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resumo Nesta tese estudamos analiticamente e numericamente o processo de
bootstrap percolation em redes complexas direcionadas. Formulamos
e analisamos o processo de bootstrap percolation em ambas redes com
pesos e sem pesos e também estudamos um processo de bootstrap
percolation baseado em probabilidades. O processo de bootstrap per-
colation considerado tem um parâmetro de ativação associado k onde
um nó é ativado se tiver pelo menos k nó vizinhos ativos. Compara-
mos os nossos resultados com resultados analíticos e numéricos obtidos
para redes complexas não direcionadas. Analisamos também como as
propriedades topológicas dos componentes das redes complexas dire-
cionadas, como o giant strongly connected component e a periferia,
influenciam o processo de bootstrap percolation. Aplicamos a nossa
teoria no estudo do processo de bootstrap percolation em redes com-
plexas reais. Mostramos que a nossa teoria desenvolvida para redes
complexas aleatórias e não correlacionadas está em bom acordo com
simulações numéricas do processo de bootstrap percolation em redes
complexas reais que são correlacionas e agrupadas.





abstract In this thesis we study analytically and numerically the bootstrap per-
colation process in random uncorrelated directed complex networks.
We formulate and analyze the bootstrap percolation process on both
unweighted and weighted networks and also study a probability based
percolation process. The considered percolation process has an asso-
ciated activation threshold k where a node only gets active if it has at
least k active neighboring nodes. We compare our results with analy-
tical and numerical results obtained for undirected complex networks.
We also analyze how topological properties of the directed network
components, such as the giant strongly connected component and the
periphery, influence on the bootstrap percolation process. We apply
our theoretical approach for studying the bootstrap percolation on real
complex networks. We show that our theoretical approach developed
for the case of random uncorrelated directed networks is in a good agre-
ement with numerical simulations of the bootstrap percolation process
on real complex networks which actually are correlated and clustered.
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(solid curve) and directed Erdős-Rényi networks with 〈q〉 = 10 (circles). The size of the

network is N = 104 nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Fraction of active nodes Sa versus fraction of seeds f for Erdős-Rényi graphs for
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1
INTRODUCTION TO COMPLEX NETWORKS

A complex network (or a graph) is a set of items called nodes connected to each other by bonds

called edges. In general, a real system composed by modules that interact with each other can

be represented by a complex network. For example, the World Wide Web can be represented by

a complex network [1], where each website is a node and the links in a website that direct you

to another one can be represented by edges. In an ecological community, the interconnection of

food chains can be represented by a complex network where [2] each species is a node which is

connected by an edge to another species indicating whether it is its predator or prey. Airplane

traffic can be represented as a complex network [3], where each airport is a node and the flight

paths between each airport are the edges. The human brain can also be represented as a complex

network [4] where each neuron is a node and the axons connecting the neurons body cells are the

edges. Social networks can be represented as a complex networks too [5], where each person is a

node and the friendship between two persons can be represented as a node.

Complex network theory is a powerful tool for analyzing the structure of systems. Knowing

how nodes interact with each other in a network can help the user studying the network take

a decision on how to act. For example if we want to maximize the spread of information in a

network we may want to select the nodes that overall have more connections to the other ones.

This spread of information where a node with a certain state called the active state successively

activates the other neighbouring unactive nodes is called a cascade process. Examples of cascade

processes include the spread of a particular type of information, like the viral phenomenon, in

social networks such as Twitter and the activation of neurons in the human brain. Other example

is the cascade failure which is a process by which a node successively triggers the failure of

the other nodes neighboring nodes that depend on it, which may happen in power distribution

systems and financial systems.

Some work was already done regarding cascade processes in complex networks such as by

1



CHAPTER 1. INTRODUCTION TO COMPLEX NETWORKS

Dorogovtsev et al. [6][7] and [8]. In this work we mainly analyze cascade processes in directed

complex networks which is a topic that hasn’t been formulated in the literature yet. Directed

complex networks are a type of complex networks where the edges are directed, meaning that

the information can only go in one direction, i.e., a node i with a outgoing connection to another

node j may be able to communicate with the node j but the node j may not be able communicate

with the node i. The cascade processes we analyze in this work have an important parameter

k: a node will only become active if it has at least k active neighbouring nodes. We study the

cascade process in complex networks through the process of boostrap percolation, in which, in

the beginning of the cascade process, a fraction f of random nodes are chosen to be active. These

nodes are called seeds.

Directed networks have fundamental differences in comparison with undirected networks.

Due to the edge directness, in a directed network we can identify some sets of nodes, called

components, with different topological properties. In the general case a network is composed

by a giant strongly connected components which is the main component of the network. In this

component every node has a path to every other node. In the periphery, every node that can

reach the giant strongly connected component belongs to the IN component and every node

that can be reached by the giant strongly connected component belongs to the OUT component.

Furthermore we can identify tubes that connect the IN and OUT components, and tendrils which

are connected to these components. The structure of directed networks will be discussed in detail

in subsection 1.3.2 (see Figure 1.5). One objective of this thesis is to find out how the mentioned

components affect the bootstrap percolation process. In real networks these components play

a very important role in their functions. For example in a paper about global corporate control

[9], the top economical actors, which control most of the economic power, are placed in the giant

strongly connected component, mentioned as the core of the network. These powerful companies

placed at the core control other companies placed in the OUT component.

In this work we also analyse the bootstrap percolation process in weighted directed complex

networks where every edge has an associated weight [9] [10]. In unweighted networks the weight

of every edge would be one. In this type of networks, during the percolation process, one node gets

active if it has at least active neighboring nodes which combined edges’ weights are larger than

the activation threshold k. Following our study on these type of networks, we analyze a bootstrap

percolation process where each each edge has a probability p of transmitting the activation

signal.

This work is divided in several chapters. In this chapter we consider the basics of complex

networks, the several types of complex networks that we analyze in this work and the components

of each type of network. In chapter 2 we discuss the boostrap percolation process in undirected

complex networks. In chapter 3 we analyze the boostrap percolation process in directed complex

networks. In chapter 4 we study the boostrap percolation process in weighted directed complex

networks. In chapter 5 we analyze a boostrap percolation process where the activation is based

2



1.1. COMPLEX NETWORKS BASICS

on a probability. In chapter 6 we apply the theory of the previous chapters to real networks such

as a Twitter and Google+ networks and the neural network of the worm Caenorhabditis elegans.

1.1 Complex networks basics

Figure 1.1: An example of a complex network. The circles are the nodes and the connections
between them are the edges.

Each node can be characterized by the number of nodes to which it is connected to, this number

is called the degree q of the node. Generally a network is composed by nodes of different degrees

and to this distribution, we call it the degree distribution, which is denoted by P(q). Complex

networks in which the connections between nodes are attributed randomly are called Erdős-Rényi

networks.

In Erdős-Rényi networks the degree distribution P(q) follows a binomial distribution B(N, p),

(1.1) P(q)=
(
N
q

)
pq(1− p)(N−q)

where N is the number of nodes in the network and p the probability of the existence of an

edge between two nodes. p is equal to 〈q〉
N where 〈q〉 is the the mean degree of the network,

〈q〉 = 1
N

∑N
i=1 qi.

In Erdős-Rényi networks with a large number of nodes N and low p, the degree distribution

P(q) can be approximated by the Poisson distribution with parameter λ= N p = 〈q〉,

(1.2) P(q)= e−〈q〉〈q〉q

q!
A complex network with N nodes can be represented by a square matrix A, called the

adjacency matrix,

AN,N =


0 a12 . . . a1N

a21 0 . . . a2N
...

...
. . .

aN1 aN2 0


3



CHAPTER 1. INTRODUCTION TO COMPLEX NETWORKS

this matrix is symmetric with zeros on its diagonal. Each element ai j,

ai j = a ji =
{

1, if nodes i and j are connected

0, if nodes i and j are not connected

1.2 Types of complex networks

The types of complex networks studied in this work differ in the type of edges that connect the

nodes, we analyze undirected networks, directed networks and weighted networks.

1.2.1 Undirected networks

Undirected networks are the most simple type of complex networks as well as being the most

studied [11][12][13], from the evolution of scale-free networks [14] to the study of the bootstrap

percolation in random networks [6]. These are the most basic form of networks and have common

properties with other, more elaborated, types of networks. Bootstrap percolation theory of random

undirected networks [6] will be used in this work as a basis to study the bootstrap percolation in

other types of networks such as directed networks.

If two nodes are connected they can share information with each other. The edges in undirected

networks are bidirectional, in contrast with the edges in directed networks.

1.2.2 Directed networks

The main type of networks that we are studying in this work are the directed complex networks.

In this type of networks the edges only allow the transmission of information in one direction.

Examples include the World Wide Web [1], neural networks (such as the human brain) [15], food

chain networks [2] and many other real systems.

Figure 1.2: An example of a directed complex network. The arrows indicate in which direction
the flow of information is possible.

Every node has two types of degrees: the in-degree qi, which is the number of edges that are

incoming to the node, and the out-degree qo, which is the number of edges that are outgoing from

the node. The in- and out- degree distributions can be different and we denote them by Pi(qi)

4



1.2. TYPES OF COMPLEX NETWORKS

and Po(qo), respectively. In general the degree distribution in directed complex networks can be

represented by the joint distribution of qi and qo, denoted by P(qi, qo), where,

(1.3) Pi(qi)=
∑
qo

P(qi, qo) and Po(qo)=∑
qi

P(qi, qo)

If Pi and Po are uncorrelated, which is the case in some random networks such as Erdős-Rényi

graphs, we have that,

(1.4) P(qi, qo)= Pi(qi)Po(qo)

To check if two variables are correlated such as the out and in-degrees we can calculate the

Pearson linear correlation coefficient r,

(1.5) r = E [(qo −〈qo〉) (qi −〈qi〉)]
σqoσqi

where σqo and σqi are the standard deviations of the out-degree qo and in-degree qi and E is

the expected value. r ranges between 1 meaning total positive correlation and −1 meaning total

negative correlation. If r ≈ 0, the two variables are not correlated.

In directed networks the mean degree 〈q〉 is the total mean degree. The mean in-degree 〈qi〉
should be equal to the mean out-degree 〈qo〉 since every edge is both outgoing from a node and

incoming to another node. Therefore we have,

(1.6) 〈qi〉 = 〈qo〉 = 〈q〉
2

The adjacency matrix of directed networks is not symmetric since a node i may not have both

an incoming and an outgoing connection to another node j.

1.2.3 Weighted networks

In weighted networks, each edge as a different weight w. As examples, these weights may

represent the trust between friends in social networks, the ammount of airplane traffic between

airports [16] and the strenghts of the connections between neurons in the human brain [17].

Figure 1.3: An example of weighted complex network. The thickness of the edges indicate
represent the weights.
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CHAPTER 1. INTRODUCTION TO COMPLEX NETWORKS

The weight probability density is represented by P(w).

The elements of the adjacency matrix of a weighted network ai j,

ai j =
{
R>0 ∼ P(w) , if nodes i and j are connected

0 , if nodes i and j are not connected

A weighted network may have directed edges. In this work we also analyze the boostrap

percolation process in random weighted directed networks.

1.3 Components

1.3.1 Undirected networks

An undirected complex network is generally composed by components or clusters which are sets

of nodes that are joined together. The biggest cluster of nodes is called the giant component, GS,

if its size is a finite fraction of the whole networks (nonzero) and the other rest of nodes, which

are not connected to the giant component are called the disconnected clusters, C.

GS

C

Figure 1.4: General structure of a undirected complex network.

In random uncorrelated random complex networks, the giant component almost surely exists

if [18] ,

(1.7)
∑
q

q(q−2)P(q)> 0 .

1.3.2 Directed networks

A directed network G can be divided into several types of subnetworks called components [19].

We can identify,

• a giant strongly connected component (GSCC, or GS for brevity) where all nodes can be

reached from every other node following directed edges;

6



1.3. COMPONENTS

• a giant in-component (G in) composed by GS and all nodes that can reach GS;

• a giant out-component (Gout) composed by GS and all nodes that can be reached by GS;

• tendrils (T), composed by nodes connected to the mentioned components but do not belong

to none of them;

• a giant weakly connect component (GW ) composed by all the previously mentioned struc-

tures;

• and some disconnected clusters (C) which are not connected to the main network.

The general structure of a directed network is represented in figure 1.5. As G in and Gout

share some nodes with GS there is a share and mixing of topological properties. We must separate

these components from the GS to more accurately study the role of each component. We can

identify IN, as the set of nodes of G in that do not belong to GS.

(1.8) G in =GS ∪ IN

and OUT, as the set of nodes of Gout that do not belong to GS,

(1.9) Gout =GS ∪OUT .

All the tendrils T are connected to either the OUT and IN components. We call F to the union

of the tendrils T and disconnected clusters C.

(1.10) F =T∪C

We have,

(1.11) GW = IN∪OUT∪GS ∪T =G\C

The giant weak component GW is the directed version of the giant component in an undirected

network if we ignore the edge directness.

Edge directness influences the activation of the network. Knowing which nodes belong to each

component helps deciding the optimal seed placement as to activate the most nodes possible.

7



CHAPTER 1. INTRODUCTION TO COMPLEX NETWORKS

IN OUT

GWCC

C

T

GSCC

Figure 1.5: Schematic structure of a directed network.

To find the OUT and IN components one may use tree search algorithms such as the breath-

first search or depth-first search. For the OUT component, the depth-first search (DFS) algorithm

is,

1. Let V be an empty list of the visited nodes.

2. Start in any node v of the GS.

Let i = 1. While i > 0

a) If Fi does not exist, create a list Fi made up from all the unvisited out-neighbors of v,

add v to V .

b) Delete v from all previous Fk, k < i.

c) If Fi is not empty, let v be the first node of Fi and i = i+1. Else, i = i−1.

3. V is now composed by all the nodes of the Gout. To find the OUT component, remove all the

nodes from V that also make part of the GS.

To find the IN component we just need to invert all the edges of the network and run the

algorithm again.

To find what nodes belong to the giant strongly connected component GS one may use the

Kosaraju algorithm [20]. Through this algorithm we can find out all the strongly connected

8



1.3. COMPONENTS

components, being GS the largest. This algorithm is divided in two parts where in the first one we

do a depth-first search and in the second we run another depth-first search but with the network

reversed.

1. Let L be an empty list of the visited nodes.

2. Run a depth-first search in the network. Every time Fi is empty (in 2.c in the DFS algorithm)

add v to L.

3. Reverse all the network edges. Let S be a list of sublists where each sublist will be a

strongly connected component.

4. Let i = 1 (index of S). While size of L > 0,

a) Run a DFS starting at the last node of L.

b) Every node the DFS reaches add it to S[i] and remove it from L.

c) When the DFS ends, i = i+1.

5. i indicates the number of strongly connected components found. The largest S[i] is the

giant strongly connected component, GS.

To find the giant weakly strongly connected component GWCC we just need to run DFS in the

network while ignoring edge directness.

The size of each component strongly depends on the mean degree 〈q〉. In figure 1.6 some of

the relative component sizes versus of the mean in-degree in Erdős-Rényi networks. As we can

see, both IN and OUT reach their maximum size at around 〈qi〉 ≈ 1.35, and for bigger 〈qi〉 the

size of these components decreases as the GS begins to dominate in the network.
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Figure 1.6: Relative component sizes versus the mean in-degree 〈qi〉 in Erdős-Rényi graphs.
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2
BOOSTRAP PERCOLATION IN UNDIRECTED COMPLEX NETWORKS

Boostrap percolation is a process in which a random set of initial nodes called seeds activate their

neighbouring nodes. These neighbouring nodes only get activated if a specific condition is met. In

this work this condition is the number k of active nearest neighboring nodes that are necessary

to activate a given node. The process reaches a final state when the maximum number of possible

active nodes is reached.
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Figure 2.1: Fraction of active nodes versus number of iterations (results of 200 simulations) of
the boostrap percolation process in random undirected Erdős-Rényi graphs. Here the fraction of
seeds is f = 0.1, the number of nodes N = 104, the mean degree 〈q〉 = 15 and activation threshold
k = 2. This figure ilustrates the cascade behaviour of the boostrap percolation process.
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CHAPTER 2. BOOSTRAP PERCOLATION IN UNDIRECTED COMPLEX NETWORKS

It is necessary to mention that the cases k = 1, and k ≥ 2 are very different. If k = 1 we

consider that there is no activation threshold and a single seed gradually activates all nodes that

belong to the same finite and giant cluster. On the other hand for k ≥ 2 this cannot happen and

the activation process is generally slower and can demonstrate a discontinuous behavior.

i. ii. iii. iv.

Figure 2.2: An example of a boostrap percolation process for k = 2. i) a random complex network. ii)
some nodes are selected to be the seeds, here represented by the shaded circles. iii) first iteration
of the percolation process, every node neighbouring at least k = 2 active nodes is activated. iv)
second and last iteration of the percolation process, the process stops since there are no nodes
that have at least k = 2 active neighbouring nodes.

We can find the fraction of activated nodes Sa at the end of the percolation process in

dependence on the fraction of initially activated nodes f (seeds) [6],

(2.1) Sa = f + (1− f )
∞∑

q=k
P(q)

q∑
l=k

(
q
l

)
Z l(1−Z)q−l ,

where Z is the probability that following an arbitrary edge in the graph we reach a node that is a

seed or has at least k neighbours that are active. In this equation, the first term f corresponds to

the initially activated nodes (seeds). The second term describes the bootstrap percolation process.(q
l
)
Z l(1−Z)q−l is the probability that a node with degree q has l active neighbours. Also we need

to account for all the possible degrees when the activation is possible (q ≥ k), where each node

with degree q appears in the graph with a probability P(q), that is given by the summation∑∞
q=k P(q),

(2.2) Z = f + (1− f )
∞∑

q=k

q+1
〈q〉 P(q+1)

q∑
l=k

(
q
l

)
Z l(1−Z)q−l .

The solution of this equation is exact in the infinite size, where an uncorrelated complex

network as a tree-like structure and finite loops can be neglected. These loops are characteristic

of correlated networks, normally with a non-negligible clustering coefficient.

For a Erdős-Rényi graph in the infinite size limit, the degree distribution P(q) is the Poisson

distribution,

(2.3) P(q)= e−〈q〉〈q〉q

q!
,
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Changing the order of summation
∑∞

q=k
∑q

l=k =∑∞
l=k

∑∞
q=l , the equation 2.2 to calculate Z can be

further simplified.

(2.4) Z = f + (1− f )
∞∑

l=k

∞∑
q=l

q+1
〈q〉

〈q〉q+1

(q+1)!
e−〈q〉

q!
(q− l)!l!

Z l(1−Z)q−l

= f + (1− f )
∞∑

l=k

e−〈q〉Z l〈q〉l

l!

∞∑
q=l

〈q〉q−l(1−Z)q−l

(q− l)!

= f + (1− f )
∞∑

l=k

e−〈q〉Z l〈q〉l

l!
e〈q〉(1−Z)

= f + (1− f )e−〈q〉
[

e〈q〉Z −
k−1∑
l=0

Z l〈q〉l

l!

]
e〈q〉(1−Z)

= f + (1− f )

[
1− e−〈q〉Z

k−1∑
l=0

Z l〈q〉l

l!

]

In figure 2.3 the final fraction of activated nodes Sa is displayed for several boostrap percola-

tion simulations at different fractions of seeds in Erdős-Rényi networks with N = 104 nodes. In

these simulations the random number generator used to create the networks is the Mersenne

Twister seeded by /dev/random. Before the percolation process begins f nodes are chosen ran-

domly to be the seeds. In each iteration of the simulation we check if there is any node that has

at least k active neighboring nodes, and we activate the ones that satisfy this condition.
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Figure 2.3: The fraction of activated nodes Sa as function of the fraction of initial seeds f in
random undirected networks of mean degree 〈q〉 = 5 and activation threshold k = 3. Simulation
data for N = 104 nodes. The theoretical result calculated from equation 2.1 is also represented
(solid curve).
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CHAPTER 2. BOOSTRAP PERCOLATION IN UNDIRECTED COMPLEX NETWORKS

The number of nodes used in all the simulations is always N = 104, picked as a balance

of computational time and exactness of the equation 2.2 according to the size of the network.

Larger networks require more computational time but the differences between the simulation

results and the theoretical results calculated through equation 2.2 are negligible as N →∞, as

mentioned before. The theoretical result given by equation 2.1 is also plotted in the figure 2.3,

and as we can see both plots are in a very good agreement.

The simulation stops at iteration n when the number of active nodes is not changed between

iterations, that is, when Sa at iteration n−1 is equal to Sa at n. Due to the random nature that

is creating a Erdős-Rényi network and the placement of seeds, the results of the simulations

presented here are averaged over 100 times. It is interesting to know how many seeds should
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Figure 2.4: Contribution of each term of the boostrap percolation equation 2.1 for the fraction
of total activated nodes Sa at the end of the process. The results of equation 2.1 is plotted
(yellow squares) and the contribution of the seeds (black circles) and nodes activated through the
avalanche process (blue triangles) .

be used as to efficiently activate a large part of a network. In figure 2.4 we can see the same

simulation data represented as the ones in figure 2.3 and the contributions of the seeds and

the nodes activated during the avalanche process to the total fraction of activated nodes Sa.

The number of nodes activated through the percolation process increases following a power law

reaching a maximum at the critical point, fc = 0.2, decreasing in a linear fashion until f = 1.

Therefore if we want to increase a large part of the network using the smallest number of seeds

possible, we should use, in this case, f = 0.2N seeds. This jump in the activation occurs due to a

phase transition [6]. This happens when a large part of the graph is in a sub-critical state, where

14



the nodes belonging to this state are not seeds and are inactive nodes with k−1 active neighbors.

This jump does not appear in all networks, being dependent on the network parameters, such as

the mean degree 〈q〉 and the activation threshold k. The larger k is, for larger f values the jump

will appear [6].
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3
BOOTSTRAP PERCOLATION IN DIRECTED COMPLEX NETWORKS

Now let us consider the bootstrap percolation in directed complex networks. An example of this

type of percolation is represented in figure 3.1. The bootstrap percolation process is now affected

by the in-degree and out-degree distributions. If both distributions are not correlated, the process

is only affected by the in-degree distribution, as it is the case in random networks. Generalizing

equation 2.1 for undirected networks, we find the equation for the probability Z in directed

networks:

(3.1) Z = f + (1− f )
∞∑

qi=k,qo=0
P(qi, qo)

qi∑
l=k

(
qi

l

)
Z l(1−Z)qi−l .

i. ii. iii. iv.

Figure 3.1: An example of a boostrap percolation process for k = 2 in a directed complex network.
i) a random complex directed network. ii) some nodes are selected to be the seeds, which are
represented by the shaded circles. iii) first iteration of the percolation process, every node with an
incoming connection from at least k = 2 active nodes is activated. iv) second and last iteration of
the percolation process, the process stops since there aren’t any more nodes that have incoming
connections from at least k = 2 active neighbouring nodes.

It is important to note that equation 3.1 assumes that all nodes are topologically equivalent

to each other. This assumption is correct if the directed complex network consists of only the GS
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CHAPTER 3. BOOTSTRAP PERCOLATION IN DIRECTED COMPLEX NETWORKS

and that the other components IN, OUT, T and DC are absent, which generally is not the case.

In Erdős-Rényi networks this assumption is correct if the mean degree is large enough 〈q〉, as we

can see in figure 1.6. In this work we use a mean in-degree 〈qi〉 = 5 in the simulations. In this

case we can neglect the size and the contribution of the components apart from the GS to the

bootstrap percolation process.
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Figure 3.2: The fraction of activated nodes Sa versus the fraction of initial seeds f . Simulation
data (circles) for N = 104 nodes and mean in-degree 〈qi〉 = 4.5. The theoretical result calculated
by 3.1 is also plotted (solid curve).

In directed networks 〈qi〉 = 〈q〉
2 therefore the bootstrap percolation process in a directed

network with 〈qi〉 should be similar to the process in a undirected network with mean degree

〈q〉 = 2〈qi〉. By comparing figure 3.3 and figure 3.4 we can see that this is the case.
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Figure 3.3: Comparison of Sa between simulations of undirected Erdős-Rényi networks with
〈q〉 = 10 (dashed curve) and directed Erdős-Rényi networks with 〈q〉 = 10 (solid curve). The size
of the network is N = 104 nodes.
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Figure 3.4: Comparison of S between simulations of undirected Erdős-Rényi networks with
〈q〉 = 5 (solid curve) and directed Erdős-Rényi networks with 〈q〉 = 10 (circles). The size of the
network is N = 104 nodes.

3.1 Components

As we discussed before, equation 3.1 gives a good description for the bootstrap percolation

in directed complex networks if 〈q〉 >> 1 because one can neglect the existence of all other

components apart of the giant strongly connected component GS. In the general case this is

not correct since many real networks are characterized by non-empty IN, OUT, T and DC

components.

Due to the existence of different types of components, the placement of seeds strongly affects

the number of nodes that are activated at the end of the percolation process. In this section

we analyze the bootstrap percolation process in directed complex networks with seeds which

are put only in the specific components: GS, IN and OUT. In figures 3.5, 3.6 and 3.7 results of

simulations of bootstrap percolations in Erdős-Rényi for the OUT , IN and GS cases, respectively,

for an activation threshold k = 2 are plotted. The parameter f is the fraction of nodes of the

chosen components which are seeds.

For the OUT component (figure 3.5) case we can see that we achieve a bigger Sa for 〈qi〉 = 1.5

(even though k = 2) which, for the several mean degrees 〈qi〉 plotted, is the closest to the value

1.35 which is the maximum size of the component OUT as one can see in figure 1.6. Since nodes

in the OUT cannot activate nodes in the rest of the graph, the activation of other nodes is almost

non-existent. The number of activated nodes in the end is approximately equal to the number of

seeds.
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Figure 3.5: Fraction of active nodes Sa versus fraction of seeds f for Erdős-Rényi graphs for
several mean degrees for k = 2. The seeds were only placed in the OUT. f is the fraction of nodes
used as seeds in the OUT. The size of the network is N = 104 nodes.

For the IN component (figure 3.6) case we also have a bigger number of activated nodes for

〈qi〉 = 1.5. Contrary to the OUT case there is some activation of other nodes by the seeds as the

IN can activate nodes in the GS and the OUT and some tendrils that are connected to IN and to

OUT.
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Figure 3.6: Fraction of active nodes Sa versus fraction of seeds f for Erdős-Rényi graphs for
several mean degrees for k = 2. The seeds were only placed in the IN. f is the fraction of nodes
used as seeds in the IN. The size of the network is N = 104 nodes.
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3.1. COMPONENTS

In the case of the giant strongly connected component GS (figure 3.7), Sa is overall greater

than the fraction of activated nodes found for the same mean in-degrees 〈qi〉 in the previous

cases . For 〈qi〉 = 1, Sa( f )≈ 0 since for this and lower mean degree the GS does not exist as one

can see in figure 1.6. As 〈qi〉 is increased we get a larger Sa due to the increase in size of the GS.

Also in the GS, nodes are more easily activated due to the larger node connectivity, in comparison

with the other components.
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Figure 3.7: Fraction of active nodes Sa versus fraction of seeds f for Erdős-Rényi graphs for
several mean degrees for k = 2. The seeds were only placed in the GS. f is the fraction of nodes
used as seeds in the GS. The size of the network is N = 104 nodes.
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4
BOOTSTRAP PERCOLATION IN WEIGHTED DIRECTED NETWORKS

Many real complex systems such as neural networks [10] are weighted networks. In directed

weighted networks the cascade process is different from one in directed unweighted networks.

In weighted networks each edge has an weight w with a probability density P(w) while on

unweighted networks each edge is considered to have a weight w = 1.

Let us define the function f (i) of whether a neighboring incoming node i is active or unactive,

f (i)=
{

1, if i is active

0, if i is unactive

during the cascade process, a node with qi neighboring incoming nodes will become active if,

(4.1)
qi∑
i

wi f (i)= ls ≥ k

where wi is each neighboring incoming node weight, l is the number of active incoming nodes

and s is the sum of their weights. The probability density function of the sum of weights w is

denoted by Ps,qi (s).

Since every combination of weights of which sum ranging from k till ∞ can activate a node,

we add the integral of Ps(s) from k to ∞ to the equation of the boostrap percolation 3.1. The main

equation for the boostrap percolation in weighted directed networks is,

(4.2) Z = f + (1− f )
∞∑

qi=1,qo=0
P(qi, qo)

qi∑
l=1

(
qi

l

)
Z l(1−Z)qi−l

∫ ∞

k
Ps,qi (s) ds

Since one edge alone can weight enough to activate a node, both the sums for the variables qi

and l must start at 1. Ps,qi (s) is the probability density function of the sum of the edges weights

incoming from l active nodes. If the weights and the mean in-degree distributions are correlated
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then we need to account for this correlation, Ps,qi (s) will have a different distribution for each qi

because there will be a different weight distribution P(w) for each qi.

If the probability density of edge weights follow a normal distribution with mean 〈w〉 and vari-

ance σ2
w, W ∼ N

(〈w〉, σ2
w
)
, the sum of l weights follows a normal distribution S ∼ N

(
l〈w〉, lσ2

w
)
,

(4.3) Ps,qi (s)= 1p
2πlσw

exp
[
− (s− l〈w〉)2

2lσ2
w

]

If w is not normally distributed one also can apply the Central Limit Theorem to approximate

Ps,qi (s). In this case, the mean in-degree must be sufficiently large for a given mean edge weight

in order to neglect the cases of small values of l when the normal distribution (Eq. 4.3) is not a

good approximation for Ps,qi (s).

In this work we use a weight distribution P(w) which is approximately equal to the normal

distribution. Since we don not want any negative weights, in the simulations, when the random

number generator generates a weight smaller than zero, the generator is run again until it

generates a number greater than zero. The shape of this distribution is different from a normal

distribution. This is specially true for large variances and we should take it into account in the

theoretical formula where we need to model the real weight distribution and not use any normal

approximations. Since the weights are generated randomly we will denote Ps,qi (s) by Ps(s).

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f

S
a

data

theoretical

simulation

Figure 4.1: Theoretical (solid curve) and simulation (circles) data for N = 104 nodes, mean
in-degree 〈qi〉 = 5, and weights distribution W ∼ N(1,0.04).

Figure 4.2 represents results of bootstrap percolation simulations results for unweighted

directed networks with 〈qi〉 = 5 and weighted directed networks with the same mean in-degree

and weight distribution W ∼ N(1,0.04) .
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Figure 4.2: Simulation data for bootstrap percolation in unweighted directed networks (diamonds)
and weighted directed networks (stars) with weight distribution W ∼ N(1,0.04) for N = 104 nodes,
mean in-degree 〈qi〉 = 5 and activation threshold k = 3.

Analyzing figure 4.2 we can see that Sa in the unweighted case is greater (or equal for f → 1

and f → 0) than in the weighted case. Since the mean in-degree and the threshold k are both the

same in both cases and that 〈w〉 = 1 in the weighted case, it should be expected that when we

decrease the weights variance σ2
w, the bootstrap percolation in the weighted case must become

closer to the bootstrap percolation in the unweighted case.
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Figure 4.3: P(s) for 3 edges which weights follow a normal distribution W ∼ N(1,0.04).
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Since the activation threshold k is an integer, in the case k = 3 and the mean weight 〈w〉 = 1,

there is some probability Ps,(s < l) that the unactive node may not become active when the

number of active neighbouring nodes is l = k. In the unweighted case the unactive node will

always be activated. In figure 4.3 it is represented the distribution of the sum of 3 weights

following a normal distribution W ∼ N(1,0.04). Only when s > 3 the node will be activated.

In figure 4.4 we can see bootstrap percolation simulation data for several weight standard

deviations σw. As σw increases, the larger Sa becomes and a jump in the activation appears

starting at σw = 1. In figure 4.5 we can see the distributions of the weights with standard
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Figure 4.4: Simulation data for bootstrap percolation in random weighted directed complex
networks for several weight standard deviations σw and mean weight 〈w〉 = 1. Here, the mean
in-degree 〈qi〉 = 5, the activation threshold k = 3 and N = 104 nodes.

deviations equal to the ones used in 4.4. In figure 4.6 we can see the distributions of the sum of 3

weights for the same standard deviations in the two previous figures.

The increase of Sa with increasing σw can be explained due to the increase of 〈w〉 as σw

increases. This is due to the effective distribution of weights Ps(s) being generated from the

initial normal distribution with the variance σw by forbiddance to have negative weights. This

leads to increasing < w > and therefore 〈s〉 with increasing σw (see Fig. 4.5 4.6).
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Figure 4.5: Edges weight distribution for several weights standard deviations σw with mean
weight 〈w〉 = 1.
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Figure 4.6: The distributions Ps(s) of the sum of three weights s = w1+w2+w3 with distributions
P(w) equal to the ones in figure 4.5. When the standard deviation σw of the weights increases,
the mean sum of weights 〈s〉 increases.
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5
PROBABILITY BASED BOOSTRAP PERCOLATION IN DIRECTED

COMPLEX NETWORKS

Let us consider another kind of cascade model on unweighted networks a so called probability

based percolation process. In this model every edge has the same probability p of transmitting a

signal. A node will become active if at least k active incoming neighboring nodes send a signal

simultaneously. The activation probability is given by a binomial distribution,

(5.1)
l∑

t=k

(
t
l

)
pt(1− p)l−t

where l is the number of active incoming neighboring nodes and t the number of active incoming

neighboring nodes that sent the signal.

Instead of equation 3.1, the boostrap percolation equation is now:

(5.2) Z = f + (1− f )
∞∑

qi=k,qo=0
P(qi, qo)

qi∑
l=k

(
l
qi

)
Z l(1−Z)qi−l

l∑
t=k

(
t
l

)
pt(1− p)l−t .

In the simulations, if we use the condition used so far for the end of the boostrap percolation

process where the process ends if the fraction of active nodes Sa in the last iteration n, is the

same as Sa in the previous iteration n−1, the previous equation 5.2 does not hold. Whereas the

avalanche process would always stop in a non-probability based percolation at an iteration n−1,

in a probability based percolation, between iterations n−1 and n, we are giving another chance

of activation of the nodes that previously did not activate due to simple probability, therefore the

process will not stop. The number of total iterations n in a probability based percolation will be

larger than n in a non-probability based percolation. If we ignore our boostrap percolation ending

condition and let the process run for a large enough n, Sa in a probability based percolation
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process will be the same as in a non-probability based process. To limit the number of chances a

node gets to become active, every time a neighboring incoming node becomes active, the node will

get another chance at the activation. Therefore a node will get a maximum of qi −k+1 chances

at the activation. Other condition of activation was tested where each node would only get one

chance at the activation across the whole simulation, when it would have at first at least k active

neighbors, but this condition has proven to be worse when compared to the theoretical result of

the previous formula.

In figure 5.1 we can see the comparison between the theoretical result given by the previous

equation and simulation data for p = 0.7 for the model in which each node has at maximum

qi − k+1 chances to become activated. The results show some disagreement in the interval

f ≈ [0.2,0.6]. Even though 〈qi〉 = 5 and the size of the GS ≈ N, the difference in the results could

be due to the non-negligible size of the other network components. This difference can also be

due to activation condition.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

f

S
a

data

theoretical

simulation

Figure 5.1: Probability based percolation in Erdős-Rényi with probability p = 0.7, activation
threshold k = 3 and mean average in-degree 〈qi〉 = 5. Both the theoretical results (solid line)
given by 5.2 and simulation data (diamonds) for N = 104 nodes are plotted. In the simulations
each node has at maximum qi −k+1 chances to become activated.
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6
BOOTSTRAP PERCOLATION IN REAL NETWORKS

In order to apply the theoretical approaches developed above to real networks, we now compare

some bootstrap percolation theoretical results and simulations results for a Twitter network,

Google+ network and the neural network of the worm Caenorhabditis elegans. The first two

networks, which are social networks, the activation threshold can be viewed as a "trust" level

where a person becomes "active" if he/she receives the same type of information from at least

k other people. For the neural network of the worm Caenorhabditis elegans the neurons can be

viewed as nodes and the synapses and gap junctions between them as edges. This network is also

weighted where the weights are the conductances of chemical and electrical connections between

neurons.

6.1 Twitter

The Twitter network which we used [21] is composed by N = 81305 nodes. The in-degree and

out-degree distributions follow a power-law distribution with the mean in-degree 〈qi〉 ≈ 29.8

and the mean out-degree 〈qo〉 ≈ 34.5. This network consists only in the giant strongly connected

component GS having size of 68413 nodes (84.14% of N) and the OUT component having size of

12891 nodes (15.86% of N).

Results of bootstrap percolation simulations run in this network are presented in figure 6.1.

The theoretical result obtained through equation 3.1 is also presented in the same figure.

As we have discussed, the larger is the giant strongly connected component GS, the more

accurately the bootstrap percolation equation 3.1 represents a real bootstrap percolation process.

As we can see in figure 6.1 both theory and simulation results are in a very good agreement

due to most of the network being composed by GS. This agreement is not perfect though, we

can see some slight differences between the two lines. The size of the OUT component is not
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Figure 6.1: Boostrap percolation in a Twitter directed network with an activation threshold k = 3
and N = 81305 nodes (blue diamonds). The theoretical result calculated through equation 3.1 is
also shown (black line). Both results are in a good agreement.

negligible (15.86% of N) and this is why both plotted theoretical and simulation lines are a little

bit different from each other.

6.2 Google+

The Google+ network which we used [21] is composed by N = 107614 nodes. The in-degree and

out-degree distributions follow a power-law distribution with the mean in-degree 〈qi〉 ≈ 4.7 and

the mean out-degree 〈qo〉 ≈ 7.9. This network has a giant strongly connected component GS with

size of 69501 nodes (64.58% of N), a OUT component having size of 7924 nodes (7.36% of N) and

a IN component having size of 338 nodes (0.31% of N), while the rest of the network consists in

tendrils.

Results of bootstrap percolation simulations run in this network are presented in figure 6.2.

The theoretical result obtained through equation 3.1 is also presented in the same figure.

Contrary to the Twitter network, the size of the giant strongly connected GS is rather small.

The OUT and IN components are also small in size. As we can see in figure 6.2 the theoretical

and simulation results are very different which is due to the fact that the remaining part of the

network is occupied by tendrils which are not taken into account in equation 3.1. The fraction of

activated nodes Sa in the theory is bigger than in the simulations: the theory expects a bigger
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Figure 6.2: Boostrap percolation in a Google+ directed network with an activation threshold k = 3
and N = 107614 nodes (blue diamonds). The theoretical result calculated through equation 3.1 is
also shown (black line).

connectivity in the network, characteristic of a large giant strongly connected component GS,

which in this network is very small.

6.3 Caenorhabditis elegans neural network

The Caenorhabditis elegans’s neural network we used [22] is composed by N = 297 nodes. The

in-degree and out-degree distributions follow a power-law distribution with the mean in-degree

〈qi〉 ≈ 8.65 and the mean out-degree 〈qo〉 ≈ 7.9. The edge weights distribution has mean value

〈w〉 = 3.76 and is correlated with the degree distributions.

This network has a giant strongly connected component GS having size of 239 nodes (80.47%

of N), a OUT component having size of 27 nodes (9.09% of N) and a IN component having size of

16 nodes (5.38% of N).

Results of bootstrap percolation simulations run in this network are presented in figure 6.3.

The theoretical result obtained through equation 4.2 is also presented in the same figure. Since

the edge weights and the mean in-degrees are correlated we need to model a different Ps(s)

for each qi. The results are in good agreement for f > 0.4, while for lower values of f there is

some noticeable difference between the two plots. The giant strongly connected component GS

only occupies 80% of the network being this the main reason for the disagreement. It is worth

to mention that this network is relatively small, N = 297 nodes, and our bootstrap percolation
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Figure 6.3: Boostrap percolation in a Caenorhabditis elegans weighted directed network with an
activation threshold k = 8 and N = 297 nodes (blue diamonds). The theoretical result calculated
through equation 4.2 is also shown (black line).

formula works best when N →∞. Moreover, our approach was developed for tree-like networks

while the C. elegans network has a large clustering coefficient [10]. The number of nodes activated

by the percolation process in networks with a large clustering coefficient is larger than those

activated in tree-like networks. In our case, this is noticeable for f = [0,0.05] where Sa in our

theoretical results are smaller than the simulations results.
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7
CONCLUSION

In this work we have increased our understanding of the bootstrap percolation process in random

directed networks with an activation threshold k. We have begun in Chapter 1 by giving a

basic introduction to complex networks and in Chapter 2 reviewing the bootstrap percolation

in undirected complex networks. In Chapter 3 we have entered the main objective of this work

that was to study the bootstrap percolation process in random complex directed networks. We

formulated the bootstrap percolation process in this type of networks and found a good agreement

between our theory and simulations. Next we’ve seen how the giant strongly connected component

GS and the OUT and IN components affect the percolation process when seeds are put only in

these components. In random networks, as the mean degree 〈q〉 becomes large enough, GS gets

the leading contribution to the percolation process since it dominates all the network. The size of

the OUT and IN components, and all the other components becomes negligible. Due to this fact,

the role of the components in the percolation process is somewhat difficult to study in random

networks with an activation threshold. While the mean degree should be relatively low enough so

that the size of the IN and OUT components is noticeable, a low mean degree makes it difficult

for the percolation process. The roles of the IN and OUT components in random networks can’t be

fully studied due to this fact. Nonetheless if we would like to activate the largest part possible of

a network with all the components with the same size and if we could only choose one component

to place the seeds, this would be generally the IN component since it can activate GS and then

the OUT component.

In Chapter 4 we have formulated the bootstrap percolation process in weighted directed

networks where the edges weights follow an arbitrary distribution. It was found a good agreement

between the theory and the simulations. In Chapter 5 we studied the probability based percolation

also with an activation threshold where the nodes have a probability p of sending an activation
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signal to their out neighbors. The theory and the simulations are in a good agreement, having

only a small quantitative disagreement. Since the activation is probability based, if we could

give infinite chances at the activation, the number of activated nodes of this type of bootstrap

percolation would be the same as the normal process studied before. The correctness of our

proposed bootstrap percolation process formula is dependent on the number of chances a node

gets to become active.

In Chapter 6 we applied the theory from the previous chapters to real directed networks.

Real networks are noticeably different from random networks. One of the main differences is the

relative sizes of the components. While random complex networks (Erdős-Rényi networks) with

〈q〉 ≥ 5 are mainly composed by the giant strongly connected component GS and the size of the

periphery is negligible, on real networks with a large mean degree we can’t neglect the size of the

components. Our bootstrap percolation formulas are based on a large network connectivity (a

large GS) and this connectivity is much smaller the more components there are on a network.

Networks with a large GS such as our tested Twitter network, even though it had a non-negligible

OUT component, the bootstrap percolation simulations results are in good agreement with the

theory. In the case of the Google+ network, our bootstrap percolation equation disagrees with

the real results of the simulations since the size of the network components (apart from the

GS) are non-negligible. On the neural network of the worm Caenorhabditis elegans the theory

and the simulation results are in a good agreement with some quantitative disagreement for

lower seed fractions f due to GS being accompanied by other types of components. Also this

small disagreement is due the network itself being relatively small and having a large clustering

coefficient, while our approach was developed for tree-like networks with infinite size.

For further investigation one can study the bootstrap percolation process with a variable

threshold [6], where each node has a different activation threshold k. Concerning the probability

based percolation, one can also study the case where each edge has a different probability p akin

to the weighted network type.
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