage (Dupré et al. 2014; Mazzini et al. 2009). This 

pressurized hydrocarbon flux will feed a diverse heterotrophic benthic microbial community that will 

transfer the assimilated carbon and energy up to the higher trophic levels, thus supporting an oasitic 

biological hotspot in the, usually barren, deep sea surface (Coelho et al. 2016b; Gibson et al. 2005). This 

microbial community has been frequently analyzed through mass-sequencing approaches (Coelho et al. 

2016b; Pachiadaki et al. 2011); however, this information, although valuable, provides limited 

information regarding the functional role of the microorganisms present. These metabolism-microbe 

associations can be instead better established through culture-dependent analyses. 

Underwater seepage system are spread throughout the marine sediments and the documented 

sites alone are estimated to represent 47% of all oil hydrocarbons emitted into the marine realm 

(Kvenvolden and Cooper 2003). The gaseous hydrocarbons methane, ethane, propane and butane are 

progressively the most predominant oil hydrocarbons expelled at MV. Yet, other hydrocarbons such as 

polycyclic aromatic hydrocarbons (PAHs) have been detected at sediments of MVs and other seepage 

phenomena (Geptner et al. 2006; Lorenson et al. 2002; Polonik et al. 2015; Wang et al. 2011) and in the 

tissues of sessile organisms in various cold seeps systems (Powell et al. 1999; Serafim et al. 2008; Wade 

et al. 1989). Curiously, in contrast to the gaseous hydrocarbons, the microbial communities involved in 

the degradation of PAH in MV have been largely overlooked. To our knowledge, only a few studies have 

reported PAH degrading isolates from hydrocarbon seepage system, all from hydrothermal vents (Dong 

et al. 2011; Dong et al. 2010). These bacteria may have interesting biotechnological applications given 

their capability to efficiently degrade xenobiotics under extreme environment conditions (Deming 1998) 

[e.g. low temperatures, high hydrostatic pressure and potentially high sulphide and methane 

concentrations (Van Gaever et al. 2006)]. 

PAHs comprise hydrocarbons with two or more merged benzene rings (Wang et al. 2003). They 

are environmentally problematic pollutants, because their partial degradation produces toxic 

intermediates that increase macrofauna mortality (Gardiner et al. 2013; Özhan et al. 2014) and can alter 

the bacterial community core composition, potentially disturbing key biogeochemical cycles (Lindgren 
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et al. 2014; Pietroski et al. 2015; Scott et al. 2014). In marine environments, PAH-biodegradation is 

initially achieved through the action of hydrocarbonoclastic bacteria (Yakimov et al. 2007). These initially 

latent, but will respond quickly to exogenous oil input and bloom (Yakimov et al. 2007). However, due 

to unique abiotic conditions present in deep sea MV, the PAH-degrading microbial communities may 

be distinct from those typically found in contaminated coastal areas. Bacteria from γ- and α-

Proteobacterial classes, most notably the Cycloclasticus genus, are typically found in contaminated coastal 

areas and that they are important players in the process of sediment decontamination here (Louvado et 

al. 2015). In addition, these bacteria are usually able to produce extracellularly biosurfactants, amphiphilic 

molecules that will increase oil in water micellization and, consequently, enhance oils bioavailability, thus 

contributing to speed up the process of oil degradation (Ron and Rosenberg 2001).  

Curiously, despite of all the knowledge on PAH degradation in coastal areas there is a shortage 

of information on the composition of PAH degrading communities in MV areas and their ability to 

produce biosurfactants. In this study we aimed at isolating and identifying PAH-degrading bacteria from 

sediment samples obtained from M. Ivanov mud volcano area (active and apparently inactive craters) 

and in a reference site (located in the surrounding abyssal plain of the Horseshoe valley) and their ability 

to produce biosurfactants was also evaluated. 

Methods 

Medium and chemicals 

Enrichment culture (EC) medium was adapted from M9 medium (Notomista et al. 2011) 

containing NaH2PO4 (7 gL-1), K2HPO4 (3 gL-1), NH4Cl (1 gL-1), peptone (0.1 gL-1), yeast extract (0.1 gL-

1), MgSO4 (0.1365 gL-1), FeNH4 citrate (0.0214 gL-1), CaCl2 (5 mgL-1), ZnSO4.7H2O (3.5 mgL-1), 

MnSO4.H2O (2.8 mgL-1), Co(NO4)2.6H2O (0.7mgL-1), CuSO4 (0.625mgL-1), H3BO3 (0.15mgL-1), 

Na2MoO4.2H2O (60 µgL-1) and NiCl2.6H2O (20 µgL-1). M9 solid medium was prepared by adding 1.2% 

agarose (Fischer scientific, Hampton, NH, USA). After autoclave sterilization, filter sterilized 

cycloheximide solution at a final concentration of 0.1 g L-1 was added. Cooled enrichment culture 

medium was spiked with phenanthrene (98%) and chrysene (99%) at final concentrations of 100 and 5 

mg L-1, respectively, from 200 x concentrated acetone-dissolved stock solutions (20 g L-1 and 1 g L-1 for 

phenanthrene and chrysene, respectively). For solid medium, cycloheximide, phenanthrene and chrysene 

were added to molten solid M9 medium at ≈50ºC, and immediately poured into petri dishes. After the 

addition of the PAHs, the acetone was left to evaporate in a laminar-flow chamber for approximately 10 

minutes. Phenanthrene, chrysene and cycloheximide were all supplied by Sigma-Aldrich (St. Louis, MO, 

USA). 
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Sampling 

The M. Ivanov mud volcano is one of the three new MV discovered ≈90 km west of the limit 

of the accretionary wedge of the gulf of Cadiz during the SWIMGLO/Transflux M86/5 cruise (Hensen 

2014; Hensen et al. 2015). Sediment samples used in the enrichment cultures were obtained from two 

distinct craters in the M. Ivanov mud volcano (Figure II-1): the NW crater, which was apparently inactive 

because no chemotrophic fauna was visually detected (M.R. Cunha, personal observation) - "inactive 

mud volcano" (IMV) - (35º44"41'N 10º12"18'W) and the SE crater, which was apparently active because 

the presence of mud breccia, gas hydrates and chemotrophic fauna was confirmed by box core sampling 

(M.R. Cunha, personal observation) - "active mud volcano" (AMV) - (35º44"34' N 10º12"06'W) on 

05/03/2012; and from a reference site (RS - 35º42"00'N 09º57"93'W) distant from any known MV on 

27/02/2012 (Hensen 2014). Cores were obtained using a box-corer for the MV samples and a TV guided 

multiple cores for RS samples. Final sample was composed of four 0.5-1 g of sub-samples, from the top 

sediment layer (0-1 cm b.s.f.) of each core, that were pooled, homogenized with 1 mL glycerol and 

immediately deep-frozen and stored at -80ºC, first on board and later in laboratory, until further use. 

 

 

Figure II-1 - Map of Gulf of Cadiz. Sampling site (M. Ivanov MV) is located southwest of the Iberian Peninsula 

on the SWIM 1 fault line. Copyright belongs to GEOMAR (Helmholtz Centre for Ocean Research; 

Kiel, Germany). 

PAH enrichment cultures 

EC were obtained from each sediment sample. Ten mg of sediment inoculum was seeded in 

100 mL Erlenmeyer containing 50 mL of EC and incubated at room temperature for 8 weeks. Culture 

medium was renewed at the second and fourth weeks. For the renewal, 0.5 mL of previous EC was 

inoculated into 50 mL of fresh EC medium containing the same concentration of PAH and 
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cycloheximide. Cultures were maintained in the dark and without agitation, to mimic deep sea conditions. 

For bacterial isolation, 1 mL aliquots were taken in triplicate (at day 3 and weekly, afterwards), serially 

diluted and spread-plated on solid M9 medium with added PAHs (Sanders 2012). Plates were incubated 

at 25ºC and, after visible growth (3-7 days), distinctive colonies were obtained and streaked on agar EC 

medium to obtain pure cultures using streak plate procedure by the quadrant method (Sanders 2012). 

Genotyping and 16S RNA gene sequencing of isolates 

For DNA extraction, isolates were inoculated in LB medium (Merck, USA) spiked with PAHs 

and grown overnight. Cells were collected from the liquid cultures and DNA was extracted through the 

phenol-chloroform method [adapted for bacteria (Ghosh et al. 2013)]. To exclude clones, the DNA from 

each isolate was PCR-amplified using BOXA1R primer (5’-CTACGGCAAGGCGACGCTGACG-3’) 

(Versalovic et al. 1991). Extracted DNA (1 µL) was used as template in a 25 µL reaction containing 12.5 

µL of Master mix (Thermo Scientific, Waltham, MA), 2.5 µL of DMSO and 2 µL of primer solution 

(Rademaker et al. 2000). Amplification was performed with initial denaturation at 94ºC during 5 min, 

followed by 40 cycles of 94ºC/1 min; 53ºC/1 min; 72ºC/8 min and ended with an final extension at 72ºc 

during 15 min. Electrophoresis was performed in agarose gel 1% with GelredTM (Biotium, Fremont, 

CA, USA), at 80 V during approximately 160 min in TAE buffer 1 x [from a 50 x stock solution (Fisher 

Scientific, Hampton, NH, USA); final concentration was 40 mM Tris-acetate and 1 mM EDTA], with 2 

µL of DNA size marker (GeneRuler 1 kb Plus DNA Ladder, ThermoFischer Scientific, Waltham, MA, 

USA) that was added in the outer sockets of the agarose gel. Gels were digitalized, and bands were 

aligned, using the DNA size marker as reference, and analyzed in BioNumerics software (Applied Maths, 

Sint-Martens-Latem, Belgium). Dendrograms were constructed by applying presence/absence Jaccard 

index with minimum correlation of 5%. The 16S rRNA gene of representative isolates was PCR-

amplified using primers 27F (5’-AGAGTTTGATCCTGGCTCAG -3’) and 1492R (5’-

CTACGGRTACCTTGTTACGAC-3’) and 1 µL of DNA template in a 25 µL reaction containing 12.5 

µL of Master mix (ThermoFischer Scientific, Waltham, MA, USA), 0.5 µL of bovine serum albumin and 

0.25 µL of each primer solution. Resulting amplicon was sequenced externally at GATC-Biotech 

(Konstanz, Germany). The obtained 16S rRNA gene sequences were compared with those available on 

the NCBI database using BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi - Accessed 17-04-2017).  

Phylogenetic tree was constructed using the selected 16S rRNA sequences of bacterial isolates 

obtained in this study and some of their closest relatives in GenBank [http://www.ncbi.nlm.nih.gov/] 

(Tamura et al. 2013). All sequences were aligned using ClustalW and a phylogenetic analysis was 

conducted using MEGA 6 software (http://www.megasoftware.net/; version 6.06). A phylogenetic tree 

was constructed using the neighbour-joining method and evolutionary distances were computed using 

the maximum composite likelihood with discrete Gamma distribution. In the results, a bootstrap 
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consensus tree based on 1000 replicates is presented. The bootstrap value is shown next to each branch 

when it exceeds 50% and represents the percentage of replicates in which the associated taxa clustered 

together. 

Test for biosurfactant production 

Biosurfactant production was tested by the atomized oil assay (Burch et al. 2010) as described 

in Domingues et al 2012 (Domingues et al. 2012). Escherichia coli DH5α was used as negative control and 

solutions of commercial surfactants were used as positive controls: 0.008 mM Tween 80 (Merck, 

Darmstadt, Germany), 10 mM sodium dodecyl sulfate (SDS; BioRad, Hercules, CA, USA), 1 mM cetyl 

trimethylammonium bromide (CTAB; Sigma-Aldrich, St. Louis, MO,USA) and 15.4 nM surfactin 

(Sigma- Aldrich, USA, St. Louis, MO,USA). The negative control and the isolates were inoculated using 

a sterile toothpick on LB agar medium (Merck, Darmstadt, Germany) and grown overnight at 25ºC, 

while for positive controls 10 µL of solution were added to agar and air-dried. Afterwards, an airbrush 

(model BD-128P, Fengda, United Kingdom) was used to nebulise the liquid paraffin (Merck, Darmstadt, 

Germany) over the colonized solid medium. The presence of biosurfactants was detected by the presence 

of a halo surrounding the colony visible under indirect light. 

Results and discussion 

A total of 39 bacterial strains were isolated from all enrichment cultures and, through BOXA1R 

genotyping analysis, these were reduced to 14 representative isolates. The partial 16S sequencing results 

of these isolates was compared with sequences available on the NCBI database and their closest 

phylogenetic relatives are listed in Table II-1. The phylogenetic relations between isolates and some of 

their closest relatives is presented in Figure II-2 and phylogenetic classification by RDP classifier 

(https://rdp.cme.msu.edu/classifier) is listed in Table II-2. The majority of the isolates (nine) were 

retrieved from the enrichment cultures using IMV samples and all except um were affiliated with the 

family Bacillaceae. Only one isolate was retrieved from the AMV enrichment culture and its closest 

representative was B. baekryungensis T10-3M (Na et al. 2011). Unfortunately, geochemical data that could 

determine the degree of seepage activity at each crater were not available and their classification as active 

or inactive was based solely on the visual presence or absence of gas hydrates and meiofauna (M.R. 

Cunha, personal observation). However, previous mass-sequencing data revealed a significant higher 

abundance of the methane-oxidizing order Methylococcales (Redmond et al. 2010) in the AMV 

sediments, comparatively to sediment from the IMV and the RS (Coelho et al. 2016b), therefore 

supporting this visually-based classification. From the RS samples 4 strains belonging to Bacillus spp. (2 

isolates), Virgibacillus spp. and Rhodococcus spp, were isolated. 
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Table II-1 - Similarity results using BLAST on NCBI database (https://blast.ncbi.nlm.nih.gov/Blast.cgi - Accessed 17-04-2017) and biosurfactant production of all representative isolates with 

valid DNA sequences. BLAST was done excluding uncultured/environmental clones. (Phe - phenanthrene; Chry-chrysene; IMV-inactive mud volcano; AMV- active mud volcano; RS- reference 

site) 

Representative 
isolate 

Biosurfactant 
Production Sediments Selective 

culture 
NCBI Accession 
nº 

NCBI closest and most relevant sequence Reference 

Identity NCBI Accession 
nº Similarity  

CE34a Yes IMV Phe/Chry KY941916 Bacillus paralicheniformis KJ-16 KY694465 99% (Dunlap et 
al. 2016) 

PD13rab No RS Phe/Chry KY941913 Virgibacillus halotolerans WS 4627 NR108860 99% 
(Seiler and 
Wenning 
2013) 

CE14a Yes IMV Phe/Chry KY941922 Bacillus sp. KT70 KJ734004 99% 
(Yu et al. 
2014) 

CD21a Yes RS Chry KY941914 Bacillus licheniformis RSP-09 JX036281 99% (Li and Yu 
2012) 

PE11db No IMV Phe KY941921 Bacillus sp. KP3 AB638888 99% (Baig et al. 
2012) 

CD31d No RS Chry KY941919 Bacillus aquimaris TF-12 NR025241 99% (Yoon et al. 
2003) 

PE14b No IMV Phe KY941918 Bacillus aquimaris TF-12 NR025241 99% (Yoon et al. 
2003) 

PE13rab Yes IMV Phe KY941923 Bacillus sp. KT122 KJ733979 99% (Yu et al. 
2014) 

PE14a Yes IMV Phe KY941917 Bacillus sp. KT122 KJ733979 99% (Yu et al. 
2014) 

PE11dc Yes IMV Phe KY941912 Bacillus subtilis subsp. spizizenii MA-8 KY454691 99% not 
published 

CA14aa No AMV Chry KY941924 Bacillus baekryungensis T10-3M AB617547 99% (Na et al. 
2011) 

CE21a No IMV Chry KY941915 Bacillus flexus SL21 JN645852 99% (Sahay et al. 
2012) 

D18a No RS Phe KY941920 

Rhodococcus rhodochrous AK40 EU004419 99% (Táncsics et 
al. 2008) 

Rhodococcus sp. KL88 
 FJ555285 99% 

(Veeranagou
da et al. 
2009) 

CE11a Yes IMV Chry KY941925 Acinetobacer iwoffi KAR20 KR054982 99% (Kõiv et al. 
2015) 
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The majority of representative isolates (11 out of 14) had a 16S rRNA amplicon sequence highly 

similar to those of low G+C gram-positive spore-forming bacteria from the Bacillaceae family (Bacillus 

and Virgibacillus genera), whereas the remaining two were affiliated to the gram-positive actinobacterial 

Rhodococcus and γ-proteobacterial Acinetobacter genera, respectively (Table II-2).  The 16S rRNA amplicon 

sequence from these isolates were highly similar (>99%) with those retrieved from both terrestrial (Baig 

et al. 2012; Yu et al. 2014) and marine environments (Yoon et al. 2003) (Table II-1). Some of these 

sequences were related with heavy metal tolerance (Yu et al. 2014) and halophilic environments (Li and 

Yu 2012; Na et al. 2011; Sahay et al. 2012). Only isolate CE11a had a 99% similarity with some Rhodococcus 

strains potentially involved in the biodegradation of mono-aromatic hydrocarbons (Táncsics et al. 2008; 

Veeranagouda et al. 2009). All isolates had high similarity (>99%) with sequences in the database. 

Table II-2 - Identification and characterization of all representative isolates with valid DNA sequences 

Representative 
isolate 

RDP Classification 

Family Genus 

CE34a Bacillaceae 100% Bacillus 100% 

PD13rab Bacillaceae 100% Virgibacillus 100% 

CE14a Bacillaceae 100% Bacillus 100% 

CD21ab Bacillaceae 100% Bacillus 100% 

PE11db Bacillaceae 100% Bacillus 100% 

CD31d Bacillaceae 100% Bacillus 100% 

PE14b Bacillaceae 100% Bacillus 100% 

PE23rab Bacillaceae 100% Bacillus 100% 

PE14a Bacillaceae 100% Bacillus 100% 

PE11dc Bacillaceae 100% Bacillus 100% 

CA14aa Bacillaceae 100% Bacillus 100% 

CE21a Bacillaceae 100% Bacillus 100% 

D18a Corynebacterineae 100% Rhodococcus 100% 

CE11a Moraxellaceae 100% Acinetobacter 100% 
 

Previously reported mass-sequencing data of the 16S rRNA gene revealed that the bacterial 

community in the IMV, AMV and RS samples (and in other MV discovered) has a low percentage of 

Firmicutes (Coelho et al. 2016b). Firmicutes, Bacilli and Bacillaceae were not among the most abundant 

phyla, classes and orders in any of the MV samples and reference site (Coelho et al. 2016b). This is 

coherent with other marine mud volcano sediments (Pachiadaki et al. 2011) and with other deep sea 

sediments, which are normally dominated by the Proteobacteria phylum (Li et al. 1999). However, high 

throughput 16S rRNA gene analyses are speculated to under-represent endospore-forming bacteria from 

Firmicutes, possibly because of the difficulties in disrupting the hardy outer cortex of the endospores by 
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many traditional DNA extraction methods (Filippidou et al. 2015). Also the abundance of PAH-

degrading bacteria may be niche-specific, since PAHs, although detected (Geptner et al. 2006; Lorenson 

et al. 2002; Polonik et al. 2015; Wang et al. 2011), are extremely less concentrated in MV sediments in 

comparison to the C1-C4 gaseous hydrocarbons (Lein et al. 1999; Niemann et al. 2006). However among 

the culturable fraction, bacteria from the phyla Firmicutes are recurrently isolated from deep sea 

environments (da Silva et al. 2013; Lu et al. 2001), inclusively in situ (Gärtner et al. 2011).  

PAH-degrading bacteria affiliated with the Bacillaceae family have rarely been isolated from deep 

sea sediments (Louvado et al. 2015) and the same applies to other gram-positive bacterial groups 

[exception include a two actinobacterial strains (Peng et al. 2008a; Wang et al. 2008)]. In both terrestrial 

and marine environments, gram positive PAH-degrading bacteria are more commonly found among the 

high G+C Actinobacteria phylum (Vila et al. 2015) and known encoding genes of the PAH-dioxygenase 

enzyme in gram positive bacteria seem limited to actinobacterial strains from terrestrial environments 

(Cébron et al. 2008; Ding et al. 2010; Iwai et al. 2011). Although infrequent, some exceptions have been 

reported in marine environments, as members of the Bacillaceae family have been previously isolated from 

PAHs enrichment cultures using various mesophilic marine sediments as inoculum (Daane et al. 2002; 

Lin and Cai 2008; Marcos et al. 2009; Zhuang et al. 2003). For example, in a culture independent analysis 

of anaerobic sediment, the Firmicutes phylum (mainly represented by the Peptostrepococceae family of 

the Clostridiales order) was a predominant bacterial group in the oil amended microcosm (Sherry et al. 

2013). However, PAH-degrading isolates obtained from deep-sea sediments are normally affiliated to 

taxa from the Proteobacteria phylum (Cui et al. 2008; Shao et al. 2010; Wang et al. 2008), possibly because 

efforts to isolate PAH-degrading bacteria here have been mostly focused on the abyssal plains (Louvado 

et al. 2015).  

Bacillus-like isolates with PAH-degrading capacity may possibly be more frequently detected in 

environments with potentially extreme abiotic conditions. In terrestrial environments, Bacillus-like 

bacteria have been repeatedly reported as a key xenobiotic degrader under thermophilic and alkaliphilic 

conditions (Annweiler et al. 2000; Margesin and Schinner 2001). Coherently, in marine extreme 

environments, the Bacillus genus comprised the majority of the cultivable heterotrophic bacterial 

community at a deep sea brine lake [a geological phenomenon frequently associated with mud volcanism 

(Dupré et al. 2014)] (Sass et al. 2008) and at an alkaline serpentinizing fluid seepage site (Meyer-Dombard 

et al. 2014). The Bacillaceae family was relevant in the culture-independent analysis of deep sea cold seep-

associated pockmark (Cambon-Bonavita et al. 2009). Furthermore, the Bacillaceae family was detected as 

the predominant taxa in overall bacterial community of an anaerobic EC, with petroleum as it sole carbon 

source, using the same IMV samples from this study, and a relevant family in similar anaerobic EC using 

AMV. sediments (Domingues et al. 2016). Gram-positive bacteria, potentially because of its stronger 

outer peptidoglycan cell wall, thrive in extreme and highly variable abiotic conditions (Zhuang et al. 

2003). Yet, from the RS samples Bacillus spp. isolates were also retrieved, revealing that Bacillus-like  
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Figure II-2 - Phylogenetic relations of the 16S rRNA gene sequences of bacterial isolates obtained in this study and 

some of their closest relatives in GenBank [http://www.ncbi.nlm.nih.gov/] (Tamura et al. 2013). All 

sequences were aligned using ClustalW and a phylogenetic analysis was conducted using MEGA 6 

software (http://www.megasoftware.net/; version 6.06). A phylogenetic tree was constructed using 

the neighbor-joining method and evolutionary distances were computed using the maximum 

composite likelihood with discrete Gamma distribution and a bootstrap consensus tree based on 

1000 replicates is presented. The bootstrap value is shown next to each branch when it exceed 50% 

and represents the percentage of replicates in which the associated taxa clustered together. 

 

bacteria are important PAH-degraders in these stable deep sea abyssal plains or that the RS was 

influenced by potential and undiscovered natural oil seepage sites in its surroundings 

Biosurfactant production by hydrocarbon-degrading bacterial communities is a strategic 

adaptation to cope with the low aqueous solubility and consequent bioavailability of oil hydrocarbons. 

In this study, biosurfactant production (Figure II-3) was detected by the atomized oil assay in 5 

representative isolates: 4 were affiliated to the Bacillus genus and one to the Acinetobacter genus (Table 

II-2). Both genera are known to comprise biosurfactant-producing strains (Ceresa et al. 2016; Dong et 

al. 2016; Patowary et al. 2015). Biosurfactant-producing Bacillus spp usually produce lipo-cyclicpeptides 

(e.g. surfactin) (Ceresa et al. 2016), while Acinetobacter spp. produce glycolipid biosurfactants (Dong et al. 
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2016). Additionally, three isolates described here [PD13rab (LF1), CE21a (LF3) and CE34a (LF5)] were 

previously reported to 

 

 

 

Figure II-3 - Results from the atomized oil assay used for the detection of biosurfactant production among isolates. 

A - Negative control (Escherichia coli DH5α); B to H - Examples of some positive result. 

 

efficiently degrade the endocrine-disrupting compound 17β-estradiol (E2) and its subsequent metabolic 

intermediate (E1) (Fernández et al. 2016). These results demonstrate a versatile metabolism of xenobiotic 

pollutants and highlight the biotechnological potential of these isolates. 

Our study showed that Bacillus-like species may potentially be involved in PAH biodegradation 

in deep sea environments. However, although the analysis of the culturable fraction of a particular 

bacterial community may establish direct functional roles inside the consortium, it may only represent a 

minor fraction of the microorganism’s present. Many bacteria may have been excluded in both the 

enrichment culture and in the isolation procedures because of several factors such as inappropriate 

culture medium composition, incapacity to grow on solid medium, not ideal in vitro abiotic conditions 

and strong interdependencies between organisms (Zhang et al. 2017). 

Conclusions 

Isolates attributed to the Bacillaceae family dominated the culturable fraction of the 

PAH-degrading bacterial community from the enrichment cultures established using deep sea MV 

sediments. This dominance was unexpected since, to the best of our knowledge, PAH-degrading gram-
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positive bacteria are rarely isolated from the deep sea environment. The potential biotechnological 

application in the biodegradation of xenobiotics is promising. 
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Abstract 

Ocean acidification may exacerbate the environmental impact of oil hydrocarbon pollution by 

disrupting the core composition of the superficial (0-1 cm) benthic bacterial communities. However, the 

biogeochemical characteristics of subsurface sediments may act as a potential buffer to environmental 

changes. In this study, we used a microcosm experimental approach to access the independent and 

interactive effects of reduced seawater pH and oil contamination on the composition of subsurface 

benthic bacterial communities, at two time points, by 16S rRNA gene based high-throughput sequencing. 

An in-depth taxa-specific variance analysis revealed that the independent effects of reduced seawater pH 

and oil contamination were significant predictors of changes in the relative abundance of some specific 

bacterial groups (e.g. Bacillales, Clostridiales, Rhizobiales and Desulfobulbaceae). However, overall the 

results indicate that the independent and interactive effects of reduced pH and oil contamination had no 

significant impact on the subsurface bacterial communities. This study provides evidence that, despite 

previous indications, bacterial communities inhabiting subsurface sediment may be less susceptible to 

the effects of oil contamination in a scenario of reduced seawater pH. 

Keywords: Oil spill, Sulfate-reducing bacteria, Desulfobulbaceae, Ocean acidification, Climate change, 

Subsurface sediments 

Introduction 

Carbon dioxide partial pressure (pCO2) in the atmosphere has increased from 280 to 404 ppm 

between the preindustrial era and October 2016 (Dlugokencky and Tans 2016; Indermuhle et al. 1999). 

This rise was caused by fossil fuel consumption and its rate has no parallel with past events (IPCC 2013). 
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The oceans have attenuated this rise by absorbing 30% of the CO2 emitted, but at a cost (Canadell et al. 

2007). In seawater, an increase in pCO2 alters the balance of inorganic carbon species and, consequently, 

reduces seawater pH in a process known as ocean acidification (OA) (Doney et al. 2009). It is estimated 

that, in average, pH levels in ocean surface water will drop between 0.3 to 0.4 units (Hartin 2016; IPCC 

2013), depending on models, and by the end of this century, and up to 0.7 units by 2300 (Hartin 2016). 

The total impact of OA on marine microbial communities is difficult to predict, mainly due to 

the multiple environmental and biological factors involved. An increase in pCO2 is certain to have a 

negative impact on all calcifying biota (Doney et al. 2009) and has the potential to augment 

photosynthesis, thus indirectly increasing nitrogen fixation and additional CO2 absorption (Riebesell et 

al. 2007). OA may alter the speciation, solubility, organic complexation and, consequently, the 

bioavailability of essential and/or toxic trace metals (Hoffmann et al. 2012). This may affect lithotrophic 

metabolism (Kirk et al. 2016) and, subsequently, anaerobic hydrocarbon biodegradation (Zeng et al. 

2015), which relies on nitrate, sulfate, iron(II) or CO2, among others, as electron acceptors (Wentzel et 

al. 2007; Widdel and Musat 2010). An increase in seawater pCO2 may differently affect these electron 

acceptors, increasing (e.g. CO2) or decreasing [i.e. NO42-, SO42- and Fe(II)] their bioavailability, and, thus, 

potentially altering the predominant metabolism in the microbial community (Kirk et al. 2016; Millero 

2009). OA may also reduce burrowing, and expand the suboxic and anoxic zones of sediments (Laverock 

et al. 2013), where hydrocarbon biodegradation is substantially less efficient (Widdel and Musat 2010), 

but essential (McGenity 2014). Here, the lack of disturbance and the high adhesion forces of the 

predominant clay/mud sediments physically entrap and occlude buried hydrocarbons from initial 

oxygenation and photolysis (Louvado et al. 2015; McGenity 2014), promoting their persistence (Peterson 

et al. 2003). 

A previous study showed that the interaction between reduced seawater pH and oil 

contamination significantly altered the active microbial community at the uppermost sediment layer (≈ 

0-1cm b.s.f.) (Coelho et al. 2016a; Coelho et al. 2015). The interaction between these two factors 

significantly reduced the relative abundance of anaerobic hydrocarbon-degrading sulfate reducing 

bacteria (Order Desulfobacterales and Desulforomonadales) (Coelho et al. 2015). This reduction was 

later found to be coupled with a reduction in specific archaeal groups and an increase in putative 

hydrocarbonoclastic fungal OTUs (Coelho et al. 2016a). However, the implications of the potential 

effects of reduced seawater pH and oil contamination on microbial communities inhabiting subsurface-

sediment anaerobic layers remains unknown. We suspect that the impact of OA on microbial 

communities and their functions will be attenuated in sediments (Braeckman et al. 2014), particularly at 

the subsurface sediments (Dashfield et al. 2008; Widdicombe et al. 2009), by the buffering capacity of 

sediments constituents (Ben-Yaakov 1973; Pertusatti and Prado 2007). 

Here, we used a 16S rRNA gene based high-throughput sequencing approach to study the 

independent and interactive effect of reduced seawater pH and oil contamination on the structure of 
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subsurface sediment bacterial communities under controlled microcosm conditions. Taking into account 

the potential buffer effect of subsurface sediments against environmental changes, we hypothesized that 

bacterial communities colonizing this habitat will be less susceptible to the effects of oil contamination 

in a climate change scenario of reduced seawater pH. 

Methods 

Microcosm experiment 

This study is based on a microcosm experiment that was previously reported (Coelho et al. 

2015). The microcosm platform, named experimental life support system (ELSS) is a flow-through 

system and has been previously validated to study the effects of climate change scenarios on benthic 

marine communities (Coelho et al. 2013). It was originally used to investigate the independent and 

interactive effects of ocean acidification, ultraviolet radiation and oil contamination in estuarine and 

coastal marine benthic communities [bacteria, an epibenthic gastropod (Peringia ulvae) and a benthic 

polychaete (Hediste diversicolor)]. The ELSS maintains individual microcosms at a controlled temperature, 

by submersion in water bath, while allowing the simulation of a diurnal light and tidal cycle, and the 

manipulation of pH. Full details regarding microcosm architecture and validation can be found in Coelho 

et al. (2013). 

In this study, we specifically focused on bacteria, the subsurface sediment layer (≈ 5 cm b.f.s.) 

and the independent and interactive effect of the factors: oil hydrocarbon contamination and seawater 

pH. Each factor had two levels: normal and reduced pH; with and without oil. In total, four treatments 

were tested: a) 'Cont' (normal seawater pH without oil contamination); b) 'OnpH' (reduced seawater pH 

without oil contamination); c) 'OnOi' (normal seawater pH with oil contamination); d) 'pHOi' (reduced 

seawater pH with oil contamination). Each treatment was replicated in four independent microcosms 

randomly arranged. Seawater pH was reduced by bubbling CO2 and automatically stabilized by a V2 

Pressure Regulator Pro coupled to V2 Control pH Controller (TMC Iberia, Lisbon, Portugal) (Gattuso 

and Lavigne 2009). The average synthetic seawater pH was 7.62 ± 0.11 in microcosms supplied with 

acidified seawater and 7.94 ± 0.10 in the control microcosms. This difference falls within the 0.3–0.4 pH 

decrease modelled for global sea surface for the year 2100 (Caldeira and Wickett 2003). The simulation 

of an oil spill was done by pouring crude oil (0.5% v/v) into randomly selected treatments during five 

consecutive high tides. Detailed information regarding the experiment can be found in Supplementary 

Files. 
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Sampling and DNA Extraction 

Composite sediment samples were collected, at the end of the high tide, seven (time point 7 - 

T7) and twenty-one (time point 21 - T21) days after the simulated oil spill. Four mini-cores (ø 1 cm) per 

microcosm were retrieved from the sediment and a ≈1 cm layer at approximately 5 cm b.s.f. was sliced, 

collected and pooled. Samples were stored immediately at -80ºC. DNA was extracted using E.Z.N.A 

Soil DNA Kit (Omega Bio-tek, Norcross, GA, USA) following manufacturer recommendations. 

Illumina MiSeq sequencing 

The 16S rRNA gene V4 region was PCR amplified using primers 515 (5´-

GTGCCAGCMGCCGCGGTAA-3´) and 806 (5´-GGACTACHVGGGTWTCTAAT-3´) with barcode 

on the forward primer in a 30 cycle PCR using the HotStarTaq Plus Master Mix Kit (Qiagen, USA) 

under the following conditions: 94°C for 3 minutes, followed by 28 cycles of 94°C for 30 seconds, 53°C 

for 40 seconds and 72°C for 1 minute, after which a final elongation step at 72°C was performed during 

5 minutes. After amplification, PCR products were checked in 2% agarose gel. Pooled samples were 

purified using calibrated Ampure XP beads. Library preparation and sequencing were performed 

externally (MR. DNA, Shallowater, TX, USA) on a MiSeq sequencing platform following standard 

Illumina protocols.  

Data analysis 

Sequencing analysis was performed using the Quantitative Insights Into Microbial Ecology 

(QIIME) software package (http://qiime.org; Accessed 01 January 2014) according to published 

recommendations and following previously described methods (Cleary et al. 2015; Kuczynski et al. 2011) 

with the exception of the operational taxonomic unit (OTU) picking step, where the UPARSE (Edgar 

2013) clustering method and chimera check was used. The most recent Greengenes database 

(ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz) was used for 

taxonomic assignment. Detailed information regarding the data analysis is available in Supplementary 

Information. Sequences are available at NCBI sequence read Archive (study accession nº 

PRJNA391281). 

Statistical analysis 

The OTU tables were uploaded to R software (version 3.1.1; http://www.r-project.org/) for 

removal of unassigned and singleton OTUs, chloroplast and mitochondrial sequences, statistical 

computing and graphic generation. A self-written function (Gomes et al. 2010) was used to estimate total 

rarefied OTU richness for each treatment and timepoint. Variation in composition among treatments 
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was assessed using principal coordinates analysis (PCO). The PCO was generated using the cmdscale() 

function in the R base package in vegan (Oksanen et al. 2012). Prior to the PCO, the raw data was 

log(x+1) transformed and used to produce a distance matrix with the Bray-Curtis index with the vegdist() 

function in vegan. Also in vegan, the adonis() function for permutational multivariate analysis of variance 

(PERMANOVA) was used to test for significant variations in composition among factors (Oksanen et 

al. 2012). In the adonis analysis, the Bray–Curtis distance matrix of OTU composition was the response 

variable with factors oil and pH (oil*pH) as the independent variables. The number of permutations was 

set at 999. To test variation in OTU composition between time points a repeated measure permutational 

analysis of variance was performed with the adonis() function in the vegan package (Oksanen et al. 2012). 

We also preformed, for all relevant taxa (phylum to family with a mean relative abundance ≥0.1 %) at 

each time point, a taxon-specific analysis, in which the significance of their compositional variation, 

between treatments, was accessed through an ANOVA. A linear regression distribution was created 

using the glm() function in the stats package with the OTU matrix as the response variable and oil, pH 

and the interaction between these two factors (oil*pH) as independent variables. We limited our analysis 

by establishing a threshold (mean relative abundance ≥0.1 %) to all levels. The relative abundance was 

calculated for each time point as a percentage of the total number of sequences in each sample using the 

prop.table() function in base package and the mean relative abundance was obtain through the arithmetic 

mean of these percentiles for each bacterial group in samples and treatments. Next, a two-way ANOVA 

test was applied to the models, using the anova() function in the stats package in R with the F test 

[adapted from (Roy et al. 2013a)]. The most significant (p-value ≤ 0.05) taxa were plotted using the 

boxplot() function from the graphics package. 

Results and discussion 

Overall bacterial community analysis 

The sequencing effort generated ≈1.9x106 sequences that, after quality screening, were clustered 

in 26 237 OTUs. Rarefied richness (Figure S III-1) had no asymptote for in any sample, which indicates 

that the true richness is higher than reported here. These OTUs were assigned to 67 phyla (95.88% of 

all OTUs), 163 classes (89.80%), 233 orders (67.89%) and 281 families (38.78%). Overall, the bacterial 

community of the anaerobic sediment fraction was dominated by Proteobacteria (mean relative 

abundance 53.49 ± 4.29%), followed by Chloroflexi (10.62 ± 4.54%), Bacteriodetes (8.94 ± 2.57%), 

Actinobacteria (6.82 ± 2.61%), Planctomycetes (3.97 ± 0.99%), Acidobacteria (3.79 ± 0.38%), 

Gemmatimonadetes (1.53 ± 0.19%), candidate division WS3 (1.12 ± .0.26%), Cladithrix (1.03 ± 0.24%) 

and Spirochaetes (1.03 ± 0.41%). The occurrence of Proteobacteria in the subsurface sediment layer was 

lower than in the superficial sediment (RNA-based study) (Coelho et al. 2015). In the superficial 

sediment, there was a considerable increase in the relative abundance of this phylum in the end of the 
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microcosm system validation (95.74%) when compared with the sampling site (74.03%) (Coelho et al. 

2013). In the subsurface layer, however, the relative abundance of this phylum was relatively stable 

throughout the experiment (T7 - 53.69 ± 3.86%; T21 - 53.28 ± 4.81 %). However, representativeness 

of the Proteobacteria phylum is similar with previous studies at the Ria de Aveiro water system (Coelho 

et al. 2013; Gomes et al. 2013; Oliveira et al. 2014b). In our dataset, the Proteobacteria phylum was 

mainly represented by classes δ- (24.03 ± 4.35%)and γ-(22.70 ± 4.86%) proteobacteria. The 

predominance of deltaproteobacterial OTU is mainly attributed to the sulfate-reducing bacterial OTU 

from the Desulfobacterales order (15.13 ± 3.95%) which normally dominates the bacterial community 

in anoxic barren wetland environments (Gomes et al. 2013). 

Table III-1 Output results from the Adonis statistical test for factors independently and in interaction.  

 Timepoint 7 Timepoint 21 

 F1,15 R2 p-value F1,15 R2 p-value 

pH 0.302 0.021 0.793 0.625 0.046 0.549 

Oil  1.383 0.098 0.225 0.768 0.056 0.486 

pH and Oil  0.375 0.027 0.726 0.316 0.023 0.799 
 

The PCO analysis (Figure III-1) revealed no clear separation among treatments, thus suggesting 

that the independent and interactive effect of seawater pH and oil contamination had no major effect 

on the overall structure of the subsurface bacterial communities. This was further confirmed by the 

adonis statistical test (Table III-1). The repeated measures adonis analysis showed that time was not a 

significant predictor of overall bacterial OTU composition (repeated measures adonis, F1,31=0.472, 

R2=0.016, P=0.543), indicating that bacterial community structure was stable throughout the 

experiment. The biogeochemical characteristics of subsurface sediments may have attenuated the effects 

of the tested factors. However, despite the lack of major changes in the subsurface communities, a group 

specific analysis for each time point revealed that four phyla, seven classes, twelve orders and ten families 

responded (ANOVA p-value < 0.05) to the independent and/or interactive effects of reduced seawater 

pH and oil contamination. These taxa are plotted for T7 in Figure III-2 and for T21 in Figure III-3. 

Independent effects of oil hydrocarbon contamination 

Overall, the independent effect of oil contamination did not significantly alter the subsurface bacterial 

community composition at any of the time points (Table III-1). Despite this, the group-specific analysis 

detected significant variation (ANOVA p-value < 0.05) in the relative abundance of some bacterial 

groups by oil at T7 (Figure III-2) and T21 (Figure III-3). Some taxa previously associated with oil 

hydrocarbon degradation increased in relative abundance in response to oil amendment. For example, 
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Figure III-1 - Principal components analysis (PCO) of bacterial operational taxonomic units (OTU) 7 days (A) and 

21 days (B) after oil contamination. The PCO was generated using the cmdscale() function in the R 

base package and wascores() function in vegan. Prior to the PCO, the raw data was log10(x+1)-

transformed and used to produce a distance matrix based on the Bray-Curtis distance with the 

vegdist() function in vegan (Oksanen 2012). The first two explanatory axes are shown. Cont: control 

with no treatment; OnpH: reduced pH; OnOi: contaminated with oil; pHOi: reduced pH and 

contaminated with oil. Sequence read (from MiSeq Illumina) was assigned to OTU with QIIME 

software (http://qiime.org) using the most recent Greengenes database 
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Figure III-2 - Boxplot with the relative abundances of OTU classified to bacterial groups (phylum, class, order and 

family) interaction at time point 7. These bacterial groups were statistically significant (Two-way 

ANOVA p-value<0.05) to the factors reduced seawater pH (#) and oil contamination (*) 

independently and to their interaction (º). Cont: control with no treatment; OnpH: reduced pH; 

OnOi: contaminated with oil; pHOi: reduced pH and contaminated with oil. Plot was generated 

using the barplot() function in the graphics package using OTU relative abundance matrix. Sequence 

read (from MiSeq Illumina) were assigned to OTU with QIIME software (http://qiime.org) using 

the most recent Greengenes database (ftp://greengenes. 

microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz). In the ANOVA, each factor 

independently and the interaction had 1 degree of freedom 
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order Sphingomonadales includes well known aerobic hydrocarbon degrading bacteria (Kim and Kwon 

2010). However, order Sphingomonadales represent at most an average of 0.16 ± 0.05% of the bacterial 

community. The lack of oxygen in the subsurface sediment layer probably limited its proliferation. On 

the contrary, putative anaerobic hydrocarbon-degrading bacteria belonging to the Clostridiaceae, 

Hyphomicrobiaceae and Phyllobacteriaceae families (and their respective orders) were more abundant and had 

a significant response to oil contamination at T21 (Figure III-3). Order Clostridiales are frequently 

detected in anoxic oil contaminated matrixes, including wetland sediments (Sherry et al. 2013) and 

anaerobic oxidation has been found to be coupled with nitrate (van der Zaan et al. 2012), thiosulfate 

(Sherry et al. 2013) and iron (Lentini et al. 2012) reduction. The relative abundance of Clostridiales was 

previously found to increase with depth in oil contaminated microcosm sediments (Sanni et al. 2015). 

Hyphomicrobiaceae and Phyllobacteriaceae families include known oil degrading bacteria and have been 

frequently detected in anoxic oil-contaminated matrixes (Fahrenfeld et al. 2014; Jin et al. 2013; Oren and 

Xu 2014; Pan et al. 2014; Wu et al. 2009). Representative sequences from our most abundant 

Hyphomicrobiaceae OTUs were compared with sequences available on NCBI database and had 

99%sequence similarity to the 16S sequences of bacterial strains retrieved from anoxic, hydrocarbon- 

and sulfate-rich (2mM) port sediments (OTU 12 and 17377) . 

The number of groups affected by oil and their representativeness increased substantially at T21 

(Figure III-3). This late response is probably explained by a delayed migration of oil hydrocarbons 

through the sediments. However, since hydrocarbon concentration was not measured at sampling depth, 

this can only be speculated. In estuarine environments, the fine-grained sediments form a compact 

sediment barrier that substantially slows oil migration (Cheong and Okada 2001). Furthermore, in our 

microcosms, the sediment cores were always submerged and pore saturation may have further impeded 

oil permeation (Oliveira and Nicolodi 2017). The sediment barrier may have also reduced the quantity 

of hydrocarbons that reached the subsurface sediments, attenuating its overall impact. For example, in a 

similar oil spill microcosm simulation, oil hydrocarbons were percolated from the surface layer to the 

subjacent layer, but, their concentrations at the subadjacent layer were considerably lower (≈10-fold) 

than those measured initially at the surface layer (Nakazawa et al. 2016). This attenuation in 

concentrations of oil hydrocarbons may be explained by an efficient biodegradation in overlying 

sediments (Nakazawa et al. 2016). 

Independent effects of reduced seawater pH 

Acidified seawater did not change the overall bacterial community composition (Figure III-1 

and Table III-1). The absence of geochemical data at sampling depth limits our interpretation of this 

results. Sediment pH profiles are complex and naturally variable, and their response to high-CO2 systems 

will be greatly influenced by sediments physico-chemical properties (Queirós et al. 2015).The dissolution 
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Figure III-3 - Boxplot with the relative abundances of OTU classified to bacterial groups (phylum, class, order and 

family) interaction at time point 21. These bacterial groups were statistically significant (Two-way 

ANOVA p-value<0.05) to the factors reduced seawater pH (#) and oil contamination (*) 

independently. Cont: control with no treatment; OnpH: reduced pH; OnOi: contaminated with oil; 

pHOi: reduced pH and contaminated with oil. Plot was generated using the barplot() function in the 

graphics package using OTU relative abundance matrix. Sequence read (from MiSeq Illumina) were 

assigned to OTU with QIIME software (http://qiime.org) using the most recent Greengenes 

database (ftp://greengenes.microbio.me/greengenes_release/ gg_13_5/gg_13_8_otus.tar.gz). In 

the ANOVA, each factor independently and the interaction had 1 degree of freedom 
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of carbonate salts (Ben-Yaakov 1973; Morse et al. 2006), the absorption of [H+] ions by humic acids 

(Pertusatti and Prado 2007) and the high levels of pCO2 and [H+] derived from organic matter 

mineralization (Soetaert et al. 2007; Zhu et al. 2006) all contribute to the sediment buffer capacity, which 

may have stabilized porewater pH during their transit. Previous studies have indicated that porewater 

pH decreases in the most superficial sediments (2-3 mm)but this acidification is progressively attenuated 

in deeper sediments (Dashfield et al. 2008; Widdicombe et al. 2009). 

Despite this, at both time points the group specific analysis of sub-surface sediment 

communities revealed that some bacterial groups responded to the reduction in seawater pH (Figure 

III-2, Table S III-1 and Table S III-2). This compositional stability of the overall bacterial community 

and the some significant group-specific variations are consistent with previous studies (Kerfahi et al. 

2014; Queirós et al. 2015; Raulf et al. 2015; Roy et al. 2013a; Tait et al. 2013). Among the bacterial groups 

that had a significant response to reduced seawater pH is included class Bacilli, which had a significant 

higher relative abundance in the reduced seawater pH treatments at both T7 (Figure III-2 - Cont: 0.19± 

0.08%; OnpH: 0.35 ± 0.25%; pHOi: 0.6 ± 0.44%; OnOi: 0.18 ± 0.07%) and T21 (Figure III-3- Cont: 

0.12 ± 0.04%; OnpH: 0.31 ± 0.23%; OnOi: 0.18 ± 0.06%; pHOi: 0.27 ± 0.09%). Although statistically 

significant, the relative abundance of class Bacilli had a high variation among replicates in reduced pH 

treatments. Nonetheless, this trend is consistent with other studies, as bacteria associated to the phylum 

Firmicutes tend to increase in abundance in reduced pH conditions (Chauhan et al. 2015; Meron et al. 

2011; Morrow et al. 2015). For example, the relative abundance of the order Bacillales, in the bacterial 

community associated to the coral Acropora eurystoma, increased when pH was artificially reduced from 

8.2 to 7.3 (Meron et al. 2011). Also, at an underwater CO2 vent (low pH marine environment), order 

Bacillales relative abundance was the highest when pH was the lowest and it decreased along the pH 

gradient created by the vent (from pH 6.7 to 8.0) (Chauhan et al. 2015) 

Acidified seawater also caused a significant decrease (F1,16=6.991; P=0.018) of the relative 

abundance of the Family Desulfobulbaceae, but only at T7 (OnpH: 4.1±0.67; pHOi: 4.37±1.24; Cont: 5.21 

± 0.84; OnOi: 6.58 ± 1.95). These results are coherent with results obtained in the top layer (Coelho et 

al. 2015) and a negative correlation between reduced seawater conditions and these taxa may be possible. 

Desulfobulbaceae are obligate sulfate reducing bacteria (Kuever et al. 2015) frequently involved in 

syntrophic oxidation of methane along with the anaerobic methanotrophic archaea (Green-Saxena et al. 

2014). In this syntrophy, bacteria from the Desulfobulbaceae family characteristically use nitrate as 

preferential nutrient source (Green-Saxena et al. 2014). Reduced seawater pH may decrease nitrate 

concentrations, since it is known to decrease ammonia oxidation (Beman et al. 2011), thus possibly 

explaining the significant lower abundance of family Desulfobulbaceae in acidified seawater treatments. 
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Interactive effects of reduced seawater pH and oil pollution 

The interactive effects of reduced seawater pH and oil contamination were characterized by a 

significant reduction in the relative abundance of five taxa at T7 (Figure III-2, Table S III-3 and Table S 

III-4) at T7. Responsive groups include some notably abundant taxa [e.g. phylum Bacteroidetes (average 

relative abundance: 8.69 ± 2.42%) and Gemmatimonadetes (1.57 ± 0.18%)]. Bacteroidetes are 

heterotrophic bacteria characteristically involved in degradation of recalcitrant polymeric organic matter 

(Fernandez-Gomez et al. 2013), particularly polysaccharides. The catabolism of polysaccharides may be 

indirectly stimulated in CO2-acidified seawater by an increased activity of their catabolic enzymes 

(Piontek et al. 2010). Thus, reduced pH conditions and an increase in carbon inputs could explain the 

higher relative abundance of phylum Bacteroidetes in pHOi (8.89 ± 3.21%) when compared to OnpH 

(7.19 ± 2.06%) and OnOi (7.87 ± 1.52%). The Gemmatimonadetes phylum is divided into five non-

curated groups in the SILVA database (Hanada and Sekiguchi 2014) and in our results only the first 

group (Gemm-1) had a significant response to the interactive effect of reduced seawater pH and oil 

contamination (Figure III-2). Gemmatimonadetes are speculated to be characteristically involved in 

phosphate removal through polyphosphate intracellular accumulation (Zhang et al. 2003). Nonetheless, 

Gemmatimonadetes have been detected in hydrocarbon contaminated coastal sediments, including 

mangrove sediments (Gomes et al. 2008; Rosano-Hernández et al. 2012), which may explain their slight 

increase in OnOi (1.61 ± 0.23%) in comparison to Cont (1.49 ± 0.17%). The reason for their relative 

increase in OnpH (1.72 ± 0.13%) at T7 and the decrease in pHOi (1.47 ± 0.01%), in comparison to 

OnOi and OnpH treatments, remain elusive and, since these differences are small, these variations may 

have no ecological significance at all. At T21 there was no similar pattern in any of the taxa. 

The previous published results obtained from superficial sediments showed that the interactive 

effects of oil contamination and reduced seawater pH had a significant effect on the relative abundance 

of active members of the order Desulfobacterales (Coelho et al. 2016a; Coelho et al. 2015). In the present 

study, the interaction between these two factors was not a significant driver of the relative abundance of 

this taxon (Figure S III-2). The biogeochemical characteristics of the sediment barrier could have 

attenuated the effects of the factors tested. 

Conclusions 

Previous results indicated that the interaction between oil hydrocarbon contamination and 

reduced seawater pH may have a significant effect on the composition of the active microbial 

communities in surface sediments (Coelho et al. 2016a; Coelho et al. 2015). Here, we now show that, 

although the group specific analysis indicated some significant taxa-specific responses, namely a clear 

effect of low seawater pH on Desulfobulbaceae family after 7 days and the appearance of several putative 

anaerobic hydrocarbon-degrading bacteria after 21 days, the overall bacterial community did not 
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significantly change. Neither the independent nor the interactive effect of reduced seawater pH and 

hydrocarbon contamination had a significant compositional impact on the overall structure of the 

bacterial communities inhabiting the subsurface sediment. It is possible that the initial oil hydrocarbon 

biodegradation in the surface layer combined with its low oil permeability and sediment chemical 

buffering capacity may attenuated the effects of oil contamination and low pH on subsurface sediment 

bacterial communities. Overall, this study provided evidences that bacterial communities inhabiting 

subsurface sediment may be less susceptible to the independent and interactive effects of reduced 

seawater pH and oil contamination in a scenario of ocean acidification. 
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Supplementary information 

Microcosm experiment 

Sediment cores (approximately 13 cm high) were collected on the 24 May 2011 at the Ria de 

Aveiro (40°37'32″N 8°44'10″W), an estuarine coastal lagoon, transferred directly into individual 

microcosm (glass tanks of 25 cm in height, 28 cm in length and 12.4 cm in width, and with a headspace 

volume of approximately 3L) and immediately placed in the ELSS. A semidiurnal tidal regime was 

implemented with individual microcosms filled and emptied in approximately 1 min, during which about 

50% of the water volume (1.5L) was renewed (flow-through non-recirculated). A 14-hour diurnal light 

cycle (average day length in summer months at Portuguese latitudes) was simulated with light intensity 

varying from 50% to 100% of the total fluorescence tube intensity. A water bath ensured that sediment 

temperature was maintained constant at 19 ºC. Synthetic seawater was prepared by dissolving a 

commercially available salt mixture (Tropic Marin Pro Reef salt – Tropic Marine, Germany) into 

freshwater purified by a four-stage reverse osmosis unit (Aqua-win RO-6080) at 32 ppt as measured by 

a refractometer. Salinity and temperature were defined to correspond to conditions recorded at the 

sampling location and were kept constant (Coelho et al. 2013). Before the experimental spiking with oil, 

the sediment was stabilized during 21 days and seawater pH was gradually adjusted in external glass 

reservoirs to the desired test conditions. The pH was monitored daily at the end of each low tide with a 

calibrated pH meter (Orion StarTM portable pH meter, Thermo Fisher Scientific Inc., Waltham, MA, 

USA). 

Data analysis  

In QIIME, .fasta and .qual files were used as input for the split_libraries.py script. Default 

arguments were used except for the minimum sequence length, which was set at 218 bps after removal 

of forward primers and barcodes; reverse primers were removed using the 'truncate only' argument and 

a sliding window test of quality scores was enabled with a value of 50 as suggested in the QIIME 

description for the script. OTUs were selected using UPARSE with usearch7 (Edgar 2013). Chimera 

checking was performed using the UCHIME algorithm. First reads were filtered with the -fastq_filter 

command and the following arguments -fastq_trunclen 250, -fastq_maxee 0.5 and -fastq_truncqual 15. 

Sequences were then dereplicated and sorted using the -derep_fulllength and - sortbysize commands. 

OTU clustering was performed using the -cluster_otus command (cut-off threshold at 97%). An 

additional chimera check was subsequently applied using the -uchime_ref command with the gold.fa 

database (http://drive5.com/uchime/gold.fa). In QIIME, representative sequences were selected using 

the pick_rep_set.py script in QIIME using the 'most_abundant' method. Reference sequences of OTUs 

were assigned taxonomies using default arguments in the assign_taxonomy.py script in QIIME with the 
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rdp method (Wang et al. 2007). In the assign_taxonomy.py function, the most recent Greengenes 

database (ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz) was used 

for OTU picking and taxonomic assignment. The make_otu_table.py script was used to produce an 

OTU by sample table containing the abundance and taxonomic assignment of bacterial OTUs. 

Supplementary files 

 

Figure S III-1 - Rarefaction curve plots for each sample. Calculated using a self-written function (Gomes et al. 

2010) 

 

Figure S III-2 - Boxplot with the relative abundances of OTU classified to the Desulfobacterales order at 7 days 

(A) and 21 days (B) after oil contamination. 



101 

 

Table S III-1 List of statistically significant (ANOVA p-value ≤0.05) phylum, classes and orders with mean relative abundance 

>0.1% for time point 7. Each factor independently and the interaction had 1 degree of freedom. 

 
p-value 

F-value Mean Relative 
abundance (%) pH Oil 

pH and 
Oil 

Phylum 

Fibrobacteres 0.039 - - 5.349 0.13 ± 0.04 

Firmicutes 0.026 - - 6.413 1.10 ± 0.53 

Bacteroidetes - - 0.047 4.925 8.69 ± 2.42 

Gemmatimonadetes - - 0.028 6.197 1.57 ± 0.18 

Class 

GN15 - 0.041 - 5.231 0.16 ± 0.07 

Bacilli 0.021 - - 7.014 0.33 ± 0.29 

OP8_1 0.042 - - 5.164 0.4 ± 0.26 

SJA-4 0.05 - - 4.771 0.18 ± 0.11 

Thermoleophilia 0.016 - - 7.77 0.42 ± 0.11 

Gemm-1 - - 0.041 5.237 0.18 ± 0.04 

Order 

envOPS12 - - 0.031 5.975 0.20 ± 0.06 

Solirubrobacterales - - 0.039 5.341 0.11 ± 0.04 

Bacillales 0.021 - - 7.019 0.26 ± 0.25 

Caldilineales 0.023 - - 6.809 0.23 ± 0.07 

Gaiellales 0.021 - - 7.0 0.205 ± 0.055 

HMMVPog-54 0.046 - - 4.949 0.32 ± 0.20 

Pseudomonadales 0.019 - - 7.381 0.39 ± 0.14 
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Table S III-2 List of statistically significant (ANOVA p-value ≤0.05) families with mean relative abundance ≥0.1% for time 

point 7. Each factor independently and the interaction had 1 degree of freedom. 

 
p-value 

F-value 
Mean Relative 

Abundance 
(%) pH Oil 

Bacillaceae 0.03318 - 5.7866 0.156 ± 0.190 

Caldilineaceae 0.02283 - 6.809 0.232 ± 0.075 

Chromatiaceae 0.03797 - 5.4359 0.597 ± 0.202 

Cohaesibacteraceae 0.00991 - 9.3610 0.144 ± 0.089 

Desulfobulbaceae 0.01816 - 7.4709 5.063 ± 1.515 

Hyphomicrobiaceae 0.0293 - 6.1185 1.744 ± 0.401 

Pseudomonadaceae 0.01232 - 8.6578 0.383 ± 0.134 

Table S III-3 - List of statistically significant (ANOVA p-value ≤0.05) phylum, classes and orders with mean relative abundance 

≥0.1% for time point 21. Each factor independently and the interaction had 1 degree of freedom. 

 
p-value 

F-value 
Mean Relative 
abundance (%) pH Oil 

Phylum Firmicutes - 0.049 4.794 0.8 ± 0.28 

Class 

Clostridia - 0.026 6.49 0.57 ± 0.24 

SJA-4 - 0.03 6.072 0.24 ± 0.25 

Bacilli 0.034 - 5.715 0.22 ± 0.14 

Thermoleophilia 0.043 - 5.147 0.35 ± 0.14 

Order 

Bacillales - 0.023 6.768 0.12 ± 0.06 

CCM11a 
0.032 - 5.953 

0.23 ± 0.14 
- 0.039 5.384 

Clostridiales - 0.026 6.49 0.56 ± 0.24 

envOPS12 - 0.02 7.261 0.22 ± 0.09 

Rhizobiales - 0.029 6.111 2.16 ± 0.51 

SB-34 - 0.031 5.985 0.33 ± 0.22 

Sphingomonadales - 0.007 10.558 0.11 ± 0.06 
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Table S III-4 - List of statistically significant (ANOVA p-value ≤0.05) families with mean relative abundance ≥0.05% for time 

point 21. Each factor independently and the interaction had 1 degree of freedom. 

 p-value 
F-value 

Mean Relative 
Abundance (%) pH Oil 

Clostridiaceae - 0.014 8.32 0.29 ± 0.13 

Hyphomicrobiaceae - 0.007 10.581 1.26 ± 0.23 

Phyllobacteriaceae - 0.018 7.551 0.25 ± 0.1  

Cohaesibacteraceae 0.011 - 9.031 0.17 ± 0.09 

lheB3-7 0.031 - 5.958 0.15 ± 0.05 
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Chapter IV 

IV. Microcosm evaluation of the impact of oil contamination and chemical 

dispersant addition on bacterial communities in estuarine port sediment 

Louvado, A.1; Coelho, F.J.R.C.1; Oliveira; V.1; Gomes, H.1; Cleary, D.F.R. 1; Simões, M.M.Q.2; 

Cunha, A.1; Gomes, N.C.M.1 
1Department of Biology & CESAM, University of Aveiro, Campus de Santiago, 3810-193 

Aveiro, Portugal 
2Department of Chemistry & QOPNA, University of Aveiro, Campus de Santiago, 3810-193 

Aveiro, Portugal 

Abstract 

The use of chemical dispersants in oil spill response is controversial, particularly in near-shore 

environments (e.g. ports). Their application will certainly increase the bioavailability of oil, which may 

enhance microbial biodegradation. However, it may also increase the mass transfer of constituents of oil 

to the sediment surface, where their long-term environmental impact is severer. In this study, we aimed 

at investigating the effects of oil contamination and chemical dispersant addition on the fate of oil 

hydrocarbons [polycyclic aromatic hydrocarbons (PAH) and alkanes] in a estuarine port sediment. For 

that a microcosms experimental setup was used to evaluate the impact of chemical oil dispersants on the 

structure of the benthic bacterial communities from a port environment by a 16S rRNA gene based high-

throughput sequencing approach. In addition, the effect of oil-dispersant on putative functional traits 

was evaluated. The results revealed that chemically dispersed oil, while having similar alkane 

concentration, seems to enhance PAHs accumulation in sediments and altered the relative abundance of 

some less abundant bacterial groups. Nonetheless, overall no significant effect was detected on the 

bacterial community composition at the uppermost sediment layer, which was stable to the independent 

and interactive effects of oil contamination and dispersant addition. In sum, chemical dispersants 

enhance the mass transfer of PAH to the sediment surface but do not impose a significant shift to the 

composition of the overall bacterial communities from port environments. 

 

Keywords: Alcanivoraceae, Surfactants, PAHs, Dispersant, Helicobacteraceae, Oil spill 
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Introduction 

Chemical dispersants are used to mitigate the environmental impact of oil spills (National 

Research Council 2005; Prince 2015; Walker 2017). Non-dispersed oil will agglomerate into large surface 

slicks and oil droplets, thus reducing the oil-water interface to a minimum (National Research Council 

2005). It is at this interface that bacterial biodegradation preferentially occurs (Rosenberg and Rosenberg 

1981). Therefore, if requirements of other potentially limiting factors (e.g. nutrients and oxygen) are 

fulfilled, this minimal interface will drastically reduce oil bioavailability and, consequently, limit oil 

hydrocarbon biodegradation. To counter this, chemical dispersants in combination with wave action will 

synergistically promote the formation and stabilization of micron-size oil-in-water micelles (National 

Research Council 2005). This will drastically increase the oil-water interface and may potentiate oil 

bioremediation. However, the use of chemical dispersants is a subject of debate among scientists 

(Kleindienst et al. 2015a; Kleindienst et al. 2016; Prince et al. 2016). Experimental results can be 

contradictory, with biodegradation being enhanced (Brakstad et al. 2014; Ferguson et al. 2017), inhibited 

(Foght and Westlake 1982; Kleindienst et al. 2015b) or not significantly altered (Rahsepar et al. 2016) by 

the addition of a dispersant. In the intervening time, chemical dispersants may increase the reach and 

exposure of  to the toxic constituents of oil (Adams et al. 2014; Carls et al. 2008; Redman et al. 2017), of 

which polycyclic aromatic hydrocarbons (PAHs) are particularly problematic (Barron et al. 2003; 

Shimada and Fujii‐Kuriyama 2004). In addition, ecotoxicological studies have repeatedly shown that 

chemical dispersion increases oils acute toxicity to aquatic organisms (Almeda et al. 2014; Anderson et 

al. 2014; Barron et al. 2003; Gardiner et al. 2013; Goodbody-Gringley et al. 2013; Özhan et al. 2014; 

Rico-Martínez et al. 2013), with toxicological effects being frequently correlated with PAHs 

concentration (Gardiner et al. 2013; Özhan et al. 2014; Radniecki et al. 2013). 

In efficient oil dispersion interventions, oil-dispersant micelles are expected to be buoyantly 

entrained in the water column and, consequently, restrained from reaching the seabed and shorelines 

(Beyer et al. 2016; Lee et al. 2012). Furthermore, the micellization of oil by chemical dispersants is 

thought to reduce oil "stickiness" and, consequently, reduce oil-sediment interactions (Lessard and 

DeMarco 2000). Yet, in vitro simulations revealed that by reducing micelle size (Khelifa et al. 2008), 

dispersant addition may promote the adhesion of oil to suspended particulate matter, thus facilitating 

mass transfer to the marine sediments (Cai et al. 2017; Gong et al. 2014b; Khelifa et al. 2008). Even in 

the deep sea sediments, dispersant-enhanced mass transfer of oil hydrocarbons was found to occur in 

the aftermath of the Deepwater Horizon oil spill (Romero et al. 2015).  

The ideal environmental fate of oil hydrocarbons is their complete oxidation. This is normally 

achieved through the metabolic association of a multitaxon microbial community (Coelho et al. 2016a; 
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Coelho et al. 2016b). Bacteria, due to their versatile metabolic features, participate directly (McGenity et 

al. 2012; Yakimov et al. 2007), and indirectly [e.g. nitrogen cycling (Musat et al. 2006; Toccalino et al. 

1993) and biosurfactant synthesis (Ali Khan et al. 2017)] in this metabolic network. However, chemically 

dispersed oil may disrupt this network (Kleindienst et al. 2015a) by inhibiting some bacterial groups [e.g. 

key alkane-degrading bacteria (Hamdan and Fulmer 2011; Kleindienst et al. 2015b) and ammonia-

oxidizing bacteria (Radniecki et al. 2013)]. Structural changes in the composition of bacterial 

communities are known to affect microbial processes (Kleindienst et al. 2015a) and, consequently, these 

can delay or preclude a full environment restoration. 

The sedimentation of oil hydrocarbons is undesirable in oil response strategies since the strong 

adhesion forces between oil and sediment particles decrease oil hydrocarbon bioavailability and this may 

consequently perpetuate the associated environmental impact (Lee 2002). Also, with time, oil 

hydrocarbons will be inhumed in anoxic sediments where oil hydrocarbon biodegradation is slower 

(McGenity 2014). Consequently, the use of dispersants in shallow near shore waters (e.g. ports) is 

strongly regulated or banned due to these concerns, despite their impact and fate have not been fully 

elucidated (National Research Council 2005). However, the response of the benthic bacterial community 

in port environments may differ from that of other less contaminated sites. Ports are particularly prone 

to oil spills and port activities expose surrounding benthic ecosystems to continuous xenobiotic pollution 

from the discharge bulk cargo, bilge and ballast water, soot emissions and water contamination by oil-

derived fuels and lubricants and anti-fouling paints (Darbra et al. 2009). Furthermore, port sediments 

can be adversely affected by anthropogenic activities from nearby industrialized and urbanized regions 

(Gomes et al. 2013). Therefore, the composition of the benthic bacterial communities and their catabolic 

gene pool at sites subject to chronic xenobiotic pollution is distinct that of less contaminated sites 

(Gomes et al. 2007; Gomes et al. 2008; Gomes et al. 2013; Tavares et al. 2016). Also, in response to oil 

contamination events, the compositional changes in the benthic bacterial community from chronically 

contaminated sites is not profound, yet their metabolic response is rapid and the oil hydrocarbon 

biodegradation rate is faster than in pristine sites (Païssé et al. 2010). Thus, when determining the net 

benefit of chemical dispersant addition in port environments it should taken in consideration the 

response of this precondition bacterial community. 

In this study, we aimed at investigating the effects of oil contamination and chemical dispersant 

addition on the fate of oil hydrocarbons in estuarine port sediments and evaluate their impact on the 

structure of the benthic bacterial communities. In addition, the effect of oil-dispersant interaction on 

putative functional traits was evaluated. 
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Methods 

Microcosm Experiment 

A microcosm simulation was conducted in an experimental life support system (ELSS) that was 

previously validated to test the effects of reduced seawater pH and UV radiation on the benthic 

biosphere (Coelho et al. 2013). This flow-through system allows the control of light intensity, tide regime 

and temperature. The ELSS supports up to 32 microcosms in four independent modules, which allows 

the testing of a total of eight different treatments (assuming four replicates each). More information 

regarding the architecture of the microcosms apparatus can be found in Coelho et al. 2013 (Coelho et al. 

2013). 

Sediment cores were collected at low neap tide on the 23th of May 2016 at a branch of the Ria 

de Aveiro (40°38'38″N 8°44'53″W). The Ria de Aveiro is a shallow estuarine coastal lagoon with a mean 

depth of ≈1 m, but with a deeper central channel that accesses the port infrastructures. It is influenced 

by freshwater, through the various rivers that drain there, and by the ocean with which it communicates 

through a single artificial channel. The sampling site was a barren intertidal mudflat, briefly exposed 

during low neap tide, located in between various shipping harbours and adjacent to a fuel storage facility 

(Figure IV-1). Sediment cores (≈13 cm high) were collected intact [following guidelines (Cravo-Laureau 

et al. 2017)], immediately placed into individual glass microcosms (glass tanks of 25 cm in height, 28 cm 

in length and 12.4 cm in width, and with a headspace volume of approximately 3 L) and transferred 

directly to the ELSS. At the ELSS, the 16 sediment cores were distributed equally among the four 

independent modules. A semidiurnal tidal regime filled and emptied the microcosms in approximately 1 

minute and renewed around 50% of the total water volume. The ELSS water flow was continuous. A 

14-hour diurnal light cycle was programmed with light intensity varying between 50% and 100%. The 

temperature of the sediment cores was maintained at 19 ºC by immersion in a refrigerated water bath 

(Seachill TR10, Teco S.R.L., Italy). Synthetic seawater was prepared by dissolving a commercial salt 

mixture (Tropic Marin Pro Reef salt – Tropic Marine, Germany) in freshwater purified by a four-stage 

reverse osmosis unit (Aqua-win RO-6080 - Aqua-win, Taiwan) and salinity was adjusted to ≈32 ppt as 

measured through a refractometer (V2 Refractometer - Tropic Marine, Germany ). Photoperiod (14 h), 

salinity (32.6± 1.5 ppt) and temperature (19 ± 1.5 ºC) were defined to simulate the conditions recorded 

at the sampling location and were kept constant (Coelho et al. 2015). 

A factorial experiment was designed using 16 microcosms with two factors: Oil and Dispersant, 

each with two conditions (with and without). Four experimental treatments were defined: "Cont" 

(control, without oil and without dispersant), "OnDisp" (without oil and with dispersant), "OnOi" (with 

oil and without dispersant) and "OiDisp" (with oil and with dispersant). A stabilization period of 19 days 

was performed before experimental oil contamination to allow the biological communities in sediment 

cores to acclimatize to microcosm conditions. The experiment began when the surface waters of 
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respective microcosms were contaminated. The contamination was performed immediately following a 

simulated high tide, during 5 consecutive tide cycles. Previously, oil was allowed to evaporate in an 

aluminium tray, in a fume hood at ambient temperature, for 24 hours. This step was carry out because 

dispersant application guidelines advocate a window of opportunity of 1-2 days, since a too early 

application will disperse the most volatile hydrocarbons (Aurand and Coelho 2005) and a too late 

application will not disperse oil efficiently (National Research Council 2005). Also, in real scenarios, 

environmental protection response is lagged due to logistics and decision-making. This weathering 

process reduced oil weight by 12.53% (w/w). Next, to assure that all dispersant was used to create the 

oil:dispersant in water emulsions, water from the system, oil and dispersant were mixed at a 

water:oil:dispersant ratio of 25:7.5:0.375 in a 50 mL plastic falcon tube. The same was done with artificial 

seawater and oil (25:7.5) for the OnOi treatment and with artificial seawater and dispersant (25:0.375) 

for the OnDisp treatment. These mixtures were mechanically shaken (Rocker-Shaker MR-12; Bioscan, 

Riga, Latvia) at 70 rpm at a 10º angle for one hour and immediately transferred to the respective 

microcosms. The oil:dispersant ratio applied was set at 20:1 in accordance to manufacturer’s guidelines 

and Maritime Safety Agency recommendations (ITOPF 2014). Also, at this ratio the smallest micelle 

droplet size is achieved (Khelifa et al. 2008). Arabian Light Crude oil was provided by the PETROGAL 

refinery (Matosinhos, Portugal) and the chemical dispersant Slickgone NS was provided by DASIC 

International Lda (Hampshire, United Kingdom). Since this experiment objectively focuses on the 

impact of chemically dispersed oil and not that of the chemical dispersant solely, this dispersant was 

intentionally chosen because of its lower direct toxicity to fish (juvenile sea bass) in comparison to other 

commercialized chemical dispersants (Dussauze et al. 2015). 

Sampling and DNA extraction 

For DNA extraction and hydrocarbon quantification, four replicates of sediment mini-cores (of 

ø 1.0 cm and ø 1.5 cm, respectively) were extracted per microcosms 21 days after oil contamination 

(T21). Additional cores were extracted 1 day after oil contamination (T1) and at sampling site (Env) for 

hydrocarbon analysis only. The top centimetre of each core was sliced and replicates were pooled into 2 

mL plastic microtubes for DNA extraction and into aluminium cartridges for hydrocarbons analysis. All 

samples were immediately stored at -80 ºC until further use. DNA extraction was performed using 

FastDNATM Spin kit (MP Biomedicals, USA) for 0.5 g of sediment following instructions of the 

manufacturer. DNA quality was confirmed by PCR amplification, Nanodrop and Qubit quantification 

before shipping for analysis. 
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Illumina MiSeq sequencing 

The V4 region of the 16S rRNA gene was amplified by PCR (94ºC for 3 minutes, 28 cycles of 

94ºC for 30s, 53ºC for 40s and 72ºC for 60s, and 72ºC for 5 minutes) using primers 515F (5´-

GTGCCAGCMGCCGCGGTAA-3´) and 806R (5´-GGACTACHVGGGTWTCTAAT-3´), with 

barcode on the forward primer, and the HotStarTaq Plus Master Mix Kit (Qiagen, USA). After 

amplification, PCR products were checked in 2% agarose gel. Pooled samples were purified using 

calibrated Ampure XP beads. Library preparation and sequencing were performed at MR DNA 

 

Figure IV-1- Sampling site (A) was barren mudflat briefly exposed during neap. It is located in Ria de Aveiro system 

in the central Atlantic coast of the Iberian peninsula () adjacent to fuel deposits (B) and a 

commercial shipping harbour (C) 

 

(www.mrdnalab.com, Shallowater, TX, USA) on a MiSeq sequencing platform following standard 

Illumina protocols (Illumina, San Diego, CA, USA). 
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Hydrocarbons quantification 

Microcosm and environmental sediment samples were extracted using a soxhlet apparatus 

following EPA Method 3540C (Protection and Agency 1996). Approximately 4 g of previously 

lyophilized sediment was extracted with 150 mL of dichloromethane for 24 h in a fume hood, 

maintaining the condensers circulating water at around 4 ºC. Before extraction, all sediments were spiked 

with 25 µL of a solution of deuterated PAHs (acenaphthene-d10, chrysene-d12, naphthalene-d8, perylene-

d12, 1,4-dichlorobenzene-d4 and phenanthrene-d10 corresponding to a final concentration of 0.25 µgL-1 

each) and deuterated alkanes (tetracosane-d50 and hexadecane-d34 at a final concentration of 0.52 mM 

each) as surrogates to determine extraction efficiency. The extract was evaporated in a rotary evaporator 

at 35ºC to ≈10 mL, afterwards additional 10 mL of hexane were added and again reduced at 60ºC to ≈2-

4 mL. When required, extracts were ice-cooled to minimize volatilization of oil hydrocarbons. Extracts 

were cleaned by filtering through a deactivated alumina:silica gel column (2:1) topped with anhydrous 

NaSO4. The column was sequentially eluted with 15 mL of hexane and 30 mL of 

hexane:dichloromethane (1:1), and all fractions were collected. The eluate was reduced to ≈1 mL in a 

rotary evaporator at 60ºC and to ≈200 µL under a gentle N2 flow. Immediately before injection in the 

chromatograph, each sample was spiked with 25 µL of hexamethylbenzene (final concentration of 1.5 

µM) and 1,2-dibromobenzene (0.52 mM) as internal standards for PAHs and alkanes, respectively. 

Analytic separation and detection was conducted on a Gas Chromatograph Mass Spectrometer (GC-MS 

Shimadzu QP2010 Ultra) coupled to an AOC 20i autosampler (Shimadzu, Japan) and with the electron 

impact ionization (EI) at 70 eV. Injector and transfer-line temperatures were both set a 350 ºC, while 

the ion source was set at 230ºC. For PAHs, samples were injected in the splitless mode and the selected 

ion monitoring (SIM) mode was used for the detection of all 16 EPA priority PAHs. Alkanes samples 

were injected in split mode and detection was done in full scanning mode from m/z 20 to m/z 500. For 

both, 1 µL of sample was injected automatically with a 10 µL glass syringe into a VF-5ms column (30 m 

x 0.25 mm with 0.25 µm film thickness; Agilent Technologies, Santa Clara, CA, USA). Helium was used 

as the carrier gas and the linear velocity was set at 40 cm s-1. The oven temperature conditions were set 

at 60 ºC for 1 min, followed firstly by a rise to 200 ºC at a 10 ºC per minute rate, then at 5 ºC per minute 

until 300 ºC where it stabilized for 8 min. All the analytes were quantified through calibration curves of 

analyte/internal standard created using a range of concentrations of certified analytical standards. 

Certified internal standards, deuterated alkanes (tetracosane-d50 and hexadecane-d34) and deuterated 

PAHs solution were all supplied by Sigma-Aldrich (St. Louis, MO, USA). All the deuterated surrogates 

were recovered with an efficiency > 70% and the standard deviation was between 10-15%. 
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Data analysis 

High-throughput sequencing data was analyzed using the Quantitative Insights Into Microbial 

Ecology (QIIME) software package (http://qiime.org; Accessed 01 January 2014) according to 

published recommendations and following previously described methods (Cleary et al. 2015; Coelho et 

al. 2016a; Kuczynski et al. 2011) with the exception of the operational taxonomic unit (OTU) picking 

step, where the UPARSE (Edgar 2013) clustering method and chimera check were used. In QIIME, 

.fasta and .qual files were used as input for the split_libraries.py script. Default arguments were used 

except for the minimum sequence length, which was set at 218 bps after removal of forward primers 

and barcodes; reverse primers were removed using the 'truncate only' argument and a sliding window 

test of quality scores was enabled with a value of 50 as suggested in the QIIME description for the script. 

OTUs were selected using UPARSE with usearch7 (Edgar 2013). Chimera checking was performed 

using the UCHIME algorithm. First reads were filtered with the -fastq_filter command and the following 

arguments -fastq_trunclen 250, -fastq_maxee 0.5 and -fastq_truncqual 15. Sequences were then 

dereplicated and sorted using the -derep_fulllength and - sortbysize commands. OTU clustering was 

performed using the -cluster_otus command (cut-off threshold at 97%). An additional chimera check 

was subsequently applied using the -uchime_ref command with the gold.fa database 

(http://drive5.com/uchime/gold.fa). In QIIME, representative sequences were selected using the 

pick_rep_set.py script in QIIME using the 'most_abundant' method. Reference sequences of OTU were 

assigned taxonomies using default arguments in the assign_taxonomy.py script in QIIME with the RDP 

method (Wang et al. 2007). In the assign_taxonomy.py function, the most recent Greengenes database 

(ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz) was used for OTU 

picking and taxonomic assignment. The make_otu_table.py script was used to produce an OTU by 

sample table containing the abundance and taxonomic assignment of bacterial OTUs. Sequences are 

available at NCBI ShortRead Archive (BioProject nº PRJNA392217 and BioSample nº SAMN07285933- 

SAMN07285948). 

Statistical analysis 

The OTU tables were uploaded to R software (version 3.1.1; http://www.r-project.org/) for 

removal of unassigned and singleton OTU, chloroplast and mitochondrial sequences, statistical 

computing and graphic generation. A self-written function (Gomes et al. 2010) was used to estimate total 

rarefied OTU richness for each sample.  The top 5 most abundant phyla, classes, orders and families 

(excluding the "Unclassified" group) were determined by the overall mean relative abundance, calculated 

from the 16 datasets using the prop.table() function. Their relative abundance was plotted for each 

treatment using the boxplot() function in the graphics package. Compositional differences among 

treatments was assessed using principal coordinates analysis (PCO). The PCO was generated using the 
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cmdscale() function in the R base package. Prior to the PCO, the raw data was log(x+1) transformed 

and used to produce a distance matrix with the Bray-Curtis index with the vegdist() function in the vegan 

package (Oksanen et al. 2012). An Adonis analysis was performed using the adonis() function in vegan 

to test the significance of these compositional differences to factors tested. The log(x+1) transformed 

Bray-Curtis distance matrix was used as the response variable, oil and dispersant as factors and the 

number of permutations was set at 999. We also analyzed the differences in relative abundance for all 

taxa (phylum to family) between treatments to the independent and interactive effects of oil 

contamination and chemical dispersant addition, through a two-way ANOVA using the F-test [adapted 

from (Roy et al. 2013a)]. Beforehand, the scope of the analysis was set to the most relevant taxa by 

establishing a threshold (overall mean relative abundance ≥0.1 % all levels). ANOVA was computed by 

the anova() function (stats package) applied to a linear regression model produced individually for each 

taxa. The linear regression distribution was created by the glm() function (stats package) for each taxa 

using relative abundance as response variable and a presence/absence matrix of oil and dispersant as 

factors. An interaction term (*) was included to study the interaction between the two factors 

(oil*dispersant). The most significant (p-value < 0.05) taxa were plotted using the boxplot() function 

from the graphics package. 

PAHs and alkanes concentrations in the samples were calculated from the corresponding 

calibration curves and then standardized for the weight of sediment analyzed (µg g-1). Concentrations 

were plotted using boxplot() function from the graphics package in R. The independent and interactive 

effects of oil and dispersant addition were tested for significance (p-value ≤ 0.05) through an ANOVA 

F-test using the glm() and anova() functions from the stats package similarly as aforementioned above. 

However, input data for hydrocarbon quantification table was previously normalized for each 

hydrocarbon using this formula: 𝐻 −
ு೘೔೙

ு೘ೌೣିு೘೔೙ 
;  where H is the hydrocarbon concentration and Hmax 

and Hmin is, respectively, the maximum and minimum hydrocarbon concentration in dataset. Variations 

in alkanes and PAHs concentrations between time points was measured for each microcosm as the 

percentile proportional difference between final and initial concentrations using this formula: 
൫ு೑ିு೔൯

ு೔
; 

in which Hf and Hi are, respectively, the final and initial hydrocarbon concentrations of all individual 

quantified hydrocarbons. These percentile differences were plotted using the boxplot() function the 

graphics package. Significant differences in hydrocarbon concentrations (p-value≤ 0.05) between time 

points were determined for each hydrocarbon and treated individually using glm() and anova() functions 

from the vegan package with oil hydrocarbon concentrations at T1 and T21 as data and time as factor. 

Carbon preferential index (CPI) was calculated for data from sampling site (ENV) using 

previously described equation (Marzi et al. 1993). A CPI > 1 is indicative that hydrocarbons are of 

petrogenic origin while a CPI < 1 indicates that they are of biogenic origin (Pietrogrande et al. 2009). 

The biodegradation was confirmed by comparing the variation of the C18/phytane ratio between 
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timepoints (Jones et al. 2008), assuming that linear alkanes are preferentially biodegraded, in comparison 

to branched alkanes (Hasinger et al. 2012; Peters et al. 2005), and that both have a similar volatilization 

rate (Esquinas et al. 2017). C18/phytane mean variation was calculated only for oil contaminated 

treatments (OnOi and OiDisp). Pearson correlations between the relative abundance of the most 

relevant classes, order, families and OTU, and hydrocarbon concentrations (µg g-1) were computed using 

rcorr() function from the Hmisc package and plotted using the corrplot() function from corrplot package 

(Wei and Simko 2016). Hydrocarbons concentrations were fit onto the PCO ordination using the envfit() 

function in the vegan package with permutations set to 999 and all other arguments set at default. Only 

significant (p-value <0.05) ordinations where plotted. 

Results 

Quantification of oil hydrocarbons 

Concentrations for the 25 saturated linear alkanes quantified [from C12 (dodecane) to C36 

(hexatriacontane) are plotted in Figure IV-2 for T1 and Env samples and in Figure IV-3 for T21 samples, 

while the statistical parameters obtained through ANOVA (F-value and p-value) are summarized in Table 

S IV-1 and Table S IV-2 for T1 and T21, respectively. As expected, almost all alkanes had a significant 

higher concentration in oil contaminated microcosms (OnOi and OiDisp) at T1, with the exception for 

the two lightest alkanes, C12 (which had a significant lower concentration) and C13. With time, 

concentrations decreased and at T21 only alkanes C15 to C21 had a significant higher concentration in 

oil-contaminated microcosm sediments. The chemical dispersion of oil only increased the concentration 

of some alkanes (C13 and C33-C36) at T1; and of C36 at T21 samples. Alkanes C24 to C29 had a significant 

higher concentration in treatments with oil amendment (Cont and OnDisp). This reflects abnormally 

high measurements in some replicates and was interpreted as an artefact of the experimental procedure. 

The concentrations of the 16 PAHs quantified are plotted alongside with ANOVA statistical parameters 

(F-value and p-value) in Figure IV-4 for T1 and Env samples and in Figure IV-5 for T21 samples. The 

results indicate that the chemical dispersion of oil significantly increased the concentration of almost all 

PAHs at T1 [the exceptions are naphthalene, benzo(a)pyrene and benzo(b)fluoranthene], while at T21, 

only phenanthrene and benzo(b)fluoranthene had a significant higher concentration in OiDisp. Contrary 

to the other PAHs, the concentration of naphthalene had a significant reduction in oil contaminated 

microcosms at T1. At Env, mean ∑alkane and ∑PAH concentration were 30.345 ± 13.943 µg g-1 and 

0.518 ± 0.04 µg g-1, respectively, and the carbon preference index mean alkane concentration was 1.049 

which is indicative that hydrocarbons present are of petrogenic origin. 
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Figure IV-2 - Boxplot of concentrations (µg g-1) of linear alkanes from C12 (dodecane) to C36 (hexatriacontane) 

in sediments at T1. "Env" (sampling site), "Cont" (without oil and without dispersant), "OnDisp" 

(without oil and with dispersant), "OnOi" (with oil and without dispersant) and "OiDisp" (with oil 

and with dispersant). 
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Figure IV-3 - Boxplot of concentrations (µg g-1) of linear alkanes from C12 (dodecane) to C36 (hexatriacontane) in 

sediments at T21. "Cont" (without oil and without dispersant), "OnDisp" (without oil and with 

dispersant), "OnOi" (with oil and without dispersant) and "OiDisp" (with oil and with dispersant)
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Figure IV-4 - Boxplot of concentrations (µg g-1) of the 16 PAHs labelled as priority pollutants by US-EPA in 

sediments from all replicates of the four treatments (Cont, OnDisp, OnOi and OiDisp) at timepoint 

1 and from sampling site (Env). PAHs that a significant increase or decrease (≤0.05) in response to 

oil addition, dispersant application or the interaction of both are marked ("*" - for oil addition, "#" 

-for dispersant and "○" - for the interaction. "Env" (sampling site), "Cont" (without oil and without 

dispersant), "OnDisp" (without oil and with dispersant), "OnOi" (with oil and without dispersant) 

and "OiDisp" (with oil and with dispersant). In the ANOVA, each factor independently and the 

interaction had 1 degree of freedom. 
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Figure IV-5 - Boxplot of concentrations (µg g-1) of the 16 PAHs labelled as priority pollutants by US-EPA in 

sediments from all replicates of the four treatments (Cont, OnDisp, OnOi and OiDisp) at timepoint 

21. PAHs that had a significant increase or decrease (≤0.05) in response to oil addition, dispersant 

application or the interaction of both are marked ("*" - for oil addition, "#" -for dispersant and "○" 

- for the interaction)."Cont" (without oil and without dispersant), "OnDisp" (without oil and with 

dispersant), "OnOi" (with oil and without dispersant) and "OiDisp" (with oil and with dispersant). 

In the ANOVA, each factor independently and the interaction had 1 degree of freedom 

 

The variation in hydrocarbons concentration between T1 and T21 in oil contaminated 

treatments (OnOi and OiDisp) was measured for alkanes and PAHs and the results are plotted in Figure 

IV-6 alongside mean hydrocarbons concentrations (µg g-1). In general, results show that the 

concentration of alkanes decreased considerably with time in oil contaminated treatments, with steeper 

decrease in concentration in OiDisp. In OnOi (Figure IV-6A) the concentration of alkanes decreased 

on average ≈90% for C15-C19, >80% for C20-C22 and >70% for C14, C23 and C24, while in OiDisp C15-C22 
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Figure IV-6 - Boxplot of percentile variation of hydrocarbon concentration in treatments OnOi (A and C) and 

OiDisp (B and D) for linear alkanes C12 (dodecane) to C36 (hexatriacontane) (A and B) and the 16 

PAHs labeled as priority pollutants by US-EPA (C and D) between T1 and T21 (boxplot), and their 

mean concentration in sediments (µg g-1) at T1 ( )and at T21 ( ). 

decreased >90% and linear alkanes C14, C23 and C24 >80% (Figure IV-6B). Nonetheless, the percent 

removal was still >50% for the most abundant PAHs in petroleum [phenanthrene, fluorene and 

chrysene]. The influence of biodegradation in the overall hydrocarbons removal was determined by 

comparing the C18/phytane ratio between timepoints T1 and T21 (Jones et al. 2008). This ratio decreased 

on average >50% in both treatments (OnOi and OiDisp), indicating that biodegradation occurred (Snape 

et al. 2006). The mean C18/phytane percent in OnOi decreased 55.842 ± 15.694 %, which was slightly 

more than in OiDisp (58.577 ± 34.611 %). However, the difference between treatments was not 

significant (one-way ANOVA; R2=1.9209; F=0.0206; P=0.8906). PCO ordination of the OTU  



122 

 

 

 

Figure IV-7 - Boxplot with the relative abundances of the five most abundant bacterial groups at T21 at the phylum, 

class, order and family level, respectively, in overall dataset: "Cont" (without oil and without 

dispersant), "OnDisp" (without oil and with dispersant), "OnOi" (with oil and without dispersant) 

and "OiDisp" (with oil and with dispersant). 

composition-based Bray-Curtis distance matrix was conjunctively plotted with statistically significant 

hydrocarbon ordinations in Figure S IV-1. Here, a clear separation of C14-C19 alkanes and PAHs 

[acenaphthylene, phenanthrene, chrysene and dibenzo(a,h)anthracene] occurred in the lower right 

quadrant of the plot. These hydrocarbons seem more associated with some OnOi and OiDisp replicates, 

although not all. 
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Overall composition of bacterial communities  

The 16S rRNA gene high-throughput sequencing resulted in a dataset composed of 749081 

sequences distributed among 20680 OTUs. Rarefied richness (Figure S IV-2) had no asymptote for any 

sample, which indicates that true richness is higher than reported here. The relative abundance of the 

five most abundant phyla, classes, orders and families (excluding the "unclassified" bacterial group) were 

plotted in Figure IV-7. Sediment bacterial communities were dominated by the Proteobacteria phylum 

(mean relative abundance 52.32 ± 1.77%). Within Proteobacteria, classes Gammaproteobacteria (22.82 

± 2.22%) and Deltaproteobacteria (17.64 ± 1.6%) were the most abundant. At the order level, 

Acidimicrobiales and Desulfobacterales were the most abundant orders (11.94 ± 1.81% and 11.91 ± 

1.03%, respectively). 

PCO ordination and adonis statistical test of the samples (Figure IV-8 and Table IV-1) revealed 

that neither oil, nor dispersant, nor the interaction of both were significant predictors of the overall 

bacterial community. Although these was no significant change in the overall structure of the bacterial 

community, a taxon-specific analysis indicated that for the relative abundance of five less abundant (all 

had a mean relative abundance below 1%) bacterial groups a significant variation occurred (ANOVA F-

test p-value ≤ 0.05) between treatments in response to the factor (independently and/or in interaction). 

These bacterial groups are plotted alongside ANOVA parameters in Figure IV-9. The bacterial groups 

that had a positive and significant response to oil addition included the Oceanospirillales order (mean 

relative abundance = 0.22 ± 0.20%) and its subtaxon Alcanivoraceae (0.16 ± 0.19%). For the interaction 

of both factors, order Legionellales (0.29 ± 0.16%) and family Phyllobacteriaceae (0.62 ± 0.07%) 

increased in relative abundance, whereas candidate division SBR10131 (0.13 ± 0.04%) decreased. 

Table IV-1- Output results from the Adonis statistical test on bacterial OTU compositional differences at T21 for factors 

independently and in interaction. 

Factors F1,15 R2 p-value 

Oil 0.95746 0.06441 0.593 

Dispersant  0.99831 0.06716 0.397 

Oil and Dispersant 0.90845 0.06112 0.902 

 

Correlation analysis 

Pearson correlation indicated that several taxa were  correlated with hydrocarbon concentration (Figure 

S IV-3 and Figure S IV-4 for alkanes and PAHs, respectively). Pearson correlations compare the 

relationship of two datasets. In this study, we consider hydrocarbon concentration as an independent 

variable and relative abundance as an dependent variable. Thus, any strong correlation between both 
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Figure IV-8 - Principal components analysis (PCO) of bacterial operational taxonomic units (OTU) at T21. The 

PCO was generated using the cmdscale() function in the R base package and wascores() function in 

vegan. Prior to the PCO, the raw data was log10(x+1)-transformed and used to produce a distance 

matrix based on the Bray-Curtis distance with the vegdist() function in vegan (Oksanen et al. 2012). 

The first two explanatory axes are shown. "Cont" (without oil and without dispersant), "OnDisp" 

(without oil and with dispersant), "OnOi" (with oil and without dispersant) and "OiDisp" (with oil 

and with dispersant). Sequence read (from MiSeq Illumina) were assigned to OTU with QIIME 

software (http://qiime.org) using the most recent Greengenes database 

(ftp://greengenes.microbio.me/greengenes_release/gg_13_5/gg_13_8_otus.tar.gz). 

datasets may indicate a response from the bacterial taxon to hydrocarbon concentrations. A positive 

correlation would indicate that the bacterial taxon thrive or at least was not inhibit by higher hydrocarbon 

concentrations and a negative correlation indicate that bacteria was inhibited and at least did not benefit 

from by higher hydrocarbon concentration. Notable bacterial groups that had a positive correlation with 

hydrocarbon concentration include the Alcanivoraceae family (Oceanospirillales order) which was 

correlated with linear alkanes C16 to C20 and Helicobacteraceae family (ε-Proteobacteria class, 

Campylobacterales order) which was correlated with phenanthrene, fluoranthene, pyrene and  
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Figure IV-9 - Boxplot of the relative abundance of significant taxon at T21 in each datasets for the four treatments 

(Cont" (without oil and without dispersant), "OnDisp" (without oil and with dispersant), "OnOi" 

(with oil and without dispersant) and "OiDisp" (with oil and with dispersant)). Significant variations 

(p-value < 0.05) were determined through a two-way ANOVA of the linear regression of each dataset 

using functions anova() and glm() from the stats package in R. Significant increase or decrease (≤0.05) 

in response to oil addition, dispersant application or the interaction of both are marked with "*" for 

oil addition, "#" for dispersant and "º" - for the interaction. In the ANOVA, each factor 

independently and the interaction had 1 degree of freedom 

benzo[b]fluoranthene. Those that had a negative correlation include candidate divisions OM190 

(correlated with phenanthrene, pyrene and benzo[b]fluoranthene), it subtaxa agg27 [correlated with 

fluoranthene, pyrene, benzo(a)anthracene, chrysene and benzo[b]fluoranthene] and family 

Ignavibacteriaceae [correlated with fluoranthene, pyrene and benzo(a)anthracene]. Pearson correlation 

between the 50 most abundant OTUs and hydrocarbons concentrations was also calculated (Figure S 

IV-5). The information regarding their relative abundance and closest relative sequence obtained with 

NCBI-Blast is presented in Table S IV-3. The most notable correlations were the positive correlation 

between OTUs 2, 12879 and 2076 (belonging to the Helicobacteraceae family) and various PAHs (OTU_2 
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with acenaphthene, fluorene and phenanthrene and OTU_12879 and OTU_2076 with acenaphthene, 

fluorene, phenanthrene, fluoranthene and pyrene). 

Discussion 

Effect of chemical dispersant on the fate of oil hydrocarbons 

Chemical dispersants, by buoyantly entraining micelles in water column, are thought to reduce 

the accumulation of oil at the sediment surface (Prince 2015). However, in in vitro simulations, chemical 

dispersants have been repeatedly found to facilitate the mass transfer of the micellized hydrocarbons to 

the sediment surface, especially PAHs (Cai et al. 2017; Gong et al. 2014b; Khelifa et al. 2008). Our results 

indicate that the chemical dispersion of oil did not significantly reduce nor enhance the concentration of 

the most abundant hydrocarbons (C14-C22 linear alkanes) at the sediment surface. However, an increase 

in the concentration was observed for almost all PAHs at T1, and for phenanthrene and 

benzo[b]fluoranthene at T21. These results are consistent with those from previous experimental 

simulations that indicated that chemical dispersants enhance PAHs concentration in sediments (Gong 

et al. 2014b; Khelifa et al. 2008; Zhao et al. 2016). The linear alkanes had significant higher concentration 

at T1, in particular for C14 to C25 alkanes, which are the most abundant hydrocarbons of weathered 

Arabian light crude oil (Wang et al. 2003). At T21, this trend continued but the difference was attenuated 

and limited to alkanes C15 to C21. 

Variation in hydrocarbon concentration between timepoint was overall higher for linear alkanes 

than for PAHs, mainly because biodegradation acts preferentially on the alkanes (Brakstad et al. 2014; 

Huesemann et al. 2004; Zhao et al. 2016), whereas PAHs are intrinsically more recalcitrant to 

biodegradation (Huesemann et al. 2004). A >50% decrease in the mean C18/phytane ratio confirms that 

biodegradation was the major fate for the linear alkanes. This decrease was slightly higher in OiDisp than 

in OnOi, but this difference between treatments was not significant. Thus, although the application of 

chemical dispersants seem to enhance alkanes removal, probably by increasing in the physical desorption 

and percolation of alkane these hydrocarbons are ressuspended into the water column and subsequently 

purged out of the microcosms (Brakstad et al. 2014; Zhao et al. 2016). 

Independent and interactive effects of oil contamination and chemical dispersant on 

the composition of bacterial communities and its putative functional traits 

The dataset was overall dominated by proteobacterial OTUs, among which γ- and δ-

Proteobacteria were the predominant classes. This is in line with previous studies at the Ria de Aveiro 

water system (Coelho et al. 2013; Gomes et al. 2013; Oliveira et al. 2014b) and other wetland sediment 

samples (Mahmoudi et al. 2015; Rietl et al. 2016). Deltaproteobacterial OTU predominance is mainly 
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attributed to the sulfate-reducing bacteria from the Desulfobacterales order. This bacterial group 

frequently dominates the bacterial community in anoxic barren wetland environments (Gomes et al. 

2013). Equally abundant was the order Acidimicrobiales, that although not frequently dominant in 

marine sediments, has been reported as well expressive in the Ria de Aveiro samples (Gomes et al. 2013; 

Oliveira et al. 2014b). 

PCO ordination and adonis statistical test of compositional OTU tables indicate that neither 

factor nor their interaction are significant predictors of bacterial community composition at T21. This 

contrasts with results from a closed pelagic microcosm simulation, where chemically dispersed oil, in 

comparison to physically dispersed oil, was found to significantly alter the composition of the particle-

associated bacterial community (Kleindienst et al. 2015b). However, our results are in accordance with 

to those from sediment slurry incubations in arctic conditions, which showed that, despite chemical 

dispersants benefiting oil hydrocarbon biodegradation, the bacterial community was similar in oil-

contaminated treatments with and without chemical dispersants (Ferguson et al. 2017). 

Curiously, for oil contamination alone no significant change occurred in the core composition 

of the bacterial community. The bacterial community of oil contaminated microcosms may have been 

re-establishing its initial structure since hydrocarbons concentrations were substantially lower at T21. 

However, it is also possible that, since the sampling site was located in the proximity of a major fuel 

depository and commercial port, chronic exposure to oil hydrocarbon pollution preconditioned the 

bacterial community (Païssé et al. 2010). Mean ∑alkane and ∑PAH concentration at sampling site are 

considerably higher than in many pristine sites (Louvado et al. 2015; Martins et al. 2004), yet in 

comparison to other port sediments, they are of the same magnitude or higher (De Luca et al. 2004; 

Yakimov et al. 2005), but also considerably lower than others (Bajt 2012; Tavares et al. 2016). Also, mean 

∑PAH concentration (all PAH analyzed excluding acenaphthene and acenaphthylene) in Env was 

approximately 10x lower than in comparison with reference sediment NIST SRM 1941b (Wise et al. 

2004). Additionally, Env samples had CPI >1, which is indicative of hydrocarbons of petrogenic origin 

(Pietrogrande et al. 2009). Chronic oil pollution has been previously recognized to stabilize the 

composition of bacterial communities in relation to future oil contamination, not only due to a higher 

abundance of latent hydrocarbonoclastic bacteria and generalist oil-degrading heterotrophic bacteria, but 

also inducing a higher resistance of other bacteria to hydrocarbon toxicity (Païssé et al. 2010). In this 

dataset, the majority of the 50 most abundant OTU have a high similarity with sequences retrieved from 

hydrocarbon-contaminated environments. Although it has been demonstrated that, in chronically 

polluted sediments, additional oil input does not significantly change the composition of the bacterial 

community, added hydrocarbons were found to be degraded quickly (Païssé et al. 2010). This contrasts 

with more pristine sites accidentally contaminated with oil, where bacterial community changes more 

drastically (Yakimov et al. 2004) and oil hydrocarbon biodegradation is slower (Bargiela et al. 2015). 
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Despite the above-mentioned stability, a group-specific analysis revealed that the relative 

abundance of five bacterial taxa had a significant change in response to the independent and/or 

interactive effect of oil hydrocarbon contamination and dispersant addition. Almost all of these bacterial 

groups may be potentially involved in hydrocarbon and/or xenobiotic degradation. In example, 

members of the Alcanivoraceae family, which are considered obligate oil-degraders (Yakimov et al. 2007) 

and their abundance is tightly coupled to the presence of oil hydrocarbons, more specifically, to the 

presence of short to medium linear alkanes (Joye et al. 2014), had significant higher abundance in oil 

contaminated treatments. Coherently, this family also had a positive correlation with the concentration 

of linear alkanes C16 to C20.  

The interactive effects of oil and dispersant addition had a significant reduction in the relative 

abundance of candidate division SBR1031. This bacterial group has never been described as oil 

hydrocarbon degrading bacterial group, yet it has been occasionally detected in hydrocarbon rich 

matrixes, namely in hydrocarbon-contaminated marine environments (An et al. 2004) and in sediments 

near a terrestrial gas seep (Neubeck et al. 2017). Also, members of these bacterial group are potentially 

involved in acetogenesis through the reduction of ethanol (Xia et al. 2016) and thus may have a role in 

the anaerobic degradation of oil hydrocarbons. In this work, their relative abundance had a significant 

increase in OnOi, but in OiDisp it was significantly lower. The addition of chemical dispersants, by 

significantly increasing PAHs bioavailability, could have impacted the relative abundance of candidate 

division SBR1031. However, candidate division SBR1031 did not have any negative correlation with 

PAH concentrations. Possibly, dispersant addition could have increased the concentration of other not 

quantified, but similarly toxic, pollutant. In contrast, order Legionellales and family Phyllobacteriaceae had 

significant higher relative abundance in OiDisp. Both have been directly or indirectly linked in oil 

hydrocarbon biodegradation (Bacosa et al. 2015; Lai et al. 2011c). 

Spearman correlation analysis between hydrocarbons concentration and bacteria abundance 

revealed some interesting interactions for some bacterial groups (e.g. candidate divisions OM190, its 

subtaxon agg27 and order Ignavibacteriales) that are intrinsically involved in the nitrogen cycle 

(Gonzalez-Martinez et al. 2015; Mardanov et al. 2016; Schmid et al. 2000; Zhang et al. 2015). These 

groups had a negative correlation with the concentration of 4- and 5- ring PAHs. The OM190/agg24 

bacterial is characteristically involved in nitrification (Schmid et al. 2000), whereas order Ignavibacteriales 

has been linked to various metabolic pathways in the nitrogen cycle (e.g. nitrification (Mardanov et al. 

2016), denitrification (Liu et al. 2012a; Zhang et al. 2015), and anammox (Gonzalez-Martinez et al. 

2015)). PAHs addition has been reported to have a negative impact on nitrification (Lindgren et al. 2014), 

denitrification (Pietroski et al. 2015) and the nitrogen cycle in general (Scott et al. 2014), therefore 

justifying the significant and negative correlation between these taxa and PAHs concentration. 

Meanwhile, the Helicobacteraceae family (Ε-protebacteria:Campylobacterales; mean relative abundance: 

3.325±1.333%), had a positive correlation with phenanthrene, fluoranthene, pyrene and 
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benzo[b]fluoranthene. Genera from this family (e.g. Sulfurimonas and Sulfuricurvum) are frequent in marine 

sediments amended with 3- and 4-ring PAHs (Obi et al. 2017; Stauffert et al. 2014). Thus, a strong and 

significant correlation with PAHs concentrations may indicate that the Helicobacteraceae family may 

include putative PAH-degrading bacteria. 

Conclusions 

This study showed that chemically dispersed oil did not cause significant change to the overall 

composition of the benthic bacterial community from port sediments. The chronic oil pollution at 

sampling site may have preconditioned the response of benthic bacterial communities to additional oil 

input. However, and despite the aforementioned stability, some changes were observed among putative 

hydrocarbon-degrading bacteria. Also, the overall impact on oil hydrocarbon removal is ambiguous since 

despite alkane concentrations having decreased substantially with time, the concentration of 

phenanthrene and benzo(b)fluoranthene in sediments was significantly enhanced by dispersant addition 

21 days after oil contamination. In this study, it was concluded that the addition of a chemical dispersant 

had no effects on the overall composition of port sediment bacterial communities after oil contamination 

and did not contribute to improve the process of oil hydrocarbons removal. Yet, an in-depth analysis of 

the effects of chemical dispersant addition on ultimate fate of the sediment bonded oil hydrocarbons, 

and their turnover rate, is require to determine to the net benefit of chemical dispersant use in oil spill 

response in port areas. 
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Supplementary files 

Table S IV-1 - Results from statistical test ANOVA (p-value and F-value) for linear saturated alkanes from C12 to C36 at T1. 

Significant results (p-value < 0.05) are in bold. Each factor independently and the interaction had 1 degree of freedom. 

Alkanes 

Factors 

Oil Dispersant Oil and Dispersant 

p-value F-value p-value F-value p-value F-value 

C12 Dodecane <0.001 21.102 0.121 2.555 0.015 6.713 

C13 Tridecane 0.058 3.922 0.754 0.1 0.886 0.021 

C14 Tetradecane <0.001 32.029 0.148 2.212 0.347 0.917 

C15 Pentadecane <0.001 67.7 0.088 3.123 0.443 0.605 

C16 Hexadecane <0.001 75.58 0.037 4.794 0.452 0.582 

C17 Heptadecane <0.001 71.394 0.015 6.777 0.5 0.467 

C18 Octadecane <0.001 89.032 0.004 10.012 0.555 0.358 

C19 Nonadecane <0.001 113.904 0.002 11.387 0.585 0.306 

C20 Icosane <0.001 116.92 0.001 12.586 0.562 0.344 

C21 Henicosane <0.001 111.053 0.002 12.037 0.424 0.659 

C22 Docosane <0.001 105.982 0.003 10.201 0.625 0.244 

C23 Tricosane <0.001 95.112 0.005 9.531 0.659 0.199 

C24 Tetracosane <0.001 73.303 0.016 6.572 0.991 <0.001 

C25 Pentacosane <0.001 60.021 0.005 9.087 0.972 0.001 

C26 Hexacosane <0.001 45.771 0.005 9.485 0.856 0.034 

C27 Heptacosane <0.001 33.898 0.002 11.068 0.908 0.013 

C28 Octacosane 0.021 6.024 0.006 8.801 0.983 <0.001 

C29 Nonacosane <0.001 31.924 0.002 11.777 0.561 0.345 

C30 Triacontane <0.001 29.114 0.196 1.755 0.183 1.862 

C31 Hentriacontane <0.001 23.183 0.12 2.579 0.339 0.946 

C32 Dotriacontane <0.001 24.466 0.596 0.288 0.07 3.552 

C33 Tritriacontane 0.004 10.12 0.864 0.03 0.018 6.298 

C34 Tetratriacontane 0.001 14.488 0.016 6.617 0.01 7.579 

C35 Pentatriacontane 0.001 15.132 0.019 6.162 0.001 14.057 

C36 Hexatriacontane <0.001 17.839 1 <0.001 <0.001 35.631 
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Table S IV-2 - Results from statistical test ANOVA (p-value and F-value) for linear saturated alkanes from C12 to C36 at T21. 

Significant results (p-value < 0.05) are in bold. Each factor independently and the interaction had 1 degree of freedom. 

Alkanes 
Oil Dispersant Oil and Dispersant 

p-value F-value p-value F-value p-value F-value 

C12 Dodecane 0.097 2.95 0.165 2.032 0.11 2.723 

C13 Tridecane 0.122 2.547 0.106 2.787 0.678 0.176 

C14 Tetradecane 0.14 2.308 0.029 5.3 0.785 0.076 

C15 Pentadecane 0.007 8.487 0.076 3.396 0.469 0.54 

C16 Hexadecane 0.001 14.844 0.162 2.063 0.949 0.004 

C17 Heptadecane <0.001 21.266 0.418 0.677 0.857 0.033 

C18 Octadecane <0.001 16.987 0.417 0.679 0.772 0.085 

C19 Nonadecane <0.001 21.13 0.622 0.249 0.894 0.018 

C20 Icosane 0.001 13.631 0.803 0.063 0.882 0.023 

C21 Henicosane 0.013 7.12 0.768 0.088 0.956 0.003 

C22 Docosane 0.327 0.997 0.564 0.341 0.665 0.191 

C23 Tricosane 0.308 1.08 0.645 0.216 0.774 0.084 

C24 Tetracosane 0.036 4.876 0.618 0.254 0.724 0.127 

C25 Pentacosane 0.008 8.3 0.417 0.678 0.569 0.332 

C26 Hexacosane 0.009 7.963 0.845 0.039 0.812 0.057 

C27 Heptacosane 0.008 8.117 0.762 0.093 0.484 0.503 

C28 Octacosane 0.009 7.895 0.621 0.25 0.169 1.995 

C29 Nonacosane 0.013 6.991 0.635 0.23 0.218 1.589 

C30 Triacontane 0.059 3.867 0.49 0.489 0.362 0.858 

C31 Hentriacontane 0.109 2.746 0.542 0.381 0.246 1.404 

C32 Dotriacontane 0.134 2.378 0.357 0.876 0.255 1.35 

C33 Tritriacontane 0.28 1.211 0.587 0.302 0.27 1.266 

C34 Tetratriacontane 0.056 3.974 0.497 0.473 0.112 2.69 

C35 Pentatriacontane 0.986 <0.001 0.981 0.001 0.102 2.86 

C36 Hexatriacontane 0.151 2.182 0.007 8.458 <0.001 15.817 
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Table S IV-3 - List of the 50 most abundant OTU across the dataset. The table includes OTU affiliation from the class to the genus level, mean relative abundance (MRA %) and most similar 

nucleotide sequence(s) available in NCBI database, its similarity (SIM), source and, if available, reference(s). 

Class OTU Order Family Genus MRA (%) Closest relative 
NCBI 

Accession 
nº 

SIM Source Ref. 

Acidimicrobiia 
 

1 Acidimicrobiales C111 Unclassified 2.71 ± 0.49 Uncultured bacterium clone 7A_11-040 KY190764 99% 
Hydrocarbon 
polluted soil 
Antarctica 

 

13 Acidimicrobiales koll13 Unclassified 1.58 ± 0.27 Uncultured bacterium clone JS5_258 KR825069 99% Marine Sediments  

4 Acidimicrobiales C111 Unclassified 1.29 ± 0.25 Uncultured actinobacterium clone c-65 GQ144953 99% N.D.  

19 Acidimicrobiales C111 Unclassified 0.6 ± 0.115 
Uncultured actinobacterium clone 

JBS_5A309 EU702790 99% Marine Sediments  

37 Acidimicrobiales koll13 Unclassified 0.47 ± 0.16 Uncultured actinobacterium clone A11 GQ249475 99% Marine Sediments  

425 Acidimicrobiales koll13 Unclassified 0.43 ± 0.12 Uncultured bacterium clone N-37 HQ703834 99% Marine Sediment  

11680 Acidimicrobiales C111 Unclassified 0.38 ± 0.05 Uncultured Actinobacteridae bacterium clone 
DY40-191 

KC018164 99% Marine Sediments  

14756 Acidimicrobiales koll13 Unclassified 0.3 ± 0.07 Uncultured actinobacterium clone TRAN-
014 

JF344430 99% Oil contaminated 
Marine Sediments 

(Acosta-
González et 

al. 2013) 

Actinobacteria 50 Actinomycetales Pseudonocardiaceae Unclassified 0.51 ± 0.09 Uncultured actinobacterium clone D37 JX011125 99% Marine Environment  

Alphaproteobacteria 

6 Rhizobiales Hyphomicrobiaceae Unclassified 0.89 ± 0.2 Uncultured prokaryote clone 762487 KT974436 99% Marine rock surface 
(Couradeau 
et al. 2017) 

17228 Rhizobiales Hyphomicrobiaceae Unclassified 0.55 ± 0.12 Uncultured bacterium clone Zeebrugge_B56 HM598599 99% Oil contaminated 
Marine Sediments 

(Siegert et 
al. 2011) 

618 Rhodobacterales Rhodobacteraceae Phaeobacter 0.48 ± 0.07 
Uncultured bacterium clone Woods-

Hole_a5207 KF798960 99% Ascidian Gut 
(Dishaw et 
al. 2014) 

21 Rhizobiales Unclassified Unclassified 0.35 ± 0.07 Uncultured bacterium clone N4-30 FJ786111 99% Aquaculture marine 
sediments 

 

805 Rhodobacterales Rhodobacteraceae Roseobacter 0.34 ± 0.05 Uncultured bacterium clone H1 BAL T270d JF774639 99% 
Oil contaminated 
Marine Sediments 

(Stauffert et 
al. 2013) 

Anaerolineae 

15 GCA004 Unclassified Unclassified 0.46 ± 0.07 Uncultured bacterium clone TfC20L34 EU362300 99% 
Enrichment cultures 
of Marine Sediments 
with perchloroethene 

(Kittelmann 
and 

Friedrich 
2008) 

71 GCA004 Unclassified Unclassified 0.41 ± 0.09 Uncultured bacterium clone Zeebrugge_B36 HM598581 99% Oil contaminated 
Marine Sediments 

(Siegert et 
al. 2011) 
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Bacteroidia 24 Bacteroidales Unclassified Unclassified 0.66 ± 0.23 

Uncultured bacterium clone MK903D_B8 AB831401 

99% 

Deep Sea Mud 
Volcano 

(Pachiadaki 
et al. 2011) 

Uncultured bacterium clone AMSMV-20-B23 HQ588572 
Deep Sea Methane 

Seep 
(Aoki et al. 

2014) 

Cytophagia 20 Cytophagales Flammeovirgaceae Unclassified 0.45 ± 0.08 Uncultured Bacteroidetes bacterium clone 
C6_138 KP016581 99% 

Oil and Heavy metal 
contaminated Marine 

sediments 
 

Deltaproteobacteria 
 

10 Desulfobacterales Desulfobulbaceae Unclassified 1.24 ± 0.16 Uncultured bacterium clone JS2_171 KR825042 99% Marine Sediments  

14 Desulfuromonadales Desulfuromonadaceae Unclassified 1.07 ± 0.27 Uncultured bacterium clone TfC20L23 EU362292 99% 
Enrichment cultures 
of Marine Sediments 
with perchloroethene 

(Kittelmann 
and 

Friedrich 
2008) 

9 Desulfobacterales Desulfobulbaceae Unclassified 0.71 ± 0.12 Uncultured bacterium clone Woods-
Hole_a5919 

KF799444 99% Ascidian Gut (Dishaw et 
al. 2014) 

40 Myxococcales Unclassified Unclassified 0.53 ± 0.16 Uncultured delta proteobacterium clone 80. AM882648 99% 
Oil contaminated 
Marine Sediments 

(Paissé et 
al. 2008) 

18 Desulfobacterales Desulfobacteraceae Desulfococcus 0.52 ± 0.11 
Uncultured delta proteobacterium clone FII-

AN139 JQ580080 99% 
Oil contaminated 
Marine Sediments 

(Acosta-
González et 

al. 2013) 

39 Desulfobacterales Desulfobacteraceae Desulfosarcina 0.39 ± 0.09 Uncultured delta proteobacterium clone 70 AM882640 99% 
Oil contaminated 
Marine Sediments 

(Paissé et 
al. 2008) 

72 Desulfobacterales Desulfobacteraceae Desulfococcus 0.34 ± 
0.065 

Uncultured bacterium clone SB4AB21 HQ271757 99% Salt Marsh 
Sediments 

(Martiny et 
al. 2011) 

Ellin6529 
 

23 Unclassified Unclassified Unclassified 0.38 ± 0.06 
Uncultured Chloroflexi bacterium clone 

A02B18 KT731752 99% Marine Seawater  

1336 Unclassified Unclassified Unclassified 0.3 ± 0.05 Uncultured bacterium clone 1NSeds_G05 GQ412873 99% Sponge Symbiont (Garren et 
al. 2009) 

Epsilonproteobacteria 
 

2 Campylobacterales Helicobacteraceae Unclassified 1.5 ± 0.66 Uncultured bacterium clone H3 HQ848030 99% Marine Sediments  

12879 Campylobacterales Helicobacteraceae Unclassified 0.79 ± 0.28 Uncultured Sulfurovum sp. clone ZLL-A38 JF806782 99% Marine Sediment  

2076 Campylobacterales Helicobacteraceae Unclassified 0.49 ± 0.25 
Bacterium enrichment culture clone PAH63-

P10 KJ409516 99% 
Oil contaminated 
Marine Sediments 

(Stauffert et 
al. 2014) 

Flavobacteriia 
 

8 Flavobacteriales Flavobacteriaceae Lutimonas 0.77 ± 0.23 Aestuariicola saemankumensis str SMK-142 NR044441 
99% Estuarine Sediments 

(Yoon et al. 
2008) 

19436 Flavobacteriales Flavobacteriaceae Lutimonas 0.77 ± 0.19 Uncultured Bacteroidetes bacterium clone 
A24 

GQ249488 99% Marine Sediments  

Gammaproteobacteria 11 Thiohalorhabdales Unclassified Unclassified 1.17 ± 0.29 Uncultured bacterium clone M33 KR077747 99% Marine Sediments  
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3 Chromatiales Unclassified Unclassified 1.12 ± 0.21 Uncultured gamma proteobacterium clone 
PI_4z2c 

AY580826 99% Seawater (Acinas et 
al. 2004) 

62 Thiotrichales Piscirickettsiaceae Unclassified 0.9 ± 0.29 Uncultured Pseudomonas sp. clone NdAmb158 FJ753064 99% 
Sediments 

surrounding 
polychaete burrows 

(Pischedda 
et al. 2011) 

5 Thiotrichales Piscirickettsiaceae Unclassified 0.9 ± 0.16 Uncultured bacterium clone JS2_33 KR824990 99% Marine Sediments  

12 Alteromonadales OM60 Unclassified 0.56 ± 0.08 Uncultured bacterium clone M68 KR077745 99% Marine Sediments  

79 [Marinicellales] [Marinicellaceae] Unclassified 0.52 ± 0.09 Uncultured gamma proteobacterium clone 
SIMO-2236 

AY711602 99% Salt Marsh 
Sediments 

 

10743 Alteromonadales OM60 Unclassified 0.46 ± 0.06 
Uncultured bacterium clone PropaneSIP5-6-

05 GU584647 99% 
Marine Hydrocarbon 

Seep 
(Redmond 
et al. 2010) 

30 Chromatiales Unclassified Unclassified 0.45 ± 0.05 Uncultured bacterium clone Zeebrugge_B25 HM598574 99% Oil contaminated 
Marine Sediments 

(Siegert et 
al. 2011) 

22 Thiotrichales Thiotrichaceae Unclassified 0.44 ± 0.13 
Uncultured gamma proteobacterium clone 

ARTE12_227 GU230346 99% Estuary Sediments  

17 Alteromonadales OM60 Unclassified 0.42 ± 0.05 
Uncultured bacterium clone 

PAH2startSedimOxic_M12_6_D11 KJ615848 99% 
Oil contaminated Fe-
Mn concretions and 

Marine sediment 
 

283 Thiotrichales Piscirickettsiaceae Unclassified 0.38 ± 0.1 Uncultured gamma proteobacterium clone 57 AM882568 99% 
Oil contaminated 
Marine Sediments 

(Paissé et 
al. 2008) 

138 Chromatiales Unclassified Unclassified 0.38± 0.05 Uncultured gamma proteobacterium clone 
56b. 

HE804020 99% Marine Sediments  

38 Alteromonadales Alteromonadaceae ZD0117 0.34 ± 0.24 
Uncultured bacterium clone PropaneSIP20-4-

23 GU584788 99% 
Marine Hydrocarbon 

Seep 
(Redmond 
et al. 2010) 

58 [Marinicellales] [Marinicellaceae] Unclassified 0.35 ± 0.05 Uncultured bacterium clone 1b_5 HE803943 99% Marine Sediments  

17282 Thiohalorhabdales Unclassified Unclassified 0.33 ± 0.06 
Uncultured bacterium clone Milano-WF1B-

20 AY592863 99% Marine Cold Seep 
(Heijs et al. 

2005) 

25 [Marinicellales] [Marinicellaceae] Unclassified 0.29 ± 0.05 Uncultured Chromatiales bacterium clone 
16B_205. 

AM501729 99% Marine Sediments (Borin et al. 
2009) 

7321 Chromatiales Unclassified Unclassified 0.3 ± 0.06 Uncultured bacterium clone AMSMV-5-B14 HQ588443 99% 
Mud Volcano 

Sediments 
(Pachiadaki 
et al. 2011) 

OS-K 26 Unclassified Unclassified Unclassified 0.36 ± 0.06 Uncultured bacterium clone 
Tokyo.16S.Bac.30 

AB530230 99% Port Marine 
Sediments 

(Elsaied et 
al. 2011) 
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Figure S IV-1 - PCO ordination of samples, with significant (p-0.05) linear alkanes (A) and PAHs (B) fitted using 

envfit(). 
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Figure S IV-2 - Rarefaction curve from each sample. Calculated using a self-written function (Gomes 2010). 
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Figure S IV-3 - Correlation analysis between the relative abundance of most relevant bacterial groups [threshold 

mean relative abundance < 0.1%; classes (A), orders (B) and families (C)], and alkane concentrations 

from all replicates. Correlations and correlation significance was calculated using rcorr() function 

from the {Hmisc} package . Statistically significant correlations (p-value < 0.05) are marked with an 

"X". 
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Figure S IV-4 - Correlation analysis between the relative abundance of most relevant bacterial groups [threshold 

mean relative abundance < 0.1%; classes (A), orders (B) and families (C)] and PAHs concentrations 

from all replicates. Correlations and correlation significance was calculated using rcorr() function 

from the {Hmisc} package. Statistically significant correlations (p-value < 0.05) are marked with an 

"X". 
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Figure S IV-5 - Correlation analysis between the relative abundance matrix of the 50 most abundant OTUs and 

alkanes and PAHs concentrations from all replicates. Correlations and correlation significance was 

calculated using rcorr() function from the {Hmisc} package. Statistically significant correlations (p-

value < 0.05) are marked with an "X". 

Literature Cited 

1. Acinas SG, Klepac-Ceraj V, Hunt DE, et al. Fine-scale phylogenetic architecture of a complex bacterial 

community. Nature 2004; 430: 551-554. 

2. Acosta-González A, Rosselló-Móra R & Marqués S Characterization of the anaerobic microbial community in 

oil-polluted subtidal sediments: aromatic biodegradation potential after the Prestige oil spill. Environmental 

Microbiology 2013; 15: 77-92. 

3. Aoki M, Ehara M, Saito Y, et al. A Long-Term Cultivation of an Anaerobic Methane-Oxidizing Microbial 

Community from Deep-Sea Methane-Seep Sediment Using a Continuous-Flow Bioreactor. PLoS ONE 2014; 9: 

e105356. 

4. Borin S, Brusetti L, Daffonchio D, et al. Biodiversity of prokaryotic communities in sediments of different sub-

basins of the Venice lagoon. Research in Microbiology 2009; 160:  

5. Couradeau E, Roush D, Guida BS, et al. Diversity and mineral substrate preference in endolithic microbial 

communities from marine intertidal outcrops (Isla de Mona, Puerto Rico). Biogeosciences 2017; 14: 311-324. 

6. Dishaw LJ, Flores-Torres J, Lax S, et al. The Gut of Geographically Disparate Ciona intestinalis Harbors a Core 

Microbiota. PLoS ONE 2014; 9: e93386. 



146 

 

7. Elsaied H, Stokes HW, Kitamura K, et al. Marine integrons containing novel integrase genes, attachment sites, 

attI, and associated gene cassettes in polluted sediments from Suez and Tokyo Bays. The ISME Journal 2011; 5: 

1162-1177. 

8. Garren M, Raymundo L, Guest J, et al. Resilience of Coral-Associated Bacterial Communities Exposed to Fish 

Farm Effluent. PLoS ONE 2009; 4: e7319. 

9. Heijs SK, Sinninghe Damsté JS & Forney LJ Characterization of a deep-sea microbial mat from an active cold 

seep at the Milano mud volcano in the Eastern Mediterranean Sea. FEMS Microbiology Ecology 2005; 54: 47-56. 

10. Kittelmann S & Friedrich MW Novel uncultured Chloroflexi dechlorinate perchloroethene to trans-

dichloroethene in tidal flat sediments. Environmental Microbiology 2008; 10: 1557-1570. 

11. Martiny JBH, Eisen JA, Penn K, et al. Drivers of bacterial beta-diversity depend on spatial scale. Proceedings of the 

National Academy of Sciences of the United States of America 2011; 108: 7850-7854. 

12. Pachiadaki MG, Kallionaki A, Dählmann A, et al. Diversity and Spatial Distribution of Prokaryotic 

Communities Along A Sediment Vertical Profile of A Deep-Sea Mud Volcano. Microb Ecol 2011; 62: 655-668. 

13. Paissé S, Coulon F, Goñi-Urriza M, et al. Structure of bacterial communities along a hydrocarbon 

contamination gradient in a coastal sediment. FEMS Microbiology Ecology 2008; 66: 295-305. 

14. Pischedda L, Militon C, Gilbert F, et al. Characterization of specificity of bacterial community structure within 

the burrow environment of the marine polychaete Hediste (Nereis) diversicolor. Research in Microbiology 2011; 

162: 1033-1042. 

15. Redmond MC, Valentine DL & Sessions AL Identification of Novel Methane-, Ethane-, and Propane-

Oxidizing Bacteria at Marine Hydrocarbon Seeps by Stable Isotope Probing. Applied and Environmental 

Microbiology 2010; 76: 6412-6422. 

16. Siegert M, Cichocka D, Herrmann S, et al. Accelerated methanogenesis from aliphatic and aromatic 

hydrocarbons under iron- and sulfate-reducing conditions. FEMS Microbiology Letters 2011; 315: 6-16. 

17. Stauffert M, Cravo-Laureau C & Duran R Structure of hydrocarbonoclastic nitrate-reducing bacterial 

communities in bioturbated coastal marine sediments. FEMS Microbiology Ecology 2014; 89: 580-593. 

18. Stauffert M, Cravo-Laureau C, Jézéquel R, et al. Impact of Oil on Bacterial Community Structure in Bioturbated 

Sediments. PLoS ONE 2013; 8: e65347. 

19. Yoon J-H, Kang S-J, Jung Y-T, et al. Aestuariicola saemankumensis gen. nov., sp. nov., a member of the family 

Flavobacteriaceae, isolated from tidal flat sediment. International Journal of Systematic and Evolutionary Microbiology 

2008; 58: 2126-2131. 



 

 

Conclusion and Final Remarks 





149 

 

Conclusion and Final Remarks 

The marine sediment compartment is an important sink and filter for oil hydrocarbons released 

by accidental and natural sources. Cold seeps linked to subsurface oil reservoirs (e.g. mud volcanoes) will 

trickle oil through this sediment barrier, where a dense heterotrophic microbial community will actively 

degrade it, creating a local biological hotspot. Yet despite biodegradation occurring under these 

challenging abiotic conditions, the bacterial players involved are poorly understood. Also, by adhering 

to the sinking sediment particles, accidentally released oil hydrocarbons will settle at the sediment surface, 

and, with time, it will be inhumed into the adjacent anaerobic layers. There, since biodegradation is 

substantially less efficient, oil may persist for long periods. Thus, although, aerobic and anaerobic 

biodegradation processes are determinant for oil decontamination, the fate of oil hydrocarbons will be 

heavily influenced by the efficiency of the initial aerobic biodegradation by the microbial communities 

inhabiting the surface sediment layer. However, some present and future scenarios (e.g. deep sea 

conditions, ocean acidification and the application of chemical dispersants) may impose changes to this 

bacterial-driven metabolic turnover. Yet the biogeochemical properties of sediments and the adaptation 

of some benthic bacterial community may attenuate their impact. In this thesis, the bacterial response to 

these scenarios was inferred by field data and/or was experimentally analyzed. In general, the results 

obtained indicate that the sediment bacterial communities can show a remarkable resilience to oil 

hydrocarbon contamination. 

The deep sea sediment surface is an overlooked sink for released oil hydrocarbons. The mass 

transfer of oils most recalcitrant compounds (e.g. PAH) to the deep sea sediment surface may occur 

through the vertical settling of oil-sediment aggregates. Once settled, they will be available to the local 

bacterial community, which is speculated to have an opportunistic life strategy as an adaptation to the 

deep sea oligotrophic environment. PAH biodegradation at the DSS could be inhibited by abiotic 

conditions such as low temperature and hydrostatic high pressure, but the adaptation of local bacterial 

communities to these abiotic extremities may counter this. Also, occasional underwater hydrocarbon 

seeps can be found throughout deep sea surface. These seeps may potentially release, annually, an 

amount of oil hydrocarbons substantially higher than that released by accidental oil spills. Mud volcanoes 

are included among these geological formations. At the mud volcanoes sediments, a diverse and dense 

ecosystem occurs and is sustained by the heterotrophic microbial community that actively scavenges 

these seeped oil hydrocarbons. Using samples from the deep sea mud volcanoes (inactive and active 

craters) and from a reference site (abyssal plains) from the gulf of Cadiz, the PAH-degrading bacterial 

community was enriched, by using a culture medium with added phenanthrene and chrysene as main 

carbon sources, and isolates were obtained. In general, the isolates were dominated by Bacillus-like 
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bacteria. This predominance was unexpected when considering that the Bacillaceae family is, normally, 

poorly represented in the PAH-degrading community of marine environments in general. Nonetheless, 

these results are coherent with other studies from other cold seep-related environments and reveal that 

in these environment, the Bacillaceae family may be involved in PAH biodegradation at the deep sea. 

In contrast to current deep sea abiotic conditions, the overall impact on bacterial processes of 

the predicted abiotic conditions of the future ocean are harder to assert and may require their simulation 

under controlled microcosm conditions. Ocean acidification, an indirect consequence of global warming, 

is known to alter key biogeochemical cycles, consequently impacting marine ecosystems. In previous 

microcosm simulations, the interactive effect of seawater acidification and oil contamination was shown 

to alter the composition of the core active bacterial community and reduce the abundance of active 

members of the anaerobic oil-degrading Desulfobacterales order at the superficial sediments. In this 

thesis, using samples from the same microcosm simulations, we conclude that this effect does not seem 

to extend to the subsurface sediments throughout the experiment. Although a taxon-specific analysis 

revealed that, although the relative abundance of some bacterial groups changed in response to the 

independent and/or interactive effects of reduced seawater pH and oil contamination, these were not 

expressed in the overall bacterial community inhabiting the subsurface sediments (≈5 cm), which was 

stable to the abiotic changes imposed. It is proposed that both seawater acidification and oil 

contamination were attenuated by the sub-adjacent sediment layer that may have functioned as a barrier 

and buffer. 

Oil spills, although responsible for a small fraction of all oil discharged into the ocean, can have 

catastrophic effect at regional scale. To mitigate this effect, response strategies are employed, often 

involving the use of chemical dispersants. However, their use is controversial because the potential 

benefits may not compensate potential drawbacks. Chemical dispersants will increase oil bioavailability, 

which may enhance hydrocarbon biodegradation but may also increase the exposure of marine biota to 

toxic constituents and degradation products. Also, the use of dispersants may increase the mass transfer 

of oil hydrocarbons to the sediment. Although some studies have addressed the fate of chemically 

dispersed oil, until now none had tested their potential impact on benthic bacterial communities in 

coastal port areas.  

Here, a multi-factorial microcosm simulation was performed to evaluate the interactive and 

independent effect of oil and dispersant addition on the bacterial community composition of intact 

sediment cores and on hydrocarbon concentration at the sediments superficial layer. The results revealed 

that chemical dispersion of oil did have a significant effect on the concentration of n-alkane in the 

sediments. However, chemical dispersants significantly increased the mass transfer of PAHs to the 

sediments. and altered the relative abundance of some putative hydrocarbon-degrading bacterial groups. 

However, despite the changes detected in the relative abundance of putative oil hydrocarbon degraders, 

the overall composition of the bacterial community was stable to the tested experimental the 



151 

 

independent and interactive effects of the oil contamination and dispersant addition. The previous 

exposure of the sediment bacterial communities to chronic oil hydrocarbon pollution in the port area 

may have preconditioned the bacterial communities to oil contamination. 

Overall, this report broadens our understanding of bacteria-oil interactions at the sediments. 

Nonetheless, several questions persist. A microcosm simulation of an oil contamination event under 

deep sea conditions, although logistically challenging, would provide new insights on the microbial 

community response in field conditions. In chapter III, the microcosm experiment showed that n-alkane 

removal was enhanced in microcosms contaminated by chemically dispersed oil. However, the ultimate 

fate of this hydrocarbons is uncertain. Oil hydrocarbons may have moved from the sediments to the 

water column by desorption and purged out from the microcosms during the simulated low tides or 

moved to deeper layers of the sediment by percolation. This is relevant to the prediction of the overall 

effects since the dispersants may facilitate the transfer of oil hydrocarbon into subsurface sediments, 

where anaerobic conditions will substantially stall biodegradation and potentially perpetuate the presence 

of oil in the environment. 
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