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resumo 
 

 

As nanofibras proteicas, também conhecidas como fibrilas amilóide, estão a 

ganhar muito interesse devido às suas propriedades únicas, nomeadamente 

elevada resistência mecânica e propriedades funcionais. Estas nanofibras 

caracterizam-se por depósitos proteicos que resultam de um processo onde a 

molécula proteica adquire uma conformação estrutural em folhas-β. Dadas as 

suas propriedades, estas nanofibras têm sido estudadas como elementos 

estruturais e funcionais no desenvolvimento de materiais inovadores para 

aplicação em diferentes áreas como, por exemplo, em biosensores, 

membranas bioactivas e estruturas tridimensionais (scaffolds) para engenharia 

de tecidos. 

No entanto, uma das principais limitações na exploração de nanofibras 

proteicas está relacionada com o tempo necessário para a sua produção, uma 

vez que a fibrilação é um processo moroso que pode levar horas, dias ou até 

mesmo semanas. A utilização de solventes alternativos como agentes 

promotores de fibrilação, nomeadamente líquidos iónicos (ILs), foi 

recentemente demonstrada como uma via para reduzir o tempo de fibrilação. 

Estes resultados serviram de inspiração para estudarmos o processo de 

fibrilação de uma proteína modelo, a lisozima, em soluções aquosas de 

líquidos iónicos baseados nos catiões imidazólio ou colina com diferentes 

aniões derivados de ácidos orgânicos. A presença de qualquer um dos ILs 

testados no meio de fibrilação demonstrou ser muito eficiente obtendo-se taxas 

de conversão superiores a 80% de fibrilas. Seguindo uma abordagem 

semelhante, estudou-se também um solvente eutéctico profundo (DES) 

baseado em cloreto de colina e ácido acético (1:1) como possível promotor da 

fibrilação da lisozima, diminuindo-se o tempo de fibrilação de 8-15 h para 

apenas 2-3 h. Foi também demonstrado que a temperatura tem um papel 

fundamental na aceleração da fibrilação e tanto a temperatura como o pH 

influenciam significativamente as dimensões das nanofibras, nomeadamente 

em termos de comprimento e largura. Com o objectivo de ajustar a razão de 

aspecto das nanofibras (razão comprimento/largura), foram ainda estudados 

vários DES baseados em cloreto de colina e com ácidos mono-, di- e tri-

carboxílicos, tendo-se observado que o ácido carboxílico do DES desempenha 

um papel fundamental no comprimento das nanofibras produzidas, sendo as 

razões de aspecto sempre superiores às obtidas por fibrilação apenas com 

cloreto de colina. 
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O potencial das nanofibras proteicas como elementos de reforço em materiais 

compósitos foi avaliado pela preparação de filmes nanocompósitos à base de 

pululano com nanofibras de lisozima em diferentes proporções. Foram obtidos 

filmes transparentes com maior resistência mecânica à tracção, 

particularmente para as nanofibras com razões de aspecto mais elevadas. 

Além disso, a incorporação de nanofibras de lisozima nos filmes de pululano 

conferiu propriedades bioativas aos filmes, nomeadamente capacidade 

antioxidante e atividade antibacteriana contra a Staphylococcus aureus. O 

aumento do conteúdo de nanofibras nos filmes promoveu um aumento das 

propriedades antioxidante e antibacteriano dos filmes, sugerindo-se como 

possível aplicação a utilização destes nanocompósitos como filmes 

comestíveis e ecológicos para embalagens alimentares bioactivas. 

As nanofibras de lisozima foram também misturadas com fibras de 

nanocelulose com o objectivo de produzir um filme sustentável para a remoção 

de mercúrio (II) de águas naturais. Os filmes foram obtidos por filtração sob 

vácuo e mostraram-se homogéneos e translúcidos. A incorporação das 

nanofibras de lisozima nos filmes de nanocelulose promoveu um reforço 

mecânico significativo. Em termos da capacidade de remoção de mercúrio (II) 

a partir de água natural, a presença das nanofibras de lisozima proporcionou 

um aumento muito expressivo com eficiências de 82% (pH 7) < 89% (pH 9) < 

93% (pH 11), utilizando concentrações de mercúrio (II) de acordo com o limite 

estabelecido nos regulamentos da União Europeia (50 μg L-1).  

Em suma, foi demonstrado nesta tese que o uso de líquidos iónicos e de 

solventes eutécticos profundos assume um papel fundamental na formação de 

nanofibras de lisozima morfologicamente alongadas e finas, que podem ser 

exploradas no desenvolvimento de bionanocompósitos para diversas 

aplicações desde embalagens bioactivas a sistemas de purificação de água. 
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abstract 
 

Protein nanofibers, also known as amyloid fibrils, are gaining much attention 

due to their peculiar morphology, mechanical strength and functionalities. 

These nanofibers are characterized as fibrillar assemblies of monomeric 

proteins or peptides that underwent unfolding-refolding transition into stable β-

sheet structures and are emerging as building nanoblocks for the development 

of innovative functional materials for application in distinct fields, for instance, in 

biosensors, bioactive membranes and tissue engineering scaffolds.  

However, one of the main limitations pointed out for the exploitation of protein 

nanofibers is their high production time since fibrillation is a time-consuming 

process that can take hours, days, and even weeks. The use of alternative 

solvents, such as ionic liquids (ILs), as fibrillation agents has been recently 

reported with considerable reduction in the fibrillation time. This fact 

encouraged us to study the fibrillation of a model protein, hen egg white 

lysozyme (HEWL), in the presence of several ILs based on imidazolium and 

cholinium cations combined with different anions derived from organic acids. All 

ILs used were shown to fibrillate HEWL within a few hours with conversion 

ratios over than 80% and typically worm-like nanofibers were obtained. In 

another study, a deep eutectic solvent (DES) based on cholinium chloride and 

acetic acid (1:1) was studied as a possible promoter of HEWL fibrillation, and a 

considerably reduction of the fibrillation time from 8-15 h to just 2-3 h was also 

observed. Temperature has a key role in the acceleration of the fibrillation and 

both temperature and pH significantly influence the nanofibers dimensions, in 

terms of length and width. In what concerns the nanofibers aspect-ratio, several 

DES combining cholinium chloride and mono-, di- and tri-carboxylic acids were 

studied. It was observed that carboxylic acid plays an important role on the 

length of the nanofibers produced with aspect-ratios always higher than those 

obtained by fibrillation with cholinium chloride alone.  
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The potential of the obtained protein nanofibers as reinforcing elements was 

evaluated by preparing pullulan-based nanocomposite films containing 

lysozyme nanofibers with different aspect-ratios, resulting in highly 

homogenous and transparent films with improved mechanical performance, 

particularly for the nanofibers with higher aspect-ratios. Furthermore, the 

incorporation of lysozyme nanofibers in the pullulan films imparted them also 

with bioactive functionalities, namely antioxidant capacity and antibacterial 

activity against Staphylococcus aureus. The results showed that the antioxidant 

and antibacterial effectiveness increased with the content of nanofibers, 

supporting the use these films as, for example, eco-friendly edible films for 

active packaging. 

Lysozyme nanofibers were also blended with nanocellulose fibers to produce a 

sustainable sorbent film to be used in the removal of mercury (II) from natural 

waters. Homogenous and translucent films were obtained by vacuum filtration 

and the incorporation of these nanofibers in a nanocellulose film promoted a 

considerable mechanical reinforcement. In terms of the capacity to remove 

mercury (II) from natural water, the presence of lysozyme nanofibers 

demonstrated to increase expressively the mercury (II) removal with 

efficiencies of 82% (pH 7) < 89% (pH 9) < 93% (pH 11), using realistic 

concentrations of mercury (II) under the limit established in the European Union 

regulations (50 µg L-1). 

In sum, it was demonstrated in this thesis that the use of ionic liquids and deep 

eutectic solvents can accelerate the formation of long and thin lysozyme 

nanofibers that can be explored as nanosized reinforcing elements for the 

development of bionanocomposites with applications ranging from food 

packaging to water purification systems and nanotechnology. 
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Thesis guideline 

This thesis focuses on the production of protein nanofibers, using ionic liquids 

and deep eutectic solvents as promoters of fast fibrillation processes, and their use in the 

development of novel functional bio-based nanocomposites. Specifically, pullulan and 

nanofibrillated cellulose were combined with protein nanofibers through different 

methodologies to generate novel functional materials. The resulting materials were 

characterized in detail, in terms of structural, thermal, mechanical and functional 

properties, in order to assess their potential in diverse fields.  

This thesis is organized in 4 chapters, as described below. 

 

Chapter 1: Introduction 

The aim of this chapter is to provide a brief overview of the state of the art methodologies 

used to obtain protein nanofibers and their potential applications in the material science 

field, highlighting the novelty of the present thesis: the fast production of protein 

nanofibers with tuned properties to be used in the development of protein-based materials.  

 

Chapter 2: Production of Protein Nanofibers 

This chapter describes in detail the use of ionic liquids and deep eutectic solvents to 

promote and accelerate protein fibrillation, using hen egg white lysozyme as a model 

protein. The chapter includes the results of 3 papers, in which the investigation of the role 

of various cholinium and imidazolium based ionic liquids and a set of different deep 

eutectic solvents based on cholinium chloride is thoroughly explored and described. 

 

Chapter 3: Development of Innovative Materials based on Protein Nanofibers 

This chapter is devoted to the development of new functional materials based on protein 

nanofibers and considers the results of 2 papers. The first paper focuses on the 

development of pullulan films with protein nanofibers for packaging applications, while 

the second is dedicated to the preparation of nanofibrillated cellulose membranes with 

protein nanofibers and their use for mercury (II) removal from natural waters. 
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Chapter 4: Conclusion and Final Remarks 

The final chapter summarizes the overall conclusions of the work carried out during this 

thesis and offers a perspective on the future work that can be developed based on the 

obtained results. 
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1.  

Introduction 

 

Nowadays, there is a growing interest on the use of natural polymers, such as 

polysaccharides (cellulose, starch, chitosan), as well as proteins for the development of 

new sustainable materials with distinct functionalities and applications.1–5 These natural 

polymers are not only used individually but also in blends and composites, to improve the 

properties and functionalities of the final materials and extend their application fields, 

opening new perspectives for the development of innovative biomaterials. The growing 

interest of scientists in these materials has been triggered by their great potential for high 

added-value applications in different fields like pharmaceutical, biomedical and food 

industries, as a result of the enormous versatility of the synthetic processes and the almost 

endless choices of feasible combinations that can be employed to obtain biocomposites 

and blends.6,7 

 

 

1.1. Protein-based materials 

 

Proteins are attracting considerable interest in a large number of fields as eco-

friendly/green source of new materials, including composites and, especially, functional 

biomaterials.8 Proteins are one of the most versatile group of macromolecules in living 

systems and play a crucial role in all biological processes, including enzymatic catalysis, 

transport and storage, coordination, motion, mechanical support, immune protection, 

generation and transmission of nerve impulses, control and differentiation of cells and 

tissues.9 Research and development of protein-based materials is essentially focused on 

films, sheets, adhesives , foams, blends, composites and gels,8,10,11 mainly for biomedical 

applications, such as scaffolds for tissue regeneration, drug delivery systems, stimuli-

responsive materials12 and biosensors.11,13–16 
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Several reviews have recently been published on this field, showing that the interest in 

proteins for the development of new materials has increased considerably in the past 

years.11,15,17 For instance, Silva et al.17 conducted an overview on protein-based materials, 

from the sources, structure and properties through the materials derived from several 

different proteins, namely elastin, collagen, silk, keratin and soy protein, up to their 

applications. Throughout this review it is possible to evaluate how promising this research 

field is in terms of the use of proteins either as matrices, or fibers in composites with other 

compatible natural or synthetic polymers, to produce panoply of biomaterials with tunable 

properties. Due to their intrinsic biocompatibility, biodegradability, and specific properties 

together with their relatively high cost when compared with other natural polymers like 

cellulose and starch, protein-based materials are being mainly developed for biomedical 

purposes. Nevertheless, the knowledge gathered in the development of protein-based 

materials for biomedical applications certainly opens new perspectives for the development 

of new materials for application in other fields or even suggest other innovative and 

growing fields of research. One example is the ability of proteins to form protein 

nanofibers, also known as amyloid fibrils, and their use in the preparation of new 

biomaterials as presented in the following chapters. 

  

1.2. Protein nanofibers (Amyloid fibrils) 

 

The term amyloid was firstly introduced by Rudolph Virchow in 1854, to denote a 

macroscopic tissue abnormality that exhibited a positive iodine staining reaction.18 At that 

time, Virchow suggested that the substance underlying the evident macroscopic 

abnormality was starch, so the name amyloid was given (from latin amylum and the greek 

amylon). In 1859, Friedreich and Kekule demonstrated the presence of proteins in the mass 

of amyloid deposits, based on its high nitrogen content. Since then, amyloid was always 

related to the presence of proteins and much attention was given to the study of the protein 

conformation changes that result in fibril formation.18  

Amyloid fibrils are currently known as abnormal extracellular fibrous protein 

deposits, resistant to degradation, found in organs and tissues and formed by a process of 
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amyloidosis, i.e. the assembly of commonly soluble proteins.19 This process normally leads 

to tissue damage and it is frequently associated with some diseases, including systemic 

amyloidosis, Alzheimer's and Parkinson's diseases, maturity onset diabetes, and the prion-

related transmissible spongiform encephalopathies.20   

 

In each of these pathological states, a specific protein or protein fragment changes 

from its natural soluble form into insoluble fibrils, which accumulate in a variety of organs 

and tissues. For instance, the Alzheimer’s disease is characterized by this process of 

amyloidosis that leads to the deposition of insoluble amyloid fibrils in the neuropil. These 

amyloid fibrils are composed by the ordered aggregation of amyloid-β peptide (Aβ), a 39-

42 amino acid residue peptide, which is deposited extracellularly as amyloid plaques.21 

Although there are several amyloid fibril diseases in which proteins vary considerably in 

their structure, function and size, the amyloid fibrils formed show very few structural 

differences. In fact, the ability to form amyloid fibrils is an intrinsic property of all native 

proteins (Fig. 1), and it happens rapidly when proteins are held near their denaturation 

temperatures or are acidified. 

 

 

Fig. 1 - Schematic illustration of the mechanism of conversion of globular proteins into 

amyloid fibrils.22 

  

Despite the fact that amyloid fibrils are much associated to disease related proteins, 

they are also at the basis of vital phenomena such as adhesion, hyphae and secretory 

granules.23,24 For instance, bacteria such as Escherichia coli produce amyloid fibrils 
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expressed extracellularly, which are involved in their communication process with other 

bacteria.24 Moreover, these bacterial amyloid fibrils, also called curli fibers, are the 

proteinaceous component of the extracellular matrix that facilitates the formation of 

biofilms in many enterobacteria (Fig. 2).24  

 

 

Fig. 2 - Schematic illustration of the formation of amyloid fibrils (Curli fibers) by 

bacteria.24 

 

Amyloid proteins can also be obtained in vitro, as it is approached in the next 

section (1.3. Mechanism and conditions for protein fibrillation). 

 

1.2.1. Structure of amyloid fibrils 

 

Amyloid fibrils of both non-disease and disease related proteins show similar 

structures and morphologies including enriched antiparallel β-sheets, with a perpendicular 

orientation to the longitudinal fibrils axis.22,25,26 These fibrillar states are highly ordered, 

with lengths in the order of microns and diameters of 100-200 Å.27 Their mechanical 

properties are comparable to that of dragline silk and much greater than those of most 

biological filaments, such as actin and microtubules.28 Amyloid fibrils can possess very 

high kinetics and thermodynamic stabilities, often exceeding those of the functional folded 

states of proteins,29 as well as a greater resistance to degradation by chemical and 

biological means.30 

The morphology and secondary structure of amyloid fibrils was first studied by 

Transmission Electron Microscopy (TEM), X-ray diffraction, and chemical staining. For 
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example, TEM images of negatively stained amyloid fibrils of the islet amyloid 

polypeptide (IAPP) showed long and unbranching fibrils of 70-120 Å in diameter (Fig. 

3A).31 The X-ray diffraction showed a cross-β diffraction with 2 characteristics signals: a 

sharp reflection at 4.7 Å along the same direction as the fibril, and a more diffuse reflection 

around 10 Å perpendicular to the fibril direction (Fig. 3B).32,33  

 

 

Fig. 3 - The morphology and structure of amyloid fibrils studied by TEM and X-ray 

diffraction.25  

 

Chemical staining has been used for a long time to identify the presence of amyloid 

fibrils, since in the presence of certain dyes, amyloid-like fibrils display characteristic 

optical properties. Congo red dye has been used to identify amyloid fibrils in tissue sections, 

which under cross polarizers shows an apple-green birefringence. This dye has been 

commonly used in the cellulose industry due to its affinity to cellulose fibers, though it has 

undergone several chemical modifications to improve its sensitivity and specificity to 

amyloid fibrils.34–36 For example, Puchtler et al.37 described in 1962 a method that stains 

amyloid selectively by using Congo red in an 80% alcohol alkaline solution saturated with 

NaCl. Other chemical staining methods include Thioflavine T (ThT), a fluorescent stain. 

ThT associates with β-sheet aggregated fibrils, having an excitation maximum at 450 nm 

and an enhanced emission at 482 nm.36,38 

For many years, the amyloid fibrils have been characterised by these techniques. 

Despite the structural insights given by imaging techniques as electron microscopy or 

atomic force microscopy (AFM), they could not give much information concerning the 
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ultra-structure and the fact of being not crystalline and not soluble to be studied by liquid 

nuclear magnetic resonance (NMR) spectroscopy. Major developments were achieved 

when solid-state NMR started being used, and consequently, explored for this purpose.20 

This technique was used to study an amyloid-β structure formed from the 40-residue 

peptide - Aβ(1-40), at pH 7.4 and 24 ⁰C.39–41 In this structure, each Aβ(1-40) residue has 

two β-strands, spanning approximately residues 12-24 and 30-40, to the core region of 

fibrils, and inter-connected by the look 25-29. Two molecules of Aβ(1-40) form a 

protofilament (Fig. 4), in which the β-sheets 30-40 face to each other. It has been 

suggested that a single protofilament is composed of four β-sheets separated by distances 

of ~10Å.20  

 

 

Fig. 4 - Representation of a structural amyloid fibril model for Aβ(1-40), viewed down the 

long axis of the protofilament. Each molecule contains two β-strands that form separate 

parallel β-sheets in a double-layered cross- motif.42  

 

Solid-state NMR technique was also very important to study the orientation of the β-

sheets in protein fibrils. Structural models for Aβ fibrils, published before 2000,43–46 were 

consensual that the cross-β motifs in amyloid fibrils were comprised of antiparallel β-sheets. 

This belief was overturned by several studies published afterwards, showing that peptides 

Aβ(1-35) and Aβ(1-40) contain only parallel β-sheets.39,41,47,48 However, certain amyloid 

fibrils have been shown to contain antiparallel β-sheets, particularly fibrils formed by 

relatively short peptides, suggesting that there is no truly universal supramolecular 

structure for amyloid fibrils.49–51 Furthermore, according to Antzutkin et al.,41 who 

conducted solid-state NMR measurements using a multiple quantum 13C NMR technique, 

parallel β-sheets are preferentially favoured in amyloid fibrils because parallel alignment of 
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β-strand segments maximizes hydrophobic contacts and permits favourable interactions 

among polar side chains within a single β-sheet.  

Interestingly, Magic Angle Spinning (MAS) NMR experiments also revealed a 

parallel β-sheet geometry within the sheets of the amyloid fibrils and indicates a full 

complement of backbone-backbone hydrogen bonds along the entire length of the 

structure.52,53 In fact, the architecture of the fully assembled amyloid fibrils is not dependent 

on the sequence of the subunits since the constituent β-strands, within the core of the fibril, 

are linked by a vast array of interbackbone hydrogen bonds.54 In more detail, the hydrogen 

bonds that connect juxtaposed β-strands into a pleated β-sheet structure are aligned parallel 

to the main fibril axis (Fig. 5A). In contrast, the amino acid side chains extend 

perpendicular to the fibril axis. Therefore, the side chains define the intra- or intermolecular 

interactions within the plane of the fibril cross-section (Fig. 5B).55 

 

Fig. 5 - Amyloid fibrils cross-β core structure. Side (A) and top (B) view.55 

 

Recently, Fitzpatrick et al.52 combined five diverse and complementary techniques 

to determine the structure of each of the motifs that transform an 11-residue of the protein 

transthyretin (TTR) - TTR(105-115) - into amyloid fibrils. MAS NMR spectroscopy with 

high-resolution electron density maps from cryoelectron microscopy (Cryo-TEM), together 

with X-ray diffraction, TEM and AFM measurements enable to derive high precision 

structural restraints on the secondary, tertiary and quaternary structure of such amyloid 

fibrils (Fig. 6). 
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Fig. 6 - Results of five biophysical techniques combined to determine the structure of 

TTR(105-115) amyloid fibrils. (A) Histogram of STEM MPL (80-1000Å). (B) High-

resolution X-ray diffraction (3-100Å). (C) AFM image – scale bar 1µm (30-1000Å). (D) 

Combination of MAS NMR (0,1-10Å) and Cryo-EM (8-1000Å).52 

 

X-ray diffraction has shown again a vertical fibril axis, with a meridional reflection 

at 4.67Å and an equatorial reflection at 8.86Å, characteristic of cross-β structures (Fig. 6B). 

Through AFM imaging it was possible to measure an average height of the filament fibril of 

around 38.7Å (Fig. 6C). MAS NMR studies helped to determine the intermolecular 

interactions within the building blocks of the fibril, and to define a hierarchy of atomic-

resolution motifs involved in the self-assembly of the amyloid fibrils. Unlike other 

authors20, Fitzpatrick et al.52 defined a protofilament as having just 2 peptides. Two 

protofilaments interlaced formed a filament (4 peptides) and a group of 2 filaments 

constitute a fibril (Fig. 6D). In order to obtain an independent estimative of the number of 

peptides contained in the fibril, cross-sections Scanning Transmission EM (STEM) mass-

per-length (MPL) measurements were performed, revealing three populations of fibrils, 

formed according to the mass per length (2.5, 3.3 and 4.1 kDa/Å), corresponding to 

doublets (8 peptides), triplets (12 peptides) and quadruplets (16 peptides), respectively (Fig. 

6A). These MPL measurements are in good agreement with the cryo-TEM fibril 

reconstructions, showing a two-fold symmetry with 4, 6 and 8 two-β-sheet protofilaments 

(Fig. 7). This represents one kind of polymorphism. 
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Fig. 7 - Atomic resolutions of the 3 types of TTR(105-115) amyloid fibrils, determined by 

MAS NMR and Cryo-EM maps. (A) Doublet. (B) Triplet. (C) Quadruplet.52 

 

 

1.2.2. Polymorphism of amyloid fibrils 

 

Amyloid fibrils formed from different polypeptides contain a common cross-β spine. 

Nevertheless, amyloid fibrils formed from the same polypeptide can occur in a range of 

structurally different morphologies. Thus, with respect to morphology, amyloid fibrils are 

usually polymorphic, meaning that fibrils formed by a given peptide or protein can have 

multiple distinct supramolecular structures depending on the precise conditions under which 

the fibrils grow.56  

The heterogeneity of amyloid fibrils can reflect different types of polymorphism 

(Fig. 8) based on variations in the protofilament number, in the protofilament arrangement 

or in the polypeptide conformations.55  
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Fig. 8 - Structural types of amyloid polymorphism.55 

 

One example of such polymorphism involves the peptide hormone glucagon, 

wherein fibrils formed at different temperatures (25 ⁰C and 50 ⁰C) are morphologically 

different. Circular Dichroism and FTIR spectroscopy reveal differences in the secondary 

structure adopted by the constituent peptide molecules.57 Similarly, mammalian fibrils from 

different species vary in the secondary structure morphology (Fig. 9), and these differences 

seem to be controlled by one or two residues in a critical region of the polypeptide 

sequence.58 

 

 

Fig. 9 - Mammalian fibrils visualized by AFM. Cross-seeding with preformed fibrils from 

other species result in different fibril morphologies.58 

 

 Furthermore, the C- and N-terminal domains of the protein appear to interact with 

each other, and these fibrils do not have the characteristic 4.7 Å reflection typical of a cross-

β structure.59,60 As proposed by Fitzpatrick et al.,52 fibrils may consist of a different number 

of protofilaments. This possibility has also been demonstrated by cryo-TEM reconstruction 
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of different insulin fibrils containing 2, 4 and 6 protofilaments, in compact shape.61 Using 

STEM analysis together with MPL, Goldsbury and coworkers62,63 have shown multiple 

assembly pathways of Aβ(1-40) fibril polymorphism.62,63 Although it is known that 

different conditions of incubation can lead to different fibril structures, polymorphism can 

even occur within the same sample.62  

Cryo-TEM reconstruction of Aβ(1-40) fibrils suggests that fibrils may also differ in 

the relative orientation of their protofilaments, and so in the interaction between them.64 In 

this case, different fibrils formed under the same conditions differ in the position of the 

protofilaments. In one, protofilaments are side-by-side, while in the other they are offset 

from one another.64   

In addition, fibrils can differ in their protofilament structure, and therefore, in the 

conformation of the underlying peptides. Examples were provided by solid-state NMR 

spectra of different fibril morphologies from Aβ(1-40),48 α-synuclein,65 and amylin 

fragments.66 These studies demonstrated that different amyloid fibril samples can give rise 

to a diversity of interactions within the structure, having as a consequence different fibril 

morphologies.48 

These features of the protein fibrillation processes reveal that polypeptide chains can 

adopt multiple conformational states, which can interchange among them. A schematic 

representation of some of the many conformational states is shown in Fig. 10.20 Taking the 

protein biosynthesis from a ribosome as starting point, the polypeptide chain is unfolded. 

Depending on the conditions for protein aggregation, the partial folding can occur until the 

protein achieves the native conformation, with its functional properties. This native 

conformation can lead to the arrangement of the polypeptide chain into functional 

oligomers, functional fibers and native-like aggregates. However, this is merely a pathway, 

since the unfolded or partially unfolded polypeptide chains can originate disordered 

aggregates of different natures. Furthermore, a vast majority of proteins may be degraded as 

part of normal biochemical processes.20  

On the other hand, peptides and proteins that are partially unfolded, as well as 

fragments of proteins which are unable to fold due to the absence of proper folding 

conditions, can also aggregate under some circumstances, forming amorphous aggregates. 

Some of these aggregates simply dissociate again (interchanging conformations), but others 
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may re-organise to form β-structured aggregates (amyloid protofibrils), including several 

morphological states as previously discussed.  

 

 

Fig. 10 - Schematic representation of some conformational states adopted by polypeptides 

during fibrillation.20 

 

These structural differences in fibrils can probably be caused by the slightly 

different conditions used when fibrils are formed. These outcomes show that each protein 

sequence can form a spectrum of structurally distinct fibrillar aggregates and that kinetic 

factors can dictate which of these alternatives is dominant under given circumstances.  
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1.3. Mechanism and conditions for protein fibrillation 

 

The understanding of the mechanism behind protein fibrillation is important in the 

adequate control of the protein fibrillation process in vitro, opening a way to the production 

of nanometric fibers that might provide valuable applications in material sciences. Much 

efforts have been dedicated to the study of the mechanism of protein fibrillation in the last 

decade and some reviews were recently published, providing an overview of historical 

contributions to the understanding of the kinetics and thermodynamic of protein 

fibrillation.67–69 

Fibrillation is widely recognized as a nucleation-elongation process, also known as a 

“nucleated growth” mechanism.20,70 A characteristic sigmoidal growth profile for the 

increase in mass-of-aggregate is observed for a wide range of in vitro protein fibrillation 

phenomena (Fig. 11). The time course of the conversion of a peptide or protein into its 

fibrillar form (measured by ThT fluorescence, light scattering, or other techniques) typically 

includes a lag phase that is followed by a rapid growth phase, and ending in a plateau 

phase.71–73  

 

 

Fig. 11 - The sigmoidal growth profile of protein fibrils mass formation.70 

 

The lag phase is assumed to be the time required for “nuclei” to form, during which 

no measurable aggregation occurs. Once a nucleus is formed, fibrils growth proceeds 
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rapidly by further association of either monomers or oligomers to the nucleus. The effective 

growth rate then increases as significant number of aggregates are produced, until a 

maximum growth rate rmáx (s
-1) is reached at the inflection point (Fig. 11). Such a nucleated 

growth mechanism has been well studied both experimentally and theoretically in many 

other contexts, most notably for the process of crystallization of both large and small 

molecules.74 In the end, the monomer population is mostly depleted, the reaction rate slows 

down and a plateau phase characterizes the end point of the process. 

As with many other processes dependent on a nucleation step, addition of preformed 

fibrillar species to a sample of a protein under aggregation conditions (“seeding”) causes the 

lag phase to be shortened and ultimately abolished when the rate of the aggregation process 

is no longer limited by the need for nucleation.71 It has been also shown that changes in 

experimental conditions can also reduce the length of the lag phase.72,73,75 The absence of a 

lag phase does not necessarily imply that a nucleated growth mechanism does not take 

place, but it may simply be that the time required for fibril growth is sufficiently slow 

relative to the nucleation process and that the latter is no longer the slowest step in the 

conversion of a soluble protein into the amyloid state. Although fibrils do not appear to a 

significant extent during the lag phase, it is increasingly clear that this stage in fibril 

formation is an important event in which a variety of oligomers forms, including β-sheet-

rich species that provide nuclei for the formation of mature fibrils. 

 

Amyloid fibrils can be obtained under specific conditions and several proteins have 

been used to unveil the mechanism of amyloid fibrils formation.76  

Hen egg white lysozyme (HEWL) has been widely used as a model protein in in 

vitro fibrillation studies, and the influence of a variety of conditions,77 including pH of the 

media (using acidic78,79 or alkaline80,81 solutions), temperature,82–84 high pressure,85 and the 

addition of sodium azide,86,87 urea88,89 or ethanol,90 in fibrillation induction have been 

researched. The study of in vitro HEWL´s fibrillation process has facilitated the 

development of drugs targeted against amyloidosis, and numerous studies now focus their 

attention on fibril formation inhibition.91,92 

Apart from HEWL, other proteins have also been studied. For instance, the globular 

milk protein β–lactoglobulin can generate amyloid fibrils under certain conditions as low 
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pH (~2), low ionic strength (I<20 mM) and high temperature (>80 ºC)93,94, with usually 2-

10 mg mL-1 of protein concentration. Loveday et al.95 studied the temperature effect on the 

fibrillation kinetics, concluding that in the temperature interval from 75 ºC till 120 ºC 

fibrillation kinetics is strongly affected by temperature, reducing the lag phase and 

accelerating the fibrillation, especially between 75 and 80 ºC. However, these results 

showed that temperature has little influence in the fibril morphology, except that prolonged 

heating at 120ºC fractures fibrils.95 Loveday and co-workers have also studied the 

influence of pH and the addition of salts, such as NaCl and CaCl2 in the fibrillation process 

of β–lactoglobulin.96 Lowering pH below 2.0, the fibril formation is accelerated during the 

growth phase and it increases the fibrils formation yield, but has little effect on the duration 

of the lag phase. pH does not influence the β–lactoglobulin fibrils morphology which is 

characterized by long, semi-flexible and unbranched fibrils, with some spherical 

aggregates dispersed (Fig. 12). NaCl also accelerates fibril formation during the growth 

phase without shortening the lag phase. However, the use of CaCl2 accelerates the fibrils 

growth and shortens the lag phase, being suggested that Ca2+ accelerates the nucleation by 

‘bridging’ between two peptides via nucleophilic functional groups. It was also reported 

that NaCl and CaCl2 alter the fibril morphology, which goes in accordance with another 

study probing fibrils stability.97 Increasing the ionic strength of the fibrillation medium 

promotes conformational changes in the Aβ structure, as the fibril surface becomes more 

hydrophobic. Moreover, increased ionic strength influences the hydrogen bonding between 

external and internal layers showing that the energy gain from binding a new layer to the 

axial fibril ends is significantly greater at conditions of low ionic strength, leading to 

formation of long and thin fibrils.97 
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Fig. 12 - TEM images of β-lactoglobulin fibrils prepared at pH 1.6 - 2.4 by heating 1% 

(w/v) β-lactoglobulin solutions at 80ºC for 6h.96 

 

Besides β–lactoglobulin, insulin has also been extensively studied for the 

preparation of amyloid fibrils.98,99 For instance, Zako et al.98 dissolved insulin (20 mg mL-

1) in 40 mM HCl, at pH 1.5, and then used a 20% acetic acid solution with 100 mM NaCl, 

at pH 1.6, to dilute it. The insulin solution was then fibrillated by heating at 70 ºC for 13 h, 

without stirring. ThT fluorescence was measured and fibrils were characterized by TEM 

(Fig. 13). In a similar study,99 the incubation was taken at 60 ºC for 24 h showed that the 

10 ºC  increment, from 60 ºC up to 70 ºC, may accelerate the fibrillation of insulin. More 

recently, Carvalho et al.100 explored a microwave assisted methodology which reduced the 

fibrillation of insulin from 13 h to 2 h. 
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Fig. 13 - Fluorescence measurements of insulin fibrillation during 13 h and a TEM image 

of the fibrils formed (scale bar 200 nm).adapted98  

 

 

 

 Bovine serum albumin (BSA) is another protein that has been fibrillated in vitro. 

Arasteh et al.101 dissolved BSA in 50 mM glycine-HCl solution, taking into account 

different variables like protein concentration, pH, temperature and time. The optimal 

fibrillation was obtained at protein concentration of 5 mg mL-1, pH of 3.02 at 72 ºC and up 

to 48 h. Most early studies were conducted under acid conditions. However, new insights 

on BSA fibrillation under alkaline conditions (pH = 8.9), were also reported.102 It was 

concluded that at pH values close to the isoelectric point, amorphous aggregates are readily 

formed due to the lack of electrostatic repulsion. However, at pH values different from 

isoelectric point, the larger repulsion between molecules slows down the aggregation, 

leading to protein rearrangement in defined β-sheet amyloid fibrils.102 

 

 In a more recent study, Pan and Zhong103 have used intrinsically disordered α-, β-, 

and k-caseins to study the formation of amyloid-like fibrils at pH = 2 and 90 ºC. No fibrils 

were observed for α-caseins, and acid hydrolysis was found to be the rate-limiting step of 

fibrillation of β- and k-caseins. Nanomechanic analysis of the obtained amyloid-like fibrils, 

using peak-force quantitative nanomechanical atomic force microscopy, showed a Young’s 

modulus of 2.35 ± 0.29 GPa for β-casein and of 4.14 ± 0.66 GPa for k-casein. The β-casein 

fibrils dispersion had a viscosity more than 10 and 5 times higher than those of k-casein 

and β-lactoglobulin, respectively, at comparable concentrations.103 
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 As already pointed out, most of these studies highly contributed to the 

understanding of the protein fibrillation process and consequently to the development of 

new treatments against amyloidosis. Concerning the potential use of these fibrils in the 

material field, one of the major limitations is the time required to obtain the fibrils, since 

most of the fibrillation procedures developed so far can take days, weeks and even 

months.87,89,90 During the last years, different fibrillation procedures have been developed 

for the production of fibril-based materials and the fastest procedures usually take 8-15 

h.81,88 To the best of our knowledge, besides the use of microwave assisted methodology 

for insulin,100 only one work104 reported the production of lysozyme fibrils in less than 3h, 

through the use of guanidine hydrochloride as an amyloid inducer. However, the fibril 

dimensions in terms of length are a bit short (~300 nm) comparing to other studies where 

fibrils of around 1µm of length or even higher were obtained.105–107 

An interesting breakthrough in the protein fibrillation was achieved using ionic 

liquids and it will be described in the next section. 

 
 

1.3.1. Ionic Liquids for Protein Fibrillation 

 

According to the commonly accepted definition, ionic liquids (ILs) are entirely 

composed of ions (organic cations and either organic or inorganic anions), which have 

melting points below the conventional temperature of 100 ○C. Ionic liquids comprise an 

exceptional combination of intrinsic properties, such as negligible volatility, thermal 

stability, low flammability, high ion conductivity and what is more important their 

properties can be easily tuned by the judicious choice of cations and anions. As solvents, 

the most significant advantages include their non-volatility, good solvating properties, 

variable polarity range, which are normally associated with their environmentally “green” 

label.108–110  

Ionic liquids have been used in several fields, including life sciences. They  have 

been shown to stabilize and solubilize proteins, and to increase enzymatic 

activities.109,111,112 Another interesting breakthrough on the application of ILs in this 

domain has been the promotion of proteins fibrillation. The use of ILs to adjust the 

fibrillation process and to stabilize different amyloid species opens perspectives of probing 
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protein conformational states and exploring new protein-solvent interactions. Both 

protic113–117 and aprotic116,118–120 families of ILs, have shown to be of value in the 

promotion of protein conformal states leading to the formation of fibrils. The use of aprotic 

ILs is reasoned based on their hydrogen bonding interacting capacity, while protic ILs use 

is based on their proton transfer ability, as a mean to control the effective acidity of the 

medium. 

A couple of works have been done using model proteins such as hen egg white 

lysozyme (HEWL),113,117,120 α-lactalbumin, trypsin and insulin.120 For instance, Bae et 

al.120 showed that diluted (5 wt.%) solutions of 1-n-butyl-3-methylimidazolium [C4mim]-

based ILs (with different anions) can effectively trigger amyloid fibril formation of α-

lactalbumin, HEWL, trypsin and insulin. Briefly, protein solutions (1 mg mL-1) were 

incubated in 20 mM glycine buffer (pH = 2.0) in the absence and presence of ILs at a ratio 

(v/v) of 1, 2 and 5%, with constant magnetic stirring at room temperature,121 and amyloid 

fibril formation was monitored by the ThT fluorescence assay along the experiment. As 

shown in Fig. 14, the ILs [C4mim][BF4], [C4mim][(CF3SO2)2N] and [C4mim][PF6] were 

tested in the fibrillation of α-lactalbumin, and ThT measurements indicate that amyloid 

fibrils were effectively formed in 2-5 days. 

 

Fig. 14 - Amyloid fibril formation of α-lactalbumin with [C4mim]-based ionic liquids. (A) 

ThT fluorescence as a function of time of α-lactalbumin in the absence and presence of 

[C4mim][BF4], [C4mim][(CF3SO2)2N] and [C4mim][PF6]. (B) Fluorescence image of ThT-

stained α-lactalbumin amyloid fibrils with [C4mim][BF4].adapted120 

 

Although both the absence of any IL or the presence of [C4mim][(CF3SO2)2N]  

does not promote effective protein fibrillation, the use of [C4mim][BF4] and [C4mim][PF6] 
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ILs was successful in amyloid formation, as observed using ThT assays. In terms of the ILs 

anions ability to form amyloid fibrils, the order was shown to be BF4
- > PF6

- > 

(CF3SO2)2N-. Moreover, this study showed that the morphology and the properties of the 

aggregates can be modulated depending on the chemical structure of the IL and pH.120 

The slow fibrillation process of α-synuclein, a small cytoplasmic protein, whose 

amyloid fibrils are known to be a critical step in Parkinson´s disease development, is a 

major obstacle to the development of therapeutic compounds to regulate its amyloid 

formation. In order to accelerate this process, Hwang et al.118 used ILs to act as stimulators 

for α-synuclein fibrillation. Briefly, 5 and 10 wt.% solutions of ILs with different cations 

and anions were added to a α-synuclein solution (1.0 mg mL in 20 nM Tris-HCl, pH = 8), 

followed by continuously stirring at room temperature. Because of the slow process of 

formation of α-synuclein amyloid fibrils, these strategies can contribute to better 

understand the amyloid fibrils formation. Furthermore, using a series of ILs based on the 

imidazolium cation, with different alkyl chain lengths, combined with different anions, 

these authors concluded that the IL [C4mim][(CF3SO2)2N] (Fig. 15 – IL-2) showed the 

most promising results, followed by its cation-ILs C2mim+ (Fig. 15 – IL-1) and C6mim+ 

(Fig. 15 – IL-3) respectively, while [C4mim][BF4] (Fig. 15 – IL-9) seems to have no effect 

on the α-synuclein fibrillation. These results are contrary to the previous study conducted 

by Bae et al.120, who suggested that protein fibrillation is strongly dependent on the 

chemical nature of the ILs and structure composition of the proteins. 

 

Fig. 15 - Kinetics of α-synuclein fibril formation using different ionic liquids and 

monitored by ThT fluorescence.118  
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On the other hand, Debeljuh et al. in a sequence of studies using Aβ(1-40)114 and 

Aβ(16-22),115 showed that solutions of some protic ILs, such as triethylammonium 

methanesulfonate (TeaMs), can promote protein fibrillation, as it can be seen by the 

presence of long flexible fibrils in TEM images in  Fig. 16, supporting the existence of β-

sheet secondary structures as measured by CD and ThT.  

 

Fig. 16 - TEM image of amyloid fibrils from Aβ(1-40) induced by protic IL solution 

containing 10 wt.% TeaMs.114 

 

In addition, Debeljuh and coworkers114,115 have also shown that concentrated 

solutions of some protic ILs can induce α-helixes, another type of secondary structure of 

proteins, formation through the alteration of the natural hydrogen bonding in peptides. The 

mechanism by which these protic ILs can alter the hydrogen bonding nature of the peptide 

is the result of the unique hydrogen bond network system of the protic ILs. This ability of 

TeaMs to induce an α-helix structure are not limited to TeaMs alone, since studies using 

other similar ILs such as ethylammoniummesylate (EaMs), propylammoniummesylate 

(PropMs), ethylammonium nitrate (EaN) and triethylammonium trifluoromethanesulfonate 

(TeaTf) lead to the same conclusions.  

Despite the potential of ILs to promote protein fibrillation, they can also be used to 

reduce amyloid formation. For example, Kalhor et al.113 reported the use of very diluted 

solutions (µM) of protic ILs such as tetramethylguanidinium acetate to in vitro inhibit or 

reduce the amyloid formation of HEWL (Fig. 17). Partial unfolded HEWL is converted 

into intermediates and subsequently into protofibrils and amyloid fibrils. When the protein 
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is exposed to the IL, the oligomers are formed but part of them is specifically trapped by 

the IL, leading to fewer protofibrils, as illustrated in Fig. 17. 

 

Fig. 17 – Schematic diagram of a proposed mechanism of HEWL fibril inhibition by 

tetramethylguanidinium acetate (IL-2).113 

 

In a different vein, Byrne and Angell117 used protic ammonium-based ILs with 

different anions to study the impact of these solvents on the ability to promote the re-

dissolution of fibrillated HEWL, at room temperature, restoring a substantial part of the 

pristine protein enzymatic activity. The most remarkable result was obtained with the very 

fast re-dissolution of fibrils formed in an ethanol solution with EaN, restoring up to 72% of 

the protein bioactivity.  

Although the exact mechanism of protein fibrillation in ILs is still debatable, it is 

generally accepted that the nonpolar to polar balance of these solvents is an important 

parameter in the disruption of the intramolecular hydrogen bonds, which are essential for 

β-sheets formation. Additionally, it will be fundamental to choose more “green ILs” among 

the many ILs available. 
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1.3.2. Potential use of DES for Protein Fibrillation 

 

Very recently, deep eutectic solvents (DES) have been gaining much attention as 

versatile alternatives to ILs.122 DES can be regarded as a new generation of solvents 

composed of a mixture of two or more compounds, where one of them is a salt. The 

formation of these new liquids at room temperature is due to the establishment of hydrogen 

bonds between a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA), 

usually a halide anion present in the salt.123–125 The most popular DESs used so far are 

those based on cholinium chloride (used as HBA) because of its low cost, low toxicity, 

biodegradability and biocompatibility, since it is considered an essential nutrient, which 

can be extracted from biomass, and often regarded as a part of the B-complex vitamins.126 

Cholinium chloride has been combined with several classes of HBD such as renewable 

polyols, carbohydrates, amides, amines, alcohols and carboxylic acids.127 DES share many 

of the ILs appealing features, such as low volatility, high thermal stability and 

conductivity, wide liquid range and high solvation capacity128–130 and possess other 

interesting advantages over ILs: they are usually easier to synthesize, since the components 

are easily mixed without any further purification; they have low production cost due to the 

low price of starting materials; and most of the synthesized DES are biodegradable, 

biocompatible and non-toxic.130,131 In this way, DES are considered to be cheaper, efficient 

and greener solutions and they are finding many applications from metal finishing 

processes132 up to, more recently, compound extraction and separation media for 

azeotropic mixtures,133–136 with reported performances on par or even superior to 

conventional organic solvents and ILs. However, to the best of our knowledge, protein 

fibrillation using DES has never been researched before.  

 

1.4. Applications of Protein Fibrils on the Development of 

Innovative Materials 

 

From the materials perspective, protein nanofibrils are emerging as a unique and 

novel class of building nanoblocks for the development of innovative functional materials, 
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like films and scaffolds, because of their exceptional features as high strength and 

thermochemical stability.24,137–140  

In fact, protein fibrils have already been extensively studied and used for several 

applications, such as templates for the synthesis or assembly of several metallic 

nanoparticles and nanowires,141–143 as well as other inorganic (micro)nanophases, like 

hydroxyapatite,e.g.144–148 fluorapatite,149 calcium carbonate,150,151 carbonate apatite,152 

silica153 and cadmium selenide (CdSe) nanofibers.154 These brands of functional hybrid 

nanomaterials found application in biosensors, electronic and energy devices, bioactive 

membranes and tissue engineering scaffolds, among others.105  

For example, metal nanowires have been fabricated by assembling proteins such as 

the N-terminal region of the yeast prion Sup35. Conjugate colloidal gold particles were 

associated along the fibers using the exposed cysteine of a variant Sup35. Additional metal 

was deposited by reductive deposition of metallic silver and gold from salts, yielding silver 

and gold wires of around 100 nm in diameter (Fig. 18A).155 In a different study, a very 

short peptide, composed of two phenylalanine residues, assembles to form amyloid-like 

nanotubes. These nanotubes were functionalised by reduction of ionic silver within the 

nanotubes followed by enzymatic degradation of the peptide backbone (Fig. 18B), yielding 

silver nanowires with around 20 nm in diameter.156  

 

 

Fig. 18 - (A) Nanowires based on the N-terminal region of the yeast prion, Sup35. 

Nanogold was covalently linked to the engineered cysteine residues in the protein and 

conjugate colloidal gold and silver particles were associated along the fibers to form 

wires,155 (B) assembly of diphenylalanine to form nanotubes that can be filled with silver 

to make nanowires.156  
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In a more recent study, amyloid−metal nanoparticle hybrids were developed as 

efficient active materials for wet catalysis and as membranes for continuous flow catalysis 

applications.157 Specifically, amyloid fibrils from β-lactoglobulin were used as templates 

for the synthesis of gold and palladium metal nanoparticles from salt precursors. The 

resulting nanoparticle hybrids possess improved catalytic efficiency compared to their 

counterpart unattached particles, pointing out the role played by the amyloid fibril 

templates. Filter membranes could then be prepared from the metal nanoparticle-decorated 

amyloid fibrils by vacuum filtration (Fig. 19), and served as efficient flow catalysis active 

materials with a complete catalytic conversion achieved within a single flow passage of a 

feeding solution through the membrane.157 

 

 

Fig. 19 - Schematic representation of metal nanoparticles-decorated amyloid fibrils and its 

preparation. (a) β-lactoglobulin amyloid fibrils. (b) Metal nanoparticles (gold and 

palladium) preparation on the surface of the fibrils by reducing corresponding salts using 

sodium borohydride. (c) Filter membrane of nanoparticle−amyloid fibrils as efficient flow 

catalysis active material.157 

 

Additionally, a new class of hybrid materials, featuring organic semiconductors 

augmented by aggregating β-sheet peptide interfaces, have been proposed.158 The peptides 

retain their β-sheet forming ability when additional amino acids and linker units were 

added to manipulate their solubility and coupling with perylene imides. The di-substituted 

material with peptides extending in the N to C direction away from the perylene core 
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exhibits strong coupling and long-range order, both attractive properties for electronic 

device applications.158 

The combination of nanofibrillated proteins with graphene nanosheets is likewise 

an elegant strategy for the development of novel functional hybrid materials. Li et al.93 

combined graphene and protein fibrils to create responsive, biodegradable and lamellar 

nanostructures for the design of biosensors. The films were fabricated by vacuum filtration 

of the graphene dispersions with protein fibrils obtained from β-lactoglobulin.93,94 The 

composites produced were highly conductive, can be degraded by enzymes and can 

reversible change shape in response to humidity variations. Their properties could be fine-

tuned by varying the graphene-to-amyloid ratio (Fig. 20). In another study, graphene oxide 

(GO) nanosheets were hybridized through electrostatic interaction with lysozyme 

nanofibrils and it was constructed a biocompatible immobilization platform (amyloid-GO 

nanosheets) for enzymes without interfering their catalytic activity.159 For instance, HRP 

(Horse- radish peroxidase) as a model enzyme was immobilized on the amyloid-GO 

nanosheets and a simple sensitive and selective colorimetric method for glucose-detecting 

was built. This method was considered to be simple, cost-effective and easy-to-make 

biosensors, and the integration of amyloid fibrils on GO nanosheets offers additional 

possibilities of their application in the designing and developing of novel biocatalysts.159
 

 

 

Fig. 20 - Schematic representation showing the fabrication of graphene-amyloid fibrils 

composite films and AFM image of the graphene-amyloid fibril suspension with 1:5 

ratio.93  

 

Bolisetty et al.160 reported also a new class of hybrid membranes made from β-

lactoglobulin amyloid fibrils and activated porous carbon to remove heavy metal ions and 

radioactive waste from water, in a more efficient way than current processes, reduction 
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three to five orders of magnitude per filtration and the process can be repeated numerous 

times. The performance of the membrane is enabled by the ability of the amyloids to 

selectively absorb heavy metal pollutants from solutions.160 

In a completely different vein, several researchers have also explored the 

mechanical strength of protein nanofibrils as reinforcing elements in nanocomposites with 

synthetic matrices, namely, poly(L-lactic acid) PLLA,161 poly(vinyl alcohol) PVOH,99 and 

a silicone elastomer.162 In general, and despite the different methodologies used, the 

obtained nanocomposites showed significant improvements in terms of mechanical 

properties. In more detail, a novel nanocomposite was prepared by adding lysozyme 

amyloid fibrils into a 5 wt.% solution of PLLA in chloroform. Films with 2, 3 and 5% 

fibrils were prepared. These mixtures were stirred for 48h and then film was casted to 

obtain fibril-reinforced PLLA composites (Fig. 21) with improved glass transition 

temperature (Tg), elongation at break and Young’s modulus.161 In a similar study, bovine 

insulin was converted into amyloid fibrils and then combined with PVOH to a final 

concentration of 0.6 wt.% of fibrils. This methodology reveals to preserve the amyloid 

fibril structure and to improve the properties of the resulting fibril-reinforced PVOH 

composite, being 15% stiffer than the PVOH control.99 In another work, by combining 

lysozyme fibrils with a silicone elastomer, at a filling ratio of 10 wt.%, the resulting 

nanocomposite was at minimum two-fold stiffer than a carbon nanotube (CNT) 

elastomeric counterpart with the same filling ratio.162  

 

Fig. 21 - SEM image of a fracture surface PLLA film with 5 wt.% of amyloid fibrils.161 

 

Using only protein matter, Claunch et al.163 hydrolyzed wheat gluten into low 

molecular weight proteins that in part self-assemble into high Young’s modulus fibers and 

the rest arrange around the fibers as a polymer matrix so that the total material produces a 
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fiber-reinforced polymer matrix composite, originating composites with a modulus of 266 

MPa, at 37 ºC. In another study, Knowles et al.164 prepared rigid nanostructured thin films 

from hen egg white lysozyme and bovine β-lactoglobulin fibrils. The films were well 

ordered and highly rigid, with a Young’s modulus of up to 5–7 GPa, which is comparable 

to the highest values for proteinaceous materials found in nature. 

 

Amyloid fibrils have also been explored for the development of composite 

hydrogels. For instance, Li and Mezzenga165 reported the development of biocompatible 

pH-responsive fibrous hydrogels based on β-lactoglobulin amyloid fibrils hybridized and 

gelled by sulphonated multiwalled carbon nanotubes (MWNTs) (Fig. 22), with potential 

application in drug release, sensors and tissue engineering. The same research group 

described afterwards the preparation of similar biocompatible thermo-reversible hydrogel 

injectable scaffolds obtained by decoration of the amyloid fibrils with cross-linked poly(N-

isopropyl-acrylamide) (PNiPAM).166 

 

 

Fig. 22 - TEM images of hybrids consisting of sulphonated MWNTs and amyloid fibrils (a 

and b: covalent functionalization; c: non covalent functionalization).165 

 

Zhang and co-workers developed novel self-complementary β-sheets using 

alternative oligopeptides that could self-assemble under physiological conditions to form 

membranes.167–169 Using a 16-residue peptide and the addition of phosphate salt, the 

oligopeptide spontaneously assembles to form a macroscopic membrane.167 This membrane 

presents thermal stability and does not dissolve in acidic or alkaline solutions, nor upon 

addition of guanidine hydrochloride, SDS/urea, or a variety of proteolytic enzymes. 

Because of this unique stability, simple composition, apparent lack of cytotoxicity, and easy 

synthesis in large quantities, such materials might be useful for biomaterial applications. For 

instance, these membranes are able to support mammalian cell attachment for prolonged 
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periods,170 and to support neuronal cell attachments, differentiation and extensive neurite 

outgrowth.171 Such support membranes, or scaffolds, can also be functionalized with 

different motifs to enhance the formation of confluent cell monolayers of human aortic 

endothelial cells,172 or the osteoblast proliferation and migration in bone tissue 

regeneration.173 These scaffolds were also coupled directly to short biologically active 

motifs including osteogenic growth peptides, and the coupled motifs in two different 

concentrations (10 and 70 wt.%) were further studied to enhance osteoblast proliferation. In 

the case of the scaffolds with 10% of the active motif, the cells were attached mostly on the 

surface (Fig. 23A) whereas with 70% the cells migrated into the scaffold (Fig. 23B), 

showing the potential use of functionalized fibrils in the composition of scaffolds.173 More 

recently, β-lactoglobulin fibrils were cross-linked with butane tetracarboxylic acid and 

freeze-dried to obtain soft and elastic aerogels. By varying the fibril concentration and 

freezing gradient, it was possible to control the porosity and the elastic modulus with 

values from 20 up to 200 kPa. The obtained scaffolds were biocompatible and water stable, 

making them suitable for wet stable applications as purification membranes or 3D matrices 

for cell growth.174 Fibrils from hen egg white lysozyme were also studied as cell growth 

network platforms.175 Retinal pigmented epithelium (RPE) cells were cultured on 

lysozyme fibrils network platforms which provided a long-term viability and proliferation 

without a significant production of reactive oxygen species, turning these fibrils excellent 

candidates as building blocks for retinal tissue engineering materials.175 

 

 

Fig. 23 - Reconstructed image of 3-D confocal microscope image of culturing on the 

different scaffolds functionalized with a specific motif in 10% (A1, A2) and 70% (B1, B2), 
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using calcein-AM staining. A1 and B1 are vertical view and A2 and B2 are horizontal 

view. The bar represents 100 mm.173  

 

Sakono et al.176 demonstrated that different morphologically amyloid fibrils from 

insulin can also be used as biomaterials for cell culture, in which insulin amyloid-coated 

dishes showed higher cell adhesion and cell proliferation ability compared to non-coated 

dishes. Furthermore, functionalised amyloid fibrils with bioactive ligands for cell adhesion, 

corresponding to residues 105-115 of the amyloidogenic protein TTR, were also developed 

revealing that amyloid fibrils can be used as promising bio-scaffolds to be applied in 

biomedical field.177 The broad potential of this approach has been explored and illustrated 

by different studies where fibrils functionalised fibrils with fluorphores,178 biotin,179 

cytochrome180 and functional enzymes,181 were successfully prepared. For instance, 

Baldwin and co-workers179 assembled a protein composed of a functional cytochrome 

b562 with an amyloidogenic SH3 sequence. The assemblies have the amyloid-like core 

which display functional b-type cytochrome, opening a new perspective of binding 

functional proteins on an amyloid fibril scaffold.179 Another step forward is the use of 

amyloid fibrils in the development of functionalised biomaterials with cell adhesive 

properties.139,176 In fact, several bioactive ligands may be used for functionalisation of 

protein fibrils. One example is the classic Arginine-Glycine-Aspartic Acid (RGD) 

sequence. This sequence, originally found in the extra-cellular matrix protein fibronectin, 

is the minimal motif required for cell adhesion.182  

In another vein, a new type of multi-layered microcapsules for controlled drug 

release, with tunable strength and permeability were designed by alternating layers of 

pectin and protein fibrils.183 The mechanical stability of these microcapsules could be 

controlled by varying the number of layers or the density and length of the fibrils in the 

protein layers, producing microcapsules with superior mechanical stability than other 

available multi-layered capsules. Moreover, Maji et al.184 suggested the use of amyloid 

fibrils in the formulation of long-acting drugs. A TEM image of amyloid fibrils of a long-

acting gonadotropin-releasing hormone (GnRH) analog is illustrated in Fig. 24, with the 

end of a fibril highlighted. The concept is based on its structural composition as a sequence 

of β-sheet peptides aligned along the fibril axis by hydrogen bonding, and it was tested 

with a family of long-acting analogs of GnRH showing that the peptides at the end of the 

fibril can be released in a slow and controlled way.184 
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Fig. 24 - TEM image of amyloid fibrils and schematic representation of a long-acting 

GnRH analog.184 

 

Besides this approach where fibrils could release functional peptides from the fibril 

termini after administration, allowing a controlled release of a monomeric drug (Fig. 

25A),185 peptide oligomeric intermediates may similarly be used for auto-delivery of the 

drugs as suggested for insulin186 (Fig. 25B). Gupta et al.186 harnessed the inherent property 

of insulin to aggregate into an oligomeric intermediate on the pathway to amyloid 

formation, to generate a form that exhibits controlled and sustained release of insulin for 

extended periods. Administration of a single dose of this insulin oligomer, known as the 

supramolecular insulin assembly II (SIA-II), to experimental animals, rendered diabetic by 

streptozotocin or alloxan, released the hormone capable of maintaining physiologic 

glucose levels for 100 days.186 Amyloid fibrils might also be utilized as vehicles for drug 

delivery (Fig. 25C),185 wherein the drug molecules (orange spheres) could be entrapped 

within amyloid networks (violet network) ensuring the slow release of the drugs after 

administration. Fig. 25C shows that the drug release occurs at the target site and that the 

drug molecule binds to specific receptors on the cell surface to perform its action. 
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Fig. 25 - Schematic representation of the application of amyloid fibrils for drug delivery.185  
 

 

Recently, Kabay et al.187 developed a controlled drug release platform made of 

protein fibrils from bovine serum albumin with ampicillin sodium salt. This platform was 

produced by electrospinning with average diameters of 130-180 nm. Infra-red 

spectroscopy has demonstrated that the fibers composing the platform could entrap large 

amounts of ampicillin inside, which was confirmed by the antimicrobial capacity against 

Escherichia coli and Staphylococcus aureus.187  

 

In a completely distinct vein, Hendler et al.188 described a quite sophisticated 

bottom–up methodology for the preparation of multifunctional orderly-doped fibrils with 

desired properties made of protein-dopant/ligand complexes. In summary, in this work a 

series of β-lactoglobulin protein complexes, with various shaped ligands having different 

electronic and photo-physical properties, were prepared and structurally characterized. The 

resulted non-covalent complexes of β-lactoglobulin can function as building blocks for the 

construction of highly-doped fibrillar structures. These structures exhibited a minimal 

perturbation in their architecture, as compared to the fibrils formed by β-lactoglobulin. 

These innovative functional materials could find application as diagnostic materials and 

optoelectronics components.188 

A 

B 

C 
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These multiple applications in very broad range of areas evidence how versatile the 

use of amyloid fibrils might be, regarding their unique and interesting properties. However, 

there is still a vast array of innovative studies to be conducted concerning the potential of 

protein fibrils, and specially functionalised amyloid fibrils for the design of new materials. 

Since the purpose is focused on the material science field, these amyloid fibrils will be 

reported as protein nanofibers in all the following chapters.  

 

1.5. Aim 
 

The main goal of this project was to use alternative solvents, namely ionic liquids 

and deep eutectic solvents, in the production of protein nanofibers and to develop new 

functional materials based on these protein nanofibers combined with polysaccharides. 

Beforehand dissolved, hen egg white lysozyme (HEWL) as a model protein, undergo 

fibrillation promoted by ionic liquids and deep eutectic solvents in the pursuit for novel 

and fast fibrillation methods to obtain long and thin nanofibers (Chapter 2). Furthermore, 

some polysaccharides, such as pullulan and nanofibrillated cellulose were selected as 

starting polymeric matrices. The idea was to prepare novel materials by combining the 

different polysaccharides with protein nanofibers and evaluating the mechanical and 

functional properties of the novel materials (Chapter 3).  
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2.  

Production of Protein Nanofibers 

 

Protein nanofibers are undoubtedly promising building nanostructures to be 

studied and applied in the material science field. Most of the current procedures to 

obtain these nanofibers are time-consuming and thus there is a need to search for novel 

and fast procedures. Bear in mind that the use of ionic liquids presents major 

advantages such as their tunnability, which is immediately translated in a huge number 

of ILs that can be explored to fibrillate proteins into nanofibers. The formation of 

protein nanofibers using ILs follows established procedures that normally include a 

step of dissolution of the proteins followed by the fibrillation stage, promoted by the 

addition of a specific IL. Very recently, deep eutectic solvents (DES) have been 

gaining much attention as versatile alternatives to ILs,122 and they will also be 

considered as fibrillation solvents. This part of the work originated 3 papers that 

correspond to the 3 sub-chapters that are highlighted bellow. 

 

2.1. Potential use of different ionic liquids to promote a faster lysozyme 

fibrillation 

 

 

 
Silva, NHCS; Pinto, RJB; Ferreira, R ; Correia, I ; Freire, CSR; Marrucho, IM (2017) Potential 

use of different ionic liquids to promote a faster lysozyme fibrillation,  submitted. 
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2.2. Production of lysozyme nanofibers using a deep eutectic solvent 

 

 

 

Silva, NHCS; Pinto, RJB; Freire, CSR; Marrucho, IM (2016) Production of lysozyme 

nanofibers using deep eutectic solvent aqueous solutions. COLLOIDS AND SURFACES B-

BIOINTERFACES, 147, 36-44. DOI: 10.1016/j.colsurfb.2016.07.005 

 

 

2.3. Tuning lysozyme nanofibers dimensions using deep eutectic solvents for 

improved reinforcement ability 

 

 

Silva, NHCS; Pinto, RJB; Freire, CSR; Marrucho, IM (2017) Tuning lysozyme nanofibers 

dimensions using deep eutectic solvents for improved reinforcement ability, submitted. 



  43 

 

2.1.  
Potential use of different ionic liquids to 

promote a faster lysozyme fibrillation 
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193 Aveiro, Portugal 

d Centro de Química Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, 
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Abstract 
 

Protein nanofibers are gaining much attention due to their unique mechanical strength, 

thermal stability and functional properties, thus promoting the research on new 

preparation methodologies. Most fibrillation processes developed so far are time 

consuming, usually taking from 8 h to 15 h, which represents a major drawback in their 

use. The use of alternative solvents, such as ionic liquids (ILs), as fibrillation agents has 

been recently reported with considerable reduction in the fibrillation time. This fact 

encouraged us to study the fibrillation of hen egg white lysozyme (HEWL) in the 

presence of several ILs from the two different families, those based on imidazolium and 

cholinium cations combined with different anions derived from organic acids. The 

properties of the obtained protein nanofibers were studied using UV-vis and 

fluorescence spectroscopy, electrophoresis, circular dichroism and electron microscopy. 
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All ILs used were shown to fibrillate HEWL within a few hours, generally achieving 

conversion ratios over 70-80%. Typically, worm-like nanofibers were obtained, with 

0.3-1 µm of length and 15-40 nm of width, depending on the ILs used. Furthermore, the 

presence of the acetate anion increases the ability of HEWL to form -sheet structures. 

These results show that the use of specific ILs can accelerate the formation of long and 

thin HEWL fibrils that can be used in multiple applications in the bionanotechnological 

field. 
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Introduction 
 

Until recently, the study of protein nanofibers, mostly known as amyloid fibrils, 

assembly mechanism and structure has been clearly associated with the need to 

understand protein misfolding disorders, including several neurodegenerative disorders, 

such as Alzheimer’s, Parkinson’s, Huntington diseases, amyotrophic lateral sclerosis 

and also other diverse systemic disorders such as type 2 diabetes.189 Amyloid fibrils are 

highly ordered, unbranched, self-assembling, insoluble protein fibers of aligned cross-β 

structures, which are due to the misfolding of variable size proteins. Despite the clear 

association of protein nanofibers with protein misfolding disorders, many other 

functional amyloids are at the basis of vital phenomena such as cell adhesion,177 

cytoprotection,190–192 regulation193 and secretory granules.23,24 In fact, amyloid fibrils 

seem to be ubiquitous in the biological kingdom since they can be found in plants,194 

fungi,195 and bacteria196,197 as well as in mammals.140,177,193 In addition, amyloid fibrils 

share structural similarities and assume singular mechanical properties comparable to 

spider silk.28 The growing interest that protein nanofibers have been getting in the 

bionanotechnology field and their emergence as a unique class of building nanoblocks 

for the preparation of innovative functional nanocomposites is due to their exceptional 

features, such as high strength and thermochemical stability. In fact, protein nanofibers 

can be combined with other polymers as reinforcing elements of synthetic matrices, 

namely poly(lactic acid) PLLA,161 poly(vinyl alcohol) PVOH,99 or cellulose to form 

reinforced blend fibers.198 These nanofibers have also been explored as templates for the 

controlled synthesis of metal nanotubes.156 For instance, protein nanofibers, resulted from 

the self-assembly of a short peptide, were functionalised with silver. After an enzymatic 

degradation of the peptide backbone, silver nanotubes with 20 nm of diameter were 

obtained.156 In a different line, Li and Mezzenga165 reported the development of 

biocompatible pH-responsive fibrous hydrogels based on fibrils hybridized and gelled 

by sulphonated multiwalled carbon nanotubes, with potential application in drug 

release, sensors and tissue engineering. These functional hybrid nanomaterials find 

application in many fields as biosensors, electronic and energy devices, bioactive 

membranes and tissue engineering scaffolds.105  
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Several proteins have been used to produce protein nanofibers.76 Among them, 

insulin,99,100 β-lactoglobulin96,199 and lysozyme77,84 have been the most used. Hen egg 

white lysozyme (HEWL) has been extensively used and the influence of different 

fibrillation conditions as pH,78,79 temperature,82–84 and the mixture with another 

compounds87,88 and solvents,90 have been thoroughly investigated. In particular, the time 

needed to obtain these nanofibers has been a challenging issue, since the fastest 

fibrillation procedures take several hours and even days.81,88 Ionic liquids (ILs) and deep 

eutectic solvents (DES) have also been investigated within the fibrillation process, 

showing that these families of alternative solvents can be explored to obtain stable 

protein nanofibers.114,115,118,120,200 For instance, Debeljuh et al.114,115 showed that some 

protic ILs, such as triethylammonium methanesulfonate, in concentrations below 50 

wt%, can promote protein fibrillation of some Alzheimer´s disease peptides, generating 

long flexible fibrils after one week of incubation. Although the exact mechanism of 

protein structure induction is still debatable, it is generally accepted that the nonpolar to 

polar balance of these solvents is an important parameter in the disruption of the protein 

intramolecular hydrogen bonds, which are essential for beta sheets formation.20 

Furthermore, Bae et al.120 demonstrated that the presence of specific ILs creates a 

hydrophobic ionic media that induces the formation of amyloid fibrils of α-lactalbumin. 

Diluted (5 wt%) solutions of 1-butyl-3-methyl imidazolium ([C4mim])-based ILs 

combined with different anions, like tetrafluoroborate [BF4]
-, hexafluorophosphate 

[PF6]
- and bis(trifluoromethanesulfone)imide [(CF3SO2)2N]- were used to promote 

amyloid fibrils in a couple of days.120 Although no protein fibrillation occurred in the 

presence of [C4mim][(CF3SO2)2N], the use of [C4mim][BF4] and [C4mim][PF6] was 

effective in the formation of protein nanofibers. In addition, the morphology and 

properties of the aggregates could be modulated depending on the chemical structure of 

the IL and pH. In the present work, the use of ILs for protein fibrillation was explored. 

Two different families of cations were used: 1-alkyl(C4,C2)-3-methyl imidazolium-

based ILs which are the most widely studied ILs and cholinium-based ILs, that are 

considered as a newer generation of non-toxic, biocompatible and cheaper ILs. These 

two families of cations were combined with different anions derived from organic acids. 

The only exception is the use of [BF4]
- anion, which was reported before to be highly 

efficient in protein fibrillation120 and it is used here for comparison. The chemical 

structures and acronyms of the ILs used in this work as possible promoters of HEWL 

fibrillation are depicted in Table 1. The protein fibrillation was analysed and 
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characterized through different techniques. UV-vis spectroscopy and sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) were used to confirm the 

fibrillation of the native protein and conversion efficiency into protein nanofibers. 

Fluorescence microscopy was used to measure the presence of β-structures. 

Furthermore, the secondary structure of HEWL protein in suspension was determined 

by Circular Dichroism (CD). CD has been used in studies of protein folding and 

stability assays, intermolecular interactions and ligand binding studies. Proteins can 

form diverse aggregates of various sizes and morphologies (amorphous aggregates, 

oligomers, protofibrils, amyloid fibrils, among others) which have distinct properties 

and effects depending on the external conditions. Thus, it is very important to study the 

secondary structure of the HEWL nanofibers since it provides fundamental information 

for their application. Electron microscopy, both scanning and transmission, permit us to 

study and characterized the nanofibers produced in terms of morphology and 

dimensions. 
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Table 1. Chemical structures and acronyms of the ILs used in this work.  

 

ILs Chemical Structures 

[C4mim][BF4] 

1-butyl-3-methyl-

imidazolium 

tetrafluoroborate 
 

[C4mim][Ac] 

1-butyl-3-methyl-

imidazolium 

acetate  

[C2mim][Ac] 

1-ethyl-3-methyl-

imidazolium 

acetate  

[Ch][Glu] 
cholinium 

glutarate 
 

[Ch]Cl cholinium chloride 

 

[Ch][Ac] cholinium acetate 

 

[Ch][Lac] cholinium lactate 

 

[Ch][Cit] cholinium citrate 

 

  

Experimental Details 
 

Preparation of Protein Nanofibers 

For each IL, lysozyme from hen egg white (Fluka, ~70000U/mg), was dissolved (2 

mg/mL) in an aqueous solution of 10 mM HCl at pH = 2 with 20 mM glycine (Sigma-
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Aldrich, ≥98,5%) with 5% (v/v) of the respective IL. The samples were incubated at 

controlled temperature of 70 ± 3 ⁰C using an oil bath, and magnetic stirring. Triplicates 

of each sample were carried out so that standard deviations can be calculated. The 

obtained protein nanofibers were separated from the ILs solution by centrifugation at 

15000 rpm, during 45 min, using a Megafuge 16R centrifuge (Thermo Scientific). The 

supernatant was discarded, and the obtained nanofibers were washed twice with Milli-Q 

ultrapure water. 

 

UV-vis analysis 

The concentration of HEWL in the supernatant of the incubated samples was 

determined by UV spectroscopy at 276 nm, using a UV-1800 spectrophotometer 

(Shimadzu, Kyoto, Japan), and a previously established calibration curve, where 

Abs276nm = 2.39[HEWL]mg/mL – 0.0012 (R2=0.9994).  

 

Fluorescence analysis (ThT assays) 

Thioflavin T (ThT) (Sigma-Aldrich) was used to quantify the presence of misfolded 

protein aggregates. The ThT assay measures changes in fluorescence intensity of ThT 

upon binding to protein nanofibers. To evaluate the progress of the formation of protein 

fibrils with time a solution of 2.5 mM Thioflavin T – ThT (Sigma-Aldrich) in 10 mM 

phosphate buffer, pH = 7.4, was used. 30 µL aliquots of the incubated solution were 

taken at specific time intervals and 3 mL the Thioflavin T – ThT solution was added. 

Fluorescence measurements were carried out at 25 ºC using quartz cells on a Horiba 

Jobin Yvon Fluoromax-3 fluorimeter. The excitation wavelength used was 440 nm and 

the emission was measured at 482 nm, with both slits of 5 nm. The percentage of 

fluorescence was calculated according to the maximum fluorescence intensity value 

(100% fluorescence) registered for each assay.  

 

SDS-PAGE 

10 µL of each sample was diluted 1:2 in loading buffer (4% sodium dodecyl sulphate 

(SDS), 15% glycerol, 20% mercaptoethanol, 0.125 M Tris pH 6.8, 1 mg.mL 

bromophenol blue) and then separated by electrophoresis following the procedure 

described by Laemmli.201 The stacking gel consisted of 4% acrylamide: N,N’-

methylene-bis-acrylamide (37.5:1), 0.1 M Tris-HCl (pH 6.8), 0.1% SDS (sodium 

dodecyl sulfate). The separating gels were composed of 15% acrylamide-bis (37.5:1), 
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0.375 M Tris-HCl (pH 8.8) and 0.1% SDS. Polymerization was initiated with 0.05% 

N,N,N’,N’-tetramethylethylenediamine and 0.05% ammonium persulfate. The gel was 

run in a Mini-Protean system (Bio-Rad) at 180 V (constant voltage) for 1 h. After 

stained with Coomassie Blue, the gel was scanned in Molecular Imager Gel Doc 

XR+System (Bio-Rad) and analysed with Image Lab software (v4.1, Bio-Rad). Data 

were observed as optical density of gel bands (arbitrary units), and the results were 

expressed as percentage of HEWL prepared in MilliQ. 

 

Circular Dichroism (CD) 

Circular dichroism (CD) spectra were recorded in the far UV range from 250 to 190 nm 

with quartz Suprasil® CD cuvettes (0.1 cm) at room temperature (ca. 25ºC) using a 

JASCO J-720 spectropolarimeter (JASCO, Hiroshima, Japan) with a 180–700 nm 

photomultiplier (EXEL-308). The initial samples were diluted with Millipore water 

until a spectrum with appropriate intensity could be obtained. Each CD spectrum is the 

result of three cumulative runs. The following parameters were used in data acquisition: 

data pitch - 0.1 nm; bandwidth - 2.0 nm; time response – 2 s and scan speed – 100 

nm/min.  

 

Scanning transmission electron microscopy (STEM) 

STEM images were obtained using a field emission gun (FEG) SEM Hitachi SU70 

microscope operated at 15 kV. Samples were prepared by immersing a carbon-coated 

copper grid into the protein nanofibers suspension, and then allowing the solvent to 

evaporate overnight. The average dimensions of the nanofibers were determined by 

analysis of STEM images using the ImageJ program (at least 100 nanofibers were 

analysed in each case). 

 

Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) was performed with a Hitachi H-9000 

microscope operating at 300 kV. The samples for TEM were prepared by depositing an 

aliquot of the suspension of lysozyme nanofibers onto a carbon-coated copper grid and 

then allowing the solvent to evaporate. 
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Results & Discussion 
 

HEWL fibrillation using ionic liquids 

The HEWL fibrillation using several ILs was firstly evaluated by the ThT assay. 

The chemical structures and acronyms of the ILs are presented in Table 1. In this work, 

HEWL was added to 5% (v/v) aqueous solutions of each IL. Samples were taken at 

specific time intervals and the formation of protein nanofibers was indirectly measured 

by the fluorescence of ThT dye. Fig. 1 shows the results for the fibrillation of HEWL in 

the presence of each one of the ILs, expressed as the intensity of the thioflavin T 

fluorescence (482 nm), as a function of time.  

Fig. 1 - ThT fluorescence intensity as a function of time for β-structures produced for 

each one of the IL used. The experiments were carried out using 5% (v/v) solutions of 

ILs at 70 ºC and pH = 2.   

 

Generally, there is an increase in the ThT fluorescence intensity values with time 

for all the ILs used, reaching in 5 h more than 90% of the maximum fluorescence 

intensities registered for each case. After 5 h, no significant increase in the ThT 

fluorescence intensity was observed until the end of the experiment (24 h). Comparing 

the results obtained for the two families of cation cores, in general all the cholinium-

based ILs promote higher fluorescence intensities than the imidazolium-based ILs, at 

any given time. Cholinium-based ILs reached the maximum values of ThT fluorescence 

intensities in 1-2 h, while for imidazolium-based ILs 3-4 h are needed to reach a similar 
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value. Compared to other fibrillation strategies described in literature, using the addition 

of urea88,89 or ethanol,90 these results clearly show that ILs are very effective in 

promoting protein fibrillation. A direct comparison between the two families of cation 

cores can be established using [C2mim][Ac] and [Ch][Ac]. Although no major 

differences can be observed between fluorescence intensity for the assays of these two 

ILs at 5 h, in the first hour of fibrillation [Ch][Ac] promotes higher fibrillation (88.3 ± 

4.3% in respect to the maximum obtained at 7 h) than [C2mim][Ac] (22.6 ± 1.1%). 

Probably, the presence of the OH group in the cholinium cation might be responsible for 

the different behaviour observed for these two ILs since it is known that this group can 

establish hydrogen bonds with diverse solutes.202 However, a marked decrease in the 

fluorescence intensity between 1-3 h can be observed when [Ch][Ac] is used, possibly 

indicating the dissolution of disaggregation of the formed fibrils. Although this 

behaviour was only observed here for [Ch][Ac], it was also reported before for 

guanidine hydrochloride.104 All these facts seem to indicate that, despite the different 

mechanism of fibrillation and the relative stability of the protein fibrils formed, the 

anion plays the major role in protein fibrillation. 

For the imidazolium-based ILs the following rank was obtained [C4mim][BF4] > 

[C4mim][Ac]  [C2mim][Ac], showing that no major differences are observed in HEWL 

fibrillation with the increase of the alkyl side chain length of the cation. On the other 

hand, the important effect of the anion in the fibrillation can clearly be seen since very 

different fibrillation results were obtained for [C4mim][BF4] (14 x 106 a.u. at 7 h) and 

[C4mim][Ac] (7.88 x 106 a.u. at 7 h). In what concerns the cholinium-based ILs, the 

following rank was observed [Ch][Cit]  [Ch][Lac] > [Ch][Glu] > [Ch]Cl  [Ch][Ac]. 

The major differences here observed can be attributed to the differences in the anions. 

The three most effective cholinium-based ILs are derived from a tri-acid ([Cit]-), a di-

acid ([Glu]-) and a monoacid functionalised with an extra OH group ([Lac]-). The 

presence of extra groups that can establish hydrogen bonds seems to be crucial on the 

fibrillation efficiency. It should be remarked that the use of a buffer guaranties that no 

pH effect is taking place and that the effects here observed are all due to specific 

interactions between the ILs and the HEWL.  

Another important parameter is the conversion ratio from native HEWL into β-

sheet structures (expectable protein nanofibers) in the final suspension. The conversion 

ratio was determined indirectly by UV spectroscopy at 276 nm, taking in consideration 
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the absorption of native protein at this wavelength. A calibration curve for different 

concentrations of native HEWL was determined at 276 nm, and the conversion ratios 

were calculated by the difference between the initial and final concentrations of HEWL 

present in solution. Table 2 presents the conversion ratios obtained for all the conditions 

tested in this work. Generally, the use of cholinium-based ILs yields higher conversion 

ratios than imidazolium-based ILs. The direct comparison established before between 

[Ch][Ac] and [C2mim][Ac] clearly illustrates this fact. A comparison between these 

results and those obtained for the ThT assay for these two ILs shows that, despite the 

fact that [Ch][Ac] has much higher conversion ratios than [C2mim][Ac], it does not lead 

to efficient formation of protein nanofibers since both ILs lead to similar fluorescence 

intensity, indicating that probably only small oligomeric structures, not detected by this 

test, might be formed. [Ch]Cl, [Ch][Cit] and [Ch][Lac] have conversion rations over 

90%, showing that more than 90% of the native HEWL was misfolded and possibly 

arranged into protein nanofibers. Again, when [Ch]Cl is used, despite the high 

conversion ratios obtained, low results were observed in the fluorescence ThT assay. 

This can indicate that [Ch]Cl possibly leads to the formation of other non β-structures 

aggregates, which are not detected by ThT dye. Circular dichroism spectroscopy can be 

very useful for this purpose, as will be discussed below. [C4mim][BF4] was the 

imidazolium-based IL which presented the highest conversion ratio (71.5 ± 1.4 %), 

while the [C4mim][Ac] achieved the lowest conversion ratio of all the ILs used. 

[C4mim][BF4] has a conversion ration lower than 50%, meaning than there is more non-

fibrillated protein than protein nanofibers.  

 

Table 2. Conversion ratios of native HEWL into possible β-sheet structures and ThT 

fluorescence intensity measurements at 7 h. 

Samples Conversion % ThT Assays 

[C4mim][BF4] 71.5 ± 1.4 14.0 x 106 

[C4mim][Ac] 48.1 ± 2.6 7.88 x 106 

[C2mim][Ac] 59.0 ± 2.1 7.71 x 106 

[Ch]Cl 97.3 ± 0.5 9.54 x 106 

[Ch][Glu] 72.7 ± 1.3 11.0 x 106 

[Ch][Ac] 84.3 ± 0.9 17.1 x 106 
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[Ch][Cit] 96.5 ± 0.5 7.63 x 106 

[Ch][Lac] 92.5 ± 0.8 16.2 x 106 

*Intensity of thioflavin T fluorescence measured at 7h. 

 

In order to complement the UV-vis spectrometry results, SDS-PAGE was used. 

The objective was to verify if non-fibrillated protein was still in the medium. As it is 

shown in Fig. 2, the controls (HEWL in milliQ; HEWL at pH 2) present gel bands 

under the standard 18.2 kDa, corresponding to the native HEWL, which has a molecular 

weight of 14.3 kDa.77 This band corresponding to the native HEWL is narrower for all 

the samples, meaning that a certain amount of native HEWL was converted into protein 

aggregates. The widths of bands resulting from the use of each IL are in agreement with 

the conversion ratios determined by UV spectroscopy. Gel bands with higher optical 

densities (OD) were registered for lower conversion ratios. The use of [C4mim][Ac], 

[C2mim][Ac] and [Ch][Glu], with conversion ratios lower than 75%, presented OD 

around 90%, while [Ch][Ac] with a conversion ratio slightly higher than 80% presented 

a lower OD of 73.45%. The only exception is the band associated to [C4mim][BF4], that 

is smaller than expected for the respective conversion ratio. However, many other small 

bands can also be observed under 14.3 kDa, suggesting that the use of [C4mim][BF4] 

denatures the protein into small peptides. 

 

Fig. 2 - SDS-PAGE of the supernatants of the HEWL fibrillation medium for all ILs 

used with conversion rates lower than 95%. 
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In the same perspective, the use of ILs with conversion ratios over than 90% 

presented the lowest ODs (<45%). The SDS-PAGE of the supernatant of HEWL 

fibrillation using [Ch]Cl and [Ch][Cit] are depicted in Fig. 3. Almost invisible bands 

with tenuous marks can be observed, confirming the high conversion ratios determined 

indirectly by UV spectroscopy at 276 nm. The lowest OD (12.1%) was registered when 

using [Ch]Cl, which presents the highest conversion ratio (97.3 ± 0.5 %).  

 

Fig. 3 - SDS-PAGE of the supernatants of HEWL fibrillation medium, for the ILs with 

conversion rates over than 95%, [Ch]Cl and [Ch][Cit]. 

 

HEWL nanofibers secondary structure  

Circular dichroism has been extensively used to evaluate the secondary structure 

of proteins as different secondary structural elements, such as α-helix and β-sheets, 

correspond to different patterns in CD spectra.203 This is due to the fact that protein CD 

spectrum can be considered as a linear combination of the spectra of its individual 

secondary structural elements present in the protein. On the other hand, different 

structural elements have characteristic structural spectra. For example, proteins with 

high α-helical content show negative bands at 208 and 222 nm and a positive band at 

192 nm; the presence of a negative band at ca. 216 nm implies the presence of β-sheets, 

as well as a positive band at 195 nm; while unordered structures such as random coil are 

characterized by low ellipticity above 210 nm and a negative band at 200 nm.204  

In this work, CD spectroscopy was used to analyse the secondary structure of 

HEWL protein induced by the presence of different IL diluted aqueous solutions. The 

CD spectra of all samples recorded in the far UV are presented in Fig. 4.  

Spectra for the control protein and for the protein diluted in Millipore water were 

also measured and are presented in Fig 4D. Both spectra display strong negative bands 

in the range from 200 to 260 nm, with the signal intensity at 208 nm greater than that at 
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222 nm, which is characteristic of a protein containing helixes, sheets and 

unordered structures such as random coils.  

 

  

  

 

Fig. 4 - CD spectra measured in the far UV range: A) [C2mim][Ac] (blue), 

[C4mim][BF4] (green) and [C4mim][Ac] (orange); B) [Ch]Cl (orange), [Ch][Glu] 

(green), [Ch][Cit] (blue), [Ch][Ac] (brown), [Ch][Lac] (black); C) [C2mim][Ac] 

(orange), [C4mim][Ac] (green), [Ch][Ac] (blue); D) HEWL in Millipore H2O (orange) 

and HEWL control (green). 

 

Regarding the effect of different anions in imidazolium-based ILs, presented in 

Fig. 4A, both [C2mim][Ac] and [C4mim][Ac] CD spectra show similar bands in the 

218-220 nm region indicating that they have similar amounts of β-sheets. However, the 

more pronounced band at 210 nm present in the [C4mim][Ac] CD spectrum suggests the 

presence of a small amount of α-helixes in HEWL in the presence of this IL. 

[C4mim][BF4] seems to be the IL which induces the smallest amount of β-sheets. These 

results seem to indicate that the main role of ILs in fibrillation is associated to the 

A B 

C D 
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presence of carboxylic acid functionality and that the increase in the cation chain does 

not have a significant impact in this process. The comparison of the results obtained for 

the 3 ILs containing acetate anions, [C2mim][Ac], [C4mim][Ac] and [Ch][Ac], shown in 

Fig. 4C, further corroborate this conclusion. It can be observed that the 3 spectra are 

typical of proteins containing β-sheets and [Ch][Ac] seems to be the IL inducing the 

highest percentage of β-sheets, due to the presence of a very well defined negative band 

around 220 nm. The effect of the different anions of the cholinium-based ILs in 

secondary structure HEWL fibers can be observed in Fig. 4B. The cholinium-based ILs 

bearing acetate and glutarate anions have a high percentage of β-sheets while [Ch][Lac] 

and [Ch]Cl have a pronounced percentage of random coil and a smaller percentage of β-

sheets, due to the presence of a larger band around 210 nm, besides the band at 220 nm. 

According to this data and in what concerns the effect of [Ch]Cl in the secondary 

structure of HEWL, by the presence of this larger and undefined band around 210 nm, 

CD spectra supports the formation of non-β structures when using [Ch]Cl, which agrees 

with the results obtained in the previous sections where simultaneously the highest 

conversion ratio and the lowest results in the fluorescence ThT assay were obtained for 

this IL. Furthermore, the use of [Ch][Cit] leads to a totally different CD spectrum. The 

negative band at ca. 220 nm seems to have a contribution from another band centred at 

ca. 225 nm and there is a strong positive band centred at 200 nm. The spectrum of the 

protein nanofibers produced using [Ch][Cit] resembles those observed for K2Q42K2 

polyQ fibrils,203 and therefore it can be concluded that this IL has the highest ability to 

induce the formation of β-structures. These results indicate again the importance of the 

carboxylic acid functionality in the fibrillation process, since all ILs with the anion 

acetate promoted mainly the formation of β-structures, and [Ch][Cit], bearing a tri-

carboxylic acid anion, is the IL with the highest ability to induce fibrillation into β-

forms. 

 

Characterization of HEWL nanofibers 

Even though ILs are efficient in producing β-sheet amyloid structures, the 

protein nanofibers morphology is a key factor in their application in materials field. In 

fact, protein nanofibers can assume different morphologies, depending on the 

fibrillation mechanism, especially on the nucleation phase.20 Protein nanofibers are 

usually polymorphic, meaning that fibrils formed by a given peptide or protein can have 
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multiple distinct morphologies depending on the fibrillation conditions.56 Typically three 

different kinds of aggregates, namely spherical-like, worm-like and rod-like, can be 

observed.94 In the pursuit of new material elements to impart overall better materials 

properties, it is known that rod-like aggregates show a superior mechanical strength 

than other aggregates, especially due to their fine and elongated fibrillar shape.94 In this 

context, STEM is very useful not only to confirm the formation of protein nanofibers 

but also to analyse their morphology. The STEM images of HEWL nanofibers induced 

by the presence imidazolium and cholinium-based ILs are presented in Fig. 5 and Fig. 6, 

respectively. It can be observed that, despite obvious differences in size and shape of the 

nanofibers, both families of ILs induce elongated fibrillar shape HEWL nanofibers.  

 

Fig. 5 - STEM images of HEWL nanofibers induced by different imidazolium-based 

ILs, at 70ºC, pH = 2.  
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Fig. 6 - STEM images of HEWL nanofibers induced by different cholinium-based ILs, 

at 70ºC, pH = 2.  

 

The average dimensions in length and width of the nanofibers were determined 

by analysis of the STEM images using the ImageJ program. At least 100 nanofibers 
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were analysed for each one of the ILs. Fig. 7 shows box charts corresponding to the 

average length and width of the different protein nanofibers obtained, respectively.  

 

 

Fig. 7 - Box charts of the fibril dimensions: A - length (nm) and B - width (nm). 

 

Generally, the use of imidazolium-based ILs yields longer nanofibers than 

cholinium-based ILs. Nanofibers produced using imidazolium-based ILs have average 

lengths of 635 ± 31.8 nm ([C4mim][BF4]), 517 ± 35.8 nm ([C2mim][Ac]) and 584 ± 

29.2 nm ([C4mim][Ac]), with maximum lengths obtained over than 1100 nm. These 

values are much higher than the average lengths obtained for the cholinium-based ILs, 

which are of 341 ± 17.1 nm, 377 ± 18.8 nm and 396 ± 19.8 nm for [Ch]Cl, [Ch][Cit] 

A 

B 
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and [Ch][Glu], respectively, where the maximum values of length registered do not 

overpass the 800 nm. Exceptionally, [Ch][Ac] and [Ch][Lac] generate longer 

nanofibers, with 430 ± 21.5 nm and 616 ± 30.8 nm, achieving maximum length values 

nearly 1000 nm, which are closer to those obtained when using imidazolium-based ILs. 

A higher resolution TEM image of a HEWL nanofiber obtained using [Ch][Lac] is 

shown in Fig. 8. 

 

Fig. 8 - TEM image of a protein nanofiber obtained using [Ch][Lac], at 70ºC, pH = 2. 

 

Interestingly, when using cholinium-based ILs bearing anions derived from 

mono-carboxylic acids, such as acetate or lactate, longer nanofibers can be generated, 

suggesting that the carboxylic acid group can have an important role on the fibrillation 

process, in particular on the length of the nanofibers. The same inference was observed 

regarding the use of a DES based on cholinium chloride and acetic acid to induce 

HEWL fibrillation,200 reported in the following section 2.2 Production of lysozyme 

nanofibers using a deep eutectic solvent, where longer nanofibers with an average 

length of 900 ± 30.2 nm were generated by the DES, comparing to those generated 

using cholinium chloride alone (341 ± 17.1 nm). Curiously, when using cholinium-

based ILs bearing anions derived from di- and tri- carboxylic acids, such as glutarate 

and citrate, the same effect is not observed. 
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In terms of width, cholinium-based ILs bearing anions derived from di- and tri- 

carboxylic acids, such as glutarate and citrate, seems to increase the width of the HEWL 

nanofibers produced, with average values of 36 ± 1.8 nm and 28 ± 1.4 nm, respectively. 

These values are higher than those obtained for the other cholinium-based ILs, [Ch]Cl 

(17 ± 0.85 nm), [Ch][Ac] (20 ± 1.0 nm) and [Ch][Lac] (19 ± 1.0 nm). Considering now 

the ILs based on the imidazolium cation, it can be observed that the use of [C2mim][Ac] 

seems to generate longer but more dispersed length nanofibers. Higher magnifications 

suggest that the nanofibers obtained using [C2mim][Ac] are a set of many fine and 

elongated nanofibers compacted together in a larger nanofiber, as it can be seen in Fig. 

9. However, taking into account the large standard deviations obtained, the average 

width of the HEWL nanofibrils is similar for all the imidazolium-based ILs, 

[C2mim][Ac] (39 ± 1.9 nm), [C4mim][Ac] (32 ± 1.6 nm) and [C2mim][BF4] (32 ± 1.6 

nm).  

 

Fig. 9 - STEM images of HEWL nanofibers induced by [C2mim][Ac], at 70ºC, pH = 2.  

 

In sum, it can be concluded that the different ILs studied in this work, based on 

imidazolium and cholinium cations, promoted faster fibrillation ratios, when compared 

with previous methodologies described for the same protein,82,200,205,206 with conversion 

ratios over than 80% being obtained within 1-2 h when using ILs based on cholinium 

cation. Furthermore, the nanofibers obtained were very thin and elongated, with widths 

ranging typically between 20-30 nm and lengths between 200-800 nm. Using ILs based 

on imidazolium, maximum lengths over than 1000 nm were achieved. In fact, the use of 

ILs can be certainly explored to produce protein nanofibers, avoiding time consuming 
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processes, and obtaining the so-called worm-like morphology with an interesting aspect 

ratio to be applied in the vast material science field. 

 

Conclusions 
 

This study unveils the potential of using ILs to promote the fast and efficient 

fibrillation of HEWL. The most remarkable result obtained is the fast fibrillation of 

HEWL, which reaches more than 80% in the first hour and 95% of the total protein in 5 

h for some of the studied cholinium-based ILs. Additionally, all ILs used in this study 

were able to fibrillate HEWL within a few hours and most of them with conversion 

ratios over than 70-80%. Although ILs based on the imidazolium cation presented the 

smallest conversion ratios, the longest nanofibers were obtained using these ILs. 

Interestingly, ILs based on cholinium cation combined with anions derived from mono-

carboxylic groups also promote the production of longer nanofibers. Using circular 

dichroism spectroscopy, it could be concluded that the presence of acetate anions in the 

IL increases the formation of -sheet structures in HEWL, and in general, the 

cholinium-based ILs yielded improved results. In terms of the anions used to prepare 

cholinium-based ILs, citrate, containing three carboxylic acids yielded the best results.  

This work is another step forward in the understanding of protein fibrillation 

mechanism in alternative solvents, since it is here demonstrated the use of ILs can not 

only accelerate the fibrillation process, but also tune nanofiber dimensions, especially in 

terms of length, depending on the anion-cation combination used. This can be very 

important depending on the envisaged applications.  
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Abstract 
 

Amyloid fibrils have recently gained a lot of attention due to their morphology, 

functionality and mechanical strength, allowing for their application in nanofiber-based 

materials, biosensors, bioactive membranes and tissue engineering scaffolds. The in 

vitro production of amyloid fibrils is still a slow process, thus hampering the massive 

production of nanofibers and its consequent use. This work presents a new and faster (2-

3 h) fibrillation method for HEWL using a deep eutectic solvent based on cholinium 

chloride and acetic acid. Nanofibers with dimensions of 0.5-1 µm in length and 0.02-0.1 

µm in thickness were obtained. Experimental variables such as temperature and pH 

were also studied, unveiling their influence in fibrillation time and nanofibers 

morphology. These results open a new scope for protein fibrillation into nanofibers with 

applications ranging from medicine to soft matter and nanotechnology. 
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Introduction 
 

Protein misfolding and aggregation into amyloid fibrils has been gaining a lot of 

attention because of its association with several pathological disorders, such as 

Alzheimer’s and Parkinson’s diseases, which affect a large number of people 

worldwide.207 Such structures are typically defined as unbranched protein fibers of 

aligned cross-β structures which are easily detected in vitro using fluorescence dyes as 

Thioflavin T, and morphologically observed by electron microscopy.23,208 However, 

their singular mechanical properties, comparable to dragline silk and much greater than 

most biological filaments,28 protein fibrils started to be studied in a range of potential 

technological applications, in particular their use in the fabrication of nanofiber-based 

materials. 

Several proteins have been used to unveil the mechanism of amyloid fibrils 

formation.76 Hen egg white lysozyme (HEWL) has been widely used as a model protein 

in aqueous solution, and the influence of a variety of conditions,77 including pH of the 

media (using acidic78,79 or alkaline80,81 solutions), temperature,82–84 high pressure,85 and 

the addition of sodium azide,86,87 urea88,89 or ethanol,90 in fibrillation induction have 

been researched. Although the exact mechanism of protein structure induction by 

different solvents is still debatable, it is generally accepted that the nonpolar to polar 

balance of the solvents used in fibrillation is an important parameter in the disruption of 

the protein intramolecular hydrogen bonds allowing the formation of β dimers, which 

presence has been confirmed by circular dichroism. The protofilaments are formed by 

stacking of the dimers with their long axis (nearly) perpendicular leading to the 

formation of the nanofibers.209–211 These studies contributed to the understanding of 

protein fibrillation process and consequently to the development of new drugs targeted 

against amyloidosis. 

Due to their singular mechanical properties, comparable to dragline silk and 

much greater than most biological filaments,28 a range of potential technological 

applications of protein fibrils rely on their efficient preparation and use in the 

fabrication of nanofiber-based materials. For instance, amyloid-hydroxyapatite 

composites have been developed as reinforced materials to mimic bone tissues107,145,147 

and other bioactive nanomaterials based on protein nanofibers were synthesized for 



   Production of Protein Nanofibers [2.2]      

 

  67 

 

applications in sensing, neuronal tissue engineering, and electrostimulated stem cell 

differentiation.106,212 Furthermore, such fibrils have been used as templates for the 

synthesis or assembly of several metallic nanoparticles and nanowires,141–143
 as well as 

other inorganic (micro)nanophases, like fluorapatite,149 calcium carbonate,150,151 

carbonate apatite,152 silica,153 and CdSe nanofibers.154 These functional hybrid 

nanomaterials find application in biosensors, electronic and energy devices, bioactive 

membranes and tissue engineering scaffolds, among many others.105,213 Due to their 

exceptional features, such as high strength and thermochemical stability, protein 

nanofibers are indeed emerging as a unique and novel class of building nanoblocks for 

the construction of innovative functional nanocomposites. Despite the fact that most of 

the amyloid fibrils used for these applications are being produced by denaturing 

methods, there are also functional amyloid fibrils being produced by bacteria which are 

used as building blocks for bionanomaterials and nanotechnologies.214,215 For example, 

Zhong et al.214 reported the development of a strong and multi-functional underwater 

adhesives obtained from fusing mussel foot proteins (Mfps) of Mytilus galloprovincialis 

with CsgA proteins, the major subunit of Escherichia coli amyloid curli fibres. 

Although the kinetics to produce the amyloid fibrils by bacteria is relatively fast, the 

process is complex and expensive. 

One of the major limitations in the production of fibrils for the fabrication of 

intelligent materials is the time required to obtain these fibrils, since most of the 

fibrillation procedures developed so far can take days, weeks and even months. Only 

one work,104 reported the production of lysozyme fibrils in less than 3 h, through the use 

of guanidine hydrochloride as an amyloid inducer. However, the fibril dimensions in 

terms of length are a bit short (~300 nm) comparing to other studies approaching 

material-based fibrils which goes around and even higher than 1 µm.105–107 During the 

last years, different fibrillation procedures have been developed for the production of 

material-based fibrils, usually taking 8-15 h.81,88  

More recently, the use of ionic liquids (ILs) has been shown to alter the 

fibrillation process and to stabilize different amyloid species, opening new perspectives 

of probing protein conformational states and exploring new protein-solvent 

interactions.114,115,118,120 Bae et al.120 demonstrated that the presence of specific ILs 

creates a hydrophobic ionic media that induces the formation of amyloid fibrils of α-

lactalbumin. Diluted (5 wt.%) solutions of 1-butyl-3 methyl imidazolium ([C4mim])-
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based ionic liquids, combined with different anions, in 20 mM glycine buffer (pH = 2) 

at room temperature were used  and amyloid fibrils were observed after few days with 

the use of [C4mim][BF4] and [C4mim][PF6].
120 These authors show that the morphology 

and properties of the aggregates could be modulated depending on the chemical 

structure of the IL and pH. Although the exact mechanism of protein structure induction 

is still debatable, it is generally accepted that the nonpolar to polar balance of these 

solvents is an important parameter in the disruption of the intramolecular hydrogen 

bonds, which are essential for beta sheets formation. 

Very recently deep eutectic solvents (DES) have been gaining much attention as 

versatile alternatives to ILs.122 DES can be regarded as a new generation of ionic 

solvents composed of a mixture of two or more compounds, where one of them is a salt. 

The formation a new liquid compound at room temperature is due to the establishment 

of hydrogen bonds between a hydrogen bond donor (HBD) and a hydrogen bond 

acceptor (HBA), usually a halide anion present in the salt.123–125 The most popular DESs 

synthesized so far are those based on cholinium chloride (used as HBA) because of its 

low cost, low toxicity, biodegradability and biocompatibility, since it is considered an 

essential nutrient, which can be extracted from biomass, and often regarded as a part of 

the B-complex vitamins.126 Cholinium chloride has been combined with several classes 

of HBD such as renewable polyols, carbohydrates, amides, amines, alcohols and 

carboxylic acids.127 Cholinium and other ammonium cations, for example betaine, 

combined with convenient anions, such as saccharinate, lactate, and hexanoate, have 

been largely explored in the search for natural, biocompatible, renewable and 

“drinkable” solvents.128 DES share many of the ILs appealing features, such as low 

volatility, high thermal stability and conductivity, wide liquid range and high solvation 

capacity128–130 and possess other interesting advantages over ILs: they are easier to 

synthesize, since the components are easily mixed without any further purification; they 

have low production cost due to the low price of starting materials; and most of the 

synthesized DES are biodegradable, biocompatible and non-toxic.130,131 DES are also 

considered to be cheaper, efficient and greener solutions, and, in this way, are finding 

many applications from metal finishing processes132 up to, more recently, compound 

extraction and separation media for azeotropic mixtures,133–136 with reported 

performances even superior to conventional organic solvents and ILs. Regarding protein 

fibrillation, partial denaturation caused by solvent environment or changes in 
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temperature or pressure is pre-requisite for fibril formation. To the best of our 

knowledge, protein fibrillation using DES has only been researched in terms of protein 

stability studies. The stability of HEWL in different choline chloride-based deep 

eutectic solvents has been studied and showed the accumulation of discrete, partially 

folded intermediates that displayed a high content of secondary structure and disrupted 

tertiary structure when using non-diluted and 10%-diluted urea:choline chloride (2:1) at 

70ºC.216  

In this work, one widely used DES based cholinium chloride, and a simple acid, 

acetic acid (Fig. 1), in a proportion of 1:1, ([Ch]Cl:Ac) was studied as a possible 

promoter of HEWL fibrillation. As mentioned by several authors,126,217 DES having 

organic acids as HBD do not present melting points on DES, but instead less transition 

temperatures are observed. The influence of experimental variables such as temperature 

(room temperature (RT), 50, 70ºC) and pH (2, 5) in the process of fibrillation induction 

was also researched, as well as the role of DES in the production of protein nanofibers. 

 

Fig. 1 - Chemical structure of (A) cholinium chloride ([Ch]Cl) and (B) acetic acid. 

 

Experimental Details 
 

Preparation of the DES 

As proposed by Florindo et al.,217 the preparation of [Ch]Cl:Ac was performed by first 

mixing the two components, cholinium chloride (Sigma-Aldrich, ≥98%) and acetic acid 

(Sigma-Aldrich, ≥99,7%) in a 1:1 mole proportion, and then grinding them in a mortar 

with a pestle at room temperature until a homogeneous liquid is formed.  

 

Preparation of Protein Nanofibers  

Lysozyme from hen egg white (Fluka, ~70000U mg-1), was dissolved (2mg mL-1) in an 

aqueous buffer solution of 10 mM HCl at pH = 2 with 20 mM glycine (Sigma-Aldrich, 
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≥98,5%) with 1, 5 and 10% (v/v) of the DES. The samples were incubated at different 

temperatures (RT, 50⁰C and 70⁰C), under magnetic agitation. The assays at 50 and 

70⁰C were conducted using an oil bath. For the test at pH = 5, a 0.1 M phosphate buffer 

solution was used. Triplicates of each sample were carried out so that standard 

deviations can be calculated. The protein nanofibers were separated from the solution 

with the DES after centrifugation at 15,000 rpm, during 45 min, using a Megafuge 16R 

centrifuge (Thermo Scientific). The supernatants were exchanged with Milli-Q ultrapure 

water.  This separation step was repeated 2 times. 

 

UV-vis analysis  

The concentration of HEWL was calculated by UV spectroscopy at 276 nm, using a 

UV-1800 spectrophotometer (Shimadzu, Kyoto, Japan), of the supernatants obtained 

after centrifugation of the incubated samples, at 15000 rpm for 45 min, using a 

Megafuge 16R centrifuge (Thermo Scientific) and a previously established calibration 

curve, where Abs276nm = 2.39[HEWL]mg/mL – 0.0012 (R2=0.9994). Controls using 

[Ch]Cl and acetic acid were prepared according to the amounts of individual 

components in the DES, 3.5% (m/v) of [Ch]Cl and 1.5% (v/v) of acetic acid. 

 

Fluorescence analysis (ThT assays) 

For the time-course assay, 30 µL aliquots were taken from the incubated solution at 

desired time intervals, and added to a 3 mL solution containing 2.5 mM Thioflavin T – 

ThT (Sigma-Aldrich), in 10 mM phosphate buffer, pH = 7.4. Fluorescence 

measurements were carried out at 25ºC using quartz cells on a Horiba Jobin Yvon 

Fluoromax-3 fluorimeter. The excitation wavelength was 440 nm and the emission was 

measured at 482 nm, with both slits of 5 nm. The percentage of fluorescence was 

calculated according to the maximum fluorescence intensity value (100% fluorescence) 

registered for each assay.  

 

Scanning transmission electron microscopy (STEM) 

STEM images were obtained by using a field emission gun (FEG) SEM Hitachi SU70 

microscope operated at 15 kV. Samples were prepared by immersing a carbon-coated 

copper grid into the protein nanofibers suspension, and then allowing the solvent to 

evaporate overnight. The average dimensions of the nanofibers were determined by 
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analysis of STEM images using the ImageJ program (at least 100 nanofibers were 

analyzed for each experiment). 

 

Results & Discussion 
 

Effect of temperature and pH on the fibrillation process of HEWL 

Literature shows that temperature and pH are two experimental variables that 

play a major role in protein fibrillation processes. The available studies82,205,206,218 

indicate that high temperature (60-70ºC) and low pH (1.6-2) are important factors that 

favour the partial unfolding of native HEWL, and consequently their refolding in β-

sheet conformation, leading to the formation of protein nanofibers. Since we are 

working with aqueous solutions of DES (1, 5 and 10% (v/v)), there is the need to 

ascertain if the individual components of DES would yield the same effect. According 

to literature, DES in diluted aqueous solutions can act as two separated solutes.219,220 

Therefore, assays were carried out for [Ch]Cl and acetic acid (Ac) individually, at 70ºC 

and pH = 2, with the same individual concentrations as those used in 5% (v/v) aqueous 

solution of DES. Also, a fibrillation assay using a solution with both [Ch]Cl and acetic 

acid (Ac) in the same proportion as in a 5% (v/v) aqueous solution of DES was 

considered. The formation of protein nanofibers was indirectly measured by the 

fluorescence of thioflavin T when binding to β-sheet amyloid structures. The intensity 

of thioflavin T fluorescence as a function of time for [Ch]Cl, Ac and [Ch]Cl with Ac is 

depicted in Fig. 2.  

 

Fig. 2 - ThT fluorescence intensity as a function of time for HEWL fibrillation using a 

[Ch]Cl:Ac solution of 5% (v/v) at 70ºC and pH2, and its individual components 
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separately ([Ch]Cl; Ac) and together ([Ch]Cl + Ac) in the same proportion and 

concentration as when used in the DES. 

 

It can be clearly seen that the addition of the ionic liquid [Ch]Cl promotes high 

fluorescence intensity, similar to that obtained when an aqueous solution of 5% (v/v) 

DES is used, while there is no increase of the fluorescence intensity when acetic acid 

alone is used. In fact, it can be observed that similar fluorescence intensity is obtained 

for aqueous solutions of DES, [Ch]Cl and the DES at similar concentrations. This is a 

clear indication that, at 5% (v/v) solution, both components of DES separate in aqueous 

solution and that [Ch]Cl has a major role in the fibrillation process, while Ac works 

only as an adjuvant. 

Fig. 3 displays the results for the fibrillation of HEWL expressed as the intensity 

of the thioflavin T fluorescence as a function of time at different experimental 

conditions. The effect of the [Ch]Cl:Ac concentration in the promotion of HEWL 

fibrillation is evaluated in Fig. 3A. These assays took place at 70ºC and acidic 

conditions, using 10 mM HCl buffer solution which confers a pH = 2. The pH was 

measured along the experiments without significant changes being noticed. Three 

different [Ch]Cl:Ac concentrations, 1, 5 and 10% (v/v) were used. It can be observed 

that the intensity of fluorescence significantly changes with the amount of [Ch]Cl:Ac 

used, indicating that this parameter plays an important role in the fibrillation process. 

While the lowest concentration of [Ch]Cl:Ac (1% (v/v)) showed no significant 

fluctuations in the fluorescence intensities in comparison with the control (0% 

[Ch]Cl:Ac), at higher [Ch]Cl:Ac concentrations (5 and 10% (v/v)) the fibrillation 

process is favoured, as supported by the substantial raise in the fluorescence intensity. 

Nevertheless, the assay containing 5% (v/v) of [Ch]Cl:Ac displayed a higher 

fluorescence intensity than that with 10% (v/v) of [Ch]Cl:Ac, suggesting that the former 

[Ch]Cl:Ac concentration is the ideal for an optimal fibrillation of HEWL. There are 

several studies in the literature also reporting the existence of an ideal concentration of 

salts and other fibrillation agents.104,221 For example, Fujiwara et al.221 showed that 

albumin fibrillation is induced up to certain concentration of salt, while only amorphous 

aggregates were found at higher concentrations. Vernaglia et al.104 also studied the 

effect of guanidine hydrochloride concentrations in the lysozyme fibrillation process. 

Three distinct regimes were observed: at low concentrations, the structure of lysozyme 
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was very stable and no fibrils were observed; at intermediate concentrations, lysozyme 

was partially unfolded and fibrils were rapidly formed; at high concentrations guanidine 

hydrochloride was capable of dissolving and dis-aggregating the formed fibrils.  

  

Fig. 3 - ThT fluorescence intensity as a function of time for HEWL varying: (A) 

[Ch]Cl:Ac concentration, keeping the temperature at 70ºC and the pH = 2; (B) 

temperature, keeping the [Ch]Cl:Ac concentration at 5% (v/v) and the pH = 2; and (c) 

pH, keeping the [Ch]Cl:Ac concentration at 5 % (v/v) and the temperature at 70ºC.  
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Although our studies do not allow us to infer on direct causes leading to the 

decrease in fluorescence intensity in the assays at 10% (v/v) of [Ch]Cl:Ac, the 

solubilization of fibrils might be a possible explanation. In this line with the different 

shape of the curve for higher concentrations of [Ch]Cl:Ac, there is a formation of a 

small quasi-plateau region for low incubation times. This type of behaviour has been 

attributed in the literature to the formation of small oligomeric structures that need more 

time to develop into fibrils due to their enhanced solubility.222,223 Also to be noted, is the 

short time required to get nanofibers when using acidic aqueous solutions with 5 and 

10% (v/v) of [Ch]Cl:Ac: in only 3 h both assays achieved more than 90% of the 

maximum fluorescence intensities registered for each case. 

The effect of temperature in the fibrillation of HEWL when the [Ch]Cl:Ac 

concentration (5% (v/v)) and pH (pH = 2) were kept constant is depicted in Fig. 3B. It 

can be concluded that temperature also plays a leading role in the fibrillation of HEWL 

with the maximum fibrillation achieved for the highest temperature (70ºC) in a 2h 

incubation period. Decreasing the temperature from 70ºC down to 50ºC more than 

duplicates the time needed (5 h) to reach the maximum fluorescence intensity. In fact, it 

is clear from the observation of Fig. 3B that the mechanism through which fibrillation 

occurs changes with temperature: at 50ºC we obtain the classical sigmoidal growth 

profile also known as a “nucleated growth” mechanism,20,70 i.e., there exists an initial lag 

phase where the fluorescence intensity remains almost constant due to nucleation 

followed by an exponential phase which ends up in a final equilibrium region,71–73 while 

at 70ºC a faster and continuous formation of protein nanofibers can be observed. 

Furthermore, the assay carried out at room temperature shows that almost no fibrillation 

occurs, within a ten days period and, according to Fig. 4, three months are necessary for 

fibrillation to take place at room temperature. It is well known that hydrogen bonding is 

weakened as the temperature rises. It is well known that hydrogen bonding is weakened 

as the temperature rises. At low temperatures, the helical structure of the protein is 

tightly bound through hydrogen bonding making more difficult the solvent access to 

amino acid residues that are responsible for protein conformational structure. 
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Fig. 4 - ThT fluorescence intensity as a function of time for HEWL nanofibers 

formation, at room temperature and pH = 2. 

 

Another parameter usually studied in protein fibrillation is the pH. The effect of 

pH was researched using solutions at two pH values (2 and 5) and at a fixed [Ch]Cl:Ac 

concentration of 5% (v/v) and a temperature of 70ºC (Fig. 3C), which were previously 

found to be the best conditions to promote HEWL fibrillation. At both pH values, and in 

the presence of fixed [Ch]Cl:Ac concentration, the fibrillation occurs within 2-3 h, 

revealing no significant differences in the kinetics behaviour. In the absence of 

[Ch]Cl:Ac, there is no evidence of HEWL fibrillation, which leads to the conclusion 

that independently of the pH used, the presence of [Ch]Cl:Ac is critical for fibrillation 

to occur. Consequently, Fig. 3C clearly demonstrates that pH of DES solutions does not 

play a relevant role in HEWL fibrillation, allowing working at milder conditions than it 

was possible with other solvents.78,87 These results are intriguing since most of literature 

shows that pH usually plays an important role in fibrillation.  

In conclusion, Thioflavin-T fluorescence studies indicate that temperature and 

[Ch]Cl:Ac concentration are the key parameters controlling the fibrillation of HEWL, 

with a maximum amount of nanofibers formed at 70ºC and 5 (v/v)% of DES, while 

milder pH conditions can be used, since fibrillation with [Ch]Cl:Ac is not significantly 

affected by pH. A major breakthrough provided by this study is undoubtedly the 

acceleration of protein fibrillation, which can be especially significant when their use in 

material fabrication is envisaged. In a study led by Mishra et al.82, HEWL unfolding 
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was followed by partial acid hydrolysis, and mature amyloid fibrils were then added as 

seed. In terms of the fibrillation mechanism, and taking into account the classical 

sigmoidal profile discussed before, this procedure reduced the lag phase from 70-80h 

down to 30-40 h. A quick glance to our results in Fig. 3 shows that the use of [Ch]Cl:Ac 

seems to have a similar effect, reducing the lag phase. However, HEWL fibrillation 

strategy here proposed through the use of [Ch]Cl:Ac is much faster than that using 

amyloid fibril seeds. The same effect has been seen using other denaturant solvents, like 

urea and guanidine hydrochloride. In fact, Kumar et al.88 have showed a faster 

formation of amyloid fibrils using urea at 2 and 4 M, at 60°C during 15 h. The same 

was observed using guanidine hydrochloride.104 These studies predict that the lag phase 

is mainly controlled by the ionic interactions, which agrees with our observations. 

 

Conversion ratio of native HEWL into nanofibers 

Once the ThT fluorescence assay is positive, thus indicating the β-sheet structure 

formation, it is important to determine the conversion ratio from native HEWL into β-

sheet structures (possibly nanofibers) in the final solution. This conversion ratio was 

determined indirectly by UV spectroscopy at 276 nm, taking in consideration the 

absorption of native protein at this wavelength. A calibration curve for different 

concentrations of native HEWL was determined at 276 nm, and the conversion ratios 

were calculated by the difference between the initial and final concentrations of HEWL 

in solution. Table 1 presents the conversion ratios obtained for all the conditions tested. 

It can be seen that most of the conversion ratios are over 90%, indicating that more than 

90% of native HEWL was misfolded and possibly arranged into nanofibers. However, 

the assays conducted at room temperature for 4 months at a constant pH = 2 displayed 

conversion ratios of 10.8% and 19.6%, when 5% and 10% (v/v) [Ch]Cl:Ac were used, 

respectively. These results also indicate that temperature has an essential role in 

catalysing the protein misfolding process, probably through the weakening of the 

intramolecular hydrogen bonding interactions, and consequent in the HEWL fibrillation 

in [Ch]Cl:Ac aqueous solutions. Furthermore, all assays conducted without ChCl:Ac 

showed conversion ratios lower than 2%, highlighting the importance of ChCl:Ac in the 

HEWL unfolding and subsequent fibrillation. 
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Table 1. Conversion ratios from native HEWL into possible β-sheet structures and ThT 

fluorescence intensity results. 

Assay conditions 

Conversion % 

ThT Assay 

T (ºC) pH 
% (v/v) 

[Ch]Cl:Ac 
Fluorescence* Time* 

70 
2 

1 87.5 ± 0.4 1.34 x 106 5h 

5 94.9 ± 0.5 7.69 x 106 2h 

10 97.5 ± 0.5 5.28 x 106 3h 

[Ch]Cl 92.7 ± 0.5 8.09 x 106 4h 

[Ch]Cl + Ac 91.8 ± 0.5 6.30 x 106 4h 

5 5 99.7 ± 0.1 7.18 x 106 5h 

50 2 5 99.8 ± 0.1 9.28 x 106 2h 

RT 2 
5 10.8 ± 0.1 2.00 x 106 120d 

10 19.6 ± 0.1 3.10 x 106 120d 

*Intensity of fluorescence and time required to achieve 90% of the maximum ThT fluorescence intensity value.  

 

Morphology of the protein nanofibers 

Protein nanofibers can assume different morphologies, specially depending on 

the nucleation phase.20 In fact, protein nanofibers are usually polymorphic, meaning that 

fibrils formed by a given peptide or protein can have multiple distinct morphologies 

depending on the conditions under which the fibrils aggregate.56 Different kind of 

aggregates were reported by Jung et al.94 and they are mainly categorized as spherical-

like, worm-like and rod-like. In the pursuit of new material elements with better 

properties, like mechanical strength, the rod-like aggregates are the most suitable, due to 

their fine and elongated fibrillar shape. 

In this context, transmission electronic microscopy (TEM) is a very useful 

technique to confirm the formation of protein nanofibers and analyse their morphology. 

The STEM images of the nanofibers obtained in this work using ChCl:Ac aqueous 

solutions under different experimental conditions are presented in Fig. 5 and Fig. 6. It 

can be observed that in all assays, fine and elongated nanofibers, corresponding to the 

so called rod-like shape, were obtained. The only exception seems to be the control with 
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[Ch]Cl, with shorter nanofibers were obtained, as it can be seen in Fig. 6. Since the 

dimensions of the obtained protein nanofibers are very important for the foreseen 

applications, the average dimensions in length and thickness of the nanofibers were 

determined by analysis of the STEM images using the ImageJ program and at least 100 

nanofibers were analysed in each case. In Fig. 6, we compare the nanofibers obtained 

using an aqueous solution of 5 (v/v)% [Ch]Cl:Ac DES with those obtained when 

aqueous solutions of 3.5 (m/v)% [Ch]Cl was used. Although similar thioflavin T 

fluorescence assay results were obtained for both experiments, the nanofibers obtained 

when [Ch]Cl was used are much smaller than those obtained using [Ch]Cl:Ac DES, 

especially in terms of length. Maximum fibril length values of around 0.6 µm were 

obtained when using the IL, which is basically half of the maximum values obtained 

using the DES. This result suggests that the acid group of DES has an important role on 

the fibrillation process, contributing for longer nanofibers.  

 

 

Fig. 5 - STEM images of protein nanofibers formed by inducing HEWL fibrillation 

using 5% (v/v) [Ch]Cl:Ac, under different conditions. (A) 70ºC, pH = 2. (B) 50ºC, pH = 

2. (C) 70ºC, pH = 5. (D) RT, pH = 2. 
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Fig. 6 - STEM images of protein nanofibers formed by inducing HEWL fibrillation 

using 5% (v/v) [Ch]Cl:Ac and 3.5% (m/v) [Ch]Cl, at 70ºC and pH = 2. 

 

Furthermore, Fig. 7 shows box charts corresponding to length and thickness of 

HEWL nanofibers, respectively. HEWL fibrillation at 70ºC and pH = 2, using 5% (v/v) 

[Ch]Cl:Ac, provided the longest nanofibers with an average length of 0.9 ± 0.3 µm. As 

we decrease the temperature to 50ºC, keeping the pH conditions (pH = 2), shorter (0.6 ± 

0.2 µm) and slightly thinner (0.03 ± 0.01 µm) nanofibers were obtained. The same 

tendency, smaller lengths and diameters can also be observed when temperature is 

further lowered down to room temperature and still maintaining these pH conditions. 

Curiously, and although Thioflavin T fluorescence assays show no significant changes 

in terms of the fibrillation period and the fluorescence intensity values, pH seems to 

have a relevant effect on nanofibers dimensions as well. Comparing nanofibers 

produced at 70ºC and two different pH conditions (2 and 5), more neutral pH generates 

shorter (0.5 ± 0.2 µm) and thinner nanofibers (0.023 ± 0.005 µm) than acidic pH 

conditions where a length of 0.9 ± 0.3 µm and a thickness of 0.04 ± 0.01 µm were 

observed. According to Juarez et al.,224 a lower pH induces further structural changes in 

secondary structure favouring electrostatic repulsive interactions, which makes 

the molecules more soluble, disfavouring their aggregation to a great extent, and thus 

longer nanofibers are formed. In conclusion, despite the similar results observed in 

terms of the fibrillation period and the ThT fluorescence intensity values for both pHs, 

at 70ºC using 5% (v/v) [Ch]Cl:Ac, there are some differences in the morphology of the 

nanofibers obtained, especially regarding the length of the nanofibers obtained. 
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Fig. 7 - Box charts with fibril dimensions in length (µm) and thickness (µm). 

 

Comparing the results obtained in this work with those from literature data, and 

despite the small differences observed depending on temperature and pH conditions, the 

nanofibers dimensions obtained using [Ch]Cl:Ac, as well as morphologies observed in 

the TEM images, are all very similar to those described in literature for HEWL,82,205,206 

β-lactoglobulin95 and albumin,225 with average dimensions of 0.5-1 µm in length and 

0.02-0.1 µm in thickness.  

 

Conclusions 
 

This study describes a novel, efficient and timesaving fibrillation method for 

HEWL using aqueous solutions of a deep eutectic solvent based on cholinium chloride 

and acetic acid, in a 1:1 proportion. The thioflavin-T fluorescence assay was used to 

infer on the influence of experimental variables such as DES concentration, temperature 

and pH. An optimal concentration of 5 (v/v)% of DES for HEWL fibrillation was 

determined. Temperature also has a key role in the acceleration of the fibrillation, 
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greatly reducing the lag-phase, without changing the fibrillation kinetics. This 

behaviour was linked to the disruption of protein intramolecular hydrogen bonds at 

higher temperatures. STEM was used to determine the length and the thickness of the 

produced nanofibers. Both temperature and pH significantly influence nanofibers 

dimensions, in terms of length and thickness. Longer and thicker nanofibers were 

obtained at high temperatures and lower pH values. Considering the time effectiveness 

of HEWL fibrillation using [Ch]Cl:Ac, the incubation time was reduced from 8-15 h 

down, when other solvents are used, to 2-3 h, with nanofibers dimensions of 0.5-1 µm 

in length and 0.02-0.1 µm in thickness. It is foreseen that this protein fibrillation method 

will clearly impact on the use of protein nanofibers in the vast material science field, 

especially in the development of nanosized reinforcing elements for 

bionanocomposites preparation with applications ranging from medicine to soft matter 

and nanotechnology. 
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Abstract 
 

Deep eutectic solvents (DESs), a novel generation of solvents, have recently been 

described as efficient and timesaving fibrillation agents for proteins. In this context, the 

present work aims at assessing the effect of the hydrogen bond donor (HBD) of 

cholinium chloride ([Ch]Cl):carboxylic acid based DESs on the dimensions (length and 

width) of lysozyme nanofibers (LNFs). Mono-, di- and tri-carboxylic acids (acetic, 

lactic, levulinic, malic and citric acids) were used to prepare different DES 

formulations, which were successfully used on the fibrillation of lysozyme. The results 

showed that the carboxylic acid (i.e. the HBD) plays an important role on the fibrillation 

efficiency and on the length of the ensuing LNFs with aspect-ratios always higher than 

those obtained by fibrillation with [Ch]Cl only. The longest LNFs were obtained using 

lactic acid as the HBD with an average length of 1004 ± 334 nm and width of 31.8 ± 6.8 

nm, and thus an aspect-ratio of ca. 32. The potential of these protein nanofibers as 
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reinforcing additives was evaluated by preparing pullulan (PL)-based nanocomposite 

films containing LNFs with different aspect-ratios, resulting in highly homogenous and 

transparent films with improved mechanical performance. 
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Introduction 
 

Protein nanofibers, also known as amyloid fibrils, are typically defined as 

unbranched protein fibers of aligned cross-β structures23,76 that, due to their exceptional 

mechanical properties and thermochemical stability, have recently gained increasing 

interest in the development of innovative functional nanomaterials76,226 for different 

applications, including biosensors, scaffolds, drug carriers and nanocomposite 

materials.226 In this latter domain of research, the protein nanofibers’ unique 

combination of size, aspect-ratio, chemical composition and mechanical strength,226 

translates into materials with significantly improved mechanical performance. For 

example, protein nanofibers have been combined with synthetic matrices, such as 

poly(lactic acid),161 poly(vinyl alcohol)99 and silicone elastomer,227 to produce 

nanocomposites with notable mechanical properties. However, the major weakness 

associated with the application of protein nanofibers in the large scale production of 

nanocomposite materials is the time required to obtain these nanofibers, since most of 

the fibrillation procedures are laborious and time-consuming.81,88 Nevertheless, the 

recent development of timesaving fibrillation methods for the production of insulin 

amyloid nanofibrils using a microwave assisted synthesis,228 and lysozyme nanofibers 

(LNFs) using a new generation of solvents, viz. deep eutectic solvents (DESs),200 will 

certainly contribute to propel their widespread use. 

Among the existing proteins, hen egg white lysozyme (HEWL) has been 

extensively investigated as a source of protein nanofibers with several studies reporting 

the influence of various conditions in its fibrillation.77 The use of different fibrillation 

agents (e.g., ethanol,229 guanidine hydrochloride,230 urea,88,89 ionic liquids (ILs)120 and 

DES200) originates nanofibers with divergent sizes and concomitantly different aspect-

ratios. The aspect-ratio of the nanofibers, defined as the ratio between the length and 

width, is an important factor in materials design since it plays a fundamental role on the 

mechanical performance of the ensuing materials.226 For example, Vernaglia et al.230 

reported the use of guanidine hydrochloride diluted in potassium phosphate as a 

fibrillation inducer and produced LNFs with an average length of 100 nm and width of 

13 nm, which results in a low aspect-ratio (ca. 7.7) compared to other studies where 

fibrils around 1 µm105–107 with similar widths were reported. Recently, Silva et al.200 

obtained LNFs with dimensions of 0.5–1.0 µm in length and 0.02–0.1 µm in width via 
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fibrillation with a DES based on cholinium chloride ([Ch]Cl) and acetic acid in a molar 

proportion of 1:1 (see chapter 2.2.  Production of lysozyme nanofibers using a deep 

eutectic solvent). Accordingly, [Ch]Cl (i.e. hydrogen bond acceptor (HBA)) is a key 

component for protein fibrillation, while the carboxylic acid (i.e. hydrogen bond donor 

(HBD)) seems to have a notable impact on the length of the resulting nanofibers.200 

Bearing these results in mind, the aim of the present work is to further 

investigate the effect of the carboxylic acid component of [Ch]Cl-based DES on the 

fibrillation of HEWL. More specifically, the nature of the carboxylic acid will be 

evaluated as a strategy to tune the dimensions (aspect-ratio) of the nanofibers. Hence, 

[Ch]Cl-based DES formulations with different carboxylic acids, namely acetic, lactic 

and levulinic acids (monoacids), malic acid (diacid) and citric acid (triacid), were tested 

as fibrillation media for HEWL. Furthermore, the obtained protein nanofibers with 

different aspect-ratios were used as reinforcing elements in pullulan (PL)-based 

nanocomposite films and their optical and mechanical properties were assessed. 

 

Experimental Details 

 

Chemicals  

Acetic acid (≥ 99.7%, Sigma-Aldrich), lactic acid (≥ 99.7%, Sigma-Aldrich), malic acid 

(≥ 99.7%, Sigma-Aldrich), citric acid (≥ 99.7%, Sigma-Aldrich), levulinic acid (≥ 

99.7%, Sigma-Aldrich), cholinium chloride ([Ch]Cl, ≥ 98%, Sigma-Aldrich), glycerol 

(≥ 99.5%, Sigma-Aldrich), glycine (≥ 98.5%, Sigma-Aldrich), hen egg white lysozyme 

(HEWL, Sigma-Aldrich, ~70000 U mg-1), pullulan powder (PL, 98%, MW 272 kDa, 

B&K Technology Group), Thioflavin T (ThT, Sigma-Aldrich) were used as received. 

Other chemicals and solvents were of laboratory grades. Ultrapure water (type 1, 18.2 

MΩ•cm at 25°C) was obtained from a Simplicity® Water Purification System. 

 

Preparation of the DES 

The [Ch]Cl:acid based DES were prepared according to the method reported by 

Florindo et al.217 in which the two components, i.e., [Ch]Cl and the selected acid, were 

mixed and then grinded in a mortar with a pestle at room temperature until the 

formation of a homogeneous liquid. The selected acids (Fig. 1) were acetic, lactic, malic 
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and citric acids in a 1:1 equimolar concentration, and levulinic acid in a 1:2 molar 

proportion (Table S1). 

Cholinium chloride
([Ch]Cl)

Acetic acid
(Ac)

Lactic acid
(Lac)

Levulinic acid
(Lev)

Malic acid
(Mal)

Citric acid
(Cit)

 

Fig. 1 - Chemical structures of cholinium chloride ([Ch]Cl) and of the carboxylic acids 

that compose the DESs used in this study. 

 

Production of lysozyme nanofibers (LNFs) 

HEWL was dissolved (2 mg mL-1) in an aqueous solution of 10 mM HCl at pH = 2 with 

20 mM glycine with 5% (v/v) of the respective DES. The samples were incubated at 70 

°C in an oil bath under magnetic stirring. The LNFs were separated from the DES 

aqueous solution by centrifugation at 15000 rpm during 45 min (Thermo Scientific 

Megafuge 16R centrifuge). The supernatants were exchanged with Milli-Q ultrapure 

water. This purification step was repeated twice, and the nanofibers were kept in Milli-

Q ultrapure water at 4°C until further use. Triplicates of each sample were carried out 

and tests with [Ch]Cl alone, as well as with the individual acids, were carried out as 

control. For the preparation of pullulan films, the nanofibers were freeze-dried and kept 

in an exicator. 

 

Preparation of films of PL and LNFs 

A 6% PL aqueous solution with 10% glycerol (in relation to the mass of PL) was 

prepared. Then, 5% of freeze-dried LNFs were added and homogenized by magnetic 

stirring overnight. LNFs produced using [Ch]Cl, [Ch]Cl:Ac, [Ch]Cl:Lac and 
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[Ch]Cl:Lev were used as reinforcing elements. PL/LNFs films were obtained via 

solvent casting of the obtained aqueous suspensions, at 30°C in a ventilated oven 

overnight, using acrylic plates (5×5 cm2) as moulds. Pure PL films containing only 

glycerol were also prepared for comparison purposes. 

 

Fluorescence analysis (ThT assays) 

For the time-course assay, 30 µL aliquots were taken from the incubated solution at 

desired time intervals, and added to a 3 mL solution containing 2.5 mM Thioflavin T – 

ThT, in 10 mM phosphate buffer at pH 7.4. Fluorescence measurements were carried 

out at 25°C using quartz cells on a Horiba Jobin Yvon Fluoromax-3 fluorimeter. The 

excitation wavelength was 440 nm and the emission was measured at 482 nm, with both 

slits of 5 nm. The percentage of fluorescence was calculated according to the maximum 

fluorescence intensity value (100% fluorescence) registered for each assay. 

 

UV-vis quantification of non-fibrillated HEWL 

The concentration of HEWL in the supernatants was measured by UV-vis spectroscopy 

at 276 nm using a UV-1800 spectrophotometer (Shimadzu, Kyoto, Japan). The 

supernatant was obtained after the first centrifugation of the incubated samples, and a 

previously established calibration curve: Abs276nm = 2.39[HEWL]mg/mL – 0.0012 

(R2=0.9994) was used. 

 

Scanning transmission electron microscopy (STEM) 

STEM images were obtained using a field emission gun (FEG) SEM Hitachi SU70 

microscope operated at 15 kV. Samples were prepared by immersing a carbon-coated 

copper grid into the LNFs suspension, and then allowing the solvent to evaporate 

overnight. The average dimensions of the LNFs were determined by analysis of STEM 

images using the ImageJ program (at least 100 protein nanofibers were analysed for 

each experiment). 

 

UV-vis analysis 

The transmittance spectra of the PL-based films were acquired with an UV-Vis 

Spectrophotometer (Shimadzu UV-1800) equipped with a quartz window plate with 10 

mm diameter, with the holder in the vertical position. Spectra were recorded at room 

temperature in steps of 1 nm, in the range 200–700 nm. 
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Mechanical assays 

Tensile tests were performed on an Instron 5966 Series machine, using a load cell of 

500 N, operating at a deformation rate of 10 mm min−1, under ambient conditions. At 

least 5 specimens were tested for each PL-based film sample. Young’s modulus, tensile 

strength and elongation at break were calculated using the Bluehill 3 material testing 

software.  

 

Results & Discussion 
 

Production of LNFs using different [Ch]Cl-based DESs 

The fibrillation of HEWL was performed using different DES formulations in 

order to assess the effect of the carboxylic acid (HBD) of [Ch]Cl:carboxylic acid based 

DESs on the dimensions of the protein nanofibers as a strategy to tune their aspect-ratio. 

Several mono-, di- and tri-carboxylic acids, namely acetic (Ac), lactic (Lac), levulinic 

(Lev), malic (Mal) and citric (Cit) acids (Fig. 1), were selected to act as HBD. The 

molar proportion of all [Ch]Cl:carboxylic acid DESs was 1:1, with the exception of the 

DES containing levulinic acid, which was 1:2 in order to form an eutectic mixture. The 

formation of protein nanofibers was indirectly assessed by measuring the fluorescence 

intensity of thioflavin T upon binding to β-sheet structures, as well as by determining 

the amount of non-fibrillated HEWL by UV-vis spectroscopy at 276 nm. The obtained 

LNFs with the different DES formulations were further characterized regarding their 

morphology and dimensions (length and width) by STEM analysis. 

Fig. 2 shows the fluorescence intensity of thioflavin T versus time for HEWL in 

aqueous solutions of the five [Ch]Cl-based DESs.  
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Fig. 2 - ThT fluorescence intensity as a function of time for β-sheet structures formed in 

the aqueous solutions of the different DESs (fibrillation conditions: 5% (v/v) DESs, 70 

°C, pH = 2). 

 

Fibrillation could be observed immediately after the addition of the HEWL 

solution to the different DESs aqueous solutions, and an increase in the ThT 

fluorescence intensity with time was observed for all five [Ch]Cl-based DESs. The 

highest fluorescence intensity values, corresponding to the highest fibrillation rate, were 

registered when using aqueous solutions of lactic (6.63×106) and malic (6.46×106) 

acids, which are very similar to those obtained with aqueous solution of [Ch]Cl:Ac 

(6.73×105). For the DESs aqueous solutions of both citric and levulinic acids, half of the 

final ThT fluorescence intensity was reached only after 4 h of incubation, while for the 

other DESs this value was obtained within the first 1–2 h. The fact that some DESs 

promote higher ThT fluorescence intensities than others is probably related with the 

total amount of [Ch]Cl. Depending on the carboxylic acid and its molar mass, the 

amount of [Ch]Cl used to prepare the 5% (v/v) of DES aqueous solution is different, as 

it can be observed in Table 1.  
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Table 1. Composition of DES used and the molar mass of the correspondent acids. 

 

Sample Macid (g mol-1) m[Ch]Cl (mmol g-1 DES) macid (mmol g-1DES) 

[Ch]Cl - 7.2 - 

[Ch]Cl:Ac (1:1) 60.05 5.0 5.0 

[Ch]Cl:Lac (1:1) 90.08 4.3 4.3 

[Ch]Cl:Lev (1:2) 116.12 2.7 5.5 

[Ch]Cl:Mal (1:1) 134.02 3.6 3.6 

[Ch]Cl:Cit (1:1) 192.13 3.0 3.0 

 

Using a higher amount of [Ch]Cl, as in the case of [Ch]Cl:Ac (5.0 mmol g-1 

DES), [Ch]Cl:Lac (4.3 mmol g-1 DES) and [Ch]Cl:Mal (3.6 mmol g-1 DES), originates 

higher fluorescence intensities (above 6.40×106) after 7 h of incubation. In turn, when 

using [Ch]Cl:Lev (2.7 mmol g-1 DES) or [Ch]Cl:Cit (3.0 mmol g-1 DES) the 

fluorescence intensities for the same incubation time barely surpassed 4.02×106. In fact, 

the control assay with [Ch]Cl only registered the highest fluorescence intensity at 7 h 

(8.09×106). On the other hand, the assay with just lactic acid, as an example (Fig. 2), did 

not show any evidence of β-structures. A similar conclusion was taken for the tests 

involving the other individual carboxylic acids as summarized in Table 2.  

Table 2. ThT fluorescence intensity measurements of the control and the assays using 

the acids only, after 7 h of incubation. 

 

Samples ThT Assay 

Control 5.37 × 105 

Acetic acid 5.81 × 105 

Lactic acid 5.69 × 105 

Levulinic acid 5.42 × 105 

Malic acid 5.56 × 105 

Citric acid 5.47 × 105 
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According to this data, it is reasonable to admit that the lysozyme fibrillation is 

directly driven by the quantity of [Ch]Cl used in the fibrillation medium, which can 

possibly be due to the capacity of [Ch]Cl to form hydrogen bonds in solution and to 

leverage the interaction with the protein, leading to convert lysozyme into β-structures. 

In this line, the concentration of [Ch]Cl ,together with other experimental conditions:20 

e.g. high temperature and low pH, plays an important role in the protein fibrillation 

process. Therefore, it was expected to obtain equal fluorescence intensities for all DESs 

solutions with the same content in [Ch]Cl. To confirm this assumption, three DESs with 

the same (1:1) proportion and the same molar concentration, i.e. [Ch]Cl:Lac (3.0% 

(v/v)), [Ch]Cl:Mal (3.6% (v/v)), [Ch]Cl:Cit (4.3% (v/v)), and thus with the same molar 

fraction of [Ch]Cl (0.13 mmol mL-1), were investigated on the fibrillation of HEWL 

(Table 3). 

Table 3. Mass and molar fractions of the components of the [Ch]Cl:Lac, [Ch]Cl:Mal 

and [Ch]Cl:Cit DESs used in the complementary assays to ascertain the role of [Ch]Cl 

in HEWL fibrillation. 

 

  

However, the fluorescence intensities obtained were different from each other 

dependent on the nature of the DES used, as illustrated in Fig. 3. This leads to the 

conclusion that, although the acid group of the DES does not promote fibrillation by 

itself, its chemical structure plays a fundamental role in the efficiency of the fibrillation 

process. 
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Fig. 3 - ThT fluorescence intensity measurements of the assays using [Ch]Cl:Lac, 

[Ch]Cl:Mal and [Ch]Cl:Cit with the same molar fraction of [Ch]Cl (0.13 mmol mL-1), 

after 7 h of incubation. 

 

Table 4 presents the conversion ratio of HEWL into β-sheet structures (possibly 

nanofibers) obtained with the different 5% (v/v) DESs solutions. It is can be seen that 

the conversion ratios for [Ch]Cl:Ac and [Ch]Cl:Lac are above 90%, indicating that 

more than 90% of HEWL was misfolded and possibly arranged into nanofibers. 

Moreover, a conversion ratio of about 80% was achieved using [Ch]Cl:Mal as 

fibrillation agent, whereas [Ch]Cl:Cit and [Ch]Cl:Lev originated lower conversion 

ratios of nearly 70%. Worth noting is the fact that these results are in close agreement 

with the ThT fluorescence intensity data (Table 4). 

Table 4. Conversion ratios of HEWL and ThT fluorescence intensity measurements 

after 7 h of incubation. 

 

Samples Conversion (%) ThT Assay 

[Ch]Cl 94.5 ± 0.4 (8.09 ± 0.32) ×106 

[Ch]Cl:Ac 93.7 ± 0.5 (6.73 ± 0.37) ×106 

[Ch]Cl:Lac 93.4 ± 0.5 (6.63 ± 0.39) ×106 

[Ch]Cl:Lev 70.0 ± 0.7 (3.58 ± 0.18) ×106 

[Ch]Cl:Mal 80.8 ± 0.6 (6.46 ± 0.32) ×106 

[Ch]Cl:Cit 69.3 ± 0.7 (4.02 ± 0.21) ×106 
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The STEM micrographs of all LNFs obtained in this study are presented in Fig. 

4, where thin and elongated nanofibers are visible, corresponding to the so-called worm-

like shape.56 It is clearly evident that, besides the effect on HEWL fibrillation, the 

carboxylic acid present in the [Ch]Cl-based DESs has a fundamental role on the 

dimensions (length and width) of the nanofibers. In fact, the LNFs produced with the 

different DESs formulations present higher dimensions than those produced with 

[Ch]Cl (aqueous solution) only. Notably, [Ch]Cl:Ac and [Ch]Cl:Lac seem to produce 

the longest nanofibers, whereas [Ch]Cl:Lev and [Ch]Cl:Cit generate slightly shorter 

nanofibers (although still much longer than those produced using [Ch]Cl), confirming 

the importance of the carboxylic acid component of the DES on the production of 

longer LNFs, as will be discussed below. 

Fig. 5 depicts the distribution of the length and width of the obtained protein 

nanofibers, determined from the STEM micrographs. According to the box charts, the 

use of an aqueous solution of [Ch]Cl as fibrillation agent originates LNFs with a 

maximum length of 611 nm, whereas the use of any of the five [Ch]Cl-based DESs 

(containing different carboxylic acids) yields LNFs with maximum length values above 

1000 nm. In fact, the maximum length value (2086 nm) was obtained for the LNFs 

produced by the aqueous solutions of [Ch]Cl:Lac. In terms of average values (Table), 

the longest LNFs were produced when aqueous solutions of [Ch]Ch:Ac and [Ch]Cl:Lac 

were used, with average lengths of 887 ± 310 nm and 1004 ± 334 nm, respectively. 

Nanofibers with slightly lower average lengths were produced using aqueous solutions 

of [Ch]Cl:Mal, 827 ± 331 nm, followed by the ones generated by [Ch]Cl:Lev and 

[Ch]Cl:Cit with average length values lower than 500 nm (492 ± 175 and 490 ± 152 nm, 

respectively). Nevertheless, these values are still higher than those obtained for the 

control (350 ± 104 nm) where no acid was present (Table 5), thus confirming the 

relevance of the carboxylic acid to tune the length of the lysozyme nanofibers.  

Regarding the width of the LNFs (Fig. 4), values ranging from 10 up to 50 nm 

were obtained for the different [Ch]Cl-based DES. Among the carboxylic acids, 

levulinic and citric acids seem to promote the production of thinner nanofibers (ca. 20 

nm) when compared to acetic, lactic and malic acids (ca. 30 nm). The most significant 

conclusion is that the presence of the acid groups in HBD of DES, as well as the 



   Production of Protein Nanofibers [2.3]      

 

  95 

 

chemical structure of the acids used, are very important parameters in tuning the length 

and width of the nanofibers. 

 

Fig. 4 - STEM images of LNFs formed using 5% (v/v) of DESs and [Ch]Cl aqueous 

solutions, at 70 °C, pH = 2. The STEM images of [Ch]Cl are from our previous work,200 

and they are presented here for comparison. 
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Fig. 5 - Box charts with LNFs dimensions of length (nm) and width (nm). The results of 

[Ch]Cl were taken from our previous work,200 and they are presented here for 

comparison. 

 

The aspect-ratios of the LNFs obtained with the different [Ch]Cl-based DESs as 

fibrillation agents are presented in Table 5. According to the data, all nanofibers have 

higher aspect-ratios (23.7–31.6) than those obtained using aqueous solutions of [Ch]Cl 

(19.8). In fact, the nanofibers produced using [Ch]Cl:Lac registered the highest aspect-

ratio with a value of 31.6, suggesting that they are probably the ones with the higher 

reinforcing ability for composite materials, followed by the LNFs obtained when using 

aqueous solutions of [Ch]Cl:Mal, [Ch]Cl:Cit and [Ch]Cl:Ac with 28.9, 26.6 and 26.4, 

respectively. 
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Table 5. Average length and width, and the corresponding aspect-ratio of the LNFs 

produced with different [Ch]Cl-based DES formulations (aqueous solutions). 

 

Samples Length (nm) Width (nm) Aspect-ratio 

[Ch]Cl 350 ± 104  17.7 ± 5.4 19.8 

[Ch]Cl:Ac 887 ± 310 33.6 ± 7.8 26.4 

[Ch]Cl:Lac 1004 ± 334 31.8 ± 6.8 31.6 

[Ch]Cl:Lev 492 ± 175 20.8 ± 4.4 23.7 

[Ch]Cl:Mal 827 ± 331  28.6 ± 5.3  28.9 

[Ch]Cl:Cit 490 ± 152 18.4 ± 4.7 26.6 

 

Assessment of the reinforcement potential of the LNFs produced by different DESs 

The potential of the protein nanofibers as reinforcing elements was studied by 

preparing pullulan (PL)-based nanocomposite films containing LNFs with different 

aspect-ratios. PL was selected as matrix because it is a biodegradable, non-toxic, water-

soluble and filmogenic non-ionic exopolysaccharide with a long history in food and 

pharmaceutical applications.231,232 So, freeze-dried LNFs obtained via fibrillation with 

[Ch]Cl, [Ch]Cl:Ac, [Ch]Cl:Lac and [Ch]Cl:Lev were dispersed in a PL aqueous 

solution, and the corresponding nanocomposite films with 5 wt.% of nanofibers were 

obtained through solvent casting. All films were plasticized with glycerol (selected 

based on previous studies233–235) to reduce brittleness, and were characterized regarding 

their optical and mechanical properties. Fig. 6 shows that the ensuing thin 

nanocomposite films were very homogeneous, highly transparent and glossy, which are 

important characteristics of a material for application in e.g. the packaging and 

biomedical fields. 
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Fig. 6 - Photographs of the nanocomposite films of PL and LNFs, confirming their 

homogeneity and transparency. The control is the picture without any film. 

 

The optical properties of the PL-based nanocomposite films were evaluated by 

determining their transmittance in the range between 200 and 700 nm, as presented in 

Fig. 7. The UV-visible spectra show that all PL-based films are optically transparent, 

with transmittance values of nearly 90% in the visible range (400−700 nm),236 

confirming that the transmittance was not affected by the incorporation of the LNFs 

produced with the different DESs. In the ultraviolet range (200–400 nm), there is an 

absorption peak around 276–280 nm, which can be linked to the presence of the protein 

nanofibers, since all aromatic amino acids, such as tyrosine, phenylalanine and 

tryptophan, absorb UV light.237 Tryptophan is usually responsible for most of the 

absorbance of ultraviolet light at 280 nm, and lysozyme has almost 5% of this amino 

acid in its singular chain (6 tryptophans in 129 total amino acids).238 As a consequence, 
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these PL-based films with LNFs present low transmittance values in the UV region 

when compared with pure PL films, which means that the PL-LNFs nanocomposite 

films display higher ultraviolet light barrier properties, particularly in the short-

wavelength spectrum. 

 

 

Fig. 7 - UV-vis spectra of the nanocomposite films based on PL and LNFs. 

 

The mechanical properties of the PL-based nanocomposite films containing 5 

wt.% of LNFs with different aspect-ratios were evaluated by typical tensile 

experiments. The Young’s modulus, tensile strength and elongation at break, 

determined from the stress-strain curves, are presented in Fig. 8. The plasticized PL film 

without LNFs showed a Young’s modulus of 1587 ± 68 MPa, tensile strength of 36.6 ± 

3.2 MPa and elongation at break of 6.67 ± 1.21%, in agreement with previously 

published data.239,240 Overall, the incorporation of LNFs in the PL films promoted an 

increase in the Young’s modulus and tensile strength, as well as a decrease in the 

elongation at break, all of which are influenced by the aspect-ratio of the nanofibers 

(Fig. 7). As expected, the use of shorter LNFs with an aspect-ratio of 19.8 ([Ch]Cl, 

Table 2) promoted an increase of ca. 18% in the Young’s modulus (1868 ± 127 MPa, 

PL-LNFs([Ch]Cl)), whereas longer LNFs with aspect-ratios of 26.4 ([Ch]Cl:Ac) and 

31.6 ([Ch]Cl:Lac) led to an augment of about 34% (2131 ± 151 MPa, PL-

LNFs([Ch]Cl:Ac)) and 36% (2157 ± 82 MPa, PL-LNFs([Ch]Cl:Lac)), respectively. 

Additionally, the tensile strength of the PL-based nanocomposites followed the same 

trend as that observed for the Young’s modulus. All PL-LNFs nanocomposite films 

show tensile strength values higher than the pure PL film (36.6 ± 3.2 MPa), reaching 

maximum values of 41.5 ± 5.0 MPa (PL-LNFs([Ch]Cl:Lac)) and 42.3 ± 3.4 MPa (PL-



   

100 

 

LNFs([Ch]Cl:Ac)) for the nanocomposites containing LNFs with aspect-ratios of about 

31.6 and 26.4, respectively. Regarding the elongation at break, this parameter is reduced 

from 6.67 ± 1.21% for pure PL films to values in the range 2.13–2.66% (Fig. 8) for the 

nanocomposites films, which corresponds to a reduction of about 60%. This is 

obviously ascribed to the stiffness of the protein nanofibers.  

The results obtained from the tensile tests clearly confirm that the LNFs with 

higher aspect-ratio, namely the ones produced with [Ch]Cl:Ac and [Ch]Cl:Lac (Table 

2), have a stronger impact on the nanocomposites properties than those produced with 

just [Ch]Cl. Moreover, the LNFs are indeed an effective reinforcing element for PL 

films even at a low loading of protein nanofibers (5 wt.%), because of their high and 

tunable aspect-ratios. 
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Fig. 8 - Young’s modulus, tensile strength and elongation at break of the PL-based 

nanocomposite films reinforced with 5 wt.% of LNFs produced using different DES 

formulations. The aspect-ratio of the LNFs increase in the following order: [Ch]Cl < 

[Ch]Cl:Ac < [Ch]Cl:Lac < [Ch]Cl:Lev (Table 5). 

 

 

Conclusions 

 

DESs based on cholinium chloride ([Ch]Cl, the HBA) and different carboxylic 

acids (the HBD) are efficient fibrillation agents of HEWL allowing to produce protein 

nanofibers with different dimensions (length and width). In fact, the aspect-ratio of 

LNFs can be tuned by varying the type of carboxylic acid (mono-, di- and tri-carboxylic 

acids: acetic, lactic, levulinic, malic and citric acids). The longest LNFs were obtained 

using lactic acid ([Ch]Cl:Lac) with an average length of 1004 ± 334 nm and width of 

31.8 ± 6.8 nm, and hence an aspect-ratio of 31.6. Furthermore, the incorporation of only 

5 wt.% of protein nanofibers with different aspect-ratios in a pullulan matrix originated 

homogeneous, glossy and transparent nanocomposite films with substantially improved 

mechanical properties. The LNFs with the higher aspect-ratio led to an increase of about 

36% for the Young’s modulus and 15% for the tensile strength, confirming their higher 

reinforcing capacity. These promising results emphasize the potential of protein 

nanofibers with tailorable dimensions (using [Ch]Cl:carboxylic acid based DESs as 

timesaving fibrillation agents) as reinforcing elements for the development of 

nanocomposites with upgraded mechanical performance. 
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3.  
Development of innovative 

materials based on protein 

nanofibers 
 

 

The main objective of this part of the thesis was the development of novel 

functional protein nanofibers-polysaccharide based materials for potential application 

as packaging materials and biosorbents for water purification. The preparation of the 

nanocomposites was performed by distinct methodologies, depending on the 

polysaccharide used. For instance, pullulan based films were prepared by film casting 

of water suspensions containing pullulan and protein nanofibers due to its high 

filmogenic ability (following the preliminary results described in chapter 2.3 Tuning 

lysozyme nanofibers dimensions using deep eutectic solvents for improved 

reinforcement ability), and NFC membranes were prepared by vacuum filtration from 

an aqueous based suspension containing cellulose and protein nanofibers. The obtained 

materials were then analysed in terms of transparency, thermal stability, morphology 

and mechanical performance, and the evaluation of potential functional properties 

were further carried out.  

This work originated 2 papers that corresponds to the sub-chapters highlighted 

in the following pages. 
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exploiting lysozyme nanofibers as antibacterial and antioxidant reinforcing 

additives 
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Abstract 
 

Homogeneous, glossy and transparent nanocomposite films composed of pullulan (PL) 

and lysozyme nanofibers (LNFs) were developed by simple solvent casting from 

aqueous suspensions. The incorporation of LNFs into the PL matrix maintained the 

filmogenic ability of PL and endowed the nanocomposite films with good mechanical 

properties (Young’s modulus = 1.91–2.50 GPa) and several functionalities, confirming 

the potential of LNFs as bioactive reinforcing elements for nanocomposites. The set of 

pliable films exhibits thermal stability up to 225°C and maximum antioxidant activity 

around 77% (DPPH scavenging activity) for the film with the highest LNFs content 

(15.0 wt.%). The antibacterial activity of the ensuing nanocomposite films towards 
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Staphylococcus aureus, viz. lysozyme-resistant bacteria, was assessed, and the data 

show augmented antibacterial effectiveness with increasing content of nanofibers. These 

promising results show the potential of PL/LNFs nanocomposites as eco-friendly edible 

films for active packaging. 
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Introduction 
 

Pullulan (PL), a non-ionic exopolysaccharide obtained from the fermentation 

medium of the fungus-like yeast Aureobasidium pullulans, is a biocompatible, 

biodegradable, non-toxic, non-mutagenic, non-carcinogenic, and edible water-soluble 

biopolymer231 with great potential for application in a multitude of domains including 

tissue engineering,241 drug and gene targeting,242 and food packaging.243 Driven by the 

impressive film-forming ability of PL that originates colorless, tasteless, odorless, 

transparent, heat-sealable, and oxygen impermeable films,243 myriad publications 

dealing with PL-based films and coatings for protective food packaging have been 

published in the past decades.233,236,239,243–251 

However, the body of literature clearly shows that the use of pure PL films in the 

packaging field presents some major drawbacks associated with their hydrophilic 

nature, brittleness and absence of active functions. The design of PL-based blends and 

composite films is the path of choice to overcome these intrinsic limitations and obtain 

multifunctional packaging tools to improve the shelf-life, safety and quality of food. PL 

has been combined with various functional agents (e.g., sakacin-A,244 thymol,245 silver 

nanoparticles,246 essential oils and nanoparticles,247 lysozyme,248 cholinium carboxylate 

ionic liquids,236 graphene oxide,239 bacterial cellulose,233 nanofibrillated cellulose,249 

and gelatin250) that, as a result of the chemical and/or physical interaction between the 

individual components, improve the films mechanical performance,233,249–251 and/or 

impart bioactivity to the films, particularly antimicrobial activity.236,245–248 

Among the vast array of natural polymers based functional materials, protein-

engineered materials display a wide range of customizable properties and are attracting 

considerable interest.16,17 Proteins, such as casein, gelatin, lysozyme, soy and whey 

proteins, are not only used individually but also in blends and composites for the 

formation of edible films for food packaging.243,248,250–252 With the advent of 

nanotechnology, protein nanofibers (i.e., fibrillar assemblies of monomeric proteins or 

peptides that underwent unfolding-refolding transition into stable β-sheet structures253) 

are emerging as building nanoblocks with potential for developing innovative functional 

nanocomposites due to their peculiar mechanical and biological properties.28,226,254 

Although the use of protein nanofibers as nanosized reinforcing elements for 

nanocomposites is still in its infancy, the recent development of timesaving fibrillation 
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methods for the production of (i) lysozyme nanofibers (LNFs), from hen egg white 

lysozyme (HEWL) using a new generation of ionic solvents namely deep eutectic 

solvents (DESs) (see results described on chapter 2.1 and 2.2),200 and (ii) insulin 

amyloid nanofibrils, using a microwave assisted synthesis,228 will definitely contribute 

to their widespread use. Thus, the combination of PL and bioactive protein nanofibers is 

an appealing approach to design nanocomposite films with superior mechanical and 

biological properties. To the best of our knowledge and with special reference to the 

food packaging field, PL has never been used in combination with bioactive protein 

nanofibers for the fabrication of nanocomposite films for the simultaneous containment, 

protection and preservation of foods. 

In this context, and following our interest in protein nanofibers,200,228 and 

biopolymers-based nanocomposites,255,256 the present work reports the preparation and 

characterization of nanocomposite films based on PL and lysozyme nanofibers (LNFs) 

obtained by casting of water-based suspensions of both biopolymers with the addition 

of glycerol as plasticizer. The ensuing films were characterized regarding their 

structure, morphology, optical properties, mechanical performance, thermal stability, 

antioxidant and antibacterial activities, envisaging their potential application as active 

food packaging films. 

 

Experimental Details 
 

Chemicals, materials and microorganisms 

Acetic acid (≥ 99.7%, Sigma-Aldrich), cholinium chloride (≥ 98%, Sigma-Aldrich), 

glycerol (≥ 99.5%, Sigma-Aldrich), glycine (≥ 98.5%, Sigma-Aldrich), hen egg white 

lysozyme (HEWL, Sigma-Aldrich, ~70000 U mg-1), pullulan powder (PL, 98%, MW 

272 kDa, B&K Technology Group), Congo Red (≥ 85%, BioXtra, Sigma), 2,2-

diphenyl-1-picrylhydrazyl (DPPH, Aldrich), Brain-Heart Infusion (BHI, Liofilchem), 

phosphate buffer solution (PBS, pH 7.4, Sigma-Aldrich) and trypticase soy agar (TSA, 

Sigma-Aldrich) were used as received. Other chemicals and solvents were of laboratory 

grades. 

Staphylococcus aureus ATCC 6538 was provided by DSMZ – Deutsche Sammlung von 

Mikroorganismen und Zellkulturen GmbH (German Collection of Microorganisms and 

Cell Cultures). 
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Production of lysozyme nanofibers (LNFs) 

LNFs were produced following an established method based on the fibrillation of 

lysozyme using a deep eutectic solvent.200 Briefly, HEWL was dissolved (2 mg mL-1) in 

an aqueous solution of 10 mM HCl at pH = 2 with 20 mM glycine with 5% (v/v) of a 

DES composed of cholinium chloride and acetic acid (1:1). The samples were incubated 

at 70°C overnight under magnetic stirring. The LNFs were separated from the DES 

solution by centrifugation at 15000 rpm for 45 min (Thermo Scientific Megafuge 16R 

centrifuge). The supernatants were exchanged with Milli-Q ultrapure water and the 

nanofibers were freeze-dried. 

 

Preparation of PL/LNFs nanocomposite films 

PL solutions (6.0 % w/v) were prepared using a glycerol aqueous solution (10% w/v) as 

the solvent. Then, different amounts of LNFs were added to the polysaccharide 

solutions in order to obtain films with LNFs contents of 1.0, 3.0, 5.0, 10.0 and 15.0%, as 

summarized in Table 1. All the prepared mixtures were homogenized by mechanical 

stirring for 3h. The films were obtained by casting at 30°C in a ventilated oven 

overnight, using acrylic plates (5 × 5 cm2) as molds. The resulting thin films were 

removed from the molds and kept in desiccators until their use. All films were prepared 

in triplicate and for comparison purposes neat PL films and PL with native lysozyme 

(15.0 wt.%) films were also prepared. 

 

Table 1. Composition and thickness of the prepared PL-based films. 

 

Sample PL (mg) LNFs (%)* Glycerol (%)* Thickness (μm) 

PL 480 0.0 10.0 84.1 ± 7.7 

PL/LNFs_1% 480 1.0 10.0 96.7 ± 7.8 

PL/LNFs_3% 480 3.0 10.0 104.5 ± 10.8 

PL/LNFs_5% 480 5.0 10.0 105.8 ± 6.4 

PL/LNFs_10% 480 10.0 10.0 108.1 ± 5.4 

PL/LNFs_15% 480 15.0 10.0 113.2 ± 11.6 

* (w/w) relative to PL. 
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Characterization techniques 

Films thickness was measured by a hand-held digital micrometer (Mitutoyo, Mitutoyo 

Corporation, Japan) with an accuracy of 0.001 mm. All measurements were randomly 

performed at different locations of the film sample and the average value was 

determined. 

The FTIR-ATR spectra were collected with a Perkin-Elmer FT-IR System Spectrum 

BX spectrophotometer equipped with a single horizontal Golden Gate ATR cell, over 

the range of 600–4000 cm-1 at a resolution of 4 cm-1 averaged over 32 scans. 

The X-ray diffraction (XRD) analysis was carried out on a Phillips X’pert MPD 

diffractometer using CuKα radiation (λ = 1.541 Å) with a scan rate of 0.05◦ s−1(in 2θ 

scale). The patterns were collected in reflection mode with the films placed on a Si 

wafer with negligible background signal to provide mechanical support and to avoid 

bending of the samples. 

SEM images of the nanocomposite films surfaces and cross-sections were obtained on a 

HR-FESEM SU-70 Hitachi microscope operating at 4.0 kV. The samples were 

previously coated with a carbon film. 

The fluorescence micrographs were acquired using a Widefield fluorescence 

microscope Zeiss Imager M2 equipped with a 3.0 Mpix color camera (Zeiss, Germany). 

The images were processed in Zen 2.3 software. LNFs were previously labelled with 

Congo Red. 

The transmittance spectra of the films were acquired with an UV-Vis 

Spectrophotometer (Shimadzu UV-1800) equipped with a quartz window plate with 10 

mm diameter, bearing the holder in the vertical position. Spectra were recorded at room 

temperature in steps of 1 nm, in the range 200–700 nm. 

Tensile assays were performed on an Instron 5966 Series machine in traction mode at a 

cross-head velocity of 5 mm min-1 and using a static load cell of 500 N, under ambient 

conditions. At least 4 rectangular specimens (50 mm × 10 mm) were tested for each 

film sample and the average value was recorded. Tensile strength, Young’s modulus 

and elongation at break were calculated using the Bluehill 3 material testing software. 

Thermogravimetric analysis (TGA) assays were carried out with a SETSYS Setaram 

TGA analyzer equipped with a platinum cell. Samples were heated at a constant rate of 

10°C min-1 from room temperature up to 800°C under a nitrogen flow of 200 mL min-1. 

The thermal decomposition temperature was taken as the onset of significant (~0.5 %) 

weight-loss, after the initial evaporation of moisture. 
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Antioxidant activity 

The antioxidant activity of the films was determined by the DPPH radical scavenging 

method, following a procedure described elsewhere257 with minor adjustments. Briefly, 

ca. 60 mg of film was added to 4 mL of methanol:water (50:50) solution, and vortex 

stirred during 3 cycles of 1 min. Then, 250 μL of 0.2 mM DPPH solution was added and 

the mixture was kept in the dark at room temperature for 2 h. The mixture was 

centrifuged at 12000 rpm for 30 min at room temperature. Afterwards, the absorbance 

of the supernatants was measured at 517 nm on a Shimadzu UV-1800 

spectrophotometer (Kyoto, Japan). Lysozyme and LNFs (at different concentrations: 

0.5‒5.3 mg mL-1) were also tested in the absence of PL for comparison purposes. The 

DPPH scavenging activity was calculated as: 

, where Asample is the 

absorbance of sample and Acontrol is the absorbance of the control. 

 

Antibacterial activity 

The antibacterial activity of the nanocomposite films was tested against S. aureus 

(ATCC 6538). The bacterial pre-inoculum cultures were grown for 18‒24 h in BHI at 

37°C under horizontal shaking at 120 rpm until reaching a concentration of 108 ‒ 109 

colony forming units per mL (CFU mL-1). Each film sample (ca. 500 mg) was placed in 

contact with 5 mL of bacterial liquid suspension via a ten-fold dilution of the overnight 

grown culture in PBS (pH 7.4). Plasticized PL and PL/lysozyme films were tested as 

blank references, while a control bacteria cell suspension tested as internal reference of 

the method. All samples were incubated at 37 °C in static conditions. At 0, 24 and 48 h 

contact time, aliquots (500 µL) of each sample and controls were collected and the 

bacteria cell concentration (CFU mL-1) was determined by plating serial dilutions on 

TSA medium. The plates were incubated at 25°C for 48 h. The CFU were determined 

on the most appropriate dilution on the agar plates. Two independent experiments were 

carried out and, for each, two replicates were plated. The bacteria log reduction of the 

samples was calculated as follows: log reduction = log CFUcontrol – log CFUfilm. 
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Statistical analysis 

All samples were analyzed in triplicate (unless stated otherwise) and standard deviations 

were reported. Statistical significance was determined using an analysis of variance 

(ANOVA) and Tukey’s test (OriginPro 8 SR0). Statistical significance was established 

at p < 0.05. 

 

Results & Discussion 
 

A set of nanocomposite films based on PL and different amounts of LNFs was 

prepared by solvent casting from aqueous suspensions, as listed in Table. Lysozyme, a 

peptidoglycan N-acetyl-muramoylhydrolase with a long and safe history as a natural 

antimicrobial agent applied as food preservative, was selected as the purveyor of protein 

nanofibers because it is a low-cost protein occurring in high concentration in eggs258 

and its nanofibrillation mechanism have been extensively studied.88,117,229,230,259 The 

obtained LNFs have an aspect ratio of ca. 26.7 (length: 880.2 ± 44.0 nm, width: 33.0 ± 

1.6 nm), as determined from scanning transmission electron microscopy data in 

accordance with previously published data.200 The aspect ratio of protein nanofibers is 

one of the parameters responsible for their good mechanical performance.226 All films 

were plasticized with glycerol (selected based on previous studies233–235) to reduce 

brittleness and concomitantly increase the pliability and workability of the PL-based 

films. The resulting nanocomposite films were characterized in terms of structure, 

morphology, optical properties, mechanical performance, thermal stability, antioxidant 

and antibacterial activities. The obtained thin nanocomposite films, prepared with the 

same amount of casting suspension, were in general macroscopically homogenous, 

highly transparent and glossy as shown in Fig. 1. Furthermore, their thickness increased 

from 84.1 ± 7.7 to 113.2 ± 11.6 μm by increasing the LNFs content from 0 to 15.0 wt.% 

(Table 1, p < 0.05). A similar trend was observed for PL edible films containing whey 

protein isolate, whose thickness increased with the increasing content of protein,260 as 

well as for films of other polysaccharides like for example chitosan films containing 

ellagic acid.257 
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Fig. 1 - Photographs of the PL-based nanocomposite films: A) PL, B) PL/LNFs_1%, C) 

PL/LNFs_3%, D) PL/LNFs_5%, E) PL/LNFs_10% and F) PL/LNFs_15% (See Table 

for sample identification). 

 

 

Structural and morphological characterization 

Fig. 2 shows the infrared spectra of PL, LNFs and PL/LNFs nanocomposite 

films. The FTIR-ATR spectra of the films are consistent with their expected chemical 

structure and composition by clearly showing the distinctive absorption bands of PL 

backbone: 3310 cm−1 (O‒H stretching), 2927 cm−1 (CH and CH2 stretching), 1646 cm−1 

(bending motion of adsorbed water (H‒O‒H)), 1150 to 1060 cm−1 (C‒O‒C stretching of 

glycosidic bridges) and 754 cm−1 (α-glycosidic bond stretching),234,240,261 jointly with 

those of lysozyme: 3281 cm−1 (N‒H stretching), 1625 cm−1 (amide I band, C=O 

absorption), 1528 cm−1 (amide II band) and 1231 cm−1 (amide III band).261–263 As 

expected, the augment of the LNFs content from 1.0 to 15.0% increased the intensity of 

the bands assigned to this reinforcing element (Fig. 2). 
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Fig. 2 - FTIR-ATR spectra of the PL/LNFs nanocomposite films and the corresponding 

individual components. 

 

The XRD patterns of PL, LNFs and nanocomposite films PL/LNFs_5% and 

PL/LNFs_15% are given in Fig. 3. The plasticized PL film displays a diffraction pattern 

typical of an amorphous material with a broad diffraction peak centered at 2θ 

18.4°,233,250 whereas LNFs exhibits a diffractogram typical of lysozyme with the main 

diffraction peak at 2θ 18.6°.230 In general, the PL/LNFs nanocomposite films present the 

amorphous diffraction pattern of PL, but as the LNFs content increases the peculiarities 

of LNFs become more evident, as illustrated in Fig. 3 for nanocomposite films 

PL/LNFs_5% and PL/LNFs_15% with 5.0 and 15.0 wt.% of LNFs, respectively. 
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Fig. 3 - X-ray diffractograms of PL, LNFs, PL/LNFs_5% and PL/LNFs_15%. 

 

The morphology of the PL-based films was investigated by SEM with the results 

illustrated in Fig. 4 (surface view) and Fig. 5 (cross-section view). The micrographs of 

the surface (Fig. 4) of the plasticized PL and PL/LNFs films show a homogeneous, 

smooth, compact and crack-free morphology even for the nanocomposite films with the 

higher content of nanofibers (15 wt.% of LNFs). Fig. 5 depicts the cross-section 

micrographs of the plasticized PL and PL/LNFs films, which are also very 

homogeneous and uniform, with no visible agglomeration of LNFs. In fact, these 

observations were expectable given the notable film-forming ability of PL and the low 

loadings of LNFs (1.0, 3.0, 5.0, 10.0 and 15.0 wt.%). Similar results were reported for 

PL films with whey protein isolate251 and sweet basil extract,264 that presented a smooth 

surface and a cross-section with no tortuosity, and also for PL films with alginate265 

which displayed a smooth surface morphology. Nevertheless, protein nanofibrils 

agglomeration can easily occur during film formation, as observed by Rao et al. (2012) 

for poly(vinyl alcohol) (PVOH) films containing amyloid fibrils; these films exhibited a 

rough and uneven surface morphology with the presence of sporadic voids and 

agglomerates, which is a clear indication of the incompatibility between PVOH and 

amyloid fibrils.99 

The homogeneous distribution of the LNFs in the PL-based nanocomposite films 

was further corroborated by fluorescence microscopy. As exemplified in Fig. 6, the 

plasticized PL film is non-emissive in the presence of a fluorescent dye for protein β-

sheet structures,230 whereas the emission exhibited by the PL/LNFs_5% film with only 
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5 wt.% of LNFs (0.96 mg cm-2) is a good indication of the presence of protein 

nanofibers with β-sheet structures. The LNF homogeneous distribution within the PL 

polymeric matrix can also be observed in Fig. 6. 

PL PL/LNFs_1% PL/LNFs_3%

PL/LNFs_5% PL/LNFs_15%PL/LNFs_10%

 

Fig. 4 - SEM micrographs of PL and PL/LNFs nanocomposite films, with different 

magnifications. 

 

PL

PL/LNFs_5%

PL/LNFs_1% PL/LNFs_3%

PL/LNFs_15%PL/LNFs_10%

 

Fig. 5 - SEM micrographs of the cross-section of PL and PL/LNFs nanocomposite 

films, with different magnifications. 
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PL

PL/LNFs_5%

 

Fig. 6 - Fluorescence images of the surface of PL and PL/LNFs_5% films stained with 

Congo Red. 

 

Optical properties 

The optical properties of PL and PL/LNFs films were evaluated by measuring 

their transmittance in the range between 200 and 700 nm, as depicted in Fig. 7. The UV-

visible spectra clearly show that the plasticized PL film is optically transparent, with 

transmittance values of 87–90% in the visible range (400−700 nm) and 7–87% in the 

ultraviolet range (200–400 nm), which are in agreement with previously published 

data.236 

Regarding the nanocomposite films, the addition of LNFs to PL had a small 

impact in the transmittance values in the visible range that are still higher than 84% 

(Fig. 7), confirming their optical transparency (in line with the macroscopic 

appearance), which is an essential feature for their use as food packaging films. In 

contrast, the PL films reinforced with LNFs present low transmittance (and concomitant 

high absorbance) values in the UVC region (100–280 nm, short-wavelength radiation) 

that decrease with increasing LNFs content (Fig. 7). In the UVB region (280–315 nm, 

short-wavelength radiation), the transmittance values monotonically increase and reach 

a plateau in the UVA region (315–400 nm, long-wavelength radiation) (Fig. 7), before 

attaining the fairly constant transmittance values of the visible range. Based on these 
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results, it can be concluded that PL/LNFs nanocomposite films exhibit slightly higher 

ultraviolet light barrier properties compared to those of the plasticized PL films. 

 

Fig. 7 - UV-vis spectra of the plasticized PL film and nanocomposite films based on PL 

and LNFs. 

 

Mechanical properties 

The influence of the addition of different amounts of LNFs on the stress-strain 

behavior of the PL/LNFs based nanocomposite films was studied by typical tensile 

tests, and the Young’s modulus, tensile strength and elongation at break (Table 2) were 

determined from the stress-strain curves. For comparison purposes, a PL film containing 

10% of glycerol (1.92 mg cm-2) was also analyzed and the attained results showed a 

Young’s modulus of 1.69 ± 0.04 GPa, tensile strength of 35.0 ± 4.4 MPa and elongation 

at break of 6.63 ± 1.11%, which are in agreement with values previously reported. 239,240 

The presence of LNFs noticeably affects the Young’s modulus and elongation at break 

of the ensuing nanocomposite thin films, whereas the tensile strength is poorly 

influenced by the content of protein nanofibers. The incorporation of LNFs promoted an 

increase of the Young’s modulus (Table 2, p < 0.05) from 1.69 ± 0.04 GPa for the 

plasticized PL to 1.91 ± 0.04 GPa for the nanocomposite containing 1.0 wt.% LNFs 

(0.19 mg cm-2, PL/LNFs_1%) and 2.50 ± 0.15 GPa for the film with 15.0 wt.% LNFs 

(2.88 mg cm-2, PL/LNFs_15%). These results evidence a higher stiffness of the 

nanocomposite films when compared to plasticized PL films, which was expected given 

the high mechanical strength of protein nanofibers.266 Additionally, the incorporation of 

LNFs in the PL polymeric matrix originated a reduction of the elongation at break of 
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about 61% for 1.0 wt.% LNFs (PL/LNFs_1%) and 80% for 15.0 wt.% (PL/LNFs_15%). 

The drop of the elongation at break is also an indication of the rigidity of the 

nanocomposite films when compared with plasticized PL films. This parameter was the 

one experiencing the greatest impact of the addition of the protein nanofibers (Table 2, 

p < 0.05), as shown by the variance analysis. Regarding the tensile strength, the 

incorporation of LNFs did not have a significant effect on this parameter, i.e., the means 

difference is not significant at the significance level (α = 0.05), as depicted in Table 2. 

Worth noting is the fact that these protein nanofibers are an effective reinforcing agent 

for PL films even at low LNFs loadings (from 1.0 wt.% up to 15.0 wt.%), which is 

probably a direct result of their elevated aspect-ratio and highly ordered self-assembled 

nanostructure.226 

 

Table 2. Young’s modulus, tensile strength and elongation at break of PL and PL/LNFs 

films; the values are the mean of 5 replicates with the corresponding standard 

deviations. 

 

Sample a 
Young's Modulus  

(GPa) 

Tensile Strength  

(MPa) 

Elongation at break 

(%) 

PL 1.69 ± 0.04 35.0 ± 4.4 6.63 ± 1.11 

PL/LNFs_1% 1.91 ± 0.04 33.2 ± 3.7 2.57 ± 0.36 

PL/LNFs_3% 2.09 ± 0.14 35.6 ± 2.2 2.24 ± 0.27 

PL/LNFs_5% 2.26 ± 0.13 37.6 ± 2.2 1.84 ± 0.29 

PL/LNFs_10% 2.35 ± 0.13 34.1 ± 1.0 1.64 ± 0.61 

PL/LNFs_15% 2.50 ± 0.15 31.3 ± 2.3 1.34 ± 0.10 

a See Table for sample identification. 

 

Thermal stability 

The thermal stability and degradation profiles of PL/LNFs nanocomposite films 

and the corresponding individual components were assessed by thermogravimetric 

analysis under nitrogen atmosphere as displayed in Fig. 8. The thermal degradation 

profile of the plasticized PL film follows a single weight-loss step with initial and 

maximum decomposition temperatures of 250 and 300°C, respectively, leaving a 

residue at 800°C corresponding of about 14% of the initial mass. This single-step 

pathway is associated with the degradation of the PL skeleton. 236,267 The thermogram of 
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LNFs also exhibits a single-step degradation profile with maximum degradation 

temperature of 308°C, where the film already lost about 35% of the initial mass, and the 

final residue at 800°C corresponds to ca. 15%. Thus, LNFs present a thermal 

degradation profile equivalent to lysozyme, whose single-step corresponds to the 

degradation of the protein backbone.263 

As observed in Fig. 8, all nanocomposite films underwent single-step 

degradation mechanism, with maximum decomposition temperatures of 268‒295°C, 

most likely associated with the simultaneous degradation of the enriched fractions of PL 

and LNFs. At the end of the analysis (800°C), it is evident the increase in the residue, 

from 17 to 25 %, with the increase of LNFs content, from 1.0 to 15.0 wt.%. Despite the 

slightly lower degradation temperatures compared to the plasticized PL film, the 

addition of LNFs to PL originated nanocomposite films with thermal stability up to 

225‒240°C, which allows their use under typical sterilization procedures, which take 

place around 150°C, required for food-based applications. 
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Fig. 8 - Thermogravimetric analysis of PL-based films with different amounts of LNFs. 

 

Antioxidant activity 

Natural antioxidants are known for reducing or avoiding the second main reason 

of food spoilage, i.e. oxidative degradation.268 With this in mind, DPPH radical 

scavenging assays were conducted to evaluate the antioxidant potential of the PL/LNFs 

nanocomposite films. According to Fig. 9, the radical scavenging activity of the PL film 

is null, which is in agreement with data previously reported in the literature.264 

Furthermore, the addition of LNFs up to 15.0 wt.% led to an increase of the antioxidant 
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activity when compared to the plasticized PL film (Fig. 9, p < 0.05), with the DPPH 

scavenging activity reaching a minimum of 25.1 ± 2.2% for PL/LNFs_1% with 1.0 

wt.% LNFs (0.19 mg cm-2) and a maximum of 76.7 ± 2.5% for PL/LNFs_15% with 

15.0 wt.% LNFs (2.88 mg cm-2). An analogous effect was observed for PL films 

containing sweet basil extract (SBE), whose antioxidant activity increased with the 

increasing content of the phenolic extract (6‒30 mg cm-2).264 Nevertheless, the DPPH 

scavenging activity of the film containing 30 mg SBE per cm2 (<40%)264 is almost half 

the value obtained in this work for the PL/LNFs_15% nanocomposite films containing 

2.88 mg LNFs per cm2 (Fig. 9). 

Notably, the antioxidant activity of LNFs (without the presence of PL) is higher 

than that of native lysozyme, with DPPH scavenging activity values of 59.7‒88.8% for 

the former and 4.0‒26.1% for the latter, both in the same concentration range (0.5‒5.3 

mg mL-1). The higher antioxidant activity of LNFs is probably an outcome of exposing 

the bioactive peptides during nanofibrillation, given that protein hydrolysates and 

peptides derived from lysozyme are reported to possess elevated radical scavenging 

activity.269,270 
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Fig. 9 - DPPH scavenging activity of the plasticized PL and PL/LNFs films; values 

represent the mean of three independent experiments; error bars represent the standard 

deviation. 

 

Antibacterial activity 

The growth of spoilage and/or pathogenic microorganisms is the major culprit of 

food spoilage, and causative agent of food-borne diseases. Therefore, antimicrobial 
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activity is the most sought active function in the food packaging field. Fig. 10 presents 

the antibacterial activity of PL/LNFs films, as well as of PL and PL/lysozyme films that 

were prepared for comparison purposes. The experimental control was produced via 

inoculation of the Gram-positive Bacterium S. aureus in media in the absence of 

sample. S. aureus was selected for being one of the major bacteria causing food-borne 

diseases in humans via food poisoning through the production of enterotoxins.271 The 

culture containing pure plasticized PL films did not show any reduction in bacterial 

growth of S. aureus since PL is not an antibacterial agent. In fact, the PL did not inhibit 

the growth of the bacterium after 24 and 48 h similarly to the control, as already 

reported for S. aureus236,240 and other bacterial strains.236,240,246,272 

Although lysozyme (one of the most important enzymes of the human immune 

defense system) exhibits antimicrobial activity particularly against Gram-positive 

bacteria,258 all pathogenic Staphylococcal strains which are O-acetylated, including S. 

aureus, are completely resistant to this cationic cell wall-lytic enzyme.273–276 According 

to literature, the bactericidal potency of native lysozyme is simultaneously associated 

with its muramidase activity, and its cationic and hydrophobic nature 258. Nevertheless, 

the lysozyme ability to damage the bacterial membrane by the cleavage of the β-1,4 

glycosidic bonds between N-acetylmuramic acid and N-acetylglucosamine of bacterial 

peptidoglycan is blocked due to the S. aureus peptidoglycan modification by O-

acetylation and teichoic acids modification D-alanylation.273–276 Thus, the PL film 

containing 15 wt.% of native lysozyme (2.88 mg cm-2) did not display, as expected, any 

inhibitory effect on the bacterial growth (Fig. 10). 

On the contrary, the incorporation of only 5 wt.% of LNFs (0.96 mg cm-2, 

PL/LNFs_5%) in the PL polymeric matrix was sufficient to slightly inhibit the growth 

of S. aureus with ca. 0.72-log reduction after 48 h. The highest growth inhibition was 

observed for the PL film containing the highest amount of LNFs (2.88 mg cm-2, 

PL/LNFs_15%), registering about 3.2-log reduction after 48 h (Fig. 10). Under these 

conditions, the number of CFUs is more than 1000 times smaller, i.e., the bacterial 

inactivation was higher than the 3-log of CFU reduction (killing efficiency ≥ 99.9%) 

established to any new approach to be termed antibacterial. Clearly, the nanofibrillation 

of lysozyme confers antibacterial activity to lysozyme nanofibers, most likely because 

of the exposed peptides. In fact, native lysozyme can acquire bactericidal capacity 

against S. aureus, for example, by heat-denaturation at 80°C and pH 6.0.277 According 

to Ibrahim et al.277 the heat-denatured lysozyme, with only 50% of enzymatic activity, 
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but with a higher surface hydrophobicity due to the two exposed thiol groups, shows 

enhanced binding capacity to peptidoglycan, i.e., the major components of the outer 

surface of S. aureus, and thus, exhibited a strong bactericidal activity. This is further 

supported by the fact that biomaterials containing of cysteine-rich peptides, e.g., cotton-

based textile material functionalized with cysteine, were reported for having 

antibacterial activity against S. aureus.278 

The antibacterial results of the PL/LNFs films prepared in this work are quite 

relevant in the food packaging context and constitute a stimulating encouragement to 

investigate the reason behind the bactericidal potency of lysozyme nanofibers against S. 

aureus. Moreover, the antibacterial behavior obtained for the nanocomposite films is 

superior to the results reported, e.g., for PL films containing thymol,245 which is a 

phenolic compound with 0.012% (w/w) of minimum inhibitory concentration (MIC) 

against S. aureus. According to that study, PL/thymol films with concentrations in the 

range 2.5–12.3 mg cm-2 of thymol in the dried film, did not display any inhibitory effect 

on the growth of S. aureus.245 A similar behaviour was documented by Synowiec et 

al.264 and Gniewosz et al.,279 where PL films containing sweet basil extract (SBE) and 

meadowsweet flower extracts (EMF), respectively, only started to inhibit the growth of 

S. aureus at extracts (SBE and EMF) concentrations of 6 mg cm-2 in the dried film.264,279 
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Fig. 10 - Antibacterial activity of PL, PL/LNFs_5% and PL/LNFs_15% films after 0, 24 

and 48 hours. PL/lys_15% (lys: native lysozyme) film was prepared and tested under 

the same conditions for comparison purposes. Values represent the mean of two 

independent experiments; error bars represent the standard deviation. 
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In conclusion, the simultaneous use of filmogenic PL and lysozyme nanofibers 

is an interesting strategy to tailor not only the antibacterial and antioxidant activities of 

PL nanocomposite films, but also their optical properties, mechanical performance and 

thermal stability, envisaging their application as eco-friendly multifunctional bioactive 

systems for active packaging. 

 

 

 

  



   Development of Innovative Materials [3.1]      

 

  125 

 

 

Conclusions 
 

Coherent PL films reinforced with LNFs were fabricated by simple and cost 

effective solvent casting method. The resulting PL/LNFs nanocomposite films were 

very homogenous, transparent and glossy, and presented high mechanical performance 

(Young’s modulus = 1.91–2.50 GPa) and thermal stability up to 225°C. The 

incorporation of LNFs in the PL polymeric matrix imparted, on top of the reinforcing 

effect, new functionalities, namely antibacterial and antioxidant activities. The set of 

films exhibit a maximum antioxidant activity of ca. 77% (DPPH scavenging activity) 

for the film with the highest LNFs content (15.0 wt.%), as well as antibacterial activity 

against the Gram-positive S. aureus food pathogenic bacteria that increases with the 

increasing content of nanofibers. These promising properties support the use of these PL 

films reinforced with lysozyme nanofibers as eco-friendly edible films for active 

packaging, where multifunctional bioactive systems are continuously necessary to 

protect and extend food’s shelf life. 
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Abstract 
 

Water pollution is currently one the main issues in what concerns the environmental 

public health. In particular, the increasing levels of trace metals are leading to the 

establishment of severe regulations that limit their concentration in waters discharged 

from industry. Consequently, the design of efficient and sustainable extraction systems 

of metal micropollutants is of great interest. In this work, an entirely bio-based sorbent 

film based on nanocellulose and protein nanofibers was tested for the removal of 
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mercury (II) from aqueous environment. A nanocellulose film was produced as a 

control. The films were prepared by vacuum filtration of a mixture (2:1) of 

nanocellulose and protein lysozyme nanofibers. The obtained films were homogenous 

and translucent and displayed improved mechanical performance with an increase of 

78% in the Young’s modulus, from 3.67 ± 0.55 GPa (nanocellulose) up to 6.56 ± 0.32 

GPa (nanocellulose-protein nanofibers). The capacity of these films to remove mercury 

(II) from natural water was tested using the maximum concentration of mercury (II) 

allowed by European Union regulations (50 µg L-1). It was observed that the presence of 

LNFs allows to increase expressively the mercury(II) removal, with efficiencies over 

than 80% after 24h. The maximum removal efficiency of 99% was achieved near the 

isoelectric point of lysozyme (pH 11.35), showing that this is a pH dependent process. 

Finally, a natural spring water sample was used to evaluate the matrix effect on the 

mercury(II) extraction and no significant changes were observed, reaching an optimal 

extraction efficiency of 93% at pH = 11.  
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Introduction 
 

During the last century, industrial activity has led to increasing levels of 

environmental pollutants and micropollutants worldwide. In particular, trace levels of 

metals have been discharged daily into the aquatic environment without an adequate 

treatment, leading to a long-term negative impact on bodies of water and a foremost risk 

for public health.280,281 Actually, trace metals are known for their high toxicity and 

persistent character in the environment and biota, which is capable to accumulate along 

the food chain.282 Amongst the myriad of trace metals found in the environment, 

mercury (Hg) is considered one of the most harmful. The combustion of fossil fuels is 

one of the major anthropogenic sources of Hg emissions, with an estimated global 

emission of 2000t per year.283 Thus, mercury is in the top three of the priority list of 

hazardous substances defined by the Agency for Toxic Substances and Disease 

Registry284 and is also part of the list of priority substances of the Water Framework 

Directive.285 

The removal of trace metals from water and wastewaters constitutes nowadays 

one of the most important environmental issues, and consequently, the development of 

efficient methodologies and materials for the decontamination of waters a central topic 

of research. A variety of methods to remove trace metals from waters and wastewaters 

have been described in the literature.286–288 However, most of these methods imply high 

costs and are resources demanding.282 For instance, chemical precipitation is known to 

be very efficient for high concentrations of metal ions but it is also quite expensive and 

it can originate by-products in the form of toxic fumes.286 Electrochemical treatment is 

another effective technique commonly used to remove trace metals, but it is likewise 

costly and not suitable for decontamination of smaller amounts of trace metals due to 

the high cost associated to the process resources.288 The use of ion-exchange 

resins,287,289,290 including inorganic zeolites and synthetic organic resins, is also 

commonly used. Nevertheless, this approach is expensive because of the small volumes 

that can be used. Activated carbons have also been efficiently used as absorbent for the 

removal of various pollutants.291,292 However, the chemical activation of the carbon 

based materials is a highly energy intensive process.291 
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More recently, as a result of the increasing global demand for innovative bio-

based materials in different fields, the design of sustainable biopolymeric materials for 

water purification has also been tackled. For example, nanometric forms of cellulose, 

namely nanofibrillated cellulose (NFC), cellulose nanocrystals (CNC) and bacterial 

cellulose (BC), are gaining much attention because of the innumerable advantages 

associated with their abundance, biodegradability, renewability, unique morphologies, 

versatile surface chemistry, excellent mechanical properties and high surface area.5 On 

top of that, the surface of nanocellulose fibers can be functionalized with different 

moieties to improve the adsorption of target water pollutants, like trace metals.293,294 

Recently, Voisin et al.295 reported an extensive study on nanocellulose-based materials 

for water purification, with particular emphasis on materials processing (chemical 

functionalization), uptake capacity, selectivity and removal efficiency. Although 

nanocelluloses with cationic and anionic surface groups are able to remove heavy metal 

pollutants from aqueous solutions, with uptake capacities comparable to that of 

conventional adsorbents, as activated carbon and ion-exchange resins, there is still a need 

to address several issues, as the selectivity in the presence of more complex water 

streams, the material´s mechanical and structural stability.  

Protein nanofibers, resulting from the self-assembly of unfolded protein or 

polypetides,23,208,296 are also emerging as new potential functional nanoblocks for the 

development of sustainable materials for diverse applications. Several proteins, 

including insulin,99,100 β-lactoglobulin96,199 and lysozyme,77,84 have been used to produce 

such protein nanofibers. Due to their exceptional properties, such as biodegradability, 

high strength, thermochemical stability and molecular composition, protein nanofibers 

have been explored for different applications,28,297 especially as reinforcing elements in 

polymer nanocomposites,107,147,161 as templates for the synthesis of nanostructures,141–143 

and as active materials for biosensores199 and catalysis.157 Protein nanofibers display 

also a high binding capacity for metal ions because of the diversity of peptide R-

groups.160,298 In this line, in a recent ground breaking work, Bolisetty and Mezzenga160 

reported the design of hybrid membranes composed of protein nanofibers obtained from 

β-lactoglobulin supported in activated carbon to remove trace metal ions and radioactive 

waste from water at pH 4. These membranes were used to remove traces of four metal 

ions, Au(I), Hg(II), Pb(II) and Pd(II), and adsorption efficiencies higher than 99% were 

obtained. Despite the fact that the concentration of Hg(II) in aqueous solutions was 
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reduced from 84 mg L-1 down to 0.4 mg L-1, this value is still eight times higher than 

the limit established by the European Union regulations for mercury in waters 

discharged from industrial sectors (50 µg L-1).299 Indeed, the majority of works dealing 

with the removal of trace metals from waters consider concentrations (i.e., mg L-1 or 

higher) far above the realistic ones found in the environment, (µg L-1 or lower). This 

aspect is particularly important in the recent scenario of intended cessation of Hg 

emissions, losses and discharges, considering the new stringent environmental quality 

standards for surface waters,300 emphasizing the importance of considering metal ion 

concentrations that are environmentally realistic and relevant.  

In this vein, taking advantage of the singular properties of nanocellulose and 

protein nanofibers, their combination might provide an interesting strategy to design 

biosorbent nanomaterials with improved mechanical properties and removal efficiency 

for water purification and remediation. In the present work, we describe the preparation 

and characterization of entirely bio-based nanostructured adsorbent films based on 

nanofibrillated cellulose and lysozyme nanofibers for the efficient removal of Hg(II) 

from natural waters. The films were simply obtained by vacuum filtration of water-

based suspensions of cellulose and lysozyme nanofibers and characterized in terms of 

structure, morphology, thermal stability and mechanical properties. Finally, their 

efficiency on the removal of Hg(II) was studied by atomic fluorescence spectrometry 

with a detection limit of 0.02 µg L-1, using a natural spring water at different pHs (7, 9, 

11). 

 

Experimental Details 
 

Chemicals  

All chemicals used in this work were obtained from commercial chemical suppliers and 

were used without further purification: acetic acid (≥ 99.7%, Sigma-Aldrich), cholinium 

chloride (≥ 98%, Sigma-Aldrich), glycerol (≥ 99.5%, Sigma-Aldrich), glycine (≥ 

98.5%, Sigma-Aldrich), hen egg white lysozyme (HEWL, Sigma-Aldrich, ~70000 U 

mg-1), phosphate buffer solution (PBS, pH 7.4, Sigma-Aldrich), hydrochloric acid (37% 

in solution, Acros Organics), sodium hydroxide (98.3%, Fluka), standard solution of 
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mercury (Hg(II) solution, Hg(NO3)2, 1000 ± 2 mg L-1, Merck) and nitric acid (HNO3, 

65% (m/m), Merck). 

 

Production of Nanofibrillated Cellulose 

Nanofibrillated cellulose (NFC) suspension (2.91 wt%), with fibers with an average 

diameter of 20–50 nm, was gently ceded by VTT Technical Research Centre (Finland) 

and obtained from softwood bisulfite fibers by combining mechanical and enzymatic 

treatments. 

 

Production of Lysozyme Nanofibers 

Lysozyme nanofibers (LNFs) were produced according to a method described in a 

previous study.200 Briefly, HEWL was dissolved (2mg mL-1) in an aqueous solution of 

10 mM HCl at pH = 2 with 20 mM glycine with 5% (v/v) of a deep eutectic solvent 

(DES) based on cholinium chloride and acetic acid.217 The samples were incubated at 

70⁰C, under magnetic stirring, using an oil bath. The lysozyme nanofibers were 

separated from the DES aqueous solution by centrifugation at 15,000 rpm, during 45 

min, using a Megafuge 16R centrifuge (Thermo Scientific). The supernatants were 

exchanged with 0.1 M HCl solution. 

 

Preparation of the Nanostructured Fibrous Films 

The NFC and LNFs suspensions were blended in a dried mass proportion of 2:1 (70 mg 

NFC, 35 mg LNFs) under magnetic stirring for 1 h. Then, films (105 mg) were obtained 

by vacuum filtration and dried in a vacuum oven at 40ºC for 1 h. A NFC film was also 

prepared for comparison purposes. Pure LNFs films could not be prepared due to its 

high brittleness and consequent difficulty to handle them. 

 

Fourier Transform Infrared Spectroscopy (FTIR) analysis 

The FTIR-ATR spectra of the NFC-LNFs dried films, as well as of the individual 

components, were obtained on a Perkin Elmer spectrometer equipped with a single 

horizontal Golden Gate ATR cell. 32 scans were acquired in the 4,000–600 cm-1 range, 

with a resolution of 4 cm-1. 

 



   Development of Innovative Materials [3.2]    

  133 

 

Thermal Stability 

Thermogravimetric analyses (TGA) were carried out with a Shimadzu TGA 50 analyzer 

equipped with a platinum cell. Samples were heated at a constant rate of 10°C min−1, 

from room temperature up to 800°C, under a nitrogen flow of 20 mL min−1. The thermal 

decomposition temperatures were taken as the onset of noteworthy weight loss (≥0.5%), 

after the initial moisture loss. 

 

Tensile Assays 

Tensile assays were performed on an Instron 5966 Series machine, using a load cell of 

500 N, operating at a deformation rate of 10 mm min−1, under ambient conditions. At 

least 5 specimens were tested for each film. Tensile strength, Young’s modulus, and 

elongation at break were determined using the Bluehill 3 material testing software. 

 

Scanning electron microscopy (SEM) 

SEM images of the film surfaces and cross-sections were obtained with a SU-70 Hitachi 

equipment operating at 4 kV, after coating with carbon. 

 

Hg(II) Removal assays - Batch sorption studies 

For the Hg(II) sorption experiments, all glassware used was previously washed with 

HNO3 25% (v/v) for 24h and then rinsed abundantly with ultrapure water. Batch assays 

were performed in Schott Duran® glass flasks (250 mL) at room temperature (20 ± 2 ºC) 

and under constant stirring (500 rpm). The experiments started when a known amount 

of NFC and NFC-LNFs was put in contact with ultrapure and natural spring water with 

Hg(II), at different pH (4, 7, 9, 11), with the exception of pH = 4, where only assays 

with ultrapure water were carried out. A sodium hydroxide solution (NaOH, 0.1 M) was 

used for pH adjustments. The initial Hg(II) concentration was 50 µg L-1 in all assays, 

intending to simulate low concentration scenarios as this is the guideline value for 

wastewater discharge299. Along time, aliquots were collected (ca. 10 mL) from the 

solution, centrifuged at 5000 rpm for 3 minutes and the supernatant was acidified to 

pH<2 and then analysed for Hg(II) by cold vapour atomic fluorescence spectrometry 

using a PS Analytical Model 10.025 Millennium Merlin Hg analyser. The calibration 

curve was obtained with 5 standards ranging from 0.0 to 0.5 µg L-1, with a detection 
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limit of 0.02 µg L-1 (n = 20). Blanks and standards were always analysed with sample 

batches.  

For quality control of the experiments, experimental controls, defined as metal spiked 

water in the absence of NFC sorbents, were always run in parallel under the same 

experimental conditions. The sorption results are expressed in terms of normalized 

concentration (CHg/CHg,0) and the percentage of Hg(II) removed was evaluated 

according to the expression  

 

The amount of Hg(II) sorbed at time t was also assessed by mass balance according to 

the expression 

 

where CHg,0 is the initial Hg(II) concentration in solution, CHg is the Hg(II) 

concentration at time t, V is the volume of solution and m is the mass of NFC-LNFs 

tested. 

 

Results & Discussion  
 

Nanostructured fibrous films composed of nanofibrillated cellulose (NFC) and 

lysozyme nanofibers (LNFs), in a mass proportion of 2:1, for application on the removal 

of Hg(II) from natural waters, were produced by vacuum filtration of aqueous 

suspensions of NFC and LNFs, followed by oven drying. Since NFC was used 

essentially to promote a support for the lysozyme nanofibers, a higher mass of NFC in 

respect to LNFs was used per film. Pure NFC films were also prepared for comparison 

purposes. Both NFC and NFC-LNFs films (thickness of 19 ± 0.95 µm) were very 

homogeneous and translucent as shown in Fig. 1.  
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Fig. 1 - Photographs of native nanocellulose (NFC) and nanocellulose-lysozyme 

nanofibers (NFC-LNFs) based films.  

 

Structural Characterization 

First, NFC and NFC-LNFs films were characterized by FTIR-ATR 

spectroscopy. As depicted in Fig. 2, the FTIR spectrum of the NFC film shows the 

typical peaks of a cellulosic substrate; the broad band around 3350 cm-1 corresponds to 

the vibration of the OH groups, the peak at 2880 cm-1 is  attributed to the C-H stretching 

vibrations of CH and CH2 groups and those at 1115 and 1060 cm-1 are assigned to the 

stretching of the C–O–C groups.301 On the other hand, the spectrum of lysozyme 

nanofibers display the characteristic peaks associated with the amide groups at 1625 

cm−1 (amide I), 1528 cm−1 (amide II) and 1231 cm−1 (amide III), and at 3281 cm−1 a 

broad band corresponding to the N‒H stretching.261–263 As expected, the FTIR spectrum 

of the NFC-LNFs films is an almost perfect sum of those of the individual components, 

confirming the presence of both NFC and LNFs in the film as well as their contents.  
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Fig. 2 - FTIR-ATR spectra of the NFC-LNFs film, as well as its individual components, 

NFC and LNFs. 

 

Morphology 

The morphology of the NFC-LNFs films was investigated by SEM analysis. 

Surface and cross-section images of both NFC and NFC-LNFs films are depicted in Fig. 

3. The surface of the NFC film is quite homogeneous with cellulose nanofibers 

randomly distributed and entangled (Fig. 3A).302,303 The NFC-LNFs films show a 

similar nanostructured fibrous morphology, confirming a good dispersion of the LNFs 

within the NFC film with no agglomerates. However, LNFs cannot be distinguished in 

the surface of the films. The cross-section images (Fig. 3B) show homogeneous 

morphological features for both NFC and NFC-LNFs films, not allowing to distinguish 

LNFs and NFC in the NFC-LNFs film. 
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Fig. 3 - SEM images with different magnifications of the surface (A) and the cross 

section (B) of NFC and NFC-LNFs films. 

 

Thermal Stability 

The thermal stability and degradation profile of NFC-LNFs films, and of pure 

NFC and LNFs, were assessed by thermogravimetric analysis (TGA) under nitrogen 

atmosphere from room temperature up to 800ºC (Fig. 4).  The degradation profile of 

NFC follows a typical single weight-loss step with an onset temperature of 280°C and 
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NFC-LNFs 

NFC 

NFC-LNFs 
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50% loss of the initial weight at 358ºC.301 On the other hand, LNFs start to degrade at 

240ºC and shows one main degradation step with a maximum degradation temperature 

at 324ºC, which is associated with the protein backbone degradation.263 The 

thermogram of the NFC-LNFs film is quite similar to that of the pure LNFs, and also 

follows a one-step degradation profile with a maximum degradation temperature at 

306ºC. These results clearly suggest that the thermal stability and degradation profile of 

the NFC-LNFs films is essentially governed by the presence of LNFs. Although the 

incorporation of the LNFs decreases their thermal stability, the films are viable for the 

removal of metal ions,304,305 which takes place at room temperature. 

Fig. 4 - Thermogravimetric analysis (TGA) of the NFC-LNFs film, as well as its 

individual components.  

 

Mechanical properties 

The mechanical performance of the NFC and NFC–LNFs films was evaluated 

up to their failure by tensile experiments. The elongation at break, Young’s modulus 

and tensile strength were determined from the stress–strain behaviour plots presented in 

Fig. 5, and are shown in Fig. 6. The incorporation of LNFs (50% in respect to the 

amount of NFC) had a substantial effect in the mechanical properties of the NFC film. 

Specifically, the incorporation of LNFs promoted an increase of 78.8% in the Young’s 

modulus, from 3.67 ± 0.55 up to 6.56 ± 0.32 GPa, and of 25.6% in the tensile strength, 

where a value of 72.69 ± 2.36 MPa was registered for the NFC-LNFs film. These results 

clearly indicate that the NFC-LNFs films are more stiff and resistant that the native 

NFC films, confirming a considerable reinforcement of the NFC films with the addition 

of lysozyme nanofibers. This is particularly interesting considering the good mechanical 

properties of the NFC itself, which has been mostly used as a reinforcement in several 
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nanocomposite materials.249,306,307 Concomitantly, a decrease of 62.6% on the 

elongation of break was observed after the incorporating LNFs, reaching a value of 2.22 

± 0.43 % for the NFC-LNFs film.  

These results are comparable to those reported in literature for phosphorylated 

nanocellulose membranes (ca. 25 µm in thickness) used for copper removal that 

displayed Young’s modulus of 6.1-8.7 GPa,308 but considerably higher than other 

materials used for similar purposes, such as cellulose nanowhisker-based fibrous 

membranes308 and poly(vinylidene fluoride)/graphene oxide microfiltration 

membranes,309 which present less than 0.5 GPa in Young’s modulus and 15 MPa in 

tensile strength. 

 

Fig. 5 - Stress-strain plots of the NFC and NFC-LNFs films. 
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Fig. 6 - Young’s modulus (GPa), tensile strength (MPa) and elongation at break (%) of 

the NFC and NFC-LNFs films. 

 

Hg (II) removal by NFC-LNFs films 

Finally, the capacity of the NFC-LNFs film to remove Hg(II) from natural 

waters was evaluated. In this work, the removal of Hg(II) was assessed by cold vapour 

atomic fluorescence spectrometry. Initially, an ultra-pure water (UP) spiked with Hg(II), 

so that the final concentration is of 50 g was used at different pH values (4, 7, 9, 11), 

was used to test the prepared film and the sorption of Hg(II) was determined by the 

Hg(II) concentration that remained in the liquid phase after 24h. As it can be seen in 

Fig. 7, for the same pH, higher Hg(II) removal values were registered for the NFC-

LNFs film when compared with the corresponding pure NFC film, suggesting the 

central role of the LNFs in the removal of Hg(II) from the solution. Remarkably, this 

plot also shows that the Hg(II) removal increased with the increase of the pH, with 

values of 35.7% (pH 4) > 73.9% (pH 7) > 79.2% (pH 9) > 99.0% (pH 11). The higher 

efficiencies at pH 11 are certainly related with the number of available negatively 

charged groups of the LNFs, since lysozyme has an isoelectric point (pI) of 11.35.310 In 

fact, Bolisetty et al.160 reported 99% removal efficiency of Hg(II) at pH 4, when using 

protein nanofibers obtained from β-lactoglobulin, which has a pI of 5.2, unveiling the 

influence of this parameter in the removal efficiency of metal ions when using protein 

nanofibers. The same explanation can be used to understand the removal percentages 
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obtained for pure NFC membranes, since the production of NFC involves a treatment of 

the cellulose fibers with TEMPO,311 that may promote the oxidation of primary 

hydroxyl groups (C6) into carboxylate groups, generating also negatively charged 

groups at higher pH values. 

As matter of fact, the removal efficiencies obtained with this NFC-LNFs film are 

comparable to those obtained for several materials reported in the literature,160,305,312–315 

where Hg(II) removal efficiencies over than 90% have been achieved. For example, 

graphene oxide foams have shown to remove Hg(II) up to 95% after 24h in contact with 

water,314 bio-based aerogels of crosslinked carboxymethyl cellulose with cellulose 

nanofibril exhibited excellent adsorption capabilities for different heavy metal ions315 

and, in another vein, chitosan hydrogels and magnetite nanoparticles were 

functionalized with sulphur groups to increase the Hg(II) absorption.305,313  

However, most of the studies published so far in the open literature for Hg(II) 

removal were carried out using highly concentrated Hg(II) solutions, much higher than 

the limit established in the European Union regulations299 - 50 µg L-1 -, and the initial 

concentration used in our studies. For instance, the aerogels of crosslinked 

carboxymethyl cellulose with cellulose nanofibril315 were studied using a Hg(II) 

solution of 50 mg L-1, which is a thousand times higher than the limit established, and 

the use of activated carbon membranes with protein nanofibers160 has promoted a Hg(II) 

removal of 99%, when the Hg(II) concentration is decreased down to 400 µg mL-1, still 

8 times higher than the allowed limit. Despite the high efficiencies registered in these 

studies, the methodology leads to unrealistic Hg(II) concentrations. In our study, the 

removal of Hg(II) was studied by atomic fluorescence spectrometry with a detection 

limit of 0.02 µg L-1, which allows us to use a realistic Hg(II) concentrations, in the same 

order of the European Union regulations. 

Another meaningful issue is that most of the studies reported in literature are 

carried out using very simple water matrices, such as distilled water.304,312 It is well 

known that other components present in natural samples significantly affect the 

extraction efficiencies. Therefore, and in order to evaluate the matrix effect, we used 

natural spring water (NS) as a more complex water matrix. Since the NFC-LNFs film 

only promoted nearly 35% of Hg(II) removal using ultrapure water at pH 4, the assays 

with spring water were carried out only at pH 7, 9 and 11.  
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The same trend of increasing removal percentage of the Hg(II) with pH was 

observed (Fig. 7) when natural spring water was used. In fact, the Hg(II) removal values 

obtained with natural spring water were quite similar to those obtained with ultrapure 

water. This indicates that a complex water matrix containing many other ions, which 

could compete with Hg(II) cations for the adsorbent sites, does not have a significant 

affect in the removal efficiency of the NFC-LNFs membranes.  

 

Fig. 7 - Hg(II) removal (%) by NFC and NFC-LNFs films, from ultra-pure (UP) and 

natural spring (NS) water, at different pHs. 

In order to have a first insight into the Hg(II) kinetics removal, samples were 

taken after one hour of contact for the assays with natural spring water, and the Hg(II) 

removal (%) obtained is summarized in Table 1. It can be observed that, after 1h, the 

NFC film barely removes 4% Hg(II) at pH 7 and 9, while the NFC-LNFs film reach 

removal percentages over than 50%. At pH 11, NFC film promoted a Hg(II) removal 

slightly over than 20%, while the NFC-LNFs film obtained almost 75%. These results 

mean that, although NFC has some effect on the Hg(II) removal from water, the 

presence of LNFs considerably improves the affinity of Hg(II) for the films and thus the 

sorption kinetics. In fact, the addition of LNFs to the NFC film increased the kinetics of 

Hg(II) removal up to four times in the first hour when compared to the kinetics 

registered for NFC films. 

Table 1. Hg(II) percentage removal of NFC and NFC-LNFs films after 1 h and 24 h in 

natural spring water spiked with 50 µg L-1 of Hg (II), for the different pHs studied. 
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pH t (h) 
Hg(II) Removal (%) 

NFC NFC-LNFs 

7 
1 4 53 

24 33 82 

9 
1 4 56 

24 26 89 

11 
1 23 75 

24 62 93 

 

Although NFC offers an excellent support to the LNFs, the films disintegrated in 

small pieces along the process as a consequence of the magnetic stirring procedure used. 

This is limitation that can be easily overcome by simply using a net system to hold the 

NFC-LNFs film, avoiding its rupture. Anyhow, further studies need to be carried out to 

ensure that the intact film has the same removal performance as the disintegrated film.  

As a final remark, this study opens new perspectives regarding the use of protein 

nanofibers as natural Hg(II) sorbents. Comparing with a previous study using protein 

nanofibers,160 our results confirms the ability of protein nanofibers in the removal of 

trace metals even for realistic concentrations of Hg(II), considering the limit established 

in the European Union regulations for mercury in waters discharged from industrial 

sectors (50 µg L-1).299 The full potential of this work is here unveiled since it is now 

clear that the isoelectric point of the precursor protein of the nanofibers plays a 

dominant role in the trace metals removal. In this work, lysozyme (pI = 11.35) was used 

as a model protein for nanofibers precursors. It is envisaged that other proteins with 

lower pIs and able to form nanofibers, like albumin (pI 4.7) β-lactoglobulin (pI 5.2), 

collagen (pI 6.6) and hemoglobin (pI 7.1), might provide new inputs on the removal of 

trace metals, approaching a wide range of waters/effluents in a wider range of pH 

values. 
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Conclusions 
 

This study highlights the use of lysozyme nanofibers in the removal of trace 

metals from contaminated water, using a natural renewable material, nanocellulose, as 

support. The obtained films were homogenous, transparent and thermal stable up to 

240ºC. The addition of 50% of lysozyme nanofibers in respect to the amount of 

nanocellulose promoted a mechanical reinforcement of about 78% in the Young’s 

modulus. Regarding the Hg(II) removal assays, the presence of LNFs demonstrate to 

significantly increase the Hg(II) removal from natural waters, especially in the first 

hour. The Hg(II) removal capacity was found to be pH-dependent, and clearly linked to 

the pI of the protein precursor of protein used to prepare nanofibers. Consequently, 

higher efficiencies were obtained at higher pHs, with 82% (pH 7) < 89% (pH 9) < 93% 

(pH 11) after 24 h, in agreement with the lysozyme pI (11.35). This work strongly 

supports further investigation of protein nanofibers in the treatment of waters and 

effluents, where other protein precursors and materials can be studied. 
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4.  
Conclusions and Final Remarks 

 

Protein nanofibers, mostly known as amyloid fibrils because of their association 

to pathological disorders, are indeed emerging as new building nanoblocks for the 

development of innovative functional materials.  

In this thesis, novel and fast fibrillation methodologies were reported using 

alternative solvents, such as ionic liquids and deep eutectic solvents. The use of ionic 

liquids based on imidazolium and cholinium cations combined with different anions 

derived from organic acids, as well as deep eutectic solvent based on cholinium 

chloride, have shown to fibrillate hen egg white lysozyme into worm-like nanofibers 

within 2-3 hours, generally achieving conversion ratios over than 70-80%. High 

aspect-ratio nanofibers, with typically 0.3-1 µm of length and 15-40 nm of width, were 

obtained. It was observed that temperature plays a key role in the kinetics of the 

fibrillation process. It was also observed that the acid group of hydrogen bond donor in 

the deep eutectic solvent plays an important role on the fibrillation efficiency and on 

the length of nanofibers produced. Higher aspect-ratios were obtained when using the 

cholinium chloride conjugated with the acid group, especially acetic and lactic acids. 

The aspect-ratio of the nanofibers was determinant in the mechanical properties of 

materials prepared with protein nanofibers. This was clearly shown when 

incorporating these nanofibers in pullulan films, where an increase of about 36% for 

the Young’s modulus using only 5% of nanofibers was achieved confirming their 

higher reinforcing capacity. 

In the pursuit for the development of new materials based on protein 

nanofibers, homogeneous and transparent nanocomposite films composed of pullulan 

and different amounts of lysozyme nanofibers were developed by simple solvent 

casting from aqueous suspensions. The films exhibit good thermal stability, improved 

mechanical properties and high antioxidant activity, and the incorporation of 15% of 

lysozyme nanofibers has shown antibacterial effectiveness towards Staphylococcus 

aureus, thus confirming the potential use of lysozyme nanofibers as bioactive 

reinforcing elements for nanocomposites. In another study, a sustainable sorbent film 

for the removal of mercury (II) was prepared by mixing nanocellulose fibers and 
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lysozyme nanofibers. The films have shown expressively mercury (II) removal 

efficiencies, specifically over than 50% in the first hour, and over than 80% after 24h, 

achieving the best results at pH 11. Notably, protein nanofibers are efficient on the 

removal of realistic concentrations of mercury (II), under the limit established in the 

European Union regulations for mercury in waters discharged from industrial sectors 

(50 µg L-1). 

In sum, this thesis demonstrates that use of ionic liquids and deep eutectic 

solvents can promote a faster production of protein nanofibers with tailored aspect-

ratios that can be used on the development of different functional materials.  

Therefore, it is expected that these results will leverage the vast range of applications 

of protein nanofibers in the materials field from soft matter to nanotechnology. Along 

this doctoral thesis, many ideas have been flourishing and some future plans regarding 

this project can be highlighted: 

▪ Study of the interactions established between ILs/DES and proteins so that a 

better understanding of the fibrillation process is achieved, as well as the 

mechanism of how the HBD of the DES promotes the formation of longer 

nanofibers (with higher aspect-ratios). 

▪ Development of a methodology to re-use the ionic liquid, as for instance, their 

immobilization on magnetic nanoparticles. 

▪ Investigate other proteins able to generate protein nanofibers, like β-

lactoglobulin, albumin, hemoglobin and insulin, followed by a comparison with 

the nanofibers from hen egg white lysozyme regarding their structural features 

and properties. 

▪  Preparation of nanocellulose based films containing other protein nanofibers 

(with different isoelectric point), aiming to achieve the removal of trace metals 

from different waters/effluents (with distinct pHs). 

▪ Explore other polysaccharides and materials that can be combined with protein 

nanofibers, for the development of new materials for other applications, like 

scaffolds, transparent films and membranes, hydrogels and aerogels. Chitosan, 

alginate and gelatin are some examples. 

▪ Study the protein fibrillation process in the presence of other polymers, as 

polysaccharides (in situ fibrillation). One example is bacterial cellulose (BC), 

because protein fibrillation can be promoted inside the 3-D BC network. 
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