
Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2017

Miguel Chagas Bilhau
Machado

Sistema de Monitorização baseado em Fog
Computing
Monitoring System based on Fog Computing

”Permanence, perseverance
and persistence in spite of all
obstacles, discouragements,
and impossibilities: It is this,
that in all things distinguishes
the strong soul from the
weak.”

— Thomas Carlyle

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2017

Miguel Chagas Bilhau
Machado

Sistema de Monitorização baseado em Fog
Computing
Monitoring System based on Fog Computing

Universidade de Aveiro
Departamento de
Electrónica, Telecomunicações e Informática

2017

Miguel Chagas Bilhau
Machado

Sistema de Monitorização baseado em Fog
Computing
Monitoring System based on Fog Computing

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requesitos necessários à obtenção do grau de Mestre em Engenharia de Com-
putadores e Telemática, realizada sob a orientação cient́ıfica de António Rui
de Oliveira e Silva Borges, Professor do Departamento de Electrónica, Tele-
comunicações e Informática da Universidade de Aveiro e com a colaboração
técnica de Eng. António Manuel Silva Oliveira da WithUs, Lda.

o júri / the jury

presidente / president Professor Doutor Lúıs Seabra Lopes
Professor Associado da Universidade de Aveiro (por delegação do Reitor da Univer-

sidade de Aveiro)

vogais / examiners committee Professor Doutor António Rui de Oliveira e Silva Borges
Professor Associado da Universidade de Aveiro (orientador)

Doutor Pedro Lopes da Silva Mariano
Investigador da Faculdade de Ciências, Universidade de Lisboa(arguente externo)

Agradecimentos Tudo o que alcancei durante a minha vida devo, em parte, ao apoio incod-
icional da minha familia e amigos, a eles desejo o melhor. Em particular,
queria realçar a importância dos meus pais e avós pelo amor e pela educação
que me concederam. Quero ainda agradecer ao meu mentor, o Dr. António
Borges e ainda ao Eng. António Oliveira, pelo aconselhamento e visibilidade
concedidos durante a realização do meu trabalho. Por último, fico grato
pela disponibilidade do Eng. João Reis que me auxiliou na concretização da
prova do conceito nos protótipos das tomadas inteligentes.

Acknowledgements The achievements throughout my life could not happen without the support
of my family and friends. I wish them the best. I would specially like to thank
both my parents and grandparents for their love and guidance. Finally, I
would like to thank my supervisor, Dr. António Borges and technical advisor
Eng. António Oliveira, for their advisement, knowledge and sponsorship.
They have my utmost respect. Ultimately, I would like to express my
gratitude towards Eng. João Reis, from WithUs Lda. which helped me
deploy the intelligence required to perform the proof of concept in the plug
prototypes.

Keywords fog computing, cloud computing, Internet of Things

Resumo Este documento apresenta uma arquitectura como solução para o desen-
volvimento de uma camada extra de poder computacional entre os serviços
na núvem e a Internet das Coisas, denominada de computação no nevoeiro.
Esta camada é responsavel pela gestão e recolha de dados provenientes de
conjuntos de sensores, geograficamente distribúıdos, em ńıveis inferiores.
Assim, o nevoeiro permite servir como ponto de agregação comunicando
directamente com a núvem, minimizando a quantidade de tráfego na rede.
A solução descreve a camada de nevoeiro como um conjunto de grupos de
nós que se agrupam e organizam como um todo, autonomamente. Existem
ainda mecanismos auxiliares que permitem a existência de um certo grau de
tolerância a falhas de forma a manter o status quo do sistema em ambientes
ub́ıquos, lidando com as constantes alterações de contexto. A solução foi
testada e validada atravéz de uma prova de conceito onde foram realizados
três casos de teste, concebidos de forma a abranger todos os componentes
da mesma.

Keywords fog computing, cloud computing, Internet of Things

Abstract This thesis is a contribution of an architectural solution, describing a system
that represents an extra layer of computing power, placed between the cloud
and sensor networks, acting both as a mediator whose central task is to
manage, monitor and collect data from geographically-located groups of
sensor nodes and as a communication hub to the cloud with which data is
exchanged in a compact and minimalist fashion. The latter is accomplished
by designing nodes as autonomous entities, able to organise themselves
in smaller groups, within the system. Additionally, these entities possess
inherent mechanisms which aim to accomplish fault tolerance within groups
of nodes, maintaining the status quo of the overall system while performing
in an ubiquitous environment, continuously embracing contextual changes.
The overall solution was tested in a proof of concept where we conceived
three test cases that helped us validate it.

Contents

Contents i

List of Figures iii

List of Tables v

List of Acronyms vi

1 Introduction 1

1.1 Historical Context . 2

1.2 Thesis Goals . 5

1.3 Thesis Structure . 6

2 State of the art 9

2.1 Distributed systems . 9

2.1.1 Distributed Computing Systems . 10

2.1.2 Fog Computing . 11

Embrace contextual changes . 12

Encourage ad hoc composition . 13

Recognize sharing as the default . 13

2.2 Peer-to-Peer Systems . 14

2.2.1 Taxonomy . 14

2.2.2 Centralized Systems . 15

2.2.3 Decentralized Systems . 16

2.2.4 Resource Storage and Sharing . 18

2.3 Fault Tolerance . 19

2.3.1 Fault Tolerance Taxonomy . 19

Fault classification . 19

Crash classification . 19

2.3.2 Fault Assertion . 20

2.3.3 Fault Masking . 20

2.3.4 Replication . 20

2.3.5 Preemptive Status Feedback . 21

2.3.6 Heartbeat Mechanisms . 22

The (Non-)quiescent factor . 22

Operational protocol . 23

2.3.7 Leader Election Algorithms . 23

i

2.4 Sensor Networks . 24
2.4.1 Internet of Things Role in the Fog . 26
2.4.2 Ad hoc Wireless Networks . 26

3 Engineered Solution 29
3.1 The Architecture . 31

3.1.1 Node Groups . 32
Topology . 33

3.2 Node . 33
3.2.1 Finite State Machine . 34
3.2.2 Communication . 37

Design . 38
Message structure . 41

3.3 Fault Tolerance . 41
3.3.1 Heartbeat System . 42
3.3.2 Group Leader Election . 44
3.3.3 Additional Redundancy in the Finite State Machine 46

3.4 Fog-IoT Continuum . 49
3.4.1 Resource Sharing Procedure . 50
3.4.2 Device Response Under Node Crash . 51

4 Proof of concept 53
4.1 Methodology . 53
4.2 Test Cases . 57

4.2.1 Simultaneous Start . 57
4.2.2 Crashing Nodes . 58
4.2.3 Sensor Aggregation . 59

4.3 Results . 60
4.3.1 Simultaneous start . 61
4.3.2 Crashing nodes . 63
4.3.3 Sensor aggregation . 66

Stable environment . 68
Aftermath . 68

5 Conclusion 77
5.1 Achievements . 77
5.2 Further Improvements . 78

Bibliography 79

ii

List of Figures

2.1 Cluster computing system exaple . 10

2.2 A layered architecture example regarding grid computing 11

2.3 P2P networks taxonomy . 15

2.4 Centralized P2P architecture . 15

2.5 Unstructured P2P network . 16

2.6 Structured P2P network with a Star topology 17

2.7 HONet P2P network organization . 18

2.8 A system with a replicated process . 21

2.9 Active/passive feedback supply of system A status 22

2.10 Bully algorithm election process, left to right, top-down. 24

2.11 Three different approaches regarding sensor networks 25

3.1 Typical structure composed by the cloud, Fog and IoT 30

3.2 Fog Computing system comprised by groups of nodes, i.e. neighbourhoods . . . 32

3.3 Communication topology within a group . 33

3.4 Initial state in the FSM . 35

3.5 Transitional state detached triggers the transition independently. 35

3.7 Blocking state get acquainted triggers the transition independently. 36

3.6 Timeout event leads to group leader transition. 36

3.8 Blocking state in group triggers the transition independently. 37

3.9 UDP segment structure . 38

3.10 Communication module . 39

3.11 Receiver thread behaviour . 40

3.12 Sender thread behaviour . 40

3.13 Conceptual message object . 41

3.14 Conceptual Heartbeat module with two independent threads 42

3.15 State transition upon receiving start election 44

3.16 Decision process imposed on leader election mechanism. 45

3.17 Detached, Looking for Group and Group Leader states with expected trigger
messages and additional redundancy. 47

3.18 Detached, Looking for Group, Group Leader, Get Acquainted and In Group
states with extended triggering messages. 48

3.19 FSM overall functionality enhanced with intelligence by the induction of redun-
dancy. 49

3.20 Interoperability between a plug and a node . 50

3.21 Conceptual node-device scenario . 51

iii

3.22 Crash and subsequent self-alignment of the network. 52

4.1 A gateway prototype used in the proof of concept, provided by WithUs Lda. . . . 54
4.2 Two smart plug prototypes used in the proof of concept, also provided by WithUs

Lda. 54
4.3 Proof of concept topology, in comparison to figure 3.1. 55
4.4 The topology used as a concept in the proof of concept. 56
4.5 The actual distribution used regarding plugs and nodes. 56
4.6 Simultaneous start of five nodes and their states 58
4.7 Simultaneous burst of nodes connecting to node zero 59
4.8 Crash occurrence in the two lowest UID nodes 60
4.9 Initial information displayed by each node, as Detached, on the connected

terminal. 61
4.10 Nodes one, two and three joined node zero group after simultaneous start. . . . 62
4.11 Node four joins the group from node zero perspective. 62
4.12 Node four UI information after the simultaneous start. 62
4.13 Sixth node internal information. 63
4.14 Node zero UI as Group Leader . 64
4.15 Node four is not receiving heartbeats from node zero 64
4.16 Node one UI, now as Group leader. 64
4.17 Node two UI . 65
4.18 Node three UI . 65
4.19 Node four UI . 65
4.20 Node two UI with node three and four still in group 66
4.21 Node two UI with node four remaining . 66
4.22 Node four UI with node two as Group Leader 67
4.23 Node four as the remaining node, now as Group Leader 67
4.24 Node zero, UI with aggregated sensors . 69
4.25 Node one, UI with aggregated sensors . 70
4.26 Node two, UI with aggregated sensors . 70
4.27 Node three, UI with aggregated sensors . 71
4.28 Node four UI, with aggregated sensors . 72
4.29 Node two, UI with aggregated sensors . 73
4.30 Node four UI, with aggregated sensors . 74
4.31 Node four UI, with all sensors aggregated . 75

iv

List of Tables

3.1 Group table . 33

4.1 Plug data table . 60

v

List of Acronyms

ACID Atomicity Consistency Isolation and Durability.

ADT Abstract Data Type.

ARPA Advanced Research Projects Agency.

ARPANET Advanced Research Projects Agency Network.

CM Communication Manager.

DARPA Defense Advanced Research Projects Agency.

E2E End-to-End.

FIFO First In First Out.

FNC Federal Networking Council.

FSM Finite State Machine.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

HB Heartbeat.

HONet Hybrid Overlay Network.

ID Identifier.

IMP Internet Message Processor.

IoT Internet of Things.

IP Internet Protocol.

IPv6 Internet Protocol version Six.

LAN Local-Area Network.

M2M Machine-to-Machine.

vi

MANET Mobile Adhoc Network.

MTU Maximum Transmission Unit.

P2P Peer-to-Peer.

PLC Power-line Communication.

RFID Radio Frequency Identification.

SaaS Software as a Service.

SSH Secure Shell.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

UI User Interface.

UID Unique Identifier.

URI Uniform Resource Identifiers.

VANET Vehicular Adhoc Network.

WBAN Wireless Body Area Network.

WSAN Wireless Sensor Area Network.

WSN Wireless Sensor Network.

YAPPERS Yet Another Peer-to-Peer System.

vii

viii

Chapter 1

Introduction

The present document is a reflection of the acquired knowledge throughout a year’s work.
The elaborated solution emerges as a consequence regarding the Internet enhanced by ”things”.
”Things” because we face a new paradigm regarding computational capabilities of a widening
range of smart devices. In turn, the internet is acquiring new kinds of end-points which resulted
in the Internet of Things (IoT) where computing is regarded to be everywhere, ubiquitously.

Moreover, the increase in quantity regarding these devices, augments the complexity within
such environments, thus, new assets will appear as an opportunity to achieve higher quality
in services by providing dedicated intelligent controllers closer to these environments. The
paradigm which envisions the allocation of processing power at the edge of the network and
beyond is commonly addressed as Fog Computing [Open Fog Consoritum (2017)]. In addition,
it can be regarded as a system deployed to control the pervasiveness in IoT environments,
providing dedicated services.

Furthermore, we direct our approach towards a Fog Computing System capable of monitor-
ing the electric grid by processing and collecting data from such environment. In turn, these
can be used as an end-service taking advantage over the real-time awareness of Fog Computing.
Additionally, we envision a larger system, composed by a Cloud, Fog and IoT. To the former,
we delegate the aggregation of data from the Fog nodes, meaning the Cloud can provide
Software as a Service and Infrastructure as a Service from a global scope, regarding the Fog
nodes as a whole. Another approach towards the Cloud in respect to the large amounts of
storage it can provide, i.e. databases. We can take advantage of the Cloud as a huge database
while we assign the Fog control over context-oriented intelligence, managing the pervasiveness
in IoT environments.

This thesis is a collaborative effort between WithUs1 and the University of Aveiro2 where
the former presented a problem that could be considered for a master thesis research. This
exposure from WithUs takes place due to the constraints in current IoT scenarios and the
associated constraints in current designs. The increased complexity and heterogeneity between
IoT contexts turns Machine-to-Machine(M2M) communication an hard process. Thus, the
growing interest towards the development of a system, under the Fog Computing paradigm,
where it is possible to disregard the technological constraints in relation to communication
interfaces and dedicated hardware, by increasing the software complexity on each Fog node.

1http://www.withus.pt/
2http://www.ua.pt/

1

http://www.withus.pt/
http://www.ua.pt/

Ultimately we determine if this solution can be an appealing trade-off by successfully managing
itself, as an infrastructure, while communicating over the Internet Protocol version 6 (IPv6)
within its core.

1.1 Historical Context

Technological advancements regarding computational systems during the second half of the
20th century evolved to what is considered to be a digital world. The development of devices,
capable of performing computations proved to be a huge step towards the future. After the
first digital computing systems started to emerge, the commitment regarding resource storage
and sharing, began to prove a crucial aspect in relation to these systems. The first notion of a
global scale network of computers was envisioned by Licklider [Lickleider and Clark (1962)], as
a concept of a widespread network of computing systems. Computers would be interconnected
in a way where everyone could access resources with ease, despite their geographical location.
This kind of medium would allow individuals to collaborate on different areas contributing
by their own to a higher purpose. Although, this was only grasped as a concept, it led to
a technological revolution. The first step towards achieving a ”Galactic Network” started
with the ARPANET [Leiner et al. (2009)], a project whose goal was to interconnect distant
computing systems. In regard to its origins, as most leaps in technology throughout the
human history, this project was, in its early stages, a military initiative, more specifically, from
the Department of Defense of the United States of America. Moreover, an official document
from this agency, regarding ARPANET [Defense Communications Agency (1978)], states the
following:

”The ARPANET is an operational, resource sharing inter-computer network
linking a wide variety of computers at Defense Advanced Research Projects Agency
(DARPA) sponsored research centers and other DoD and non-DoD activities in
CONUS, Hawaii, Norway, and England. The ARPANET originated as a purely
experimental network in late 1969 under a research and development program
sponsored by DARPA to advance the state-of-the-art in computer inter netting. The
network was designed to provide efficient communications between heterogeneous
computers so that hardware, software, and data resources could be conveniently
and economically shared by a wide community of users. As the network successfully
attained its initial design goals, additional users were authorized access to the
network. Today, the ARPANET provides support for a large number of DoD
projects and other non-DoD government projects with an operational network of
many nodes and host computers.”

ARPANET is a project where different individuals came together aiming to achieve this
common goal. Research on different areas of computing provided the knowledge and resources
to make it possible.

Upon getting acquainted with the concept expressed in the paper ”Intergalatic Computer
Network” envisioned by Lickleider, Lawrence G. Roberts developed interest towards the
latter which led him to design a conceptual network of computers[Roberts (1967)]. Later on,
Roberts and Thomas Merrill made a proof of concept where TX-2 computers were connected
in mass to distant Q-32 nodes. Additionally, the medium used was a low speed telephonic
line. The results shown that the concept regarding the netting of computers was appealing

2

and doable, although, circuit switched telephone systems proved to be inadequate to perform
programmable computations and retrieval of data within the network[Leiner et al. (2003)].
Interestingly enough, this experiment is regarded as the first deployment of a wide-area network.
Furthermore an alternative was presented regarding the medium of communication. This was
a study published by Leonard Kleinrock at MIT, regarding packet-switching[Kleinrock (1961)].
It suggested a more efficient approach towards resource sharing where communication would be
established through the forwarding of packets instead of signals in a circuit. Packets would be
split into chunks which in turn would be independently routed between the nodes in the network,
from the source to their destination. These breakthroughs suggested that computing systems
could interoperate, performing vast amounts of programmable computations, whether running
programs or retrieving data. Also, Kleinrock’s work proved to be more adequate regarding
this network paradigm since the circuit switched telephone system was limited in regards to its
physical capabilities. Other breakthroughs were achieved like the Internet Message Processor
(IMP), a module used to switch packets between interconnected nodes, this allowed the
envisioned concepted by Licklider to become a reality. Granted this foundation, the networking
concept started do be used mainly between the military and academic institutions. As the
previous quote states, ”As the network successfully attained its initial design goals, additional
users were authorized access to the network”, suggesting that the successful implementation
of this kind of network gained visibility in other sectors, the advantages that this technology
brought services like finance, government and other private sectors to adopt it. Overall, the
various interested entities provided the means to develop new technologies due to the strength
of the investments in the computing area. After these early stages, technology advanced in
every aspect. From a size-wise perspective, computers, in general, suffered a reduction in
production cost and size, becoming available to a wider range of end-clients. Additionally, as
the portability increases, so does the processing power, resulting in a self-sustained development
phenomenon. The more appealing and widespread technology gets, the more developed it
becomes. New sectors bring new contexts into what is regarded as the interoperability of the
network. For instance, finance systems began to adopt the Internet as a mean to interconnect
different infrastructures, bringing new opportunities and services available for their clients.
By interconnecting computational devices, client record and account information could be
shared between end-points, facilitating the overall provisioning of the banking services. Even
so, not everything regarding technology is an advantage. As the computational systems
grow, so does the inherited complexity granted by the Black box concept. Furthermore,
the advancements in technology, led to the development of new resource-sharing tools. The
World Wide Web(WWW) was developed in the last decade of the 20th century, where Tim
Berners-Lee was the main protagonist in such achievements. The aim was to meet the needs
towards automatic information-sharing between scientific communities. Thus, the goal of the
WWW and the following browsers was to present information on-line by making documents
and information globally available through the use of Uniform Resource Identifiers (URIs)
providing ease of access. Following these developments, the ”opportunity pattern” emerges
once again. The development of new technologies and ways to distribute information lead to
a self-sustainable environment which one can state the following: The development of new
technologies, ultimately leads to the development of better and newer technologies in a near
future. This is only possible because computational systems are designed with abstract layers
over abstract layers, i.e. Black Box ;

What is meant by the latter is that the acquainted interest regarding a technology brings
new development opportunities that have not been discovered or met so far. Additionally,

3

taking the example of the first browsers, by developing new ways of structuring and presenting
information enhancements could take place. For instance, the concern over the displaying
of information in a browser, which led to the development of Graphical User Interfaces
(GUIs). In turn, this generated the need to develop dedicated hardware able to create visually
appealing interfaces. Hence, the first Graphical Processing Units (GPUs) originated. Its easy
to understand the concept beneath this. Computer science is a self-marshalled, self-fulfilling
area where the technological advancements breed new branches for enhancements. This
aggregation of technologies now represents what we recognize as ”The Internet” nowadays. In
1995 the Federal Networking Council passed on a resolution that stated the following:

”The Federal Networking Council (FNC) agrees that the following language reflects
our definition of the term Internet. Internet refers to the global information system
that – (i) is logically linked together by a globally unique address space based on
the Internet Protocol (IP) or its subsequent extensions/follow-ons; (ii) is able to
support communications using the Transmission Control Protocol/Internet Protocol
(TCP/IP) suite or its subsequent extensions/follow-ons, and/or other IP-compatible
protocols; and (iii) provides, uses or makes accessible, either publicly or privately,
high level services layered on the communications and related infrastructure
described herein.”

The internet focus is the sharing of resources and services, enabling developers approach
technology from an higher abstraction level. In order to provide a strong context regarding
the solution within this thesis, one considers the interconnection between the origin of the
internet and what it represents in modern society to be deeply connected with current and
future solutions. Technology, overall, evolved so rapidly that any hand-held device has more
processing power and storage than computing systems which occupied entire buildings when
ARPANET was founded. These enhancements made clear the need of new solutions regarding
resource access and sharing.

The first distributed systems emerged as a consequence of the Internet’s increasing com-
plexity. Some of the early approaches where through grid computing, using parallel computing
systems to achieve a common goal. Moreover, utility computing appeared as a solution
to provide resources through metered services, but, the rise of software as a service (SaaS)
led to subscriptions under applications via the network. Developers can now disregard the
means to deploy and maintain the services and can solemnly focus on the development of new
services and tools. Ultimately, we face ourselves under a new paradigm, Cloud Computing.
Different entities, like IBM, Google, Cisco and Amazon, mainly proposed the latter to achieve
high-performance computing and resource sharing as an utility, providing software as a service
(SaaS). Thus, cloud computing originates as a solution towards a wider range of services. The
concern over the infrastructure and service availability can be discarded, meaning that any
developer can adapt the dimension of the infrastructure, required to provide a service, as
the demand grows or diminishes. Thus, the Cloud can be seen both as an application which
delivers a service and also a scalable infrastructure that can be adjusted according to user
demands. Many solutions have been deployed, providing services to end-points like laptops,
desktops, and other terminals. These, provide dedicated services given the intended purpose
of the client, most of these provide a quality of service deemed fit for their clients, until recent
years. Moreover, the Cloud is not foreseen as an obsolete system. Instead, we address the
Cloud as a fitting solution which can handle huge amounts of information, improving the
overall services provided. Data Warehousing is one of the main roles the Cloud can represent

4

in future solutions, bringing different contexts together, exploiting the whole system as a
single entity, with smaller, self-managing components. Technology is at a stage where it is
possible do mass produce small programmable devices able to process and communicate. The
reduction, in size, of devices has moved towards a reality where it is possible to enhance objects
with intelligence whether they are moving vehicles, furniture, appliances or any other object,
i.e. ”thing”. In contrast with cloud computing, the vast amounts of devices and complexity
will turn out to be a huge constraint towards the use of SaaS and Data warehousing. The
same features that make the cloud a suitable candidate for many business applications are,
simultaneously, handicaps towards the quantity of processing and data generated beyond the
edge of the network. The increase in number of computational objects, led to the paradigm
of the Internet of Things. It represents the future of the internet as the latter is not only a
medium comprised by computers and data centres, instead, there is no assurance in regards
to the end-point we communicate to, thus, heterogeneity. It can be anything due to these
developments in electronics. It is possible to imagine our surroundings to be enhanced with
devices able to perform programmable computations. Smart cities, Smart Homes, generically
speaking, a smart grid, resulting in a pervasive computational environment. Hence, the need
for a pervasive infrastructure able to control, monitor and ultimately provide better services,
will require the deployment of dedicated system in relation to a certain context. At this point,
the Internet of Things indicates that ubiquitous computing must be supported by an adjacent
structure which handles the complexity of these environments, providing increased quality
in services. Hence, we reach Fog Computing as a solution to meet those demands. A new
paradigm able to handle the pervasiveness in these scenarios. Fog Computing is seen as a
model which can enhance the Cloud-IoT continuum through the allocation of dedicated nodes,
i.e. controllers, able to provide diverse and dedicated services at the edge of the network
and beyond. The distribution of context-oriented nodes, able to filter the collections of data
generated by ”things” will permit the creation of different levels of abstraction between the
Cloud and the IoT. Besides, the development of applications and services can be approached
from two different levels. At the level of the Fog, one sees distributed nodes with specific
intelligence intended to process the data collected from ”things” while from the cloud, one
can see the ”bigger picture” regarding the whole system, taking in consideration the various
clusters existing beneath it. From the cloud perspective most of the decision-making processes
are dedicated to the Fogging systems which will allow shifting cloud applications towards a
more sheer management over the whole system, due to the gain of contexts below each Fog
node.

1.2 Thesis Goals

The main goal is to present a system capable of gathering data while managing the ”Things”
in the Internet. As such, we propose an architecture inspired on state of the art distributed
systems. The goal is to deploy intelligent nodes capable of communicating among them.
Nodes are devices that perform programmable computations, cooperating to reach a stable
infrastructure in Peer-to-Peer fashion. Additionally, this architectural design was made under
the assumption of a real application in order to provide a development context. This was the
electric grid monitoring. Even so, the solution itself is not bound to any specific scenario or
application as it can be adopted by most, if not all, IoT scenarios. Also, Fog Computing is a
paradigm basis which can be used as a conceptual starting point in order to develop a solution.

5

The enhancement of nodes with fault tolerant mechanisms turn possible the ensurance of the
status quo. These are capable of handling node crashes as well as message delays and losses.

• An Architecture Inspired by current distributed systems, oriented to a peer-to-peer
design;

• An Autonomous Entitiy The system has entities which form smaller groups and organise
themselves autonomously. These are responsible for the delivery of services to the IoT
layer.

• Fault Tolerance The system can react to crash scenarios where nodes become offline.
Also, faults over network links cannot jeopardise the operation of nodes.

• An Operational Protocol between Nodes and Sensors The former must be capable
of receiving data from the latter data as well as maintaining the service, while there is
at least one of the former operating.

1.3 Thesis Structure

State of the Art - Chapter 2 We will analyse the State of the Art of the various
technologies involved in the development of a system under the Fog paradigm. Firstly
we discuss Distributed Systems as a model which can help design the infrastructure
over the Fog nodes. We also try to distinguish different models by classifying them and
subsequently exploring the concepts behind them. Moreover we explore the networking
infrastructure, specifically, P2P systems. These can be seen as an asset towards achieving
a network distributed system. We will explore the taxonomies involved and, which
advantages and disadvantages can be found towards the different designs. Additionally,
we try to extend each classification to the layers involved in the overall solution of this
thesis by making comparisons to the P2P designs and what we expect to achieve in the
Cloud-Fog-IoT continuum.

Furthermore, we discuss fault tolerance and ways to achieve such as well as intrinsic
mechanisms, which can provide the means to deliver a reliable system. At the end of
this chapter, we will have a brief discussion over sensor networks which are connected to
the design of the IoT environment, where Fog nodes are deployed.

Engineered Solution - Chapter 3 On the chapter that follows, we present and explain the
design of the conceived solution. This in turn, is supported by the different States of the
art acknowledged previously. We address the solution from a top-down perspective where
we will take a glimpse over the Cloud, Fog and IoT interconnection. Even so, the main
focus of the thesis is towards the development of a Fog Computing monitoring system,
thus, we will direct our efforts towards explaining the infrastructure involved at the Fog
layer. Which are the capabilities of each node, the associated intelligence and how the
infrastructure itself can be self-maintained without requiring human intervention. After
closing the Node behaviour and intelligence, we explore the induced mechanisms that
guarantee the stability of the status quo regarding the Fog. This will lead us to discuss
the fault tolerance mechanisms introduced within the system providing the means to
achieve a reliable infrastructure.

6

Proof of concept - Chapter 4 On the 4th chapter we will present the methodologies
and tests cases which served as an experiment towards the proof of concept. We
will approach different scenarios to explain the various aspects involved in the node’s
behaviour. Additionally we try to develop a generic scenario which can be associated to
a real environment. The results are presented as a consequence of these scenarios and
each test case is supported by the outcome of each simulation.

Conclusion - Chapter 5 We close the present document with a reflection over the
achievements and setbacks throughout research and development. Additionally, we also
suggest possible areas of improvement or enhancement in regard to the overall solution.

7

8

Chapter 2

State of the art

Throughout this chapter we overview the current solutions required to build a distributed
system over the Fog Computing context. Besides distributed systems, we will grasp Fog
Computing as a design concerning the pervasiveness on IoT environments, while providing
services to wireless networks and how both can cooperate, in order to achieve a system
capable of providing functional pervasiveness. Additionally, the study of mechanisms that
guarantee such characteristic are also fathomed. The state of the art regarding these subjects is
supported by different authors and constitutes an insight perspective over what is a first-person
understanding over the subjects.

2.1 Distributed systems

The capability to reach a solution is largely determined by how well the concepts and
designs are fathomed. As such, in order to provide a most suitable context, the following
quote is a categorical description regarding the definition of distributed systems[Tanenbaum
and van Steen (2004)]:

”A distributed system is a collection of independent computers that appears to its
users as a single coherent system.”

Distributed systems over the years were built aiming to achieve functional separation, reliability,
scalability , transparency and economic factors [Tanenbaum and van Steen (2004)]. These
characteristics are crucial if one desires to provide an homogeneous service despite the end
user. The scalability of a system is always related to the non-exclusiveness of its nodes, more
specifically, a node is exclusive if its functionality is unique in relation to other nodes. It is
uncommon a distributed system designing unique roles. Hence, distribution and scalability
are inherited through functional separation, guaranteed the means to do so. Another crucial
point is high availability, a characteristic shared among reliable systems. A system is reliable
if there under the occurrence of faults, its services are still being provided correctly (definition
is presented on section 2.3 page 19). This, in turn, leads us to transparency. A system must be
capable of providing a service or set of functionalities without requiring knowledge, regarding
its internals, from outside processes. This means that a consumer process, accesses a system
interface, provides an input and receives the subsequent output, alike the black box concept.

Moreover, Tanenbaum and van Steen [Tanenbaum and van Steen (2004)] consider the
taxonomy of distributed systems to be divided in three classes: distributed computing systems ;

9

distributed information systems; distributed pervasive systems. We will discuss the former
because it is a widespread design between business solutions like cloud computing. This will
help us understand the connection between the Cloud and the Fog. Oppositely, distributed
pervasive systems influence how Fog Computing fits the design of distributed system and
how it can overlap the IoT scenario providing ubiquitous services ad infinitum. Since a
pervasive context is always one of the assumptions that must be taken into consideration, the
author decided to discuss distributed pervasive systems within the Fog Computing section(see
section 2.1.2 on page 11) as a internal characteristic of the Fog. We will not discuss distributed
information systems because they are not related to the solution we aim to achieve, nonetheless
these can influence how the Cloud can operate. If we would consider to design a cloud-based
solution, this type of system would need to be fathomed.

• Distributed Computing System, a system comprised by programmable nodes which cooper-
ate to achieve a common goal;

• Distributed Information System, typically comprised by operations based on transactions.
These systems perform under Atomicity, Consistency, Isolation and Durability (ACID)
as a set of properties;

• Distributed Pervasive System, a system where computing is present ubiquitously, originating
smart environments.

2.1.1 Distributed Computing Systems

This type of computing systems takes advantage of large groups of nodes by performing
operations in parallel or collaboratively. The key is that, the system itself is comprised by
nodes which share a common goal. Two specific approaches within this class are cluster
computing and grid computing. The former method of computing consists on distributed
nodes over a high-speed cable connection in a local-area network (LAN). A node performs
synchronized work with other nodes on a parallel fashion. A design like this also requires a
master node to manage resource allocation and work distribution. Figure 2.1 [Tanenbaum and
van Steen (2004) Sec.:1.3.1 (page 17)] presents an example of the previous description:

Figure 2.1: Cluster computing system exaple

10

Whilst cluster computing systems are typically homogeneous in regards to their physical
characteristics, in grid computing the belonging nodes are quite the opposite.
Grid computing is a model which focuses on assembling different resources, making them
available to different end user groups so they can collaborate with each other. The latter
is achieved by forming virtual organizations[Tanenbaum and van Steen (2004)] in order to
control and assign access rights over the assembled resources. Additionally, Foster [Foster et
al. (2001) proposed an architecture regarding grid computing systems, figure 2.2 was taken
from [Tanenbaum and van Steen (2004) Sec.: 1.3.1 (page 19)].

Figure 2.2: A layered architecture example regarding grid computing

As Tanenbaum and van Steen enunciate, the fabric layer is responsible basic for operations
over resourcesm such as, status and means to find and manage those resources. At a higher
stand point, the Connectivity layer supports the access and communication required to
share different resources and data. This layer is also responsible for security regarding
communications and authenticity. Within the same layer, the resource layer is responsible for
the access of resources. By operating with the connectivity and fabric layers it provides an
access control regarding the data, allowing its configuration and process delegation. Above the
latter is the collective layer. It is responsible for the of scheduling and concurrency regarding
the resources within a virtual organization. At the top level, the application layer where
different processes take place regarding the specific access rights of an organization..

2.1.2 Fog Computing

Fog Computing emerged through the founding of the Open Fog Consortium, integrated by
Cisco, ARM Holding, Dell, Microsoft and Princeton University, among others, in November
2015 [Open Fog Consortium (2017)]. There are earlier references which will also be taken
into consideration, although, in order to grow towards a goal, we consider that different
organizations must come together and agree on a direction alike the ARPANET. Thus, we try
to gain insight on Fog Computing by considering the same scenarios the Consortium made
public through their reference document.

Fog Computing is defined by an horizontal architecture, which distributes resources and
services throughout the network [OpenFog Consortium (2015)], acting as a middle layer
between IoT and the Cloud continuum. Fog Computing requires support towards different
layers of application domains, delivering intelligence to businesses and users, allowing an en-
hancement of the IoT contexts in regard to the Cloud [OpenFog Consortium (2015)]. Although,

11

the primary feature resides in allocating processing power to the edge of the network, edge
computing and Fog Computing are not the same thing. The reason for such difference resides
on the fact that edge computing, in its core, provides services to users by pre-provisioning
resources at the edge of the network. On the contrary, Fog nodes can be deployed on the
edge of the network and beyond providing a dynamic pool of resources between devices
[OpenFog Consortium (2017)]. The application of Fog Computing can be set according to our
surroundings through wired or wireless networks. For instance, radio access networks are a
great example which allow functional control over the IoT scenario, allowing the distribution
of contexts and operation in overlapped environments. This means that the Fog approach,
does not only aim to reduce latency problems through the in loco basis but goes further
than that. Fog Computing is a mean to sustain basic operations and data collections, by
managing small computing devices, giving them purpose. Business intelligence, operational
and reliability issues are also important factors in the Fog development by deploying Fog nodes
throughout the environment. One special characteristic about these nodes is the reduced depen-
dency regarding human control. Thus, operating solemnly on the awareness of the environment.

Another subject shaped by this class of computing is the continuous shift of entities
interacting within a network and sub-networks of ”things”. For example, a car is a moving
object, if aware of its environment by connecting to surrounding sensors and vice-versa then,
there will be an instant where such object will have to communicate with surrounding networks
in order to send/receive and process data. Upon leaving, both must once again detect the
contextual change and react accordingly. Moreover, Grimm grasped the requirements over
distributed pervasive systems [Grimm et al. (2004)] which are the following:

• Embrace Contextual Changes;

• Encourage ad hoc composition;

• Recognize sharing as default.

This leads us to consider these categories as internals regarding a pervasive system.

Embrace contextual changes

The purpose of the cloud, under this paradigm, can be seen as an infrastructure which
collects data from the Fog Computing layer and assimilates it. The cloud displays a passive
behaviour, meaning that communication will mainly be made through an uplink direction,
from the Fog layer. Clearly, this happens because most of the intelligence and data aggregation
happens within the Fog. Contextual changes are not usual since pervasiveness exists below
the Fog, mainly in IoT environments. At such level, contextual changes are numerous.

Fog Computing must be able to scale accordingly. This means that at any time, devices
may connect or disconnect to the Fog without precedent notice. This type of contextual
change suggests that within the system, devices must be able to recognize each other and
react accordingly. Such behaviour is similar to Peer-to-Peer (P2P) networks where computing
systems within a network form groups of peers to achieve a common goal. Moreover peer-to-
peer network will be discussed (see section 2.2 on page 14). Embracing contextual changes
can only be achieved if:

• There is a network infrastructure able to support real-time processing that this type of
pervasiveness requires, typically ad hoc wireless networks;

12

• Sufficient coverage regarding nodes connected to the Fog system;

• Nodes must possess sufficient capabilities to guarantee their internal state invariant in
order to provide a correct service (later on we will define what a correct service is).

Regarding the IoT continuum, more specifically, sensor networks, their origin is due to the
aggregation of devices where the only guarantee is that there is no restriction in their behaviour.
Contextual changes are always happening. Devices may enter and leave each network without
notice. Thus, any crucial part of processing and data storage must be transferred to a stable
infrastructure. Sensor networks, IoT environements overall, are characterized by the infinite
possibles of service provisioning to end-users. Besides the contexts existing presently, the
augment of new technologies will generate newer contexts where intelligence must be deployed.
Ultimately, we can observe different, overlapping systems, handling resources from different
contexts. In turn, these will have to favour ad hoc composition in order to co-exist.

Encourage ad hoc composition

Due to the constrains made clear by contextual changes, it is obvious a the service must
be available despite such factors. A system with such requirements must be developed taking
in consideration that its composition will change at runtime. The interposition between
applications and networks must be a simple process in order to easy the correctness of the
services. The sole aim here is to take advantage of reusable behaviours in a way that changes
within the network and the system would act as a plug and play feature, keeping the overall
state stable continuously. A good example of this type of composition is ad hoc wireless
networks, discussed in section 2.4 on page 24 .

Recognize sharing as the default

In order to achieve a perfectly balanced structure, able to interact with heterogeneous
computing systems in a standardized way it is crucial to define interfaces able to carry out
required operations. What is meant is that independently of the device specifications, there has
to be set of operations able to satisfy interactions between nodes where different requirements
take place. Additionally, uniform ways to communicate and homogeneous data formats are
needed in order to ensure that communication between distinct devices is made transparently,
without the need to take in consideration different methods of delivering a service, through
different technologies.

Fog Computing is all about providing context, making use of the IoT scenario. It can also
be a solution with much potential towards achieving intelligent environments. On the following
section we take a look into sensor networks and how they are deployed. What is the state of
the art regarding ad hoc networks and how can these, under the IoT Fog scenario, help to
build a suitable infrastructure able to provide the services and performance required. Finally,
in order to guarantee transparency, communication protocols must be developed according to
interfaces in order to provide an uniform service despite system specifications [Tannembaum
and van Steen (2004)].

13

2.2 Peer-to-Peer Systems

So far, we have become familiar with distributed computing systems and distributed pervasive
systems through the Fog context. This brings us to P2P. These systems are commonly used
to share resources between different nodes spread across the internet. Many of these resources
are located on the edge of the network, like the nodes from Fog Computing. Hence, P2P can
be regarded as an archetype of distributed computing in a sense that it fits the description
regarding the categorization of distributed systems. Moreover, algorithmic research regarding
search algorithms has been a huge factor towards achieving high resource availability. P2P
architectures, specifically decentralized ones, normally share features like self-organization and
self-management. Additionally, Coulouris [Coulouris et al. (2012)] stated that P2P systems,
despite the taxonomy, share the following characteristics:

• Any node, i.e. peer, can contribute to parts of the system or to the system as whole;

• Nodes must be homogeneous regarding their functionality despite the kinds of resources
they may possess;

• The correct operability of a node happens disregarding any input from other entities,
thus being autonomous.

A key issue regarding P2P, which determines efficiency, is how accurately data is load
balanced accessed throughout these networks. Coulouris discusses Pastry and Tapestry as
possible solutions towards routing between peers[Coulouris et al. (2012)].

Many P2P solutions focus on resource sharing solutions, e.g. BitTorrent 1 . Although, this
is not the only capability of these systems. By taking advantage of different computational
systems, a P2P architecture can be enhanced through the use of the different techniques from
different designs.

Peer-to-Peer systems have different taxonomies. These can be centralized or decentralized.
The latter focuses on collaborative efforts, in a way that a portion of their resources is made
available to other components. The former is resource-oriented, this means that centralized
systems often do not depend so much on routing and search.

2.2.1 Taxonomy

From a top-down perspective, the taxonomy is devided as centralized or decentralized. In
centralized architectures there is a central server answering requests in this type of architecture.
The aim behind this approach resides in the fact that peers, in order to retrieve information
must establish connection to a central server which will then provide a tracker list where the
required resources are available. This lacks scalability and robustness mainly due to a single
point of failure. Solutions like BOINC 2 and Napster3 use this type of architecture to provide
their services. Besides centralized architectures, decentralized ones have a widened range of
implementation possibilities. This type of architecture only grants each peer a partial view
over the network. The key part in this type of architecture resides on the different approaches
towards building a network with such backbone. Depending on the system purpose, a P2P

1http://www.bittorrent.com/
2https://boinc.berkeley.edu/
3http//napster.com/

14

http://www.bittorrent.com/
https://boinc.berkeley.edu/
http//napster.com/

Figure 2.3: P2P networks taxonomy

architecture can provide the means to achieve robustness, security, fault tolerance and also
avoid single point of failure. Let us discuss the structures and topologies that can be taken
into consideration within a decentralized architecture. The topology of a P2P network can be
structured or unstructured. The main difference between these approaches is the way queries
are forwarded between nodes in the network.

2.2.2 Centralized Systems

As previously mentioned, the centralized P2P model consists on a network of peers with
document lookup directed towards a centralized server [Ding et al. (2016)].

Figure 2.4: Centralized P2P architecture

15

This server will in turn offer a list of peers where the intended resource is located. The
main property behind this interaction is that a centralized server would offer such list but
his functionality would strictly be so. All subsequent resource transfer is established between
peers. This kind of approach can be seen as an encouraging solution towards the structure
that must be established between the Fog and the Cloud. By applying this model, the Cloud
would manage attached peers in order to oversee operations and data collections. Peers in
turn, would communicate with each other and would only recur to the cloud if demanded.

2.2.3 Decentralized Systems

In unstructured topologies every peer has to maintain a dataset with possible neighbours
where queries might be sent. These structures are internally hierarchical in a way that,
depending on the approach taken regarding the topology, there is always a core within the
system that connects distant parts of the system.

Unstructured Network Topology Each peer is also responsible for its own data. The
major disadvantages dwell on the fact that: ”locating” resources might turn out to be a
complex process since there is no direct way of knowing where these are; ”uncertainty”
regarding response times and the completeness of the answers for the queries that have
been sent. This means there is no guarantee that a resource, within the network, will be
found.

Figure 2.5: Unstructured P2P network

A great example of an unstructured decentralized architecture is the Gnutella system.
The discovery process, in earlier versions, was based on flood routing strategy. This
lead to an increase of traffic throughout the networks. Also, as the network scaled
over, obtaining a successful answer shown to be harder. In order to circumvent this
problem, a new approach was taken towards the organization of the system itself. A
two layer hierarchy was introduced in order to optimize queries between peers. Peers
would be categorized as ultra peer and leafs [Zhonghong Ou (2010)]. The distinction
between layers was based on connecting neighbourhoods, i.e. groups of leafs, into a ultra
peer. Queries would be shared between the same neighbourhood and communication
between different groups of peers is established only between the ultra peers. Note that
an implementation like this would require some kind of reactive mechanism in order to

16

tolerate faults regarding the ultra peers. This could be achieved through leader election
mechanisms which will be discussed later in this chapter (see section 2.3.7 on page 23).

Structured Network Topology By using this architecture as backbone, a system is
aware of the location of the resources. Distributed hash tables are commonly used due to
their efficiency regarding indexing. This clearly makes queries more responsive and the
guarantees towards receiving an answer increases. The trade-off between a structured
and unstructured approach resides on the fact that in order to keep track of the data,
more storage will be required overall within the system. This type of topology suggests
that in a system where pervasiveness is expected, the costs to maintain such variants
might cause serious setbacks in managing the system itself. Examples of a structured
P2P topology are Chord and Can, both described by Lalitha and Subbarao [Lalitha and
Subbarao (2012)].

Figure 2.6: Structured P2P network with a Star topology

Hybrid Network Topology This model, combines both unstructured and structured
topologies aiming to take advantage of the benefits from both approaches. An hybrid
scheme, proposed by Ganesan [Ganesan et al. (2003)], introduced a P2P network, Yet
Another Peer-to-Peer System (YAPPERS). The lookup service of this design consisted
on grouping nodes neighbourhoods in what the authors considered to be immediate
neighbours. Data is similarly spread in a Distributed Hash Table fashion regarding these
nodes and if queries between the same neighbourhood would fail, communication would
be forwarded to other neighbourhoods, which the authors considered to be extended
neighbourhoods. The forwarding process happens as long as no successful query returns
or every node in the network queried. The key factor in this approach resides in what
the authors also considered to be buckets. Resources, as mentioned, are stored in a DHT
fashion, although, the data set is built considering resources,i.e. buckets, of the same
kind, thus, queries are sent only to nodes where there is a chance the desired resources
might be stored.

Another application worth of studying is the Hybrid Overlay Network (HONet) [Tian et

17

al. (2005)]. This topology was based on a two-level hierarchy where peers where assigned
two different roles and grouped together. Each group has a gateway peer, besides the
standard functionalities, these peers would also act as a gateway towards other groups of
peers, i.e. gateways. The remaining peers within a group are common nodes without any
other special functionalities. Each group, i.e. cluster, has independent sets of identifiers
between peers of the same cluster, thus, it is possible to distinguish between peers of
the same or different clusters. Additionally, connections are arranged through a random
walk algorithm. In case of failure, the connection between peers is arranged taking in
consideration the hierarchical structure of the gateways and adjacent peers. In order to
visualize the HONet, take in consideration the following figure:

Figure 2.7: HONet P2P network organization

This kind of hybrid structure allows the interconnection and cooperation between different
groups increasing the redundancy in connections which can be important in cases of
major fault, i.e. all peers in a group. The replacement of a service in an infrastructure
like this can be made due to the fact that super peers are aware of each other, thus, they
can perform in order to stabilise fault situations.

2.2.4 Resource Storage and Sharing

One of the main concerns regarding infrastructures of this kind is on how does storage
of data is made in order to become available throughout the network. Specifically, how can
technology evolve in order to maintain a structure able to handle the pervasiveness of the
generated data. Kubiatowicz [Kubiatowicz et al. (2003)] suggest an architecture, ”Ocean
Store”, which aims to persist storage on a global-scale. This architecture is comprised by
untrusted servers, thus, additional measure must be taken in order to protect such data. The
approach to solve this was through the means of cryptography and redundancy techniques.
Although the goal of this thesis is to build a distributed system which can cooperate with

18

ubiquitous computing, we will not focus on data availability. Nonetheless, Kubiatowicz
[Kubiatowicz et al. (2000)] approach the main goals that must be taken into consideration to
develop such solution.

2.3 Fault Tolerance

Fault tolerance has a major role in distributed systems. A system that becomes tolerant
to critical faults, according to its specification, is a system which will have high availability
thanks to its robustness. In order to achieve fault tolerance, redundancy blocks must be
introduced within the system. This enables it to replace services without loosing availability,
in most cases. Before further discussion, take in consideration the following definitions. A
server is a computing system that provides a service, which is is the operation over an input
that according to specification may produce an output. Following this context, a server is
correct if, in response to its inputs, behaves in a consistent manner regarding its functionality.
This means that any expected output, when presented, if incorrect, then a failure occurred.
Nonetheless, the omission of a result, when expected, is also failure. Thus, there is a need to
extend the classification over types of failure.
Furthermore, Kirrmann [Kirrmann (2005)] describes fault tolerance as being composed by
two sub-categories. One defined error masking, i.e. fault masking and another, error recovery
i.e. fault recovery. Although one must recognize the difference between such categories, we
will discuss fault recovery and fault masking through replication, system feedback analysis
and leader election algorithms. Besides recovery and masking, sometimes awareness over a
process or system is also required, thus, moreover we will approach heartbeating as a solution
to achieve latter.

2.3.1 Fault Tolerance Taxonomy

The taxonomies considered on this document are inspired by Cristian [Cristian et al.
(1991)], which we will summarize in this section.

Fault classification

So far we have captured two situations where a server might be prone to failure. The first
regarded the correctness of the output produced by a service. The latter was related to the
omission of such answers when expected. Hence, there are different types of faults that can
happen within a system, so, in order to fully grasp which faults may occur, but first, we must
define a taxonomy able to describe such faults.

• Omission failure - A server fails to produce any outputs.

• Timing Failure - Happens when the service does not provide an output within a specified
real-time interval.

• Response Failure - The output produced is incorrect in regard to the expected outcome.

Crash classification

Furthermore, if a server suffers an omission failure and subsequently continues to omit
results until restarting it is said to suffer a crash failure.

19

• Amnesia - Restarts to a predefined stable state that does not depend on previous inputs.

• Partial amnesia - System reboots and its state is only partially defaulted.

• Pause - After reboot, the server returns to the last previous invariant state before the
crash.

• Halting - The crash causes the server to never restart.

2.3.2 Fault Assertion

Fault detection mechanisms can detect the correctness of a service while operating correctly,
but, they sometimes might lack the correctness of the reason which originated the fault. To
make this evident, consider the situation where a fault detector Heartbeat (HB) and a
subscribed process p communicate through a link l. If p sends his heartbeat periodically, but
l becomes lossy and drops packets, then HB will detect a fault regarding p. Although, this
fault is an omission fault, the omission itself was caused by the link. Meaning, the cause is
not p but instead l. The lack of assertion towards which kind of fault originated the subscript
process to stop sending messages is dubious. The problem is not on how HB operates. Instead
we suggests the following: Accuracy towards asserting the reason of a fault is crucial to how
one can deal with the problem. Possibly we add redundancy to the fault detection system,
regarding multiple access points, where constraints over links can be avoided. This would
improve the success regarding the delivery of messages.

2.3.3 Fault Masking

Failure masking consists on the concealment of misbehaviours to outside entities, due
to errors or faults. This means when a fault occurs the system itself must become aware
and provide the means for a stable transition between the instance before the failure and
the moment after it has been captured and handled. In turn, this concealment allows any
dependent process to keep its operations, without disturbance. Defensive approaches towards
fault tolerance normally consists in replication and status feedback of the system modules.

2.3.4 Replication

Fault tolerance through replication is achieved, within a system, when integral components
have one or more replicas which will act as backup in relation to a primary service(see figure
2.8 on page 21). Another perspective towards replication is homogeneous distribution of
roles within different processes or components of a system. Take for instance server groups,
where each belonging node is performing specific functionalities. If these functionalities are
unique, then if a crash occurs within a node, the system itself will suffer a considerable
amount of damage due to the specific functionalities of such node. In order to avoid this,
a flat distribution of the nodes, as seen in unstructured P2P networks, can help overcome
this problem. By replicating functionalities, i.e. roles, within a group of nodes, a system can
ensure that in case of failure, if substitution can take place, it will.

20

Figure 2.8: A system with a replicated process

2.3.5 Preemptive Status Feedback

Another approach to achieve fault tolerance is the use of some kind of feedback provided
by a system in order to handle any error that might occur. Under this paradigm, many
solutions exist in order to provide a way of handling with fault occurrences. One example
of an approach based on feedback is exception handling regarding programming languages
[Weimer and Necula (2008)]. Moreover, a generic description regarding feedback analysis can
be enunciated as such: A system, is capable of taking action to handle and recover from faults
if there is a proper mechanism which provides sufficient information towards the manifestation
of such events, thus, making it aware of faults;

This approach is commonly obtained through the use of state machines, where the sate
and adjacent outputs and inputs must be taken into consideration, allowing the system to
provide useful feedback to outside, dependent, systems in order to become aware of faults
or misbehaviours. This is extremely useful in real-time systems where decision-making must
be based mainly on local information due to the fact that This makes clear that replication
techniques must also use feedback from the system’s processes in order to activate backup
services. Thus, replication is only obtained if some kind of feedback is granted. Another
example of a feedback based mechanism is heartbeating, which will be discussed in detail
moreover.

Figure 2.9 on page 22 illustrates a process A actively reporting his state to a system,
or even another process. The example bellow the latter is the opposite scenario. A client
system or process, actively queries another process or system about its internal status. Both
approaches can be taken regarding heartbeating which we will discuss next.

21

Figure 2.9: Active/passive feedback supply of system A status

2.3.6 Heartbeat Mechanisms

Heartbeating aims to guarantee the quiescent reliability regarding communication between
message-passing systems. Before further discussion, it is important to grasp two typical
situations regarding the integrity of the communication. The communication link may be
prone to message loss. This in turn, annihilates any guarantee regarding the delivery of a
message. The assumption that if a system a send infinite messages to another system, b,
will improve the chances of its reception is completely misleading. A scenario like this only
guarantees that communication will fail and there is no such mechanism able to circumvent
this problem. Another wrong assumption is that the link is fair. This means, if a sends infinite,
m, messages through a link, l directly implying that b would receive indefinite messages is
obviously this is impractical and efforts have been made to correct such problem [Aguilera et
al. (2005)].

The (Non-)quiescent factor

Keep in mind the last scenario. A solution resides on a basic principle: upon reception, b
returns another message to a that indicates the acknowledgement of m [Aguilera et al. (2005)];
This allows communication to become quiescent. Besides losses between communication links,
there is also the system crash factor. Whilst the quiescent factor is definitely guaranteed
assuming that only losses occur in the link, a crash of a process while communicating with
another process will invalidate that characteristic. As such, unreliable failure detectors have
been proposed as a solution to solve this problem. A failure detection mechanism consists
on periodically receiving an alive message from a subscribing process, i.e. ”heartbeat”. The
reception of such message will indicate the ”wellness” of the process and the mechanism will
increment the value of the counter associated to that subscriber. This means there has to be a
list where subscribers and the associated counter are stored. Problems like consensus, atomic
broadcast, group membership are solved with heartbeat mechanisms.

An important thing to note is that the fault detection mechanism itself is not quiescent. The
operational protocol dictates that any processes subscribed to the fault detection mechanism
must periodically send heartbeat messages while alive. However, is it reasonable to use,

22

non-quiescent, unreliable failure detection mechanisms in order to achieve fault tolerance in
distributed systems so it becomes quiescent? In fact, it is, in order to envision such argument,
recall the previous section where we approached fault tolerance, we defined a server and
service. A service is correct if none of the faults described before occur, resulting in the
following requirement: a process is correct, if and only if, it will present valid outputs within a
realistic time period, according to its inputs. Ultimately,

Operational protocol

Some approaches are based on bounded counters whilst others use unbounded [Aguilera
et al. (2005)]. The difference between bounded counters and their counterpart is the fact
that usually bounded counters act like trigger mechanisms, if a certain bound is reached, a
meaningful context arises and the fault detector updates its suspect list, a set of data where
the crashed elements are maintained. The counter process may increment when receives an
heartbeat messages, but, it may also use decrements upon sending one, depending on the
approach. The unbounded counter is a much simpler mechanism. It will increment the values
nonetheless, but due to the unbounded characteristic of its counter, the value never reaches a
bound. Instead, it simply outputs the counter values and client applications will give meaning
depending on their purpose.

2.3.7 Leader Election Algorithms

This subset of algorithms aim to solve another problem that was not mentioned so far.
In systems where nodes interact continuously and maintain a data structure regarding their
organization, a fault that occurs in a node leads to inconsistencies on that same data set. This
type of failure led to the development of election mechanisms with intent over re-establishing a
faulty scenario like such. Consider a P2P system where peers with shared purposes, form small
clusters within the network. In order to maintain the stability and interconnection with new
outbound requests, a leader must be elected. In the rest of this section we will discuss what we
consider to be the most prominent algorithms. Also, in order to achieve a fully understanding
over the algorithms, assume that the failure event always occurs in the leader of that group.

Bully algorithm [Garcia-Molina, 1982] In a group comprised by N nodes, if a
certain node K detects a failure, an election message is sent by multi-cast to all the
nodes whose Unique Identifier (UID) is higher than the UID of K. This means K is
holding an election. If the nodes whose UID is higher are alive, they will reply to K
with ok and they will hold an election themselves. This means an election message is
sent according to the highest UID ”rule”. This process continues until only one node is
remaining, which is the node whose UID is the highest. This node will then announce
its victory and will become the new leader by broadcasting a coordinator message to
all remaining nodes. If the previous, crashed, leader comes back online, it will send a
coordinator message to his group in order to assume control over the group. Figure 2.10
was taken from the internet, thus we provide its source4 .

An important aspect regarding this algorithmic approach is the fact that it guarantees the
termination of the election process in a finite set of steps. This characteristic is crucial due
to the fact that there functionalities attached to group mechanisms. Whether it is resource

4https://www.andrew.cmu.edu/course/15-440-sp09/applications/ln/bullyex.jpg

23

https://www.andrew.cmu.edu/course/15-440-sp09/applications/ln/bullyex.jpg

Figure 2.10: Bully algorithm election process, left to right, top-down.

sharing, parallel processing or other. Thus, it is crucial to guarantee that there is no indefinite
delay regarding a process determinant towards achieving group stability.

2.4 Sensor Networks

Sensor networks are huge clusters of small embedded devices that may have other capabili-
ties besides perceiving external stimulus from their environment. These sensors are limited
regarding their processing power and energy supply as well as communication capabilities.
The reason for such specification is due to the fact that these devices are built on the principle
that must be small and energy-wise. Moreover, from a system perspective, these networks
may be seen as small distributed databases due to the fact that many of these are deployed in
applications whose purpose is to collect information.

Tanenbaum discuss [Tanenbaum and van Steen (2004)] that these sensor networks can be
designed under two approaches. The first (1) requires sensors to send all their data through the
network. The data is collected by the operator in the site and processes or stores it. The second
(2) approach consists on a query-response model where the operator sends queries to sensors.
The latter will, in turn, compute and answer according to its internal state and reply to it to
the operator. An operator is a device which stores the overall information regarding the sensor
network. Ultimately the coordinator maintains a dataset with the aggregated answers received.
On (1) the single point failure is clear, data is solemnly sent to the operator. Regarding
approach(2), the nodes comprising the sensor network might require additional capabilities in
order to achieve their functionality and the operator only stores the answers[Tannembaum
and van Steen (2004)]. Although, these solutions are feasible. Both lack the requirements to
maintain balance within the network. They lack the constitution required for a system to be

24

Figure 2.11: Three different approaches regarding sensor networks

able to scale. These disadvantages have been approached by TinyDB(3) [Madden et al. (2005)]
partially solving them through the use of a declarative database interface in wireless sensor
networks. It requires a tree-based routing algorithm to optimize the aggregation of data. This
protocol is an hierarchy regarding the collected data, where higher layers, closer to the root of
the tree, will have more aggregated data than the ones below. Still, some problems persist:
there is no guarantee in relation to fault tolerance and in a scenario where IoT takes place it
is not possible to determine a priori which of these sensors belong to which hierarchical layer.

In figure 2.11, (1) and (2) are suggested by Tanenbaum5 as possible organizations towards
sensor nets.

5Tanenbaum et al. 2004 - Distributed Systems: Principles and Paradigms Sec.: 1.3.3 (Page 30)

25

2.4.1 Internet of Things Role in the Fog

The internet of things, as a concept, dictates that any embedded device, with minimal
specifications can contribute to a system as a whole, by gathering information from its
environment. It is easy to realize that the possibilities are endless since modern society is
already built on top of a digital world. The cause for such uprising in the technology is
due to the reduction, mostly in the last decade, of the size and production cost of small
computing systems. Take for instance smartphones, a top of the line nowadays is much more
powerful than a desktop system from a decade ago. When the interacting entities within
our surroundings become able to process and provide information, under a certain context,
intelligent environments become a reality leading to the development of useful services which
at a certain point will become intrinsic. The interconnection of the IoT devices can take huge
advantage of dedicated computing systems, deployed to provide a committed service according
to their contextual requirements. With such an increase of wireless devices the need for a
scalable networking infrastructure [Bonomi et al. (2012)] able to support IoT as a system as
become clear. This reason as lead researchers and manufactures, in a continuum space time,
to consider ad hoc composition as an important element towards the development of wireless
sensor networks. Ad hoc wireless networks are very useful to create small wireless areas where
communication can be established between nodes.

2.4.2 Ad hoc Wireless Networks

The shift of the networking paradigm happened when computer systems started to commu-
nicate through wireless channels. By adopting new paradigms, computer science has redirected
its focus, regarding networking, to envision devices as inter-connected nodes in a homogeneous
fashion, enabling the development of networks associated to a context. There are several
wireless technologies that allow ad hoc nets to become a reality, being RFID [Herschel et al.
(2012)], Bluetooth [Bisdikian (2002)] and Zigbee [Hillman] some of them. Although, how are
these networks structured and how they fit the requirements imposed by the IoT structure?
The following classes of networks are a reflection over some of the existing ad hoc solutions,
thoroughly discussed by Reina et al. [Reina et al. (2013)]. These will help us understand what
is the state of the art regarding the subject, bringing a deepened perspective over the matter.

• Mobile Ad hoc Networks(MANETs) are characterized by being self-organized
networks that do not require the need of a backbone. The purpose for the development
of such networks lies in their main features categorized by self-healing, self-maintaining,
self-configuring and self-repairing [Reina et al. 2013]. Thus, very suitable within a mobile
context. MANETs are built according to the mobile paradigm, where pervasiveness
is the main characteristic. In relation to IoT, MANETs are comprised by entities.
These entities can be any computational system able to communicate through a wireless
channel, disregarding the size. They also act as a router meaning that any entity is also
a router within the network. The mechanisms mentioned before are achieved through a
series of routing protocols. These protocols maintain the entity’s routing table integrity.
In order to do so, protocols use broadcasting and multi-hoping. This originates a lot
of packet redundancy. There are some examples of solutions that tried to solve this
problem by reducing the number of packets (Multipoint Relay and Connected Dominant
Sets). Another crucial aspect about these routing techniques is the fact that they
also help the entity to become aware of services and resources. A simple approach

26

towards achieving connections is the use of two different IPs. One is responsible for
communicating through the MANET, the other establishes connection to the Internet.
Although, due to the mobility paradigm, a gateway target may change thus invalidating
the current IP configuration. There are other approaches, but all have drawbacks which
will require further research in order to achieve a practical solution. Reina [Reina et
al. (2013)] also analyse how service and resource discovery within such nets can be
achieved. A deeper research was also conducted by Karagiannis [Karagiannis et al.
(2011)]. Appliances in relation to vehicular networks (VANETs) can be taken into
consideration being the following some of them: Intersection collision warning; Lane
Change assistance; Cooperative forward collision warning; [Reina et al. (2013)]

• Wireless Sensor Network (WSN) unlike MANETs, this type of networks is designed
based on efficient power consumption. The most common topologies implemented are
tree or star-based. In order to achieve full efficiency, the nodes within a WSN typically
send their data to a central device. Whilst in a start topology, nodes are at a distance
of one hop, in a tree or mesh topology communication requires multiple hops between
nodes. In most cases, this kind of network is comprised by static nodes meaning that
the topology itself does not suffer changes, simplifying the organizational process. Since
the common principle between IoT and Fog Computing is context, this type of network
may be seen by two different approaches. Every node within a WSN is an entity, thus
is distinguishable from other nodes which may have a different context, or, the WSN
as a whole is seen as an entity, thus, the overall functionality provides the context. An
enhanced approach within this class of networking is the Wireless Body Area Networks
(WBAN) discussed in extent by Tanenbaum [Tanenbaum and van Steen (2004)] and
Reina [Reina et al. (2013)]. Additionally, in the health care sector, Ko [Ko et al.
(2010)] explore applications such as Wireless Sensor Platforms and Medical Sensing.
Furthermore, the possibility to consider different contexts within the same network,
although in order to do so there has to exist intelligence on higher layers that is aware
of such differences.

• Radio Frequency Identification (RFID) has proven to be a technology capable of
transmitting small amounts of data within short distances. The principle behind RFID
consists in having two devices. One holds information regarding some context, i.e. tag,
while the other is able to access it and read it, i.e. tag reader [Kaur et al. (2011)].
Regarding tags, there are two types. The first is called passive tag, the other, active
tag. The former does not possess any kind of power supply, instead it relies on the
energy transmitted by the radio signal sent by a tag reader. The latter, active tags, are
proactive due to having a power supply. This technology is typically based on close range
communication. Nonetheless, given the tags (both passive and active) and a tag reader,
it is possible to build business intelligence by integrating a middle layer connecting to
this technology. Different designs have been developed, called near-field and far-field
RFID, also discussed in extent by Kaur [Kaur et al. (2011)].

27

28

Chapter 3

Engineered Solution

In comparison to other technologies, the electric grid has taken a toll due to the stagnation
of advancements. Measuring devices and adjacent infrastructures have become outdated.
These, continue to be largely dependent on the human factor in order to provide and maintain
the services. Subsequently, hazardous situations endure due to the lack of fault tolerance
and detection mechanisms within the grid. Factors like aging equipment and an obsolete
system layout are deeply tied to the deregulated services the industry provides. This as
been a reality thus far. However, augmented concerns over these facts have led manufactures
and developers to explore new ways to shift the electric power supply delivery towards more
sophisticated models. New solutions provide a higher cultural value according to the present
ethos. Entities have already proposed smart meters, like WithUs 1 and Siemens2. These can
enhance or even replace the current infrastructure of the electrical grid with a new distributed
approach. Allowing these intermediate devices to communicate with other end-points clearly
enhancing the quality of the services being provided by delivering dynamic services like adaptive
flows of electricity according to the real-time consumption, hazard detection in the electrical
grid. Additionally, the human factor is largely removed in relation to the management and
maintainability of the electrical grid. This means a shift towards the approach of the services
can occur by focusing on deploying dedicated nodes with intelligence able to continuously
monitor the grid itself and gradually increase the services provided . Moreover, the dynamic
allocation of electrical power supply also enables the energy provider to adequately adapt, the
tariffs and associated power supply, to the client’s needs. Clearly this eliminates the need for
interrupting the service in case of exceeding the supplied power.

By taking advantage of currently developed solutions the aim of the design is to adapt
the Fog into this context. Nodes will be deployed to collect information for surrounding
sensors. This implies the need for a procedure where nodes are self-configurable. Additionally,
each node is supposed to autonomously become aware of surrounding sensors and establish
connection in order to collect data. These sensors proactively read information from electrical
plugs, meaning that each sensor is in fact a smart plug which is plugged in into the electrical
one. Thus, this brings us to how can one establish communication between devices. Current
technologies are based on a master-slave topology. For instance, within a residence there has to
be a master able to detect a set of these smart plugs. Node that the constraints of the visibility

1http://www.withus.pt/
2http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/

smart-metering/components/Pages/overview.aspx

29

http://www.withus.pt/
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/smart-metering/components/Pages/overview.aspx
http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/smart-metering/components/Pages/overview.aspx

between master-slave devices are dictated by the communication interface. The proof of
concept used smart energy gateway [WithUs] with PLC, Zigbee and ethernet communication.
Although, the interface connecting the sensors to the gateway was radio-based which restricts
the range of the visibility, depending on the aperture of the antenna. Note that we were bound
to the specifications of the equipment. Hence the discussion regarding ad-hoc networks.

These connections are based on the same principles of these networks. Devices with a
radio interface (e.g. Zigbee) rely on ad-hoc composition to establish communication between
these devices. Thus, it is granted that there are suitable solutions which allow low-powered
devices to communicate. On the other hand, communication between a master device and the
Internet is typically done through a different interface. For instance, in our proof of concept we
used a physical interface, i.e. ethernet, in order to connect to a router. Additionally, regarding
the IoT scenario, every device is considered to be a slave, requiring a connection to a master
device in order to deliver the overall service. Take into consideration that the controllers, i.e.
master devices, are responsible for the composition and management of ad-hoc networks which
function as the bridge between the sensors and the controllers themselves.

Figure 3.1: Typical structure composed by the cloud, Fog and IoT

On a global scale, the hierarchy existing between the Cloud, Fog and IoT, according to the
taxonomies discussed about P2P, is structured and centralized at the top level. Every layer has
its distinct set of functionalities and there is a abstraction gain in the Cloud-IoT continuum.
A cloud solution can focus on managing the electrical grid in terms of aggregated data from
the Fog. In turn, it allows the introduction of geographic awareness and the possibility to
develop reactive mechanisms destined to handle faults in residential areas like power outages.
Figure 3.1 depicts the global concept involved in this solution, connecting the Cloud, Fog and
subsequently IoT.

30

3.1 The Architecture

Whilst globally a full-stack solution is seen as a promising design, we will shift focus to
the Fog due to the objectives of this thesis. In this section we will explore the decisions taken
towards the design of a distributed model. The architectural concept intends to achieve a
stable infrastructure which is capable of being autonomous eliminating the human factor.
Recalling the two classes of distributed systems discussed previously, one might add that
this system is a distributed computing system aiming to support the distributed pervasive
systems deployed in our surroundings. Although we presented grid computing and cluster
computing main designs in regards to computing systems the architecture of the Fog takes
advantage of both concepts. The design towards the grid is not specifically the one discussed
as grid computing. The grid itself is regarded as geographically distributed nodes, enhancing
the view of the cloud. The computational capabilities of grid computing are applied to Fog
Computing nonetheless. There are different available resources throughout the system. Nodes
are resource-devices which allow computation to take place. These, in turn, collect data from
residential areas which is also made available throughout the system if requested. On the
other hand, cluster computing fits in this system in a way that the grid itself is comprised by
clusters of devices, performing cooperative operations in order to maintain stability and ensure
service availability. Thus, the nodes are mainly homogeneous considering their behaviour in
order to achieve such. This lead to designing an infrastructure which is decentralized like in
P2P. The reasons are implicit, we must avoid single-points of failure, thus, decentralizing the
system is the obvious approach. Additionally, by being homogeneous, nodes will be structured
in order to maintain flexibility in handling faults. If a networking structure, which provides a
service fails, then another structured group must replace their functionalities in the pervasive
system. The requirements enunciated in the state of the art highly suggest that in order to
support pervasive environments the design must take into consideration embrace contextual
changes, favour ad-hoc composition and consider sharing as a default behaviour.

This Fog Computing system is based on existing P2P designs. Another characteristic of
this P2P model is that within the Fog layer, each node is flatly distributed mainly due to the
homogeneity of their functionalities. The aggregation of nodes is bound to the set of addresses
supplied thus we can discuss groups of nodes as also being homogeneous neighbourhoods which
can be simply replicated. Thus, the whole picture is regarded as a network of nodes, deployed
according to a certain geographical context. These nodes will form conceptual sub-networks
which will interoperate cooperatively to maintain the stability of the environment where these
are deployed. Hence, we face a design which is completely flat and structured in small clusters
turning the infrastructure into a decentralized one. These groups of nodes may or may not
be connected between each other. There is no restriction whatsoever. The sole focus is to
find a solution where nodes can autonomously form a structured environment which allows
information sharing.

One should emphasize that this concept allows the distribution of nodes in an ad hoc fashion.
More specifically, it could grant a composition based on the purpose of a real application.
For instance, in the electrical grid, a group of nodes could be deployed according to the city
topology, whether it is a city block, avenues or any other spatial concept. Thus, the overview
of the nodes, from the Cloud, has the capability to be given a meaning according to the
application purpose. For instance, one could achieve hazard detection in a grid if we consider
nodes distributed over parishes. Thus, there is a segregation of groups which gives meaning to
the city structure itself.

31

Figure 3.2: Fog Computing system comprised by groups of nodes, i.e. neighbourhoods

3.1.1 Node Groups

The design conceptualizes nodes as groups. By predefining the set of neighbours a node,
we can disregard the need for a peer discovery mechanism to be developed. Thus, by trying
to establish communication with a set of addresses, the visibility of that node is asserted
directly by a response or its absence. In order to make group aggregation possible between
homogeneous nodes we must consider which information must be kept within each node in
order to maintain the group structure. Each node is defined by an Unique Identifier (UID).
There are other alternatives to approach distinction between homogeneous entities, although,
simplicity is always a crucial aspect to take into consideration regarding the design. There are
no restrictions regarding the attribution of UIDs besides their uniqueness. Hence, these can
be pseudo-random numbers generated in the manufacturing process or can be assigned per
deployment purpose, the number itself is irrelevant. Given the UID, there is the need to share
additional information between nodes. Besides the identifier of each node, there is also the
need to keep track of each node’s IP address associated to each entry. Additionally, each entry
should possess two flags regarding the aliveness of each node and whether a certain node is a
leader. Recalling leader election mechanisms, the flag, is Leader, useful in order to maintain
its hierarchy.

Note that a consistent group table can only have one is Leader entry flagged true in each
group. Figure 3.1 is an illustration of a group table formed by the different nodes in the group.

32

Ip Address is Active is Leader

’1’ ABCD::1 true false

’2’ ABCD::2 true true

’3’ ABCD::3 true false

’4’ ABCD::4 false false

Table 3.1: Group table

Topology

As described before, groups are structured and flat regarding their topology. Although,
in order to achieve a stable environment, the design towards nodes organization is based on
a centralized, hierarchical structure. What this means is that within each group there is a
node which acts as a central point towards communications. This node is addressed as group
leader because it possess additional functionalities in relation to other nodes within the group.
Additionally, the remaining nodes within a group are called members. The group leader is
responsible for the incoming connections from nodes outside the group which belong to the
set of neighbours. Additionally, the leader is also in charge of updates regarding the data
structure containing information about the belonging nodes. This structure helps minimize
connections inside the group whilst maintaining consistency regarding the global information
in each node. Moreover, any newcomer node will direct its communication to a leader given it
will be the only one which will reply to invitational requests. Furthermore we will approach
this structure in regards to the node’s internal behaviour designed as a state machine. Group
leader maintains a connection with the active members. Thus, we can fathom that within the
Fog Computing system, there are different topologies involved.

Figure 3.3: Communication topology within a group

3.2 Node

A node in the Fog layer is a programmed entity with different modules, concurrently
operating to perform the tasks imposed by its behaviour. Moreover, each node can be seen as a

33

finitie state machine (FSM) where the internal modules operate to produce inputs which result
in state transistions at any given time. The goal behind this is to perform a predetermined
sequence of actions, depending on the awareness acquired throughout the node’s aliveness
timespan. Moreover, this model is defined by a list of states related to the status of the node.
The conditions that make transitions happen rely on three different and independent factors.
First a node can transitions in-between states if there is meta-stability. Additionally nodes can
also change their state due to the occurrence of an output timeout. Ultimately, nodes can also
perform a state transition under external stimulus. This means modules possess one or more
threads independent from the state machine execution. Hence, within each node there is a
multithread environment where different processes take place to accomplish the designed FSM
behaviour. Although it is hard to illustrate multithreaded behaviours of application in general,
we will try to justify the overall design with a thorough discussion over the FSM. In order to
maximize the approximation of each explanation to the designs, take into consideration the
object-oriented pardigm while describing the internal modules. An object-oriented perspective
enhances the description of the capabilities of each module due to the degree of abstraction
granted by objects and their properties. Before analysing in detail the composition of the
node internals it is best to firstly describe the FSM behaviour, which in turn, will lead us to
the modules. Besides, its easier to grasp the most abstract view first and consequently dissect
its properties.

3.2.1 Finite State Machine

In order to understand the reasoning behind delivering autonomous capabilities to each
node, a solipsistic perspective must be undertaken to fully grasp the interactions taking place
in the Fog. Thus, if only one’s mind is sure to exist, the lack of knowledge implies that the
first proceeding of each note is to become aware of the availability of its neighbours. These
always aim to find equilibrium within the system by ultimately creating a group or joining
one. Hence, upon reaching one of the latter, the node can be considered to be in a stable
state. Local information is the only resource available. Consequently, throughout the node
correct operation it cannot make assumptions in regards to the past, present or future. As a
solipsistic node, knowledge of anything outside one’s own mind is taken as uncertain. For now
take for granted there is a message passing system which handles communication, later on we
will explore such module. Throughout the discussion and explanations over the FSM we will
use Figures in order to help the reader visualize what is being described. Additionally, there
are four messages that will be exchanged between nodes:

• Who is there (broadcast);

• Answer (unicast);

• Acknowledge (unicast);

• Info (broadcast).

Let us consider an empty universe where these nodes may suddenly emerge. Additionally,
messages are guaranteed to be delivered between nodes. The occurrence of faults must also be
disregarded.

Eventually, the first node gains existence, finding itself in its initial state, i.e. Detached.

34

Figure 3.4: Initial state in the FSM

In order to become familiar with the visual design keep in mind transitions between two
different states in the FSM are represented by an unidirectional arrow. Subsequently, every
arrow has a legend attached. The purpose for the latter is to represent the received messages,
trigger, that make the transition happen and which message is sent while transitioning between
states, action. These legends are represented as Received message / Sent message.

Granted the node only knows the address of other possible nodes, he begins to assert if any
of the latter are alive. Hence, a primary broadcast message, who is there, is sent. Conceptually,
the node started looking for group. Note that the Detached state besides being the initial
state is also a transition state, this means it does not require any trigger to shift to another
state. Also, each node attaches its UID to the who is there message. Furthermore we will
explain such reason.

Figure 3.5: Transitional state detached triggers the transition independently.

After the node sent a message it has to wait for an answer. However, such reply might
never be received which is the case, the node is the first in the universe. Thus, a timeout has
to be applied in case of omission. Although there was no reply, the node, being solipsistic, is
sure of one’s existence. Consequently, the timeout triggers a transition to a new state, Group
leader which indicates that the node has taken initiative towards forming a group and will wait
for new nodes to appear. Note that the transition between Detached and Looking for group
is characterized by the transitional properties of the initial state. Oppositely, the transition
from Looking for Group to Group Leader is triggered by a local input which is the timeout.

35

Figure 3.7: Blocking state get acquainted triggers the transition independently.

Figure 3.6: Timeout event leads to group leader transition.

While in Group leader the node will remain as such and wait for incoming messages from
other nodes. Under these conditions, this state can be considered a stable state where the
node will remain.

Taking in consideration the scenario described thus far, we will now introduce a new node
in this universe. Like any other node, it starts as Detached and immediately transitions to
Looking for group. At this point, the scenario changes for there are two nodes and one is
going to reply to the who is there message sent by the second emerging node. Upon receiving
the message, the first node, as a group leader is responsible for replies to newcomer nodes.
Maintaining its state, it replies with an answer message. In turn, the second node receives
the latter which activates a transition to a new state, Get Acquainted where it will send
an acknowledge signalising the Group Leader it is ready to join the group and receive the
information regarding the latter. If, after a brief period of time, no answer is received, the
node in Get acquainted will resend the acknowledge. This process repeats until the number of
retries is exceeded. If so, this node will return to Detached where it will restart the whole
group lookup process. The preference towards opting for reset is highly supported by the
constraint towards decisions based on local information.

Upon receiving the acknowledge the first node knows the newcomer is waiting for the
handshake process to be finalized. Thus, it finally sends a message, info, whose payload
contains its group table information. Alike the who is there message, every info message is
also a broadcast to the set of neighbours the node has predefined. Furthermore we will explain
why.

36

Figure 3.8: Blocking state in group triggers the transition independently.

The process terminates when the newcomer node receives the latter and makes a transition
to In Group which is the second stable state in the FSM. At this point the node will remain in
such state and will listen to future updates, regarding its group elements status, from the group
leader. Moreover, any newcomer node will follow the second behaviour described previously.

The finite state machine backbone is presented in Figure ??. The final version has more
transitions due to the increased reliability which implied an augment of redundancy. Before
we move onward to the description of the modules that make this FSM work, let us summarize
what as been fathomed.

Each node upon gaining existence immediately searches for other active nodes. This will
have two possible outcomes which will terminate as the node belonging to the group as a
member or as a leader. Additionally, there is a finite set of messages, exchanged between
nodes, that make node aggregation possible. The messages enunciated thus far are divided in
two types, unicast and broadcast. The former mechanism is unique message sent towards one
destination node while the latter is a message sent to a pre-defined set of addresses, i.e. set
of neighbours. Overall, there is a finite set of states that allow a node to transitively reach a
stable state where it can operate correctly.

3.2.2 Communication

Communication at the Transport layer is based on User Datagram Protocol(UDP) protocol.
Due to its simplicity, lack of retransmission delays and ultimately being stateless. All of these
are imperative characteristics in real-time systems. Additionally, UDP is widely used on
host-to-host communication, thus, the communication mechanism uses UDP as the transport
protocol.

Each node requires atleast two UDP sockets, one which supplies incoming connections and
another which deals with outgoing ones. The design of the transmitted resources must also take

37

into consideration the maximum size of an UDP Datagram and the Maximum transmission
unit (MTU).

Figure 3.9: UDP segment structure

The source of figure 3.9 is provided below3.
Given the protocol which enables the communication to take place in order to share

resources, we will now approach the design of the functionalities made available to client
processes. Generally speaking, messages must be sent and received. Hence, like the postal
office system, one can approach the solution by providing a way to:

• Put a message;

• Poll received messages;

These operations satisfy the conditions where the receiving process can be differentiated
from the sending one. In fact, the internals of communication between nodes are abstracted
by this approach. This leads us to how this module was designed in order to support the
previous operations. We will discuss its internals regarding the objects developed to support
such structure and how a multithread technique can turn this module self-sustainable.

Design

In order to ease the naming and referencing, we will address this module as Communication
Manager (CM). This entity is responsible for the abstraction over the communication process.
Thus, a set o predefined requisites must be established. Additionally, the API must be bound
to a certain interface providing a finite set of methods that can satisfy the client process needs
towards communication in both directions, i.e. incoming and outgoing. Hence, we achieve the
following list as a set of requirements:

• Send a message to multiple addresses, i.e. broadcast ;

• Send a message to an unique address, i.e. unicast ;

• Be able to store messages and maintain the order they are sent or received.

• Upon request, from the API, retrieve a message, by its order.

• Abstraction over connections.

Furthermore the API will suffice these needs by providing the following signatures:

3http://netlab.ulusofona.pt/rc/book/3-transport/3_03/03-07.jpg

38

http://netlab.ulusofona.pt/rc/book/3-transport/3_03/03-07.jpg

• void sendBroadcast(Message m);
Broadcast method that takes the input parameter and sends, according to the set of
neighbours, the message to the destination. The message must have a valid source address
and payload. Since there is a neighbour list, the destination headers are guaranteed to
be set accordingly.

• void sendUnicast(Message m);
Unicast method also requires a message an input parameter. Both header and payload
must contain valid information in order to guarantee its delivery. The method receives
the object and stores it in the appropriate queue.

• Message retrieveNextMessage();
This method is a blocking method since the invoking thread on this method is constrained
by the monitor protecting the inbox queue. Additionally, another method is provided
(isEmpty) in order to avoid blocking if there is no message available.

• boolean isEmpty();
The standard method that indicates through a boolean return value if the associated
inbox is empty or not. This helps threads blocking on the communication manager if
expecting a message. Instead they can invoke isEmpty in order to skip the blocking
imposed by the monitor on the queue.

Due to the fact that we are discussing an autonomous entity, the notion of time regarding
each message is different from the client perspective. In order to circumvent this problem one
is able to guarantee the order of messages by using Queues as an Abstract Data Type. Queues
are structures where elements are inserted and removed in a FIFO fashion, thus, maintaining
the overall order of the elements while storing them. The CM contains two independent
threads, which we will name as Receiver and Sender. The reason behind two threads is the fact
that there are also two queues, one for the incoming messages and another for the messages
to be sent. Additionally, the difference between a send operation and a receive is sufficiently
distinct to justify such separation.

Figure 3.10: Communication module

Receiver thread

This thread is responsible for listening to a certain datagram socket, i.e. port. It handles the
validation of the data and keeps an open connection to outside nodes in order to continuously
receive messages. Upon receiving a message, the receiver does the unmarshalling it and stores

39

Figure 3.11: Receiver thread behaviour

it in the respective queue. The concurrency factor happens when invoking clients attempt to
retrieve messages while the receiver is operating over the queue. Hence, this shared region has
to be protected by a monitor or a semaphore mechanism. Moreover, its behaviour can be
described as a state machine with two states. The initial state, Listening, is also a blocking
state where the thread is listening in a given port for the arrival of packets. Upon receiving
one, it proceeds to the de-serialization of the latter and marshals it into a message object.
This procedure originates a transition to the second state in the FSM, Receiving. This state
is a transition state which triggers the thread to store the unmarshalled object in the inbox
queue ultimately making it available for retrieval. This operations originates a transition back
to the Listening state where the node will repeat the procedure.

Additionally, in order to understand the procedure itself it is presented bellow the algorithm
associated to the receiver.

do {
DatagramPacket p = socket.receive();
Message m = unmarshal(p);
inbox.put(m);

} while(true);

Sender thread

On the other hand, the sender thread is synchronously retrieving messages from the queue
and marshalls them in order to be placed in the UDP Datagram. Similarly to the inbox queue,
the outbox has to be protected due to the concurrent environment from the client, which
inserts messages, and the sender, which polls them in order to be sent. This thread’s behaviour
is also defined by two states. Similarly to the receiver, its initial state is also a blocking state.
The thread remains in this state in two situations: there is no message in the queue to be
sent; the monitor has concurrently synchronised the thread so it has to wait for the shared
region to become available. Upon concurrently pulling a message, the thread transitions to
another state, Sending. Alike Receiving this state is also a transitional state meaning after
acquiring the message it begins to marshal it and sends it through a open socket towards
the destination. This operation makes the thread transition to the initial state where it will
repeat its behaviour.

Figure 3.12: Sender thread behaviour

40

do {
Message m = outbox.poll();
DatagramPacket p = marshal(m);
socket.send(p);

} while(true);

Message structure

A well defined structure is crucial to support the necessity towards sharing resources.
Since the communication module was developed as an object we also designed messages to be
handled in such composition by providing them an object oriented structure. Thus, messages
are objects sent over the network which hold information shared between distributed nodes.
Their structure was designed as illustrated in Figure 3.13.

Figure 3.13: Conceptual message object

3.3 Fault Tolerance

Achieving a fault tolerant system while considering the the node properties thus far it is
required to assert which scenarios may cause disruptions in their overall behaviour. Before,
we considered packets to be always received. If one refrains from such characteristic, then
message-passing is prone to the following failures:

• Delays;

• Losses;

• Duplicates.

Another aspect is node availability. A message loss cannot be distinguished from a crash.
Thus, it is required to enhance the system with an Heartbeating mechanism which grants
awareness between nodes. A crash of a node will originate two outcomes: Inconsistency in the
group table; Disruption in the hierarchy structure in case of the node being a leader. This
results in the enhancement of a node’s behaviour with a leader election algorithm which allows,
within a finite timespan, group self-organization by electing a new leader. Additionally, it is
only possible to distinguish a message loss from a node crash if there is a guarantee towards
the end-to-end (E2E) availability. In turn, delays and duplicates can be handled through the
induction of redundancy within the FSM.

Ultimately one aims to achieve fault tolerance regarding those scenarios. By being successful,
it is possible to grant high-availability related to depending infrastructures at the IoT level.
Additionally, nodes can replace other node’s functionality by detecting and handling crashes.

41

3.3.1 Heartbeat System

From the node perspective, the Heartbeat mechanism is an independent module. The
operational procedure relies on connecting to other heartbeating mechanisms in order to receive
and send heartbeats throughout the network. Moreover, there is a specific purpose behind the
communication between heartbeats of different nodes. As enunciated before, heartbeating can
help maintain the consistency regarding group tables and the group hierarchy. Whenever a
new entry is added to the group table, at the node level, the associated address on that entry
must be supplied from the node to the heartbeat module in order to start sending heartbeats to
the respective node. The idea behind this concept requires two threads to run simultaneously.
Since every node is homogeneous, one takes advantage of the same property regarding the
HB module. One thread, Heartbeat Generator, is responsible for the broadcast of periodic
heartbeats to a set of addresses. The second, Heartbeat Listener, functionality is to receive
heartbeats from other nodes.

Finally, we achieve awareness through the use of a shared region which is a bounded counter
formed by (key, value) pairs of entries, the keys are a set of addresses gradually supplied by
the owner and values the corresponding heartbeat count. Every periodic heartbeat broadcast
decrements an unit from each (key, pair) of entries. Additionally, the Listener waits for
heartbeats and increments the value from the associated address. The use of a bounded counter
structure enables the triggering of events such as sending a localhost message to the owner,
noticing the offline status of another node. The procedure that handles such event is left to
the node itself.

Figure 3.14: Conceptual Heartbeat module with two independent threads

Let us take a look over the algorithms associated to each thread in the Heartbeat module.
Firstly we will discuss the heartbeat generator logic. After, it is presented the algorithm,
related to the heartbeat listener.

Heartbeat generator algorithm

42

do {
for (Entry e: boundedCounter.entries()) {

sendHeartbeatMessage(e.address);
boundedCounter.decrement(e.address);

if(boundedCounter.get(e.address) <= 0) {
notifyNode(e.address);
boundedCounter.remove(e.address);

}
}
sleep(T);

} while(true);

Where T is an arbitrary, constant, amount of time.

Disregarding the communication process, the thread starts by iterating over the set of
entries in the bounded counter. Recall that each entry is composed by a (key, value) =
(address, counter value); Hence, on each iteration the thread sends an heartbeat message
to the address associated to the key. The thread then decrements a unit from the counter
and proceeds to the next instruction. Before reaching the next entry, the thread verifies
if the counter value, regarding that entry, is below or equal to zero. If so, it means that
there was a succession of heartbeats with no response which led to the threshold limit.
Thus, the generator detects a crash and notifies the node of such. The thread continues
to iterate over the entries until none remains. The process finishes with the listener
waiting for a period of time before repeating the process.

Heartbeat listener algorithm

do {
Message m = receiveNextHeartbeat();
if(boundedCounter.contains(m.getAddress))

boundedCounter.increment(m.getAddress);
else

boundedCounter.add(V);
} while(true);

Where V is an arbitrary, constant, initial counter value. Note this value determines the
amount of sequential omissions before triggering the crash detection.

As its observable, the algorithm behind the listener and the generator are simple. Given
that the former thread periodically sends heartbeats then, the listener will receive them
periodically. The first regards to the retrieval of an heartbeat message. Upon receiving
such, the listener ensures that the associated address is tracked by the counter. If
so, the listener has to increment a unit on the counter value of that same address.
Else, the address is stored in order to start tracking the respective node. The reason
behind this distinction lies in the fact that nodes do not become aware of each other
simultaneously. Thus, it is likely that an heartbeat can be received before the node
signalises the heartbeat to track such address.

43

3.3.2 Group Leader Election

The election algorithm is a simplified version of the bully algorithm given that we consider
each node to be solipcistic. Additionally, each node favours the node with the lowest UID,
following the crashed leader, to be the best candidate. Similarly to the bully approach, a
node upon becoming aware, through the heartbeat, of a leader crash it sends a message, start
election. Oppositely, this message is sent to the set of neighbours instead of following the
highest ID rule in the bully algorithm. Every node, upon receiving the election message will
remove the crashed leader from their tables and elect the best candidate with the lowest ID.
The process terminates with the leader sending a broadcast message with the updated group
table indicating the process is finished. If the node that detect the leader crash is also the best
candidate the election process is the same. Additionally, if the leader considers to leave the
group, it will send a broadcast to the set of neighbours in order to start an election.

Ultimately, this algorithm can be seen from the FSM perspective as a set of transitions.
Moreover, due to the fact that start election is a broadcast, a node can receive it in any
state. We will cover the latter after the figure 3.15 which will help us understand the implied
redundancy. One also opted to omit the other messages and associated transitions, achieving
simplicity throughout the explanation.

Figure 3.15: State transition upon receiving start election

The first thing to notice is the fact that one can disregard the Detached state because its
a transitional state where the node describes a strict behaviour. Additionally, a node will
never receive a broadcast message while being on group leader state because it represents the
crashed node.

Once on looking for group the node can receive a start election message. The approach

44

taken in this situation dictates that the node will rewind to the previous state. Since an
election is being held, the node would get no response from a leader regarding the who is there
(see figure 3.5 on page 35). Thus, it will repeat the process in order to allow the new leader
to respond to this message ultimatey normalizing the behaviour. Furthermore, a node in get
acquainted would be under the same situation originating a transition to detached which will
restart the looking for group process.

The last state remaining is in group, whilst being here, a node belongs to an active group.
Thus, it will join the election process asserting the best candidate. From the latter, two
possible outcomes can happen:

• The node has the lowest UID making it the best candidate;

• The node does not have the lowest UID resulting in the loop over in group.

Upon receiving a notification from the heartbeat, the node must assert the role of the crashed
entity within the group. Thus, different steps are taken regarding the election process.
Furthermore, the behaviour taken by each node can be described, as pseudo-code, through
the following algorithm:

The process starts with a broadcast of a message start election to the set of neighbours.
Given that communication has already been discussed we can disregard the properties of
sending this specific message resulting in the method broadcastStartElection(). Following, the
node removes the leader from its group table and proceeds to find the best candidate to be
elected, the latter being a node with the lowest uid. The group table, as a data structure,
provides methods to satisfy these operations. The node then turns the is leader flag regarding
the assessed candidate.

Figure 3.16: Decision process imposed on leader election mechanism.

45

3.3.3 Additional Redundancy in the Finite State Machine

In a real scenario, nodes can start at any given period of times. Hence we should consider
simultaneous start of nodes in order to increase the reliability of the FSM. Additionally, we
only covered the transitions where the node would receive the expected input, thus far. In
order to enhance the reliability of the state machine we will introduce redundancy related
to messages that might be received outside the expected behaviours. First of all, broadcast
messages to the set of neighbours must be considered in any state. Those are who is there
and info messages. Moreover, we will have to address answer/acknowledge unicast messages
due to messages omissions. Let us start by introducing the who is there message in the FSM
states. The decision process, when it comes to ID comparison, always favours the node with
the lowest UID.

The Detached state is disregarded because it is a transitional state, thus, the node does
not check the received messages. Furthermore, the first state where one should analyse
redundancy is looking for group. Recalling simultaneous starts, two or more nodes will send
who is there messages which will be received by one another whilst being in looking for group.
Although these are not the expected answer from a group leader it indicates, from each node’s
perspective, that other entities are also trying to find a group. Consequently, there is no group,
which implies that a new scenario emerges: Simultaneous start of a group of nodes, in absence
of a stable group leader, requires that the nodes become aware leading them to form a group
amongst them.

Here the decision is simple. Assuming every node receives who is there from all the other
nodes, it is possible to iterate over each received message aiming to assert if one owns the
lowest UID. If so, the lowest UID node will transition to Group Leader where it will form the
group.

Oppositely, all the remaining nodes with an higher UIDs will remain in looking for group,
waiting for the answer message from the former. If the node does not crash while transitioning
to group leader, he will answer to the who is there messages received in looking for group,
inviting the remaining nodes. In case of a crash, while transitioning to Group leader, a
timeout will occur in the nodes waiting for the answer in looking for group. This happens
because nodes assume the best case where an answer message is lost. In turn, these will
transition to Get Acquainted, here they will send an acknowledge in order to signal the leader
they are ready to join the group. Since the leader is crashed they will retry after a certain time
but eventually return to Detached due to the limit imposed on the retry process. Maintaining
the focus towards this state, let us now analyse what should be done in in regards to info
messages. The meaning behind this message is that a group leader updated its neighbours by
completing an handshake, although, there is no direct implication over the node which is in
looking for group. Consequently the node will ignore such message and peek over the next in
the queue.

In sum, there are three new ”triggering” situations in the FSM. One implies a return to
the Detached state, in case of the only value in the information received is in regards to other
nodes, with lower UIDs, also looking for group.

Another transition, between Looking for group and Group leader is oppositely triggered
when there are only nodes with higher UIDs looking for group. Ultimately, the reception of
an info message, no matter the UID, is discarded due to the lack of interest towards it.

Moreover, a node in Group Leader can receive info messages. Here, there are two divergent
situations. If a node receives an info message, from a neighbour in its set, this means that in

46

the meantime between its start up and its own group formation, there was a delay or losses
in the transmission. Additionally, due to the fact each node cannot make any assumptions
towards time, one must deal solemnly with local information. Thus, if such a message is
received the group leader must assess if the associated UID of the other node is lower or
higher. By figuring such, one is able to determine the conditions which led to this scenario:

If a node (B) receives a message info from another node (A), then, this means A just
finished an handshake process with a third node(C) which joined A’s group.

• If A has a lower UID: Then B should disband the group because there is a better
candidate in another group. Thus, B transitions to Detached as a consequence of
becoming aware of such information. This can happen due to the delay or loss of any of
the messages that originate a transition to Get Acquainted or Detached while B was in
looking for group. By restarting the FSM to Detached B will repeat the group lookup
process and if no messages are delayed or lost it will join A’s group.

• If B has the lower UID: Since B is the node which received the info, then he must ignore
it. B is in fact the best candidate to be a group leader because it possesses the lowest
identifier. Any info broadcast made by B in the future will result in A become aware of
the previous enumerated situation, which will make A reset to Detached consequently
joining B’s group.

Figure 3.17: Detached, Looking for Group and Group Leader states with expected trigger messages
and additional redundancy.

We have covered Looking for group and Group leader, thus, there are two more states
remaining in the FSM where we must analyse which measures must be taken in regards to the
possible set of messages that might be unexpected but nonetheless received.

A node in Get Acquainted can receive both who is there and info messages. The former
only indicates the node that there are other nodes searching for a group. Thus, every message
of this type can be ignored. Moreover, info messages are expected while a node is in this state.
Although, the only covered instance was when the info is received from the group leader who
sent the answer message. This means that when a node receives a message whose UID is
different from the one belonging to the expected group leader different information emerges,
resulting in the following scenarios:

47

Figure 3.18: Detached, Looking for Group, Group Leader, Get Acquainted and In Group states with
extended triggering messages.

• Identifier in info is higher than the corresponding group leader: This means there is
another group formed, but the group leader is a worse candidate than the one who replied
to the who is there message. Thus, this message should be ignored. Note that every
node in group leader upon receiving an info message with a smaller UID immediately
returns to Detached.

• Identifier is lower than the the one expected in info: In this case, there is a better
candidate which the node was not aware of. Consequently, the node should formalize
the process with that candidate instead. The outcome from such awareness leads the
node to go back to the Detached state in order to do so.

Moreover, granted the correct behaviour in a node while in Get acquainted, it will transition to
In Group. A node whose state is In Group expects info messages, as a normal behaviour, from
its group leader. Although, we previously discussed that there are two additional situations
where info can diverge from the standard behaviour. When a node receives an info message
with a higher UID than the current leader, it will ignore it. Another message which is ignored
is who is there messages. It is the group leader’s responsibility to answer such messages. The
remaining case is when the UID is lower than the current group leader. Here, the node will
have opt to leave the group by returning to Detached where it will join the best candidate
group.

Figure 3.19 represents the final design of the finite state machine. We have approached all
the outcomes in regards to the actions that should be done upon receiving a certain message
from another node. We took advantage of the information they represent turning unexpected
messages into an asset capable of increasing the reliability of each node’s behaviour. By
extending the decision making to all the messages that can be received one can reach a stable
environment in abnormal conditions. At this stage is possible to conceptualize each node as

48

Figure 3.19: FSM overall functionality enhanced with intelligence by the induction of redundancy.

an entity which will autonomously attach itself to other nodes. Additionally, if such action is
not possible, the node will form a group where he will accept future invitation requests from
other emerging nodes. The discussed mechanisms grant additional reliability in regards to
the continuous effort towards maintaining a stable organization between nodes. Achieving
this design allows us to further discuss the application between these nodes and the pervasive
environment in IoT. Disclaimer: After the development and deployment of this system, one
grasped that there is a different approach in regards to the redundancy triggers in looking for
group. Thus, we will approach the subject as further developments (see section 5.2 on page
78).

3.4 Fog-IoT Continuum

The bridge between the Fog and the IoT environments is built taking in consideration some
characteristics of the latter. First and foremost, IoT devices typically organize themselves in
sensor networks (see section 2.4 on page 24). These usually communicate through wireless
channels, which in turn, imply a reduced visibility towards their surroundings. What is meant
by this is that a sensor, in order to connect to a node in the Fog, has to be within the node’s
range in order to be able to communicate. Nonetheless, we aim to achieve a cooperative
protocol between IoT devices and Fog nodes. In order to understand the behaviour implied in
the resource sharing procedure, one has to acknowledge that a device has to search for existing
ad hoc networks within its surroundings. Additionally, the device connects to a network which
it relates to, defined by its design. Throughout the development of the procedure one must had
to consider that these devices can be very limited in regards to their computational capabilities.

49

Figure 3.20: Interoperability between a plug and a node

This implies that the protocol has to be simple and resource-efficient. The procedure must be
done in a finite number of steps enabling the IoT device to share its data with a node, as soon
as possible.

3.4.1 Resource Sharing Procedure

The protocol establishes a set of messages that support the interaction between nodes
and devices. The considerations about local information are also present throughout the
communication, thus, we have acquired four steps that enable resource-sharing to take place
(see figure 3.20). The initiative towards establishing communication must come from each
device. These, will search for nodes and upon getting attached to one, will start exchanging
the messages defined by the protocol. First, the device sends a master request to its node, the
device then waits for an answer within a limited time period, if such is not received, he will
retry the procedure described thus far.

In turn. the node will receive the message and register the device to a data structure that
maintains attached devices information. Additionally, the node answer with a master response
towards the device, indicating it is able to receive that device’s resources.

Moreover, the device receives the previous message and becomes aware that it now is
attached to a node and proceeds with the forwarding of its collected data to its master. Now,
assess that depending on the periodicity factor within the need to receive real-time values,
one can adjust the interval of time between reports of the device to the node, hence, report
message. The device also checks of incoming acknowledge from its master indicating the node
is receiving the data.

A deeper analysis in this behaviour suggests that there is an unreliable behaviour in the
resource sharing transmission. Thus, the design of the communication process was enhanced
upon considering faults in nodes, thus the acknowledge. If a node stops responding to the
report messages, then after a certain amount of omissions the device will reset its behaviour,
restarting the search for a new node in the vicinity. An important factor about this procedure
is the lack of load balancing of sensors between nodes. Partially due to their network range
constraint but also because the main focus was towards achieving a stable system at the Fog.

50

Figure 3.21: Conceptual node-device scenario

3.4.2 Device Response Under Node Crash

So far, we have acquired the steps required to develop a fault tolerant environment between
nodes. Although, how should a device proceed if the node it is attached to crashes is also an
important concern towards the design of a behaviour able to prevail under stress situations. In
sum, this section can be regarded as a feature of the behaviour. Given the ad hoc connection
between these two entities and the previous protocol a device describes the same behaviour as
an heartbeat when an answer in regards to their master is not received. Thus, upon reaching
a certain limit of retries, the devices begins to send a new master request to its surroundings
aiming to guarantee a new connection.

Regarding figure 3.21, it illustrates a group of nodes and attached sensors. This scenario is
a typical stable scenario where nodes are aggregating data from their devices. This in turn is
available to the cloud for analysis and displaying to end-users. Even so, the scenario changes
as soon as the devices attached to the crashed node reach their retry limit. Ultimately, each
device has to search for a new network(figure 3.22). Keep in mind these nodes are ”broadcast”
by nodes intended to provide an environment for sensors to connect to. The protocol is then
reset and the steps described before take place, stabilising the scenario. There is no effort to
maintain a pervasive database which guarantees the redudancy of lost data in a crashed node.
Replication regarding this resource is not a focus of this thesis, although it is mentioned as a
further improvement (see section 5.2 on page 78).

51

Figure 3.22: Crash and subsequent self-alignment of the network.

52

Chapter 4

Proof of concept

In order to realize the ideas proposed we will present in the following section the method-
ologies and test cases that we regard as being adequate to simulate a realistic environment
while assessing the validation of the inherent mechanisms in each node. The demonstration
principle behind the various proofs is made by deploying programmed software in order to
apply the behaviour to each node.

This prototype has two different interacting entities. Nodes and sensors. In turn, these
have different roles within each simulation. Whilst sensors are subject to a proof of concept in
regards to aggregation, nodes need different simulation environments to validate the different
mechanisms they possess.

4.1 Methodology

The test cases were performed using five prototype nodes, smart energy gateways, and
twenty-one prototype sensors, smart plugs. The design behind the proof of concept lies on
the fact that the Fog must handle itself properly under faulty situations. Thus, we recreated
three test case scenarios where the assessment over the node behaviour, as a solipsistic entity,
interacting with other entities outside one’s mind, is taken into shape as crashes. And real life
behaviours may occur. The idea behind these scenarios is simple: if a node performs under
stress conditions, it will work smoothly under normal ones.

Moreover we present two figures associated to the equipment previously described. First it
is possible to see in figure 4.1 a smart energy gateway prototype where the software belonging
to the Fog was deployed. Additionally, on figure 4.2 one can observe two plugs with the
standard electrical component but also a power button that can turn on and off the plug.

The first example is a simultaneous start. In a realistic scenario, nodes can emerge at
any time. Nonetheless, they must be capable of cooperating in order to achieve a stable
organization. Moreover, we also consider the situation when a group is stable but a sudden
crash happens on a group leader and another random node. This will help validate both the
heartbeat mechanism and the leader election algorithm. If a group of nodes is able to detect
both crashes and recover from them, eventually stabilizing the group, then we can assume
both approaches to be valid. Furthermore, one last test case is when sensors attach to nodes.
Thus, we randomly placed sensors which autonomously connect to nodes in their range. This
can be supported through visual confirmation of each plug data, present in each associated
node.

53

Figure 4.1: A gateway prototype used in the proof of concept, provided by WithUs Lda.

Figure 4.2: Two smart plug prototypes used in the proof of concept, also provided by WithUs Lda.

54

Figure 4.3: Proof of concept topology, in comparison to figure 3.1.

The procedure associated to the simultaneous start tries to start nodes at close instants,
allowing an approximation towards simultaneity. Besides this consideration, every procedure
and behaviour is autonomous. The crash test case is based on the procedure where there
is an induced crash on a machine. This means while operating correctly, we shutdown the
device causing the same behaviour when a typical crash occurs. This procedure will help
the detection over other entities, granting awareness on each machine. Also, leader election
mechanisms are a consequence of such awareness with a goal of achieving stability.

This way, it is possible to relate figure 4.3 to figure 3.11 in a sense that P2P networks are
formed by groups of nodes, i.e. smart energy gateways. Bellow the Fog layer we can consider
sensor networks to be represented by smart plugs.

Nodes where placed randomly through different rooms within a building floor (see figures
4.4 and 4.5). Additionally, sensors were scattered across these rooms in order to be in range of
the node’s networks. The population sample is sufficient to cover all the test cases proposed
as a proof of concept. Additionally, the sampling technique lies on the output received by the
interface provided on each node. The latter provides local information regarding some of its
internal properties like state, group table, collected sensor data and the tracked addresses by
the heartbeat. In turn, these will help observe the behaviour of each node according to the
test cases.

The gateway prototypes are small embedded Linux systems capable of running a Java
environment. Thus, the deployment of the intelligence in each node is done homogeneously.
These devices have two communication interfaces. One aims to provide a medium to form
WSAN while the other establishes connection to the Internet through an access point or
edge router. In turn, the sensors represent small embedded devices, running an OS built to

1Pag. 30

55

Figure 4.4: The topology used as a concept in the proof of concept.

Figure 4.5: The actual distribution used regarding plugs and nodes.

56

provide a development platform capable of performing programmable computing. Additionally,
these devices connect to the Wireless Sensor Area Network(WSAN) generated by each node.
Ultimately, it is possible to distinguish the communication interfaces on the gateway prototype
by assessing their purpose. Hence, the wireless interface is used to deploy the WSAN allowing
plugs to establish a connection to the interface’s node. On the contrary, the physical Ethernet
interface is used to connect to an edge router or access point in order to communicate with
other gateways. Globally its possible to grasp these two interfaces as being ad hoc or Internet
oriented, respectively.

The distribution of sensors and nodes, as mentioned previously, took into consideration the
physical constraints regarding the propagation medium of signals. Generically, solid objects
like furniture and walls degrade the transmitted signals being that it increases proportionally
to the distance between sensors and nodes. In this case, radio devices could communicate at
distances between fifty and one hundred meters. Although, indoor environments directly imply
a decrease in the transmission range. This way, we ensure that this variable, regarding the
devices capabilities, does not influence the tests cases, ultimately considering the distribution
of devices to be made within a twenty meters radius between plugs and gateways.

The IP protocol used throughout the experiment was IPv6, which helps us to validate the
connection between E2E nodes. Moreover, a crash is simulated by forcing a machine to halt,
completely shutting down its functionalities.

Message losses are a particularity of fault tolerance towards crashes. Ultimately, the
redundancy provided to the FSM guarantees that message duplicates are handled through the
uniqueness of the trigger associated to each message. Furthermore, delays are disregarded
because the FSM operates over local information and even the absence of sufficient information
is enough for the node to take action. The connection to each node is made through Secure
Shells(SSH) via a laptop. The collected statistics and logs display the same data observed in
real-time on each test case.

4.2 Test Cases

The test cases where designed along the software milestones. As the complexity and
inherited mechanisms increased within the node’s intelligence, so did the scenarios and stress
situations. The test cases described thus far are sufficient to ensure the correct behaviour of
the system overall. Thus, we also consider these three cases to be capable of ensuring the
latter whilst future developments take place.

On the following subsections we will discuss these scenarios and what was the obtained
behaviour regarding nodes interoperability.

4.2.1 Simultaneous Start

The simulation of this environment takes in consideration what is required for one to
consider as an instant regarding some time reference. A real-life situation can be achieved by
starting different nodes almost instantaneously through the use of a central machine, capable
of running a start-up script engaging, at the operation level, sequentially with the remote
machines. If we achieve the desired outcome, the validation of sequential node aggregation, on
different instants can also be taken for granted since it is an adjacent process in regards to a
simultaneous start. Each node performs, starting on Detached, following the broadcast of who
is there which leads to a transition to Looking for group. Here, each node will check its inbox

57

Figure 4.6: Simultaneous start of five nodes and their states

subsequently analysing the received messages. The node with the lowest UID will transition
to Group leader while the remaining nodes go back to Detached, restarting the group lookup
process.

Nodes eventually organize themselves and share information between each other. Given
this achievement, sequential start is also granted. Additionally, one has to consider the
simultaneous start when a group is already formed, thus, upon validating the latter, one also
experimented a simultaneous burst of nodes emerging in the network. These are expected to
join the newly formed group ultimately finding equilibrium within their set of neighbours. It
is important to note that the order of the node’s, regarding their transitions, towards joining
the group is conceptual. There is no mechanism that guarantees a specific order according
to their UID. Thus, in the experiments it is expected that the order where nodes join the
group leader is not necessarily the one described in the last picture. Instead, the purpose is to
achieve a stable organization in a finite number of steps. The results associated with this test
case are later on presented in the results section (see section 4.3 on page 60).

4.2.2 Crashing Nodes

In this test case scenario we take advantage of the proof validated in the previous section.
Upon reaching a stable group, some nodes may crash. Furthermore, crashes can occur at
two different hierarchical levels in each group: on members and group leaders. Thus, we will
crash a group leader and a member. Additionally, we chose specifically the two nodes whose
UIDs are the lowest. Recalling leader election, the best candidate is the node with the lowest

58

Figure 4.7: Simultaneous burst of nodes connecting to node zero

UID, following the crashed leader. Hence, Heartbeat, FSM redundancy and Group leader
election mechanisms are tested because of such factor. Depending on the detection order, by
the heartbeat, a group member may detect the member crash prior to the leader’s. If so, it
will remove the member. Later on, when the detection of a leader crash is made, the node will
start the election. Since both crashed nodes have been removed from the group, individually
by each node, election can take place on the set of active nodes in the group table. On the
other hand, if a node detects a leader crash first, there will be inconsistent data during the
election. This can happen when a crash occurs, besides the leader, and the crashed member is
the best candidate on the election. If nodes detect a leader crash, they will assume an invalid
node to be the best candidate. Even so, the overall stability of the group is ensured by the
heartbeat towards the crashed candidate. Resulting in another election.

4.2.3 Sensor Aggregation

Sensor aggregation was conceived in an aspect where one deploys the smart plugs randomly
spread around nodes. They boot and initiate the procedure of looking for a master to start
reporting their measurements. Upon completing the protocol described in section 3.4 on page
49 the node’s UI additionally shows the attached sensors. These display the output regarding
the structure that maintains data related to these sensors. The information shown in table 4.1
is the conceptual table with the attached plugs information. Moreover, we will induce crashes
in nodes in order to show the re-establishment of the environment where devices search for a
new node to be connected.

Furthermore, every measurement collected from sensors represents real data transmitted

59

Figure 4.8: Crash occurrence in the two lowest UID nodes

Plug IP Address Relay Status Wattage Voltage Amperage

aaaa:0:0:0:212:4b00:3cd:7087 On/Off W V A

Table 4.1: Plug data table

in real time. Additionally, there are unspecified cases where the plugs are attached in a
piggybacked fashion, generating different electric measurements from the environment. Even
so, we did not define a specific layout on plug distribution over their electrical counterparts.
There are no complementary procedures which artificially introduce data to make the proof of
concept possible. Every detail displayed on the figures shown throughout the results represent
statistics, collected in a real simulation.

4.3 Results

The following sections is composed by a series of snapshots taken during the simulation of
the test cases. These snapshots are supported by the information they expose regarding each
nodes current state in the universe of nodes.

Firstly, every node starts in Detached and follows its behaviour according to the FSM.
Although, we only display the moments where nodes find themselves in a stable state giving
meaning to what has happened. Besides the written explanations, the modifications while
a node is self-organizing only become noticeable through their state which has been already
explained.

60

Figure 4.9: Initial information displayed by each node, as Detached, on the connected terminal.

In order to become familiar with a node’s UI, take into consideration figure 4.9 which is a
snapshot of the latter.

The information shows the Peer’s, i.e. node, ID, State, IP, Group table information,
Heartbeat tracked addresses, the incoming and outgoing messages on the Commu-
nication manager and ultimately, the devices attached to the node.

4.3.1 Simultaneous start

It is expected that during the test case of a simultaneous start the nodes self-organize
forming a group. Additionally we also know that the node with the lowest UID is the one
supposed to form the group while the others will have to join it. Consequently the nodes start
simultaneously by broadcasting a command through a script. By being connected to the node
via a terminal on a laptop, the following figures represent the UIs from the nodes in each test
case:

In fact, node zero did start the group and accepted nodes one, two and three to join the
group. At this stage there is one missing node which did not join, yet.

Additionally, throughout this simultaneous start, we captured the instant before and after
node four joined the group, resulting later on in the broadcast of that info message, resulting
in the information shown on figure 4.11:

Moreover, from the fourth node perspective it has acquainted with the group leader and
received the information regarding its new group. The node interface displays such information
upon reaching the stable state In group resulting shown in figure 4.12:

Due to the constraints regarding the amount of physical nodes one had to shift the
deployment to a virtual environment. This means the tests done with more than five nodes were
carried on in the same machine by launching different Java environments which communicated
through a loopback interface. Thus, from the sixth node perspective, the final scenario could
be seen as:

61

Figure 4.10: Nodes one, two and three joined node zero group after simultaneous start.

Figure 4.11: Node four joins the group from node zero perspective.

Figure 4.12: Node four UI information after the simultaneous start.

62

Figure 4.13: Sixth node internal information.

4.3.2 Crashing nodes

The results obtained through the crash of nodes cannot be displayed by providing infor-
mation in the machine that crashed. Instead, we will describe the scenario as we present the
pictures associated to the nodes that kept displaying their normal behaviour during the crash
detection and afterwards.

We will induce a succession of crashes within the nodes, by ultimately reducing the group to
just one node which we will present the information after the stabilization of the environment.

Granted five nodes already in group, we start to prove the validation of group leader
election by crashing the leader. In this case, node zero. Upon crashing the node, we expect
that node one will assume control over the group given the election mechanism. Additionally,
it is also possible to notice through the interface that the value of the counter in the heartbeat
is decreasing which will trigger the crash detection regarding the group leader. In the section
of ”Tracked address by keep alive” that the following address fe80:0:0:0:6a8a:b5ff:fe00:5f7
belonging to node zero, has a counter value of one. On the next heartbeat it will reach
zero due to the crash. This same mechanism is common to all the remaining nodes. After
the election, node one extends is info to its neighbours by broadcasting info with its group
table. The validation is asserted when one checks the state and associated information of
the remaining nodes. Node two UI displays correct information regarding the simulation.
Ultimately, checking node four interface we realise the election process came through with
success. Given that the nodes responded well to the election mechanism we additionally
crashed two nodes. The nodes which we choose to do so were nodes one and three. The former
is the group leader and the latter a simple member.

It is expected that node two assumes control over the situation (figure 4.20) ultimately
stabilizing the group. This scenario will also be used as a proof towards sensor aggregation
since during these tests devices where attached to nodes. Although, that will only be shown in
the following subsection. After crashing the mentioned nodes we took a look at the results in
node two UI. First it was node one who was firstly detected to have suffered a crash, leading

63

Figure 4.14: Node zero UI as Group Leader

Figure 4.15: Node four is not receiving heartbeats from node zero

Figure 4.16: Node one UI, now as Group leader.

64

Figure 4.17: Node two UI

Figure 4.18: Node three UI

Figure 4.19: Node four UI

65

Figure 4.20: Node two UI with node three and four still in group

Figure 4.21: Node two UI with node four remaining

to the group election between the remaining nodes. Thus, the UI displayed is shown on figure
4.20.

Upon such, the reaction from the heartbeat regarding the counter values can be observed
(see figure 4.20). Node three, identified by the address fe80:0:0:0:6a8a:b5ff:fe00:2225 on the
Keep alive is displaying the value zero. Thus, the crash detection is soon take place. After a
few seconds, the UI displayed that node three has been removed from the group where two
and four remain.

The remaining address in the keep alive of both nodes is the address of the opposite
member in the group. Ultimately, we crashed every node but the fourth. Thus, it detected
the crash on node two and assumed control.

4.3.3 Sensor aggregation

We will present the results regarding sensor aggregation considering the crash of nodes
enunciated before. Additionally the results shown below are related to the snapshots presented

66

Figure 4.22: Node four UI with node two as Group Leader

Figure 4.23: Node four as the remaining node, now as Group Leader

67

before in the last section. From them we will be able to see the aggregation of devices to the
nodes in the universe and as the nodes crash, devices will search for new masters.

Stable environment

Figure 4.24 is a capture from node zero while being the Group leader. Below, on ”Devices
Cluster” we can see the information regarding the plugs and their measurements.

Node zero is the group leader. Clearly, it is handling a large portion of the overall plugs in
the universe. Here a mechanism of load balancing could be implemented in order to balance
the network (see section 5.2 on page 78). Node one (see figure 4.25), also receives data from
the plugs. The group information is solid and the heartbeat is showing a consistent connection
between all the remaining nodes. Additionally only two plugs connected to it.

Alike node one, node two, figure 4.26, is a member within its group, and has one more
plug attached in comparison to the preivous node. Its keep alive is also displaying a stable
connection to all the other nodes. The remaining nodes are three (on figure 4.27) and four (on
fig. 4.28, which are expected to have six plugs connected to them. Hopefully the heartbeat is
also showing a normal behaviour regarding the tracked addresses.

Both nodes three and four comply with what was observed in the previous members, alike
their heartbeats. These have the remaining plugs attached to them.

Following the crashes of nodes zero, one and three the only gateways prototypes remaining
were the ones with ID two and four. Thus, sensors needed to react to the crashes and search
for a new master to be attached to.

On the previous pictures regarding the five UIs it is possible to count twenty-one sensors
attached to the nodes. Additionally, the distribution is not load balanced resulting in the
mass aggregation of plugs in certain nodes within the group.

Aftermath

Moreover, the nodes that crashed had seventeen plugs attached to them, this means a lot
of entropy is generated due to these crashes. On the following picture we can grasp the final
aggregation of the whole group of plugs distributed between node two and node four.

As expected, node two assumed control of the group and handled the loose plugs from the
nodes that crashed.

Finally, node four UI (figure 4.30) with the plugs that did not attach to node two, plus the
ones node four already was connected to.

The final scenario is happen after node two crashes, consequently all the plugs needed to
re-attached to a node, in this case it is node four.

68

Figure 4.24: Node zero, UI with aggregated sensors

69

Figure 4.25: Node one, UI with aggregated sensors

Figure 4.26: Node two, UI with aggregated sensors

70

Figure 4.27: Node three, UI with aggregated sensors

71

Figure 4.28: Node four UI, with aggregated sensors

72

Figure 4.29: Node two, UI with aggregated sensors

73

Figure 4.30: Node four UI, with aggregated sensors

74

Figure 4.31: Node four UI, with all sensors aggregated

75

76

Chapter 5

Conclusion

”First we thought the PC was a calculator. Then we found out how to turn
numbers into letters with ASCII and we thought it was a typewriter. Then we
discovered graphics, and we thought it was a television. With the World Wide
Web, we’ve realized it’s a brochure.” Douglas Adams

One has to wonder where technology will lead us. Fog Computing is an appealing approach
if one aims to develop services for pervasive scenarios. Even so, this paradigm does not
only handle the Internet of Things, it also gives new meaning to current computational
environments, unveiling new possibilities for our society to grow as technology provides the
means to do so.

5.1 Achievements

In the opposite direction to what has been deployed, we ensure that communication is
established through the network without requiring any gateway to achieve such purpose. Nodes
can and will communicate with each other due to their IPv6 scheme. Additionally, the P2P
design imposed ensure that this system has the characteristics required by distributed pervasive
systems, thus, communication is completely decentralized and flatly-layered. Besides such,
the topology of the Fog layer internals can be arranged as required. The last characteristics
remove the constraints imposed by Zigbee which acts as a communication interface but also as
a controller within its sensor network. We have proven that it is possible to replace dedicated
daemons, like the Zigbee controller module. to perform a specific behaviour having everything
handled at the software layer with high-level procedures.

The increase of software intelligence in each node also made possible the accomplishment
of an infrastructure, i.e. groups of nodes where they can organize and maintain themselves
autonomously. The inherent mechanisms behind such behaviour make the system fault tolerant,
providing a continuous service in case of a failure in communications between a master node
and attached sensors. All of which results in a system capable of acting accordig to its
environment, guaranteeing the delivery of services throughout IoT clusters.

After all, it is possible to consider Fog Computing as an homogeneous system, capable
of handling the heterogeneity found in ”things” ultimately providing a better service to the
end-user which also implies an increase in quality of life.

In sum, we created a software-based entity which performs an autonomous behaviour. In
a group of entities, they can recognize and be continuously aware of each other

77

5.2 Further Improvements

A system is only capable of surviving if it keeps improving, triggering new needs towards
better services. Thus, throughout the development and maintenance of technology, further
improvements are an important subject to consider as the system grows.

First of all there is a lot of potential towards generating a solution that takes advantage of
Fog nodes and context networks where SaaS can also take place, oriented to the end client.
Additionally, it is crucial to define an homogeneous communication between the Cloud and the
Fog. This further improvements can enhance the quality of the service provided, thus, further
research in this area can help the development of the Cloud-Fog continuum. For instance,
regarding the electrical grid, smart plugs which are attached to smart energy gateways provide
real-time data to the latter which in turn can be captured by the cloud if a certain client
desires to see its current electric consumption. Moreover, using this approach with smart
meters instead of plugs allows a more dynamic control over the supplied power and tariffs. This
means a client can adjust the supplied power by the used of dedicated intelligence, brought by
Fog nodes. Additionally, a Fog node can also control the power supply allowance granting
more, or less, consequently applying the appropriate tariff.

Another improvement, and this one is considered to be crucial, is in relation to the load
balancing of the sensor networks. There is no direct control over the attachment of nodes.
Although we tried to apply a distribution directive to each group leader, the efforts proved to
be worthless since in the proof of concept sensors would have constrained visibility. The sensors
utilized in the proof of concept have a constrained signal reach, even so, a load balancing
mechanisms which allows nodes to forward plugs to other nodes is a serious subject. This
would increase the efficiency of networks and the amount processing of nodes.

The final consideration is in regards to the breakthrough that was made during the writing,
self-reflective, process. As referred in section 3.3.3 on page 46, we discovered a simpler approach
towards achieving stability in simultaneous start. Before the defense of the present document
one will test this enhancement allowing an assertion over the improvement itself.

78

Bibliography

• [Tanenbaum and van Steen (2004)] Andrew S.Tanenbaum and Maarten van Steen. Distributed
Systems: Principles and Paradigms. Pearson, Prentice Hall, 2nd Edition, 2004.

• [Lickleider and Clark (1962)] Joseph C. R. Licklider and Welden E. Clark. On-line Man-
Computer Communication, 1962. (Online)Available from: http://cis.msjc.edu/
courses/internet_authoring/CSIS103/resources/ (As in 15th May 2017).

• [Leiner et al. (2009)] Barry M. Leiner, Robert E. Kahn, Jon Postel, Vinton G.Cerf, Leonard
Kleinrock, Larry G. Roberts, David D.Clark, Daniel C. Lynch, and Stephen Wolff. A Brief
History of the Internet. ACM SIGCOMM Computer Communication Review, 39(5):1–3,
October 2009.

• [Roberts (1967)] Lawrence G. Roberts. Multiple Computer Networks and Intercomputer
Communication, 1967. (Online)Available from: https://people.mpi-sws.org/

˜gummadi/teaching/sp07/sys_seminar/ (As in 6th June 2017)

• [Open Fog Consoritum (2017)] OpenFog Consortium Architecture Work-
ing Group. OpenFog Reference Architecture, 2017. (Online)Available from:
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_
Reference_Architecture_2_09_17-FINAL.pdf (As in 5th June 2017)

• [Bonomi et al. (2012)] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, Sateesh Addepalli. Fog Com-
puting and Its Role in the Internet of Things, 2012. (Online)Available from: http://www.
ce.uniroma2.it/courses/sdcc1415/progetti/Fog_bonomi2012.pdf (As in
1st June 2017)

• [Herschel et al. (2012)] Richard Herschel, Patricia D. Rafferty. Understanding RFID
Technology within a Business Intelligence Framework, 2012. (Online)Available from:
http://file.scirp.org/pdf/IIM20120600021_19438961.pdf (As in 1st June
2017)

• [Hillman] Matt Hillman. An Overview of ZigBee Networks A guide for implementers and
security testers, undated. (Online)Available from: https://www.mwrinfosecurity.
com/our-thinking/an-overview-of-zigbee-networks/ (As in 5th June 2017)

• [Bisdikian (2002)] Chatschik Bisdikian. An Overview of the Bluetooth Wireless Technology.
IEEE Communications Magazine 39(12):86–94, December 2001.

• [Reina et al. (2013)] Daniel G. Reina , Sergio L. Toral, Federico Barrero, Nik Bessis,
and Eleana Asimakopoulou. The Role of Ad Hoc Networks in the Internet of Things: A

79

http://cis.msjc.edu/courses/internet_authoring/CSIS103/resources/
http://cis.msjc.edu/courses/internet_authoring/CSIS103/resources/
https://people.mpi-sws.org/~gummadi/teaching/sp07/sys_seminar/
https://people.mpi-sws.org/~gummadi/teaching/sp07/sys_seminar/
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog_Reference_Architecture_2_09_17-FINAL.pdf
http://www.ce.uniroma2.it/courses/sdcc1415/progetti/Fog_bonomi2012.pdf
http://www.ce.uniroma2.it/courses/sdcc1415/progetti/Fog_bonomi2012.pdf
http://file.scirp.org/pdf/IIM20120600021_19438961.pdf
https://www.mwrinfosecurity.com/our-thinking/an-overview-of-zigbee-networks/
https://www.mwrinfosecurity.com/our-thinking/an-overview-of-zigbee-networks/

Case Scenario for Smart Environments, 2013. Internet of Things and Inter-cooperative
Computational Technologies for Collective Intelligence. Springer 460:89–113.

• [Karagiannis et al. (2011)] Georgios Karagiannis, Onur Altintas, Eylem Ekici, Geert Heijenk,
Boangoat Jarupan, Kenneth Lin, and Timothy Weil. Vehicular Networking: A Survey and
Tutorial on Requirements, Architectures, Challenges, Standards and Solutions, 2011. IEEE
Communications Surveys & Tutorials 13(4):584–616, Fourth Quarter 2011.

• [Ko et al. (2010)] JeongGil Ko, Chenyang Lu, Mani B. Srivastava, John A. Stankovic,
Andreas Terzis, Matt Welsh. Wireless Sensor Networks for Healthcare. Proceedings of the
IEEE, 98(11):1947–1960, September 2010

• [Foster et al. (2001)] Ian Foster, Carl Kesselman, Steven Tuecke. The Anatomy of the
Grid, Enabling Scalable Virtual Organizations. Journal of Supercomputer Applications,
(15)3:200-222, Fall 2001.le

• [Madden et al. (2005)] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein,
Wei Hong. TinyDB: An Acquisitional Query Processing System for Sensor Networks. ACM
Trims. Database Syst. 30(1):122-173, 2005.

• [Coulouris et al. (2012)] George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Nlair.
Distributed Systems: Concepts and Design. Addison-Wesley, Prentice Hall, 5th Edition,
2012.

• [Ding et al. (2016)] Choon Hoong Ding, Sarana Nutanong, and Rajkumar Buyya. Peer-
to-Peer Networks for Content Sharing , 2016. (Online)Available from: http://www.
cloudbus.org/papers/P2PbasedContentSharing.pdf (As in 13th May 2017)

• [Lalitha and Subbarao (2012)] B. Lalitha, Dr. Ch. D. V. Subbarao. Peer-to-Peer Systems:
Taxonomy and Characteristics. International Journal of Computer Science and Technology
3(2):886–897, June 2012.

• [Grimm et al. (2004)] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven
Swanson, Thomas Anderson, Brian Bershad, Gaetano Borriello, Steven Gribble, David
Wetherall. System support for pervasive applications. ACM Transactions on Computer
Systems (TOCS) TOCS 22(4):421–486, November 2004.

• [Ganesan et al. (2003)] Prasanna Ganesan, Qixiang Sun, Hector Garcia-Molina. YAPPERS:
A Peer-to-Peer Lookup Service over Arbitrary Topology. INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies
3:1250–1260, July 2003.

• [Tian et al. (2005)] Ruixiong Tian, Yongqiang Xiong, Qian Zhang, Bo Li, Ben Y. Zhao,
Xing Li. Hybrid Overlay Structure Based on Random Walks. In: Castro M., van Renesse R.
(eds) Peer-to-Peer Systems IV. Lecture Notes in Computer Science, Springer 3640:152–162,
2005.

• [Kubiatowicz et al. (2000)] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski,
Patrick Eaton, Dennis Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weatherspoon,
Westley Weimer, Chris Wells, Ben Zhao. OceanStore: an architecture for global-scale
persistent storage. ACM SIGPLAN Notices 35(11):190–201, November 2000.

80

http://www.cloudbus.org/papers/P2PbasedContentSharing.pdf
http://www.cloudbus.org/papers/P2PbasedContentSharing.pdf

• [Kirrmann (2005)] Hubert Kirrmann. Fault Tolerant Computing in Industrial Automa-
tion, 2nd Edition 2005. (Online) Available from: http://lamspeople.epfl.ch/
kirrmann/Pubs/FaultTolerance/Fault_Tolerance_Tutorial_HK.pdf (As in
6th June 2017).

• [Weimer and Necula (2008)] Wesley Weimer and George C. Necula. Exceptional situations and
program reliability. ACM Transactions on Programming Languages and Systems (TOPLAS)
30(2):Article 8, March 2008.

• [Aguilera et al. (2005)] Marcos Kawazoe Aguilera, Wei Chen, Sam Toueg. Heartbeat: A
timeout-free failure detector for quiescent reliable communication. In: Mavronicolas M.,
Tsigas P. (eds) Distributed Algorithms. Lecture Notes in Computer Science, Springer
1320:126–140, June 2005.

• [Defense Communications Agency (1978)] Defense Communications Agency. ARPANET
Information Brochure, 1978. (Online) Available from: http://www.dtic.mil/dtic/
tr/fulltext/u2/a482154.pdf (As in 2nd May 2017).

• [Zhonghong Ou (2010)] Zhonghong Ou. Structured peer-to-peer networks : hierarchical
architecture and performance evaluation, 2010. (Online) Available from: http://jultika.
oulu.fi/Record/isbn978-951-42-6248-7 (As in 15th May 2017).

• [Cristian (1991)] Flavin Cristian. Understanding fault-tolerant distributed systems. Commu-
nications of the ACM 34(2):56–78, February 1991.

• [Kaur et al. (2011)] Mandeep Kaur, Manjeet Sandhu, Neeraj Mohan and Parvinder S. Sandhu.
RFID Technology Principles, Advantages, Limitations & Its Applications. International
Journal of Computer and Electrical Engineering 3(1):151–157, February, 2011.

81

http://lamspeople.epfl.ch/kirrmann/Pubs/FaultTolerance/Fault_Tolerance_Tutorial_HK.pdf
http://lamspeople.epfl.ch/kirrmann/Pubs/FaultTolerance/Fault_Tolerance_Tutorial_HK.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a482154.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/a482154.pdf
http://jultika.oulu.fi/Record/isbn978-951-42-6248-7
http://jultika.oulu.fi/Record/isbn978-951-42-6248-7

82

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Historical Context
	Thesis Goals
	Thesis Structure

	State of the art
	Distributed systems
	Distributed Computing Systems
	Fog Computing
	Embrace contextual changes
	Encourage ad hoc composition
	Recognize sharing as the default

	Peer-to-Peer Systems
	Taxonomy
	Centralized Systems
	Decentralized Systems
	Resource Storage and Sharing

	Fault Tolerance
	Fault Tolerance Taxonomy
	Fault classification
	Crash classification

	Fault Assertion
	Fault Masking
	Replication
	Preemptive Status Feedback
	Heartbeat Mechanisms
	The (Non-)quiescent factor
	Operational protocol

	Leader Election Algorithms

	Sensor Networks
	Internet of Things Role in the Fog
	Ad hoc Wireless Networks

	Engineered Solution
	The Architecture
	Node Groups
	Topology

	Node
	Finite State Machine
	Communication
	Design
	Message structure

	Fault Tolerance
	Heartbeat System
	Group Leader Election
	Additional Redundancy in the Finite State Machine

	Fog-iot Continuum
	Resource Sharing Procedure
	Device Response Under Node Crash

	Proof of concept
	Methodology
	Test Cases
	Simultaneous Start
	Crashing Nodes
	Sensor Aggregation

	Results
	Simultaneous start
	Crashing nodes
	Sensor aggregation
	Stable environment
	Aftermath

	Conclusion
	Achievements
	Further Improvements

	Bibliography

